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The one loop vacuum energy m gauged extended supergravlty is calculated m anti de Sitter space using zeta function 
regulansatmn. It vamshes for N I> 5. The energy zeta funcnon has no poles for N > 3. 

It has been shown [1 ] that anti de Sitter spacetlme, 
with cosmological constant A = -3e2/K 2, is the ground 
state of  gauged extended supergravlty theories [2].  
Here e is the gauge coupling constant and K 2/4n = G/ 
~c is Newton's  gravitational constant.  The cosmologi- 
cal constant may be changed by the vacuum energy 
of  the fields. In flat space, the total  vacuum energy is 
zero, because the boson and fermion contr ibunons 
cancel exactly, to all orders in perturbat ion theory 
[3].  However, in anti de Sitter space, no such term- 
by-term cancellation occurs, because the bosons and 
fermlons have dafferent energy spectra. In tMs paper, 
we show a sample way to calculate the resulting vacu- 
um energy, at one loop.  

Since the anti de Sitter covering space is not com- 
pact, the spectrum of  the hamlltonian is continuous. 
However, after imposing a smaple energy conservation 
condit ion at spatial infinity [2] ,  a discrete spectrum 
as obtained.  Anti de Sitter space may be regarded as a 
potential  energy well, surrounded by a reflecting wall. 
By permitt ing no energy flux through this wall, the 
resulting states are bound,  and possess a discrete ener- 
gy spectrum [4].  The supersymmetry transformanons 
can then be used to show that the energy levels are 
discrete for the higher-spin fields as well. 

The energy elgenstates o f  a field of  hellcity L and 
span ILl are labeled by a radial quantum number n and 
angular momentum quantum numbers (j,  m). The al- 
lowed values of  L and 0 (scalar), +1/2 (splnor), +1 
(vector), +3/2 (gravitino) and +2 (grawton) As usual 
in the case of  spherical symmetry,  we have n = 0, 1, 2, 
3,. .andl=lLl,lL]+ l,[L[+2,, a n d m = - l , - l +  l, 

,1 - 1,j .  I f a  boson state (n , l ,  m) (L integer) con- 
tams p quanta, then its contribution to the total ener- 
gy will be 

E=(p+~)E(n, j) ,  p = 0 ,  1 , 2 , 3  (1) 

If  a fermlon state (n,l, m) (L half-integer) contains p 
quanta, then its contr lbunon to the total  energy will 
be 

E = ( p - ~ ) E ( n , j ) ,  p = 0 , 1  . (2) 

Here, the energy of  each quanta m the state (n,j, m) 
IS [2] E(n,j)= (n +l + 1)hco where ~co = ec2/• 
= c2 [ - } A ]  1/2. Because the energies do not depend 

on m, the sum over all states Z,n,l,rn will always be 
written as Zn,:(2 J + 1). 

The vacuum has no quanta present, and so p = 0 
in (1) and (2). We could then formally write the total 
vacuum energy for a supermulnplet  as the sum over 
all boson and fermion states 

Evac = I ( ~ B  E ( n , j ) - ~ E ( n , j ) ) .  (3) 

However, at is readily apparent from (1) and (2) that 
both o f  these sums are davergent. Moreover, we can 
group the terms so that their difference (3) converges 
to any desired value. Consequently, a regularisatlon 
procedure needs to be adopted.  

A simple method is to form the generahsed zeta 
function [5] from the energy eigenvalues for the field 
with hehcity L, 
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tL(Z)= ~ [E(n,/)]--" 
r t , / , m  

oo ¢ao 

=(hco) -z  ~ ~ ( 2 j + l ) ( n + j + l )  - z  (4) 
n=O l=lL I 

This sum converges on the half-plane Re(z)  > 3 and 

can be analytical ly cont inued  to a me romorphm func- 

t ion wi th  poles only at z = 1 and z = 3. Its value at z 

= - 1  is f inite,  and 1 S'L (--1)  represents the vacuum en- 

ergy o f  a spin ILl field. Then the zeta funct ion  for a 

supermulnple t  is 

~multlplet(z) 

L I n t e g e r  L h a l f - I n t e g e r /  

= ~ ( - 1 )  2L d(L)~L(Z ) , (5) 
L 

where d(L) is the number  o f  hehcl ty  L fields in the 

mul t ip le t ,  gtven m table 1. The value o f  ~multiplet at 

z = - I  

1 
Evac - ~ ~multlplet(-- 1 ) ,  (6) 

is the total  vacuum energy of  all the fields. 

The zeta funct ion  (4) for a spin hLI field may  be 

evaluated by grouping the terms according to the val- 
ue o f  n + j .  For  the m o m e n t ,  we drop the absolute val- 

ue sign f rom L,  

i 2  (z)  = ( too)  -Z 

× ~ ~ ( 2 ] + 2 L + l ) ( n + j + L + ' ) - z  
n = 0 / = 0  

= (//co) z [(2L + I ) (L  + 1) -z  

+ [ ( 2 L + l ) + ( 2 L + 3 ) ] ( L + 2 )  - z +  ] 

oo 

= (hco) -z ~J [2kL + k2l (k + L) -z 
k=l  

fL(Z) = (hoo) -= [f(z  - 2, LLI + 1) -L2f ( z ,  LL[ + 1)] .  
(7) 

The generallsed Rlemann zeta funct ion ~'(z, ~) is de- 

fined for Re(z)  > 1 by 

oo 

~(z, ~) = ~ (k + ~ ) - z  (8)  
k=0 

and by analytm cont inua t ion  elsewhere [6] .  

