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Gauged N = 8 supergravity emerges from spontaneous compactification of eleven-dimensional supergravity on the ric- 
mannian S 7. This is the only non-trivial compactification scheme preserving fidl supersymmetry. The four-dimensional 
theory admits a spontaneously broken solution describable as a compactification on the parellelized $7; supersymmetry is 
completely broken and the local SO(8) group is reduced to G2. 

It is well known that four-dimensional gravity, Yang-Mills interactions and matter fields may originate from a 
higher-dimensional theory of pure gravity [1 ]. This prospect for unifying matter and the fundamental interac- 
tions including gravity is also offered by supergravity, so it is a natural idea to combine these two approaches. 
This is even more so because supersymmetry puts restrictions on the number of possible space-t ime dimensions. 
The maximal dimension for which one can balance bosonic and fermionic degrees of freedom with highest spin 

two is eleven. Supergravity in eleven dimensions has been constructed some time ago [2], and it is thus possible 
to study spontaneous compactifications of this theory, i.e. solutions of the eleven-dimensional equations of mo- 
tion for which the ground state corresponds to a product space of a four-dimensional space-t ime M 4 and a com- 
pact seven-dimensional space M 7 

M 11 ~ M 4 ® M  7. (1) 

The equations of motion restrict M 4 to a flat Minkowski or to an Einstein space. For M 7 there are more options. 
The well-known hypertorus T 7 solves these equations trivially and its zero-mass sector corresponds toN = 8 super- 
gravity in four dimensions [3]. However, one may envisage other possibilities, either directly motivated by pheno- 
menological considerations [4] or inspired by more formal arguments. An example of the latter is the sphere S 7 
[5,6] whose striking mathematical properties fit in a surprising way into the structure of the eleven-dimensional 
theory. This paper is devoted to a study of supergravity in which the seven extra dimensions are compactified to 
different geometries of S 7. 

In general, compactification induces supersymmetry breaking. Therefore, we shall first prove that the eleven- 
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dimensional theory permits only two supersymmetric compactifications with a four-dimensional Lorentz invar- 
iant ground state, namely T 7 or S 7, with the four-space identified respectively with Minkowski or anti-de Sitter 
space. We recall that eleven-dimensional supergravity is described in terms of three gauge fields: the gravitational 
elfbein EM A , the spinor gauge field of supersymmetry qJM and an antisymmetric three-rank gauge field AMN P. 
The latter has a corresponding field strength FMNPQ = 24O[MANpQ]. A vacuum state [~) describing a given back- 
ground can preserve supersymmetry if and only if the variation of the supercovariant Rarita-Schwinger field 
strength (~2[6RAB(q 0 [~2)vanishes for arbitrary supersymmetry transformations. This amounts to analyzing an in- 
tegrability condition because 

6RMN(q l )  = [I~M, 19Nl e. (2) 

One finds that 

6 R A B ( ~ )  = ¼RAB CO FCD e + (ix/~/1 44) F CDEF ;[A (FB] CDEF -- 8gB] CFDEF) e -- (144) -2 [F C1 "'" C4FCs "'" Ca 

X I"ABC, ...Ca e -- 165~,~FB]C2C3C4FCs'"CsFc1. . .C s e +24(2FACl""C3FB C4"''C6 -- 3gC~Cz~C3C4DE14"VAB -- " DECSC6 

,~CI ~., C2DE T:;,C3C4 + 4~,~FB]DC2C3FC4""C6 D) FC1...C6e -- 384FABcC1FC2""C4DPc1. . .C 4 ¢ + 576 ~ [A" B] " " DE 

CEF DEF CD 2 [A B]EFG "rCD el" (3) X FC~...C4e + 2 4 ( - 3 6 F  A F B + 5ABF -- 85 C F F DEFG'~ 

The tensors R A B  CD(E) and FABCD denote the supercovariant generalization of the eleven-dimensional Riemann 
tensor and field strength with flat indices. Here and in what follows, expectation value symbols are not exhibited. 

