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This paper uses zeta-function regulansatlon to calculate the one-loop functlonal determinants 
for fields of any spin m De Sitter space As an example, we investigate the Coleman-Weinberg 
spontaneous symmetry breaking mechamsm m massless scalar electrodynamlcs The effectwe 
potential is calculated m Landau gauge It depends upon the curvature, and upon the renormahsed 
value of ~ (m ~R& 2) The phase transition wdl be first or second order, and the critical curvature 
and mass are found The methods can be apphed to any gauge theory 

1. Introduction 

G u t h  [1] has sugges ted  tha t  the  ea r ly  universe  wen t  t h rough  a pe r iod  of e x p o n e n -  

t ial  expans ion ,  dur ing  which the  cosmolog ica l  length  scale inc reased  by  at  least  

exp  (64). This  solves  two i m p o r t a n t  p r o b l e m s  in cosmology .  It expla ins  how the 

mic rowave  b a c k g r o u n d  rad ia t ion  can be  i so t ropic .  I t  also expla ins  how the un iverse  

came  to be  so close to the  cri t ical  dens i ty  s epa ra t i ng  indef ini te  expans ion  f rom 

even tua l  reco l lapse .  This  is why it is so much  o lde r  than  the P lanck  t ime 10 -43 

seconds ,  which is the  t imesca le  of a r ad i a t i on  d o m i n a t e d  universe .  

The  phase  of exponen t i a l  expans ion  was caused  by the vacuum ene rgy  of the  

Higgs  scalar  field in a g rand  unif ied theory ,  and  dur ing  it, the  space t ime  was 

desc r ibed  by a D e  Si t te r  metr ic .  To p rov ide  a cons is ten t  m o d e l  of this process ,  the  

v a c u u m  ene rgy  of the  Higgs  field mus t  be  ca lcu la ted  in D e  Si t te r  space  r a the r  than  

in flat M i n k o w s k i  space .  The  p u r p o s e  of this p a p e r  is to show how the vacuum 

ene rgy  of a gauge  t heo ry  can be ca lcu la ted  in D e  Si t ter  space.  

The  e x p o n e n t i a l  expans ion  began  when  the  ave rage  ene rgy  of a par t ic le  in the  

un iverse  was a b o u t  the  ene rgy  M x - ~  1015 G e V  at which the in te rac t ions  of the  

G U T  mode l s  a re  unified.  The  s p o n t a n e o u s  b r e a k d o w n  of s y m m e t r y  in a gauge  

t heo ry  is desc r ibed  by an effect ive po t en t i a l  funct ion  shown in fig. 1. This  m e a s u r e s  

the  vacuum energy  of the  fields, and  is a funct ion of the  Higgs  field &. W h e n  the 

un iverse  was very  hot ,  the  field ~b was f luctuat ing a b o u t  a m e a n  value  ze ro  (&) = 0 

and the s y m m e t r y  & -~ -q~ of the  G U T  lagrang ian  was u n b r o k e n .  D u r i n g  this t ime 

the  vacuum ene rgy  dens i ty  V(O)~-M4x ac ted  as a repuls ive  cosmolog ica l  t e rm in 

* Part of this paper first appeared as a Kmght Prize essay 
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Fig. 1 The  effectwe potential  for high and low temperatures .  The barrier between & = 0 and 4~ = ~bo 
traps the Higgs field at & = 0 while the umverse  supercools. 

the Einstein equation. It brought about an exponential expansion of the scale factor 

t ~ / R  = H = ( M x / M p ) M x .  In these units h = c = 1 and so 1 GeV-~ 10  -14 c m  -1 and 
M p -  1019 GeV is the Planck mass. 

As each comoving volume element of the universe expanded exponentially, the 
matter cooled, and the potential V(4~) may have developed new minima away from 
~b = 0. If they became lower than the old minima, the Higgs field ~b would be 
trapped by the barrier between them, and be unable to make the transition to the 
new minima at ~b = 4~0. As the matter  cooled further, the Higgs field eventually 
approached the broken symmetry phase ~b = ~bo. In this phase the vacuum energy 
of the fields vanished and the period of exponential expansion ceased. The release 
of the vacuum energy density V ( 0 ) -  V(4~0) created hot matter in the new phase, 
and the history of the universe then proceeded along like a standard big-bang model. 

The outstanding question is how does the phase transition from (~b) = 0 to (&) = ~b0 
take place. Coleman [2] has studied how the phase transition takes place in field 
theories in flat and curved space. Just as in a phase transition like boiling water, 
bubbles of the new phase (&) = &o form in the old phase (~b) -- 0. The walls of these 
bubbles quickly accelerate to lightspeed, and the bubbles grow. However  in an 
exponentially expanding universe, not enough bubbles join together to form a 
homogeneous universe. The observed universe may have formed from the interior 
of a single such bubble [3]. 

A more daring idea [4] is that the phase transition occurs homogeneously. If the 
effective potential is fiat enough at the top of the barrier, a single "bubble"  without 
walls forms everywhere. If this happened, then the big bang is unobservabte. The 
Hawking-Penrose singularity theorems do not apply because they assume an energy 
condition which is violated in the exponentially expanding phase. The universe we 
observe began at the moment  when the 4~ field tunneled out at the maximum of 
the potential, and the exponential expansion took place while the Higgs field "slid 
down the hill" to ~b0. 

If these ideas are correct, then the observed beginning of the universe does not 
depend upon the initial position and momenta of the matter  in it. Any perturbation 
of the initial matter distribution is exponentially damped, and the observed universe 
could be thought of as starting, not from an initial singularity, but from an initial 
De Sitter space containing only the vacuum energy of the fields. 
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Each observer in De Sitter space has an event horizon, which he observes radiating 
a thermal spectrum of particles [5], at a temperature H/2rr. This is the lowest 
equilibrium temperature that any matter  can have. So as the matter cools, it 
approaches this temperature,  rather than zero temperature.  It is correct to use the 
flat-space finite-temperature effective potential only when the matter is much hotter 
than this. When the matter  has cooled to this temperature,  it is necessary to use 
an effective potential which is calculated in De Sitter space. 

Fortunately there has been a lot of work on quantum field theory in curved space 
[7]. The path integral formulation seems to be the most appropriate one here, 
because it is the only technique that takes account of the non-trivial topology of 
curved space [8]. One difficulty in field theory is that the divergences which result 
from calculations must be removed by some regularisation technique. The method 
of dimensional regularisation has been widely used. In this approach one calculates 
on a spacetime manifold which is 4 + e  dimensional, and then cancels the poles 
which result as e ~ 0. This technique has been used to study coupling constant 
renormalisation at several loops [9]. However  it is ambiguous because there is no 
general ansatz for globally continuing a spacetime manifold to 4 +e  dimensions. 
This paper uses zeta function regularisation, which has been developed for doing 
path integrals in curved space [10]. It is straightforward in the one-loop approxima- 
tion, but has not been generalised for N-loop calculations. 

It is possible for the Higgs potential that appears in the G U T  lagrangian to lead 
to symmetry breaking. These potentials are quite complex even though they contain 
only a few parameters [11]. The other possibility is that the potential for the Higgs 
field does not directly cause symmetry breaking. Instead, the interactions of the 
gauge fields with the Higgs field can lead to spontaneous breakdown of symmetry 
[12]. In curved space this results in very interesting behavior, and it is the most 
natural way for spontaneous symmetry breaking to occur in a gauge theory. 

To calculate the vacuum energy, one must examine the lowest-order quantum 
corrections to the Higgs potential. These one-loop calculations can be done for 
any gauge theory. In the second section, we review how they lead to gaussian 
functional integrals, which can be expressed as functional determinants. In defining 
the measure of the functional integral, it is necessary to introduce an arbitrary 
non-zero mass scale tz. The renormalisation group equation ensures that any value 
of/x leads to identical physical predictions. 

