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The one loop vacuum cnergy 1n gauged extended supergravity 1s calculated in anti de Sitter space using zeta function
regularisation. It vanishes for NV = 5. The energy zeta function has no poles for N > 3.

It hasbeen shown [1] that ant1 de Sitter spacetime,
with cosmological constant A=—3e2/k2, is the ground
state of gauged extended supergravity theories [2].
Here ¢ 1s the gauge coupling constant and k 2/4n = G/
fic is Newton’s gravitational constant. The cosmologi-
cal constant may be changed by the vacuum energy
of the fields. In flat space, the total vacuum energy 1s
zero, because the boson and fermion contributions
cancel exactly, to all orders in perturbation theory
[3]. However, 1n ant1 de Sitter space, no such term-
by-term cancellation occurs, because the bosons and
fermions have different energy spectra. In this paper,
we show a simple way to calculate the resulting vacu-
um energy, at one loop.

Since the anti de Sitter covering space 1s not com-
pact, the spectrum of the hamiltonian 1s continuous.
However, after imposing a simple energy conservation
condition at spatial infinity [2], a discrete spectrum
1s obtained. Ant1 de Sitter space may be regarded as a
potential energy well, surrounded by a reflecting wall.
By permutting no energy flux through this wall, the
resulting states are bound, and possess a discrete ener-
gy spectrum [4]. The supersymmetry transformations
can then be used to show that the energy levels are
discrete for the higher-spin fields as well.

The energy eigenstates of a field of helicity L and
spin |L| are labeled by a radial quantum number n and
angular momentum quantum numbers (j, m). The al-
lowed values of L and O (scalar), £1/2 (spwnor), =1
(vector), +3/2 (gravitino) and +2 (graviton) As usual
in the case of spherical symmetry, we have n =0, 1, 2,
3, candy=|L|,|L|+1,|L|+2,. andm=—,— +1,
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. »] — 1,7. If a boson state (n,7, m) (L integer) con-
tains p quanta, then its contribution to the total ener-
gy will be

E=(p+3)En,j),

If a fermion state (n,7, m) (L half-integer) contans p
quanta, then its contribution to the total energy will
be

E=(p-34)E(,j), p=0,1. ®)

Here, the energy of each quanta in the state (n,, m)
1s [2] E(n,7) = (n +] + 1)fico where 7iww = ec? Jk
=c2[- %A] 1/2 Because the energies do not depend
on m, the sum over all states = will always be
written as Z, (27 + 1).

The vacuum has no quanta present, and so p = 0
m (1) and (2). We could then formally write the total
vacuum energy for a supermultiplet as the sum over
all boson and fermion states

p=0319233 . (1)

n,J,m

Evac:%(EB E(”a].)—ZF;E(”,]’)) . (3)

However, 1t 1s readily apparent from (1) and (2) that
both of these sums are divergent. Moreover, we can
group the terms so that their difference (3) converges
to any desired value. Consequently, a regularisation
procedure needs to be adopted.

A simple method 1s to form the generalised zeta
function [5] from the energy eigenvalues for the field
with helicity L,
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fL(z)=n]Z;n [E(n, )]~

= (hw)~? EO §|(2f+1)(n+j+1)—z. )
n=0;=L

This sum converges on the half-plane Re(z) > 3 and
can be analytically continued to a meromorphic func-
tion with poles only at z = 1 and z = 3. Its value at z
= —11s finite, and 5 {; (1) represents the vacuum en-
ergy of a spin |L] field. Then the zeta function for a
supermultiplet 1s

g‘multlplet(z)
= (L 1nt§g>er B L hale;nteger)d(L)gL(z)
= ? (-2 d(L)¢, (@), )

where d(L) 1s the number of helicity L fields in the
multiplet, given 1n table 1. The value of $multiplet At
=-1

Evac = %ﬁmultlplet(#l) » (6)

is the total vacuum energy of all the fields.