Thus, for a fully supersymmetric compactification to exist, eq. (3) must vanish. This implies in particular that 
the field equations must be satisfied, because FABC~)RAB(q~) is proportional to the bosonic field equations. In 
other words, the compactification must be spontaneous. Furthermore, the coefficients of independent P matrix 
combinations have to vanish independently. Since the tensors R (E) and F must be invariant under four-dimen- 
sional Lorentz transformations, one can verify from eq. (3) that there is a unique solution for which the non-zero 
values ofR (E) and F are given by 

I"lUuPa = f e-leuupa, Ruuo~(E) = m24(guoguo - gpogup), Rmnpq(E) = -m2(gmpgnq - gmqqnp) (4) 
with 
m72=1 2 zm 4 = ~ f 2 ,  (5) 

where four-dimensional indices are denoted by/~, u .... and seven-dimensional ones by m, n, .... We see that fac ts  
as an order parameter for spontaneous compactification of eleven-dimensional supergravity to four dimensions as 
was pointed out in ref. [7]. The case f = 0 yields the well-known compactification on the torus T 7 with a min- 
kowskian space-time. It was first realized by Duff and Pope that the case f ¢  0 with the additional requirement 
of eight unbroken supersymmetries corresponds to a spontaneous compactification on the riemannian S 7 in an 
anti-de Sitter space-time with radii related by eq. (5) [6]. 

The massless sector of the supersymmetric compactification w i t h f ¢  0 is expected to correspond to N = 8 su- 
pergravity with local SO(8) invariance [8] in view of the fact that the group of rigid motions of S 7 is SO(8). This 
correspondence will be made precise below. IfFmnpq is non-zero then supersymmetry is broken. This happens 
when compactifying the seven dimensions to the parallelized S 7 [9], which, as we shall show in the last part of 
this letter, corresponds to a spontaneously broken solution of gauged N = 8 supergravity. 

We now proceed to the proof that the compactification on S 7 leads to gauged N = 8 supergravity in four di- 
mensions. For this purpose, we have to make a distinction between four- and seven-dimensional coordinates, de- 
noted by xU and ym,  respectively. We then analyze the kinetic terms, i.e. the terms containing space-time deriva- 
tives, and redefine the fields so that there are no off-diagonal kinetic terms. For the fermionic fields, this require- 
ment yields 

, I 5 m , 
• u(X,y)  = t~ta(x,Y) +-~'Y 'Trap @m(X,Y), ~m(X ,Y )  = @m(X,Y), (6) 
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t t . 

where we have introduced new fields ~u and ~m; this redefinition is the same as for the reduction on T 7 [3]. 
Note that at the linearized level there is no need to distinguish between curved and flat indices. The field redefi- 
nitions in the bosonic sector are not so straightforward. First, we re-express the metric tensor in eleven dimen- 
sions according to 

gMN(X, y)  = g~)N(X, y) + hMN(X , y),  (7) 

where - , ,v - -  -g!0!(x,Y ) = g(~(x) is the usual background metric in an anti-de Sitter space, and g(Om)n(X,y ) = g(Om)n(y ) is the 
metric on $7 ; moreover, g(u0m ) (x, y )  = 0. The necessary field redefinitions which lead to diagonal kinetic terms are 
then given by 

, 1 ( 0 )  , m  huv(x,Y) = huv(x,Y) - 5g'~v (x)h m(X,y), hmn(X,y ) = hmn(X,y ). (8) 

Observe that the first formula is nothing but the usual Weyl rescaling to lowest order. 
It turns out that this redefinition is not sufficient to completely remove the mass-mixing between gravity and 

the other fields, because Fuvpo does not vanish in the background. To ensure complete decoupling, we must also 
expand the three-index auxiliary gauge field A /avp 

Auvo(x , y) = a(u~o(x ) + (1/3 !) euvoo t°(x, y)  (9) 

and redefine its fluctuation according to 

,u +~V'2 'u ,m tu;u(x,y )= t ~(x) my[h u ( x , y ) -  h m(X,y)]. (10) 

In this way, gravity indeed decouples from all scalar excitations; thereby states of higher consciousness are pro- 
moted to the ultimate vacuum. 