To evaluate the functional determinants, we define them in terms of the gen- 
eralised zeta function which is the sum of the operator  eigenvalues ( ( z ) =  ~ ,  h ~ .  
In highly symmetric spacetimes, the zeta function can be expressed in closed form 
in terms of the psi function t~(z) = (d/dz)  log F(z) .  In the third section, this closed 
form is found for all spin fields in De Sitter space. This result can be used to 
determine the one-loop behavior of any gauge theory in De Sitter space. 

The simplest gauge theory exhibiting spontaneous symmetry breaking by the 
Coleman-Weinberg mechanism is scalar electrodynamics. This theory contains 
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one real vector field and one complex scalar field, and has a local U(1) gauge 
symmetry. It is used as an example in sect. 4 to illustrate how the vacuum energy 
can be calculated from the zeta functions. Shore [13] studied the conformal and 
minimal cases of this theory using dimensional regularisation. We generalise his 
results to the arbitrary massless case. 

In sect. 5 we give a complete description of how the phase transition takes place 
as the curvature of the De Sitter space changes. The potential depends upon a 
single parameter,  which we call P. It is a combination of ~: and h /e  4. We prove 
that for P > - I  the phase transition is first order, and that for P < -  1 it is second 
order. We give an exact expression for the critical curvature when P < - I ,  and 
approximate expressions for the critical curvature and mass when P >  2. Using 
results from numerical computation, the critical curvature and mass are plotted for 
- ~ < P  < 2, and the accuracy of the large-P approximation is found. We obtain 
agreement with the two special cases of Shore [13], who made a small numerical 
mistake. 

In sect. 6 the gravitational part of the action is included. The stationary point is 
shown to occur for spacetimes much flatter than the generic critical curvature. The 
extension of these results to the simple SU(5) G U T  model will be done in a later 
paper. 

2. The one-loop approximation 

In the path integral approach to quantum theory, the amplitude is given by an 
expression [10] 

Z = f d[g] d[&] exp {iI[g, ~b]}, (2.1) 

where d[g] is a measure on the space of metrics, d[&] is a measure on the space 
of fields, and I[g, &] is the action. The integral is taken over all fields satisfying 
given boundary conditions. The dominant contributions come from fluctuations 
around background fields 4~b and gb that extremise the action and satisfy the 
boundary conditions. The background fields are solutions of the classical field 
equations. 

The action can be expanded in a Taylor series near these classical background 
fields 

I[g, 0 ] = I [gb, t#b] + I2[g] + I2[~] + higher order terms,  (2.2) 

where g = g b + g  and ~b = 4~b+~. The functionals I2[~] and I2[~] are quadratic in 
and ~, and the linear terms are absent because gb and t~b satisfy the classical 

equations of motion. In this paper gb=met r ic  of De Sitter space and ~bb = 
expectation value of the Higgs field. The one-loop approximation simply neglects 
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all the terms of higher order than quadratic. To this order 

log Z : i l [ g b ,  <bb] + l o g / f  d[ff] exp (i/2[~])/+ l o g / f  d[<~] exp (iI2[<b ])] .  
t J  J t d  J 

(2.3) 

In De Sitter space with Lorentz signature ( - ,  +, +, +) the operators appearing 
I2 are unbounded, and so the integrals are ill-defined. To define them, we perform 
a Wick rotation. In the absence of gravity, this corresponds to replacing Minkowski 
space with fiat euclidean space. In the presence of a background gravitational field, 
we complexify the manifold and pass into its euclidean (+, +, +, +) section. De 
Sitter space is a 4-dimensional hyperboloid of constant curvature. It has a unique 
euclidean section which is a four-sphere S 4 of radius a. The curvature tensors are 

1 3 12 
R,~ov~ = ~ (g,,~,g~8 - g,,sg~-~ ) , R,*o = ~~ g,,o , R = --~ . 

a a 

On the euclidean section, the operators are bounded below, and the integrals are 
well-defined. The one-loop expression becomes 

l o g Z = - S [ g b ,  q~b]+log { I - d [ ~ ] e x p ( - S 2 [ f f ] ) } + l o g  { I  d[c~]exp(-S2[cb]) } , (2.4) 

where S[g, ~b] is the euclidean action. Since the four-sphere has no boundary, we 
integrate over all fluctuations ~ and 4~. 

As a simple example, suppose that the euclidean action of a real field tb is 

I '  " V(q~)]~/g d4x s[4,]= [~(o~)(o 6)+ (25) 

where V(<b) is some polynomial function of <b, for instance V(40 = 
½(sCR +m2)4~2+(a/4v)<b 4. For constant background fields one can integrate the 
kinetic term in the action by parts to find 

s~[~;] = ½1 e;(-E3 + v"(~))~ d V ,  (2.6) 

where the scalar wave operator is [] = W'V~, and V"(~bb) = d 2 V/dO 2[,b b. By introduc- 
ing a current J, one can ensure that any constant value of (~b is a solution of the 
classical field equations. The effective potential is defined by analogy with the free 
energy density in thermodynamics. For a constant background field 

exp [- /2 Ve~(~bb)] = Z ,  (2.7) 

Vo,(~bb) = V(~b) - -~  log d[~] exp (-$2[~]) , (2.8) 

where /2  = I ~/g d g x  = ~Tr2a 4 is the volume of a four-sphere. We have dropped the 
gravitational terms from Z and will return to them in sect. 6. 
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TABLE 1 

Eigenvalue and multiplicity of wave operator for elementary fields m De Sitter space (note n = 0, 1, 2 . . . .  ) 

Spin Eigenfunction Condition Operator  Multiplicity g. Elgenvalue A,, 

0 0 .  none -V,.V'~ + m 2 ~(n+l)(n+2)(2n+3) a 2n(n+3)+m2 
1 2 ~b. none y,,0" - m  ~(n + 1)(n +2)(n +3) ~ta-~(n + 2 ) - m  
1 A~" V~,A."=0 -V~,V~'+rn 2 ~(nl + l ) ( n + 4 ) ( 2 n + 5 )  a 2(n2+5n+3)+m2 
q 4 2 t~". VuAb ~'-- 0 y~,O"-m ~(n + 1)(n + 3)(n + 5) ~ t a - l ( n + 3 ) - m  

~'.4J". = 0 
2 h". ~ h ~ = h ~  '~ - V . V " + m  2 S(n+l)(n+6)(2n+7) a-2(nZ+7n+8)+m 2 

h , ~  = 0 
V , h  ~ = 0 

We can now express the fluctuations ~ in terms of an or thonormal  set of 
eigenfunctions 4~, of the opera tor  Q = -Fq + V"(4~b). Each field ~ is a vector in a 
countable Hilbert  space of expansion coefficients. The path integral measure d[&] 
is taken as a "measu re"  on this Hilbert  space, in the standard way [10]. To make 

this measure dimensionless, we must introduce a positive quantity IX with dimensions 
of (length) ~ = mass. We then find that the one- loop effective potential  is 

1 
Vl(&b) = V ( ~ b b ) - ~  Iog (det Ix 2 Q [ q ~ b ] ) - l / 2  • (2.9) 

The units of this function are mass/ length 3 = mass 4. 

A general gauge theory contains both boson and fermion fields of different spins. 
These fields can be decomposed in terms of the e lementary representat ions shown 
in table 1. Gibbons [14] found the eigenvalues and multiplicities of the wave 
operators  for these e lementary  representations,  by considering the action of super- 
symmetry transformations on product representations of the fields. The one- loop 
effective potential  can be expressed as determinants  of these operators,  as we have 
done in the simplest case in (2.9). 