The zeta function (4) for a spin |L| field may be
evaluated by grouping the terms according to the val-
ue of n +j. For the moment, we drop the absolute val-
ue sign from L,

Table 1
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§1(2) = ()

X 2y 25 (2L e ) ) L)
=(Aw) F[RL+ DL+ 1)7E

HRL+D+QL+3)JL+2)2+ ]
= (hw)~* g [2KL + k2] (k + L)~

=(hw)—2( 2 (k+L)y-2+2 2 2 (k +L)~Z) ,
k=1 k=1

5= 2,1+ 1)~ L2, LI+ D).

(7
The generalised Riemann zeta function {(z, «) 1s de-
fined for Re(z) > 1 by

§(@)=(hw)”

(G )= 20 (k+a)? (8)
k=0

and by analytic continuation elsewhere [6].

The function §(z, o) is meromorphic n z except
for a simple pole at z = 1 with restdue 1. It reduces to
the ordinary Riemann zeta function {(z) when a = 1.
If z 1s a nonpositive integer, it 1s

The left-hand side of this table gives d(L.), the number of particle states of helicity L 1n a theory with N supersymmetry genera-
tors. The night-hand side lists the vacuum energy 1n these theores, and the residue of the pole at z = 1 of fmyjtiplet(2)-

N L

3 1 1 3

2 3 1 > 0 -3 -1 -7 -2 Evac R,

1 1 1 ohw ~ Ty
2 1 2 1 Bahe ~ L
3 1 3 3 1 Lo
4 1 4 6 4 1 Zhw
5 1 5 10 10 5 1
6 1 6 15 20 5 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
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t(-n,0) =B, (@n+1), n=0,1,2,3 ., (9

where B, (a) are Bernoullt’s polynomials
The vacuum energy of a supermultiplet can now
be obtained. Using the formulae

By@)=a? —a+g,

By(@)=a* — 203 +a? — 55, (10)
we find from (7) and (9) that

C (=D =ho(3L% —5L% + 735). (1)
Then from (5) and (6)

Evac = % ? (_I)ZLd(L)fL(*l)

=2 T CIPHWGLY - §L k). (12)

The reader can easily venify the spin sum rules of ref.
[7]. For a theory with NV supersymmetry generators
(1 € NV < 8) there are N spin sum rules. They state
that

ZE (~1)2L L) LP =0,

Pinteger, O0<P<N-1, (13)

which imples that all contributions on the rhs of (12)
vanysh for N 2 5. Thus E,,. = 0. Shown in table 1
are the nonzero values of £, for N <5. In the flat-
space limit A - 0, they also vanish.

Because the only pole i {(z, a) isat z = 1, we can
write

ri(L) ri(l)

-2 B0 6, (14)

where f; (z) 1s an entire function of z. Then from (7),
the residues at z =1 and z = 3 are

rL)=—(w) L2, ry(L)=(hw)=3 . (15)

The poles in the zeta functions for different spins may
cancel when summed (5) to form {,;,4ip1e¢(2)- The
residue of the polesat z =1 and z = 3 are
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R, = ? (-D2Ld(L)ry(L)
= (o) 1 D (1L
Ry= %) (~1)2Ld(Lyry (L)

= (fiw)~? ZLJ (—1)2Ld(L) . (16)

The spin sum rules (13) now 1mply that {p,u1¢,p16¢(2)
has no pole at z = 3 for any V and no pole at z = 1 for
N 2 3. The residue at z = 1 18 given 1n table 1 for ¥V

< 3.

The appearance of poles 1n a four-dimensional zeta
function corresponds to an mfinite renormalisation of
the gravitational and cosmological constants [5]. We
believe they have a simular interpretation for the three-
dimensional energy zeta function.

The result that there 1s no cosmological constant
renormalisation at one loop for N 2 5 has been shown
by very different arguments [8—10]. This may hold
to all orders in perturbation theory [11]. In our pa-
per, the one loop cancellation has been explicitly de-
monstrated 1n ant: de Sitter space.

Because the supersymmetric ground state has zero
energy, 1t follows that supersymmetry 1s broken for
N < 5. What does 1t break to? Perhaps its ground state
has nonzero temperature and angular momentum in
ant1 de Sttter space. By calculating the many-particle
partition function from (1) and (2), the properties of
this ground state may be determined.
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for a research scholarship from the Marshall Aid
Commemoration Commussion and S.D. for a research
scholarship from Trinity College.
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