The next step in our construction is the harmonic expansion of  all relevant fields on S 7. Since the four-dimen- 
sional lagrangian is recovered from the eleven-dimensional theory by integration over S 7 

• ~O(4)(X) = f . t2( l l )(x ,y)gl /2dy (1 l )  

s 7 

it is clear that the zero mass-sector of  the theory is determined by suitable eigenmodes of  the corresponding dif- 
ferential operators on S 7. We shall prove that these modes are related by supersymmetry and that the particle 
spectrum o f N  = 8 supergravity emerges. In general, it is very difficult to perform such an eigenmode expansion, 
but in this case there are two circumstances which facilitate our construction. Namely, i t  was proposed in ref. [6] 
to employ covariantly constant spinors on S 7, and this observation turns out to be the key to the construction 
of  the relevant zero-modes on S 7, because these can be represented as products of  covariantly constant spinors 
(this possibility has also been explored by the authors of  ref. [6]). There are two kinds of  covariantly constant 
spinors which we denote by r/+ / and r//_. They provide a basis for the solution of  the integrability condition (3) 
and satisfy the equations 

(1) m +1  I - ~m7 F,n)~+Cv) = 0, I,. . .  = 1, ..., 8 (12) 

and are nomaalized to unity, i.e. + 1 

~I (Y)~J+(V) = 41_ (v)~?J (y) = 8 IJ. (13) 

It is important here that the SO(8) indices I, J, ... belong to the spinorial rather than the vectorial representation 
of  SO(8) (otherwise, the 8 X 8 matrix ~//would provide an equivalence transformation between the two inequiva- 
lent representations). The second crucial observation is that the supersymmetry transformations allow one to de- 
duce how the spinors should occur in the solutions. These transformations are 

*1 In our nota t ion,  if/~= (rt/)?. 
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~ E M  A = 1 . -  A = ~X/~  ~ M  = D M ( C ° ) e  + ( i x / ~ / 2 8 8 ) ( l ~ M  NPQR - - ~ l e I "  "griM, 8 A M N P  e F [ M N ~ P  l , 

--  8 ~ ) N F  PQR ) e F N P Q R  . (14)  

The parameter e that describes supersymmetry in four dimensions is expected to be covariantly constant on S 7, 
which suggests that we decompose e into the spinors r/I. The associated gauge field ~ '  is then decomposed ac- u 
cordingly. The SO(8) gauge fields associated with the rigid motions of S 7 emerge from the eleven-dimensional 
metric in the standard way [1 ]. Since one anticipates gauged N = 8 supergravity in four dimensions, there should 

t t 
be 56 zero modes for the remaining spinors described by ~m" This suggests that Srn is decomposed into the 56 

t independent antisymmetric products of Killing spinors: 7Srn ~ T'l[loJ't'lK]. A comparison of these an~tze with the 
supersymmetry transformations [eq. (14)] then shows that the scalars and pseudoscalars which emerge from the 
metric tensor gmn and the antisymmetric gauge field Amnp ,  respectively, must be decomposed in terms of anti- 
symmetrized products of four r~'s. The precise form of these decompositions is then established by requiring that 
they correspond to the massless modes. Except for the spin 0 and the spin 1/2 fields, this procedure is rather 
straightforward. The correct ans~itze are found to be 

, = , = ~ I  x I ' ( x , y )  =AIJ(x)~I+(y)I"mrlJ+Qy) +... (15,16,17) h ~ v ( x , y  ) h~v(x ) + .... ~ u ( x , y )  ta( )rl+(.y) + .... hum 

Orn(X,y  = kJJK(x)[rlUmK(y) l_~[,m ['nrllJK(Y)] + "", (18) 

' _ ! o.(O) ( ,,'~ ~, [I( .t,'~ pP,,..,JKL ] (19)  hmn(X,Y)=AIJKL(x)(~I[I+(y)I 'mrl InKL](Y)  9a, mnvJ , l+ , . . . , ' , -  ,ip (Y)] + .... 

R IJKL t'v~ ~ [I t ,  ,~ p ~ JKL ] 
A m n p ( X , Y )  = ~ ~.~.,'~+ ~..?'J '- [mn'tp] (Y)  + .... (20) 

where we have introduced the vector-spinor 

~IJmK(y) = 7Ill(y)~J+c v) I'm r?( ] (Y) (21) 

to simplify the notation. The ans~itze (15) and (17) follow directly from the general theory [1]. Ansatz (16)has 
already been motivated;we recall that the eleven-dimensional supersymmetry transformation parameter is ex- 
pressed in an analogous manner 

e ( x , y )  = e l ( x )  r2I+(y) + ... (22) 