We can quickly identify two of the n = 0 eigenfunctions. The n = 0 spin-0 scalar 
eigenfunction is a constant, and has eigenvalue m 2. The ten n = 0 spin-1 transverse 
vector eigenfunctions are the ten independent  Killing vector fields that generate 
the isometry group SO(5) of S 4. Since they satisfy Killing's equation they are 
transverse, and by taking a derivative of Killing's equation one can verify that they 
have eigenvalues 3 / a 2 + m  2. Our convention in table 1 is that on the euclidean 
section of the metric, the algebra of the Dirac matrices y .  is {y., 3'~} = 2S.~ and 
y .  = 3'.. Any fermionic fields will appear  in the lagrangian in terms like ~O ( 3 , . 0  - 

m)~O. Because the fermionic fields form an ant icommuting Grassman algebra, the 
gaussian integral leads to a result with a different sign [15] than in (2.9) 

Z f  . . . . . .  = (det I x - 2 Q ) 1 / 2  (2.10) 

where the field is a Majorana  spinor, and Q the operator  for " 1 spm-~. 
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3. The zeta function 

Suppose we have an operator  Q whose eigenvalues A. each occur g. times. The 
determinant of Q may be formally written as 1-I. (A.) g" but this infinite product 
diverges. To give the determinant  a sensible meaning, we first define the generalised 
zeta function [10] of the operator  Q by 

( ( z ) ~  ~ g,X, z, (3.1) 
n = O  

where z is a complex number. If the An are eigenvalues of a second-order wave 
operator,  they grow like n 2 for large n. If the spacetime manifold is four-dimensional 
then the multiplicity g, grows like rt 3 for large n. It follows that the sum (3.1) 
converges for Re z >2 .  Hence the function defined by (3.1) on the half-plane 
Re z > 2 can be analytically continued to the entire complex plane. The important 
thing is that ~'(z) is regular at z = 0 .  Its derivative there is formally ~"(0)= 
- ~ ,  g, log A, and so we define the determinant of Q by 

d ~'(z)[z=0] • (3.2) det O =- exp [ -  ~zz 

This determinant has some of the properties of an ordinary matrix determinant. 
We can easily show that 

det (txO) = ,~o t  det Q ,  (3.3) 

so that ((0) is the number of "rows" of O. If one removes an eigenvalue Ao from 
O to get ()  then ((0) = ~'(0)- 1 and ~r'(0) = - log  A0+('(0).  Hence if any eigenvalue 
vanishes, the functional determinant vanishes. 

Our task is now to find the zeta function and its derivative at the origin for the 
operators of table 1. We can calculate the determinant for a unit radius (a = 1) 
sphere, and use (3.3) to restore the dependence on radius. The fermion eigenvalues 
of table 1 appear in complex conjugate pairs, which can be multiplied. This "squaring 
up"  converts the first-order operator  to a second-order operator.  The eigenvalues 
and multiplicities are then 

A, = n 2 + (2L + 3)n + X ,  (3.4) 

g,=dim(n+L,L)=½(2L+l)(n+l)(n+L+3)(n+2L+2), (3.5) 

for n = 0, 1, 2 . . . .  where the constant X is determined by the mass of the field 
and by the precise form of the operator  in the action. The spin of the field is L = 0, 
½, 1, 3 or 2. The multiplicity g, is the dimension of the appropriate representation 
of the euclidean De Sitter group SO(5). Since the eigenvalues are quadratic in n, 
they may be factored 

A,, = (n + L  + 3 + 4 5 ) ( n  + L  + 3 - 4 d ) ,  (3.6) 
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where 
A ~ (L + 3 ) 2 _ X .  (3.7) 

The zeta function for a field of spin-L is then 

( ( z ) = ~ ( 2 L + l )  ~ ( n + l ) ( n + L + } ) ( n + 2 L + 2 )  
n = O  

x [(n +L +~+43)(n +L +~-45)]  ~, (3.8) 

( ( z ) = ½ ( 2 L + l )  ~ (n3_n(L+~)2)n 2z 1 -  . (3.9) 
n = L + 3 / 2  

We now define power series coefficients in the expansion 

( l - x )  z =  ~ CkX k=I+zx+~z(z+I)x2+~z(z+I)(z+2)x3+ ' ' ' ;  (3.10) 
k = 0  

so we can write our expression for the zeta function as 

~'(z) : 1(2L + 1) ~ ckA k [CR(2z + 2k - 3, L + 3) - (L + ~)2~'R(2Z + 2k - 1, L + 3)]. 
k = O  

(3.11) 

The extended Riemann zeta function ~rR(Z, a ) is defined on the half-plane Re (z) > 1 
by [16] 

~'R(z,a)-= ~ ( n + a )  z, (3.12) 
t t = 0  

and by analytic continuation elsewhere. The ordinary Riemann zeta function is 
~'R(z) =~ra(Z, 1). (a(Z,a) is a meromorphic function of z with one pole at z = 1. 
Near the pole 

1 
(R(z, a )  = - - - t h ( a )  + O(z - 1), (3.13) 

z - - 1  

where O(z)-~(d/dz)logF(z) is the psi (or digamma) function. Consequently the 
scale dependence is 

((O)=I(2L+I)[~R(_3, L+~)_(L+I)2CR(_I, L 3 , + ~)] - ~(L + ½)3A + ~(L + 1)  A 2  

(3.14) 

and the Rmmann zeta function can be expressed as Bernoulli polynomials at 
negative integer values: 

SrR(__ I  O¢) = 1Ot. 2q._ 1 1 4 1 3 1 2 ,  1 , 5a  _ 1  ~ ' a ( - -3 ,  a )  + . ( 3 . 1 5 )  ~ --~Og ~OL --~O~ -~" 120 

Table 2 gives the values of 5(0) obtained from (3.7), (3.14) and (3.15). 
To find ( '(0) we write ~(z)=¢(O)+z('(O)+O(z:) for small Izl. Starting with 

expression (3.11) we use (3.13) on the k = l  and k = 2  terms with c~=z and 
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T A B L E  2 

V a l u e s  o f  st(0) f o r  t he  o p e r a t o r s  o f  t a b l e  1 

Spin =L ~'(0) an terms of A ~'(0) in terms of X 

1 2 1 17 1 2 1 29 
0 ~ A  - 2 4 ~ 1 - 2 ~ 6  12X - ~ X  +~6  
1 1 2 1 11 

~A - ~ A  + ~ i  
1 2 9 863 1 2 109 1 zA -~A +9~o ~X - 2X +3Y 

3 l 2 8 401 
~A - ~A + 90 

5 2 125 8383 ~22X2_SX+21389 2 ~A - ~-A + ~ - -  

C2 ~ 1 Z 1 2 +2z  . F r o m  (3.10) the general  ck = z /k  + O ( z  2) so we find 

s r , ( 0 )__~(2L+l ) [ (h (_3 ,  L + 3 )  1 2 , - (L +~) ¢R(--1, L +~)] + ~ ( 2 L  + 1 ) A :  

J l  k 

 (2L 1) ~ [~'(2k - 3, L + ~) - (L + ½)=((2k - I ,  L + 3)3, + + 
k = l  K 

(3.16) 

where  we have d ropped  the subscript  R to define ~'(1, a)~--O(a ) and ~(n,a)=-- 
~R(n, O~) for  n integer and n # 1. In (3.16) we indicate the derivative srh(z, a ) -=  

(d/dz)~R(Z, a). We can express the sum in (3.16) in terms of the psi function. F r o m  
[17] 

d" 
dz .O(z)=(- -1)"+ln!~R(n+l ,z ) ,  f o r n  = 1 , 2 , 3  . . . . .  (3.17) 

we can easily show that  for  complex  z 

( ( 2 n  + 1, a)z 2" = - l[o(a  + z)+O(a - z ) ] .  (3.18) 
n--O 

We could sum the series in (3.16) except  for the factor  of 1/k. If we differentiate 
with respect  to A we can write the derivative as 

d 

dA 
- -  ~r'(0) = ~(2L + 1)A +½(2L + 1)~R(--1, L +3) 

+ ½ ( 2 L + I ) ( A - ( L + ½ )  2) ~ A k ( ( 2 k + l , L + 2  3) 
k = 0  

= -6~ (2L + 1)[(A - ( L  + ½)2)(0 (L + 3 + ~/~)+ O (L + 23--~/A)- 1 )+  L + 2]. 