The funct ion  f(z ,  a) is me romorph ic  m z except  

for a simple pole at z = 1 wi th  residue 1. It reduces to 

the ordinary Riemann zeta funct ion f (z)  when c~ = 1. 

I f  z xs a nonpositxve integer,  it is 

Table 1 
The left-hand side of this table gives d(L), the number of particle states of hehclty L in a theory with N supersymmetry genera- 
tors. The right-hand side lists the vacuum energy in these theones, and the residue of the pole at z = 1 of ~'multiplet(Z). 

N L 

3 1 2 2 1 2 0 1 3 
- ' g  -1  - 2  - 2  Eva c R I 

1 1 1 

2 1 2 1 

3 1 3 3 1 

4 1 4 6 4 1 
5 1 5 10 10 5 1 
6 1 6 15 20 15 6 1 
7 1 7 21 35 35 21 7 1 
8 1 8 28 56 70 56 28 8 

4 6 9  
3 - ~ n c o  

1 5 7 ~  
1---~-~ n co 

15 gShco 

_ ¼(h~o) -1 

_ ~- (t~oj) -1 
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~(-n,a)=-B,,+l{a)/(n+l),  n = 0 , 1 , 2 , 3  . , ( 9 )  

where Bn(a) are Bernoulh's polynommls 
The vacuum energy of  a supermultlplet can now 

be obtaaned. Using the formulae 

1 B2(a  ) = a  2 - a + - g  , 

B4(o 0 = ~4 _ 20~3 + 0~2 _ 1 ,  

we find from (7) and (9) that 

1 
~L( - 1  ) -- he°(¼ L4 -¼ L2 + iT6 ). 

Then from (5) and (6) 

1 ~ (_I)2Ld(L)~L(_I) 
Evac = 2 L 

(10) 

(11) 

1 lico ~ (_I)2Ld(L)(¼L4 _{L2  + iT6)" (12) 
2 L 

The reader can easily verify the spin sum rules of  ref. 
[7].  For a theory wath N supersymmetry generators 
(I ~< N < 8) there are N spin sum rules. They state 
that  

~( -1 )2Ld(L)LP=O,  
L 

P m t e g e r ,  O<.P<~N- 1 , (13) 

which lmphes that all contr ibutions on the rhs of  (12) 
vamsh for N > 5. Thus Eva c = 0. Shown in table 1 
are the nonzero values of  Eva c for N < 5. In the flat- 
space hmlt  A ~ 0, they also vanish. 

Because the only pole m ~'(z, c 0 is at z = 1, we can 
write 

r l ( L )  r3(L) 
~L(Z) =77i~1 + ~ 3 + fL(Z) ' (14) 

where fL (z) is an ennre function of  z. Then from (7), 
the residues at z = 1 and z = 3 are 

r l (L  ) = - ( f i c o ) - l L  2 , r3(L ) = (rico) -3  . (15) 

The poles in the zeta funcnons for different spins may 

cancel when summed (5) to form ~'multiplet(Z). The 
residue of  the poles at z = 1 and z = 3 are 

R 1 = ~ (-1)2Ld(L)rl(L) 
L 

= - ( h c o ) - I  ~ i-1)2Ld(L)L 2 , 
L 

R 3 = ~ (-1)2Ld(L)r3(L) 
L 

= (//co) -3  ~ (-1)2Ld(L). (16) 
L 

The spin sum rules (13) now mlply that ~'multlplet(Z) 
has no pole at z = 3 for any N and no pole at z = 1 for 
N ~> 3. The residue at z = 1 lS given m table 1 for N 

< 3 .  
The appearance of  poles in a four-dunenslonal zeta 

function corresponds to an infinite renormahsatlon of  
the gravltatxonal and cosmological constants [5].  We 
beheve they have a slnular interpretat ion for the three- 
dlmensmnal energy zeta function. 

The result that there is no cosmological constant 
renormahsataon at one loop for N >~ 5 has been shown 
by very different arguments [ 8 - 1 0 ] .  This may hold 
to all orders in perturbat ion theory [11 ] .  In our pa- 
per, the one loop cancellation has been exphcit ly de- 
monstrated in ant1 de Sitter space. 

Because the supersymmetnc ground state has zero 
energy, it follows that supersymmetry lS broken for 
N < 5. What does it break to 9 Perhaps its ground state 
has nonzero temperature and angular momentum in 
anti de Sitter space. By calculating the many-partmle 
part l tmn functmn from (1) and (2), the propemes  of  
this ground state may be determined. 
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