(3.19) 

To  integrate this funct ion it is convenient  to use the shift formula  O ( l + z )  = 
O(z)+ 1/z to obtain 

d ( ' (0)  = -~ (2L  + 1)[(A - (L + ½)a)(o (L + ½ + ~/3) + O (L + ½- ~/A) - 1) - L - ~] 
dA 

(3.20) 
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so that 

~"(0) = -~(2L + 1) 

L+I/2+J-A x[f U ( U - L - ½ ) ( U - 2 L - 1 ) t , O ( U ) d U  
L.'L+I/2 

j .L+I/2 x/A 1 g g ]  
+ U ( U  L ~ ) (  2 L - 1 ) t O ( U ) d  

L+l/2 

+ ~ ( 2 L  + 1)A z -~ (2L  + 1)(L 2 - ~ ) A  +2(2L + 1) 

t 3 1 2 t x [ (a  ( -3 ,  L +~) ( -1 ,  L +3)] - (L +~) srR . (3.21) 

The initial value at A = 0 comes from (3.16) prior to differentiation. 
We have found st(0) and ( '(0) for the operators of table 1. The st(0) are quadratic 

functions of A (defined by (3.4) and (3.7)) and are given in table 2. The functions 
~"(0), given by the integral form in (3.21) have interesting properties, which we 
will digress briefly to look at. 

The integrand of (3.21) has simple poles at U = - 1 ,  - 2 ,  - 3  . . . . .  The contour 
of integration is shown in fig. 2. The arrows on the contour show A decreasing. 
When A is positive, the contour extends along the real axis. It reaches a pole each 
time A cancels an eigenvalue. Shown in fig. 3 is a graph of the real part of ( '(0) 
as a function of A. When ( ' ( 0 ) ~  oo, the determinant vanishes. The imaginary part 
of ( '(0) can be found from tTr x (residue of poles) in 3.21. 

Our technique for expressing the determinant in terms of the psi function will 
work for any quadratic eigenvalue with polynomial multiplicity. For instance, one 
could calculate the zeta functions for wave operators on CP 2 or S" in the same 
way. Now, what if the eigenvalue were a polynomial of order M, with its multiplicity 
a polynomial of order O? 

A,  = ( n - a ) ( n - b ) .  • • ( n - c ) .  (3.22) 

In theory, we could calculate its determinant sr~,B c(0) and scale dependence 
(aB c(0) using the zeta function (3.1). We would expect that sr~,B c(0) is an 
expression like (3.21), containing one contour integral for each factor in (3.22), 
whose integrands were polynomials of order  O times psi functions. 

F~g 2 

Im(U) l I Re(U)=L+~2 

.= ~ . . . .  

Re(U) 

The contour of integrat ion for  ~"(0) m (3.2] )  I f  A > 0  It passes the poles on the real axis I f  
A < 0  it proceeds up and down the hne Re (U )  = L +½ 
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Fig 3 The real part of ~"(0) for  a spin L = 1 field has logarithmic singularities when A cancels an 
elgenvalue The imaginary part is zero for  negatwe A and changes discontinuously each t ime the contour 

m fig 2 passes by a pole 

This suggests  a n o t h e r  s imple r  me thod .  Suppose  that  we use the  fo rmula  

de t  ( A B  • • • C ) = d e t A  d e t B  • • • de t  C ,  (3.23) 

since each  " m a t r i x "  A ,  B . . . . .  C has the  s ame  size. Then  

log de t  ( A B  • • • C)  = _~r~, (0) - ( ~  (0) . . . . .  ( b ( 0 ) ,  (3.24) 

1 
GAB C (0) = ~ [CA (0)  -{- (B  (0) +"  " " 3¢. (C  (0 ) ] ,  (3.25) 

whe re  A is the  first fac tor  in (3.22), B is the  second  factor ,  and  so on.  This  second  

m e t h o d  works  for  the  s imple  case of quad ra t i c  po lynomia l s ,  but  has not  been  p roven  

cor rec t  for  a gene ra l  po lynomia l .  

4. Scalar electrodynamics 

In this sec t ion  we will ca lcula te  the  effect ive po ten t i a l  for  scalar  e l ec t rodynamics .  

This  t heo ry  descr ibes  a real  vec to r  field A~, and  a complex  scalar  field &. Its 

n o n - n e g a t i v e  euc l idean  ac t ion  is 

where  

F~.,, = V ~.A,, - V .  4 .  = O~.A,, - 0 . 4 ~  , 

D,.c~ = Ouch - i e A . O  , 

V ( ( ~ )  1 2 =2(m +~R)~b*#~ +~((#*d~)  2 . 

(4.1) 

(4.2) 

(4.3) 

(4.4) 



B Allen / Phase transtttons in De Sttter space 239 

The gauge field coupling constant e is the electric charge, the quartic self-interaction 
coupling constant h is positive, and ~¢ is the coupling to the curvature. The three 
numbers  e, A, ( are dimensionless, and the Higgs mass m 2 has dimensions of 
length -2. 

This theory has two kinds of behavior,  depending upon whether  (05) = 0 or (05) # 0. 
In flat space, if (05) = 0 then the theory describes a massless transverse vector field 
(Maxwell field) coupled to a complex charged scalar field. This vector field has two 
degrees of f reedom, and the two real scalar fields have one each. If (05)# 0 then 
the theory describes a massive vector field (with three degrees of freedom) and a 
single real scalar field which it interacts with. The case (05)= 0 is the "unbroken"  

or high- temperature  phase and the case (05)#0 is the "broken  symmetry"  or 
low-tempera ture  phase. We will see that the computat ion of the effective potential 
proceeds somewhat  differently in the two cases. 

We first examine the case (05) = 0. The complex 05 field can be decomposed into 
real and imaginary parts 

05 = ~#1 + t~o2, (4.5) 

where ~ and q~2 are real scalar fields. The vector field can be decomposed with 
the Hodge  decomposit ion theorem. It says that any differential form is the sum of 
an exact, a coexact, and a harmonic form. This decomposit ion is unique, and 
orthogonal.  Hence we can write the 1-form vector field A "  as 

where 

A"=A~+A~+A~,  (4.6) 

bt  

~ u A T  . . . . . . . . .  = 0,  coexact pa r t ,  (4.7) 

ALong,tudmal = OuX, e x a c t  par t ,  (4.8) 

A~4 :~  . . . . . . .  = 0 ,  harmonic pa r t .  (4.9) 

The H o d g e - D e R a h m  opera tor  on 1-forms is 

W =/t~,v = -g~,~V,~V = + R ,~ ,  (4.10) 

and X in (4.8) is a scalar function. Since the first Betti number  of S 4 is zero there 
are no harmonic vectors, so A ~  = 0. Since the decomposit ion is orthogonal 

f A~A[&,~ d V  = 0 .  (4.11) 

We denote the complete set of fields B = {AT, AL, q~l, ~P2}. 

The action S[B] is invariant under local U(1) gauge transformations.  An element  
.(2 = exp (ieoJ(x)) of the gauge group transforms the fields B ={A,  05} into B a= 
{A ~ +3%J(x), exp (icon(x))05} and one can easily show that $[B a] = S[B].  

There  is a method due to Faddeev and Popov [18] for extracting the volume of 
the gauge group from Z. Here,  with (05)= 0 we choose a gauge fixing addition to 
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the action 

AS[B] =½a J (V~,A") 2 dV,  (4.12) 

where ~ is a positive dimensionless number. The Faddeev-Popov determinant 
A[B] is defined by 

A[B] I d[/2] exp ( -AS[Ba])  = 1, (4.13) 

where d[/2] is a measure on the gauge group. The path integral over all fields B is 

= I d[B] f l[B] exp [-(S[B]+AS[B])].  (4.14) Z 

In this expression we may regard the Faddeev-Popov determinant A[B] as a 
jacobian which defines an invariant measure on the space of gauge transformations. 

The action S[B]+flS[B] can be expressed in terms of our field decomposition 
/z la. B = {AT, AL, ¢¢1, ~2}. In the one-loop approximation, neglecting terms cubic and 

quartic in the fields 

+ AS = ~ I [A~A~,~A~- + a (~7~,a~) 2 + <p 1(-[]  + V"(0))¢¢ 1 + ¢p2( -7-1 + V"(0))~2] d V, S 

(4.15) 

where V"(0) = m 2 + sCR, [] = V,V", and A~,~ = (-g~,v[] + R~,v). 

We express our fields B in terms of the basis functions of table 1. 

AT = a ,a~ ,  a [ =  b,o ~ - ~  , ¢1 = c,c~,, q~2 = 
n = 0  n = l  /~n n = 0  n = 0  

(4.16) 

where the constants {a,, b,, c,, f ,} are the field's coordinates in Hilbert space and 
have units of length. The basis functions a~(t~,/x/A,) are orthonormal and have 
units of length -2. In the Hodge decomposition (4.8) the scalar function h' can always 
be chosen so that ~ X d V = 0. This is why ~bo, the constant function, has been omitted. 

The functional A[B] defined by (4.13) is independent of the field B. Let /2 = 
exp (ieto(x)) be an element of the gauge group. We can express to(x) in terms of 
the orthonormal scalar eigenfunctions 

to(x)= ~ to,~b,(x), (4.17) 
n = 0  

where the constants to, have units of length 2 since to(x) is dimensionless. The 
periodicity of the gauge element to ~ to + 2zr/e restricts the range of the coefficient 
too. The dimensionless measure on the Lie algebra of U(1) is 

d[ /2]= ~ iz2dto, ,  (4.18) 
n = 0  
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where 0 ~< wo ~< (~)l/2rr2e-~a 2 and -o0 < oJ, < oo for n/> 1, and tz 2 is a mass 2. The 
Faddeev-Popov determinant (4.13) is 

d [ a ~ ]  f ~ /x 2 dwn exp (-½a I (V~, (A~+0~oj ) )2 )dV=l ,  (4.19) 
n = 0  

A[A~] I f i  tzZdw, e x p ( - ½ a ( - b . V A . - w . A . ) 2 = l .  (4.20) 
n = O  

From (4.16) b0 = 0, so the functional A is independent of the value of the b. and 
hence independent of A".  

A = etz-2a 2 det (a l/2/z - 2 0 ) .  (4.21) 

The operator O = - [ ]  on scalars and (~ = - [ ]  on scalars without the zero mode. 
We have absorbed the numerical factors of rr into tz. Defining the path integral 
measure in (4.14) as 

oo oo 

d[B] = (I~I_o/z da,)(,,=lH/z dO,,) (r[Io /z dcr)(pl~I__o ix dfp),  (4.22) 

we find from (4.15) that 

= d  I d [ B ] e x p r  l i ,  W 2 O 2 t - ~ t a ,  a .  + aa  .,bm + (A ~ + V"(O))c 2 + (A po + V.(O))f2)] ,  (4.23) ZI 

Z l = e t z _ 2 a  2de t (a l /2  > 2(~)de t (#  2 W)1 /2  det (a# 2(~)1/2 

× det (t~ 2(Q + V"(0))) 1, (4.24) 

Z1 = elz-2a 2 det (tz-2W) ~/2 det (tz-20)1/2 det (/z 2(Q + V"(0))) 1, (4.25) 

where a has been cancelled out using (3.3), and we have absorbed the ~-'s into t~. 
On S 4 R "~= (3/a2)g "~ and then from table 1 the operator W = - g . . ~ + R . ~  has 
eigenvalues a -2(n 2 + 5n + 6). The operator Q + V"(0) has eigenvalues a -2(n 2 + 3n + 
12~c +aZm2). We will return to (4.25) as soon as we have examined the case (4~) # 0. 

For (O)=d~b the fields can be decomposed into A " = A ~ + A ~  and ~ =  
(/)b + ~ 1 q- iq~2 where q~ 1 and ~02 are both real scalar functions, and ~ b  is a real constant. 
The quadratic part of the action (4.1) is 

f /,~ 2 2 v S[B]=½ [ A T ( A ~ + e  ~bg~)AT+~01(--D+ V"(d~b))q~l 

+q~2(-D+4~'V'(d~b))q~2+e24~2A~A~g~,~+2e4~bA~O~,q~2]dV. (4.26) 

The potential terms arise from the expansion 

l 2 n 1 2 1 r V(4~b+q~l+i¢2) = V(~b)+q~lV (Ob)+]~01V (~bb)+~q~Z~bb V (4~b), (4.27) 

of V to second order in q91 and q~2. 
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This time we choose the t 'Hooft  gauge-fixing term 

AS[B] = ½a I [ v , a "  - a -leq~bff,2]2 d V, (4.28) 

so that the one-loop contribution to the action becomes 

f t* 2 2 ~, S + AS=~ [Ax(A~.~ +e Obg~,v)Ax+c~A~(-V,~7~ +a-le 2-2q)bg"~,)z-tL'-~ 

- I  2 j 2  
+¢l ( - [ ]+V"(~bb) )¢ l+~02( - [ ]+a  e Ob+d, blV'(~bb)R0z]dV. (4.29) 

A classical current J =--V'(~bb) has been used to eliminate the term linear in ~ol 
from the action, making (~b a true stationary point. 

To one-loop order, the Faddeev-Popov determinant for the gauge-fixing term 
(4.28) can be written as 

I f  r 1 ' -1 2--2"2 2q] 1 ~ a  e q ) b ) .  (4.30) A = / x2dwoexp t -~a t a  e ~b) WoJJ de ta l /Z/x-2(0  , -1 2--2, 

Since the gauge group 1"2 = e 'e°'l*) is periodic, the zero mode is integrated over the 
range 0~<wo<~ (ff)l/2rr2e la2. Dropping the overall numerical factor, we then find 

a - 1/2e 2~ b2jt~ -2 
A - - E r f ( ( ~ ) 1 / 2 7 r 2 a  1/2ea2q52b)deta1/21,-2({~+ot 1 e 2 & 2 ) ,  ( 4 . 3 1 )  

where the error function is 

E r f ( x ) = ~  ~ e x p ( - y 2 ) d y .  (4.32) 

For small Ixl, Erf (x) - (2/~/~)x +O(x3), so that if ~b = 0, the result (4.31) recovers 
our previous expression (4.21). 

Using the path integral measure (4.22) with the field decomposition (4.16) the 
path integral now gives 

0 -1/2824)2 ~ 2 
g l  = Erf ((~)'/2rr2a l12ea2ff)2) det/x 2 ( 0  ° r a  le2q~2) l /2  

×det  (/x 2(0 +ce 1eZq52 +~bb' V'(~bb)) -1/2 det (/,-2(O + V"(&b))) 1/2 

×det  (tz-2(W+e2&2g~,~)) 1/2. (4.33) 

The last 2 determinants in (4.33) are gauge-independent and represent the contribu- 
tions of the real scalar field and the transverse vector field. The other terms depend 
upon our gauge-fixing parameter c~, and represent the contributions of the Faddeev- 
Popov factor, longitudinal vector field, and the imaginary scalar field. 
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If we specialise to Landau gauge a ~ co, which was the gauge used in the original 
flat-space calculations [12], then the path integral yields 

Z1 = etz -2a -2 det (p. -20)1/2 det/z 2(Q q_ (~bl  WC(t~b))-l/Z 

- -  2 - - 2  x 1 /2  ×det /z  2(Q+V"(&b))-l/2detlz 2(Wte a)bg,~) • (4.34) 

This result agrees with (4.25) in the case ~bb = 0, since V"(0)= lime,.0 V'(~b)/& It 
also yields the correct result for free fields when the gauge coupling constant e - 0. 

Now we introduce notation for the zeta functions evaluated in sect. 3. Let L = 0, 
1 ~, 1, 3, 2 be spin, and let A = (L + 3 ) 2 - X  where the operator 's  eigenvalues (3.4) 
are it, = n2+ (2L +3)n + X  for the elementary representations of table 1. Define 
((L,  A) as the function in table 2 and ( '(L, A) as the function (3.21). Shown in fig. 
3 is a graph of ~r'(1, A). We can express our determinants in terms of ~" and r,. 
Consider the vector operator  W =A~,v = (-g,,v[]+R,,~). In De Sitter space R ~'~ = 

-2 ~,v a g , and from table 1 the elgenvalues of - [ ]  on vectors are a 2(n2+5n +3), 
1 so the eigenvalues of W are i t W = a  2 (n2+5 n +6 ) .  Then A = ~ - 6 = ~ .  The 

expression 

log det Ix 2( W +  e2~2g,~) = -~"(1, ~ -  a2e2~bb 2) -- ~'(1, ~-- aZe24,2) log (#2a2), (4.35) 

where we have used (3.3) to get the second term. 
We can check the result (4.25) for Z~ at (4~) = 0 by seeing if it gives the correct 

value of the conformal anomaly. If 4~b=0 and m 2= 0 the classical action and 
stress-energy vamsh, but the one-loop stress-energy is non-zero, because the 
zero-point fluctuations of the A and ~h field contribute to it. The trace anomaly 
[10, 13, 19] is 

I d d T",, dV=-2a2~a21ogZl~=o=-a~a logZ[~=o, (4.36) 

where log Z is given by (4.25). We can easily calculate its value from the zeta 
functions. 

logZ1 - l og  ( a 2 / z  2 1 1 2/ , / ,2)  = ) + ~((1, ~)log (a 2/z 2)+ 1~.,(1, 1 1 - 9 a ) - ~ ' ( 0 ,  a)log (a 

1 ~ , ( 0 ,  9 9 2 2 , 9 a) + ~'(0, ~ -  12s ¢) log(a tz )+~r (O,a_12s¢) (4.37) 

where ( was defined at the beginning of sect. 3 so 

Hence 

((0, 9) = 9)_ 1, ¢'(0, 9) = lim [sr'(O, 9 -  e ) + l o g  e ] .  
6"~0 

I Tf" = d ~  log Z1 = - 2 4 s  c2 + S~ + (4.38) 
c t  

d V ~2a  
2 40. 

The conformal anomaly at s c = 0 is 4 ,  and at s c = 1 it is 64o, in agreement with other 
authors [13, 19, 20]. 
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5. The effective potential 

For non-zero ~b the one-loop effective potential is (2.9) Vl(tb)= 
V((/~)-f~-I log Z1, and using expression (4.34) for the path integral 

Vl(~b) = V (qS ) + 2 ~  [log det lx-2( W + e2~b 2g~,~) + log det tz-2(O + V"(c~ ) ) 

+ log de t /x-2(Q + 4' 1V'(O))], (5.1) 

From here on, we drop the "background" subscript from ~b. The first determinant 
comes from the sum of diagrams containing a single closed gauge field loop. 

Fig 4 The  d e t e r m i n a n t  of the  vec tor  o p e r a t o r  1s the  sum of all  one  gauge- f ie ld  loop  d i a g r a m s  wi th  

"c lass ica l  f ie ld"  legs. 

The second and third determinant come from the sum of diagrams containing a 
single closed scalar field loop. 

4- • 

Fig. 5. The  d e t e r m i n a n t  of the  sca la r  o p e r a t o r  is the sum of all  one  scalar- f ie ld  loop  d i a g r a m s  wi th  
"c lass ica l  f ie ld"  legs. 

Each vertex carries a factor of the coupling constant e 2 or A. If ~b were large enough 
for the second set of diagrams to contribute then the one-loop approximation would 
break down [12]. We therefore assume that A is of order e 4 s o  that the second set 
of diagrams can be neglected. The vacuum energy then comes only from the 
fluctuations of the gauge field A '~. The effective potential is then 

1 -1 p 1 2 2 2 1 2 2 2 VI(&)=V(~b) -$O [sr(1, a - a  e & )+~'(1, a - a  e ~b )log(/.t2a2)],  (5.2) 

where we have used (4.35). 
When the radius a of the four-sphere becomes large, the tangent space becomes 

flat. The large radius limit of (5.2) can be evaluated by finding st'(1, A) for large 
negative A =¼-a2e2& 2. In this case the contour of integration in (3.21) is along 
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the line R e  (U)  = 3, and since to(z?) = t0(z), if y2 = - A  >> 1 then 

~"(1, A ) ~ - 2  ( y 3 + ~ y ) R e t o ( 3 + i y ) d y  ,1 4 ,  ~1y2 ~-~y ~-~  + c o n s t a n t .  (5.3) 

For  real y >> 1 an asympto t i c  expans ion  of the psi funct ion [17] 

, 11 2 127 Re to(~+ iy) = log y -v~2y - 9 ~ y - 4  + O(y-6)  , (5.4) 

can be subs t i tu ted  into (5.3) and yields 

2x t l  4 , 9 2 , 863\  y 2  ~ " ( 1 , - y  ) ~ - ~ y  t ~ y  -t-960flog +3y4 9 2 +~ y + c o n s t a n t  ; (5.5) 

and for  large s 2 = a2e24  2 

2 , 19x ( ' (1 ,  ¼ - s z) ~ -(¼s 4 + s + y6) log s 2 + ~s 4 + s z + cons t an t .  (5.6) 

2 ,  19 F r o m  table 2, st(l, ¼ - s  2) = ¼ s 4 + s  ±Y6 so that  for  large a 

4 , 2~ 2 
e 4 e ¢  

3 e 2  - 2 - - 2 [ ,  e 2 4  2 "] 
+167r---~a ¢~ [ l o g ~ y - - - l j  + O ( a - 4 1 o g a ) ,  (5.7) 

and as a -* oo 

4 [ e2 2 3e 4 
V1(4) = V(4)+6--g~,l ,  log ~ . (5.8) 

W e  can use this express ion to fix the mean ing  of our  constants  e, A, and / z  in te rms  
of the m e a s u r a b l e  f la t-space values. 

C o l e m a n  and We inbe rg  [12] s tudied the example  of massless  scalar e lec t rody-  
namics  in flat space.  In the la rge- radius  limit of D e  Sitter space we obse rve  identical  
behav ior .  Le t  m 2 =  0, and choose  any non -ze ro  values for  A, e, ~: and / z .  Then  the 
flat space  poten t ia l  (5.8) has a m in ima  at 4 = 40 where  

~/,2 [ 8 7 r 2 ~ x  
4 2 = ~ -  exp ~ 1 - -~-e4 ] .  (5.9) 

The  exper imen ta l ly  measu red  mass  of the vector  boson  in flat space is M = e4o. 
In t e rms  of this physical  p a r a m e t e r ,  the flat space effective potent ia l  (5.8) is 

3e4 44[1og e242 
Vl(q~) = 6 _ ~ 2  M 2 1 ] ,  (5.10) 

which is identical  to the C o l e m a n - W e i n b e r g  result. If  we replace  the p a r a m e t e r  
/z 2 e v e r y w h e r e  by tx 2 =  M 2 exp (8zrZA/9e 4 -  1), the effective potent ia l  will d epend  

upon  the rat io  A/e 4 which cannot  be  d e t e r m i n e d  in fiat space.  H o w e v e r  we will 
show that  an e x p e r i m e n t  to de t e rmine  it will actually fix the value of s c. Since ~R 
vanishes in flat space,  its value cannot  be  fixed by the la rge-radius  limit. 
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We can locate the minima of the potent ia l  (5.7) which is a close approximat ion  
for eaO >> 1. In terms of the dimensionless variable x = e2&2/M 2 we can write the 

potent ial  as 
3 M  4 

Vl(6 ) ~6~--~z [xZ(log x - ½) + Ax(log x + B ) ] ,  (5.11) 

where  A = 4 a - 2 M  -2, and B = 327r2¢/eZ-8zr2) t /9e4.  The  minima and maxima of  

the potent ial  for  x > 0  satisfy V'(~b) = 0 or  

-½A(B + 1) -½A(P +2) 
l o g x -  x+21-=4 = x + ½ A  ' (5.12) 

where  we have defined a dimensionless  pa ramete r  

p = _ B _ ~ = 3 2 r r 2 ~ :  8~'2A 3 
2 - - - g .  (5.13) e 9e 4 

This equat ion  (5.12) has one,  two or  three solutions for x # 0 .  If A > 2  exp ( - 2 )  
there  is only one solution. As  a + o  c, A + 0 and equat ion  (5.12) always has its 

solution at x = 1. In o ther  words,  as a ~ co, the minima &0 of the potent ial  always 
approaches  its flat-space value e 2~b g = M 2. 

The  condi t ion for  a phase transit ion is that  two minima in the potent ial  have 
equal energy.  At  x = 0 the potent ia l  will be ei ther  a max imum or a min imum (we 

will see which shortly). If it is a min imum then at the critical radius ac there will 
be an x c > 0  such that  V(xc, ac) = V(O, ac) = 0. F r o m  (5.11) this means  that  

1 [x - 2AB] 
l ° g X = 2 k  x T A - _ l '  (5.14) 

and (5.12) will hold at xc, a~. El iminat ing logx¢, and not ing that  only A depends  

on the radius, we find that  at the critical radius 

2 3 2 
- ~ ) x c + A ~  xc -A~(B = 0  (5.15) 

where  A~ = 4a~2M 2 so xc = ½A~[P+(P2-4)1/2]. This means  that the measured  

vector  mass M~ = mZxc at the phase transit ion at the critical radius a~ obeys  

1 2 1 1 2  ~a ~_~a ~ = P + (p2 _ 4) 1/2 , (5.16) 

where  we have chosen the positive root,  because the o ther  root  is a maxima at too  
small a value of aeO for  (5.7) to hold. If P < 2  then approximat ion  (5.7) is no 
longer  valid. H o w e v e r  we will show that  if - ~ < P  < 2 there  is still a f irst-order 

phase transition. 
We  can easily calculate the mass of the vector  boson  at the phase transit ion for 

P > 2. Since eq. (5.12) holds at the critical radius 

Mc  2 -2(P+25)  
l o g ~ - ~ =  2 2 (5.17) 

a~M~ + 2 '  
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10 , , , , , , , a M = 7 4  
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Fig  6 The  effect ive po t en t i a l  for P = 10, at  d i f ferent  rad ius '  a For  a M  = 100 it IS m&st lngu] shab le  
f rom flat space  As  a decreases ,  the m i n i m a  moves  up  A t  the cri t ical  rad ius  acM = 8 49 It is at  the 
s a m e  he igh t  as the m i n i m u m  at the or igin.  The  cri t ical  mass  ~s the va lue  of ed~ at  the m i n i m u m  at the  

crl tmal  r adms  This  phase  t r ans i t ion  is first o r d e r  M is the mass  of the gauge  vec tor  field in flat space  

and using (5.16) we find 

M~ =M2exP[l+p-~--p~ 4 ) 1 / ~  . (5.18) 

This approximate expression gives the mass of the gauge field at the phase 
transition in terms of its mass in flat space. Fig. 6 shows a typical potential (5.2) 
with P = 10, for values of the radius greater than, equal to, and less than the critical 
radius ac. In fig. 7 the value of the critical mass obtained from (5.18) is compared 
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2 2 Mc 
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105 / s i ~ ' "  

0 ~ 1  m *m l m 
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P 

Fig 7 The  cr i t ical  r ad ius  and  erratical mass  are  funct ions  of P For  P > - ~  the phase  t rans i t ion  is first 
o r d e r  For  P <  - 2  it is s econd  o r d e r  The  a p p r o x i m a t e  fo rmulas  (5 18) and  (5.19) are  shown  as m a r k e d  

curves  They  are  exac t  as P--,  oo, 



248 B Allen / Phase transttzons in De Sttter space 

to the numerically computed  value. For P > 4  the approximation (5.18) is off by 
< 1 0 % .  We can also approximate  the critical radius ac in terms of the flat-space 
vector field mass. Using (5.16) and (5.18) we find 

2 [ l ac - 2M -2 [P  + ( p 2 _ 4 ) a / 2 ]  exp 1 + P  + (p2 _4)1/2_J • (5.19) 

Shore [13] studied the case where ~: = ~ and e 2/4zr was small, so that P -~ 16zr2/3e 2 >> 

2. For large P >> 2, the critical radius is a ~M 2 = 4P exp (~) and Shore found 

:z 64'rr2 (1 )M-2  (5.20) 
ac = 3e----y exp 

in agreement  with (5.19). 

To see whether  V is a minimum or maximum at ~b = 0 we can expand (5.2) in 
a power  series for small ~b. Expression (3.20) for the derivative of ~"(0) can be 
easily evaluated at A = ¼ and yields 

d ~.,(1, A)[a=,/4 = 0(2) + 0 ( 1 ) _ ~  = _2V +2 " (5.21) 
dA 

We can take the derivative of (3.20) to find the coefficient of the quartic term 

d 2 
dh 2 ~"'(1, A)la=l/4 ---- -~[0(2)+0(1)-26'(2)+2gg'(1)- 1] = y - 1, (5.22) 

where we have used 6(1 + z ) =  O(z )+  1/z and 6'(1 + z ) =  ~ ' ( z ) - 1 / z  2, and Euler 's  
constant 3' = - 6 ( 1 )  -=- 0.5772. So expanding the potential  for small ~b, 

s 
V1(40= c°nstant  ~-1--~2 L ~ 9e 4 a 4 + ~ - 2 ~ ,  - l o g  (a2M z) a 

3e 4 
+ ~ [3 - 2 , / -  log (a 2M2)]~b 4 + O(cb 6), (5.23) 

where we have used (5.9) to define M 2 in terms of jx 2, and the table 2 expression 
for ((1,  ~1). The constant in (5.23) is determined by the conformal anomaly (4.38). 
From (5.23) we can easily see that V(0) is a minimum at the critical radius when 
P > 2 .  

Now suppose that P < -~.  In this case there will be a second-order  phase transition 
when the quadratic term in (5.23) changes sign. The critical radius is given by the 
exact expression 

2 ac  = M  -2 exp ( P + ~ - 2 y ) .  (5.24) 

At  the critical radius the quartic term in (5.23) will be positive, since 

(3-2y- log(a~M2))=3-2y-(P+~-2y)=-P-~>O.  (5.25) 

In this second-order  phase transition, the observed mass of the vector field will 
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ongm This phase transition is second order 

vanish at the phase transition, so Mc = 0. Shown in fig. 8 is the potential for P = -½. 
Shore [13] investigated the case where ( =  0 and 8,rr2,k/9e 4= log 4~"-3 '  +~. In 

that example P = - l og  4~r + y - ~  < -~, so that there is a second-order phase transi- 

acM = tion. However  we disagree on the critical radius. Shore finds z 2 
e x p ( - l o g 4 ~ - - y +  7) and we find from (5.24) that 2 2 a cM = exp ( - log 4zr - y +4). 

The cause of this small discrepancy is probably a numerical error. 
The third possibility occurs when -~  < P  < 2. For very small radius a, both the 

quadratic and quartic terms in (5.23) are positive. As a increases, the quartic term 
decreases and vanishes at log (a 2M2) = 3 -  23,. At this radius the quadratic term is 
still positive. As a increases more, at log (a2M 2) = P + ~ - 2 y  the quadratic term 
vanishes. The negatwe quartic term means that there was a first-order phase 
transition between 3 - 2 y  ~< log (a~M2)<-P+~-23". There is no obvious way to 
find the critical radius analytically. 

To calculate it numerically, the potential (5.2) can be written in dimensionless 
form 

647r2V(ch) 4 2 -  
3M 4 -aZM2 [ P +  log (aZM2)]x +[1 - l o g  (a2MZ)]x 2 

4 
a4-- ~ [st'(1, ]-aZMZx) - ( '(1, ¼)], (5.26) 

where x = e2~Z/M 2 and a has units of M -1, The constant term has been chosen 
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so that V(0)=  0, because this has no effect on the critical mass or radius. The 
resulting values have been plotted in fig. 7. They were obtained after numerically 
evaluating ~"(1, A) which is shown in fig. 3. It might seem natural to give V(0) its 
conformal anomaly value. However  the inflationary universe models which we will 
now discuss require a different choice. 

6. Adding the gravitational action 

If we neglect gravity, adding a constant A to the effective potential, so V(~b)~ 
V(&) +A, has no effect on the physics. The phase transition radius and critical mass 
can be determined with V(0) = 0. However  as we stressed, there is a natural value 
for V(0) given by the conformal anomaly (4.38) which is 

3 (_24~:2 + 8~: + 4)  (6.1) 
V(0) = 16,rr2a~ 

If we include the effects of gravity, this choice is incorrect. The reason is that 
today's observed cosmological constant is very small. 

Presently, we are in the broken symmetry phase with e&o = M. If V(&0) = A, this 
uniform background energy density acts like a cosmological constant in the Einstein 
equation. Today's  cosmological constant is very small [21] A < 10-44M~, so the 
constant part of V must be determined by the requirement that V(&0)= 0 in flat 
space. Even in supersymmetric theories, the vacuum energy does not always vanish 
(although its divergent part does). But it is forced on us by the observation that A 
today is very small. 

While the Higgs field is "rolling down the hill", we can ignore the kinetic term 
in the action, since unless [& -&ol<< &0, the kinetic t e r m  I(0p.•) 21 is of the order 
(Mx/Mp) 2 V(&). For a constant background field &, the effective euclidean action 
including gravity is 

f _ ] 2 2 8 2 4  [ M Z R  +Vl(&,a) dV=-2~rMpa +gTr a Vl(&,a), (6.2) 
S[~b,a]= I_ 16rr 

where Mp--- 1019 GeV is the Planck mass. Demanding that the action is stationary 
with respect to variations in a and ~b 
OV(&, a)/aa is small, this means that 

2 = 3M2 a 
8~-w(,~, a)' 

we find oS/aa = 0 and OS/a& = 0. Since 

d V(~b, a )  
--- 0 .  (6.3) 

d4, 

In flat space, if we set V(~b0, oo) = 0 then V(0, co) = (3/1287r2)M 4. 
When the universe had cooled to K T  ~-Mx, and 4, was in the symmetric phase, 

a = (Mp/Mx)Mx 1. Since Mp/Mx~-10 4, this radius was very large compared to 
M x  1. If P << (Mp/Mx) 2 then the radius a >> ac is much larger than the critical radius, 
so the potential is very nearly the flat-space potential. 
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To solve the horizon and flatness problems with a first-order phase transition 
requires P > - ~ ,  in a theory which has a vanishing bare scalar mass m 2= 0 in flat 
space. For a = (Me/Mx)Mx 1 the (/4 term in (5.23) is negative. There  will be a 

barrier  between the two minima of V(4~) if the ~b 2 term is positive, so that P ~> 20. 
From the definition of P (5.13) this means that if A is of order e 4 then the phase 
transition will be first order provided that ~: ~> c~ where ~ is the coupling constant 

= e2/47r. Of  course a first-order phase transition is possible for ~c = 0, provided 
that m 2 > 0 .  

7. Conclusion 

Many authors have used massless scalar electrodynamics, to study the phase 
transition in the early universe. Its effective potential  can be easily calculated using 
zeta functions. Our  calculation shows that as in flat space, the ratio A/e 4 cannot 
be determined.  It simply renormalises (. The results for the zeta function in sect. 
3 can be applied to study any gauge theory at one loop in De Sitter space. We use 
them in another  paper  to calculate the effective potential for a basic SU(5) model 
[22]. They could also be used to study the destabilizing effects of gravitational 
fluctuations. 

Supersymmetr ic  gauge theories are the most Interesting ones to study in the 
inflationary scenario. The vacuum energy that we just calculated was for an ordinary 
gauge theory containing four boson and no fermion degrees of freedom. It 's  vacuum 
energy is actually positive infinite; we calculated its finite part. Supersymmetric  
theories contain equal numbers  of boson and fermion states, and their divergent 
vacuum energy terms cancel exactly. Hence the remaining finite part  is an authentic 
measure of the vacuum energy [23]. The supersymmetric  models which contain 
spin-2 gravitational fields are known as supergravity theories. They deserve to be 
closely studied in this context. 

The inflationary universe scenario makes very definite predictions: that the 
universe has close to critical density, and that the angular spectrum of tempera ture  
fluctuations in the cosmic background radiation will be scale independent.  If the 

universe turns out to be this way, there may be interesting effects arising from the 
behavior  of field theories in De Sitter space 

I would like to thank G.W. Gibbons,  S.W. Hawking, and I.G. Moss for their 
help, and the Marshall Aid Commemora t ion  Commission for a research scholarship. 

Note added in proof: 

Part of the speculation at the end of sect. 3 concerning log det ( A B . . .  C) IS 
incorrect. The r.h.s, of expression (3.24) contains an additional term. This extra 
term is trivial: it is a polynomial  in the coefficients of the (polynomial) eigenvalues 
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a n d  m u l t i p l i c i t y .  T h i s  e r r o r  d o e s  n o t  a f fec t  a n y  r e s u l t s  in  t h e  p a p e r ,  s i n c e  w e  d o  

n o t  u se  t h e  p r o p o s e d  m e t h o d .  
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