which makes the eight supersymmetries of the theory manifest. The supersymmetry transformations which corre- 
spond to the higher modes in the expansion of e(x, y)  are not symmetries of the truncated four-dimensional ac- 
tion, since they connect the different sectors that arise in the harmonic expansion on S 7. The full set of super- 
symmetry transformations will generate a generalized super-Kac-Moody algebra (with the unit circle S 1 replaced 
by $7), which is obtained by projecting the commutator of the eleven-dimensional theory onto the various eigen- 
modes on S 7 . In this way, one recognizes immediately that there exists a one-to-one correspondence between the 
fermionic generators of this algebra and the eigenmodes of the Dirac operator on S 7 which appear in eq. (22). 
Note that this realization of an infinite dimensional superalgebra is quite different from the ones that have been 
previously considered [ 10]. 

t 
From eq. (17) we see that there are indeed 56 spin 1/2 states. The 35 scalars contained in hrn n correspond to 

self-dual antisymmetric tensors; their self-duality follows from the identities of ref. [3]. The 35 pseudoscalars 
t B 1JKL have the opposite duality phase. Note that hrn n is not  a Killing tensor. We remark that there exists an alter- 

native ansatz for the pseudoscalars in terms of the symmetric trace-free 35-representation of SO(8), namely [6] 

Zmnp(X ,  Y)  = B I J ( x ) ~  I- (Y)  Pmnp rlJ(Y) , (23) 

where the spinors of negative parity are used. Both eqs. (20) and (23) obey the same masslessness condition 

= 1 - r s t  (24) D m A n p q  gm7emnpqrs t  A 
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and are therefore linearly dependent. The ansatz (23) will be useful for the discussion of  the broken case. 
Observe that the trace terms in eqs. (18) and (19), which are necessary to ensure masslessness, are also needed 

to get the correct four-dimensional transformation laws. For example, from eqs. (14) and (18), we find after a 
Fierz rearrangement of  the S 7 spinors that 

, 1 2 - I  JKL - I  F JKL 1.~Ip pq~J KL]~+  
~ A m n p ( X , y ) = ~ X / ~ e ( x , y ) I " [ m n ~ p ] ( X , y ) = - ~ V / 2 c  ( x ) x  (x)07+ [mnrlp] - ~ , ~ + - m n p ~  qq j "'" 

= ~ V , ~ [ I ( x )  JKLI ~ , - I n  JKL (25) 
X [x) 'q+l[m n rip] + ..., 

which is the desired result. 
One can now show that the anshtze (15) - (20)  describe the massless modes. We emphasize that masslessness in 

anti-de Sitter space does not mean that mass terms are completely absent. In a gravitational background the wave 
equation of  spinless fields contains a term R / 6 ,  where R is the four-dimensional curvature scalar; moreover, there 
is an apparent mass term for the spin 3/2 fields. Because the massless modes are related by supersymmetry and 
constitute the full spectrum o f N  = 8 supergravity, we conclude that the lagrangian o f N  = 8 supergravity in four 
dimensions is obtained to second and therefore to all orders after integration over S 7. 

In the last part of  this letter we prove that gauged N = 8 supergravity can be spontaneously broken by a mech- 
anism which has geometrical significance in eleven dimensions. To this effect we express Amnp(X,  y )  in the 77- 
basis according to eq. (23), where the BIJ (x )  are linear combinations of  the B IJKL (x).  The quantity 

S m n p ( y ) - ~ m 7 f F m n p ~  , ~ = 1, (26) 

where ~ is an arbitrary linear combination of  the r~ / , obviously solves the duality equation (24). We shall prove 
that this seven-parameter submanifold of  solutions of  eq. (24) consists of  the (left) torsions that parallelize S 7 ; in 
fact, eq. (26) solves the classical equations of  motion provided that we choose [9] 

m 2 = ~ m  2 = ,  .2 =+x ~ ors t  (27) -~f" , Fmnpq = +(N/C2/m7)Drn Snpq - g V  "~ emnpqrst• • 

The field strength Fmnpq does not vanish and thus supersymmetry is broken. Note that eq. (26) can be inter- 
preted as an expectation value ot the pseudoscalar fields B IJKL , because the y dependence is still given by eq. 
(20) (this interpretation was first suggested in ref. [11]). Exploiting the fact that eqs. (20) and (23) are linearly 
dependent, it is possible to compute the vacuum expectation value of  the pseudoscalar fields explicitly. For suit- 
ably chosen if, this expectation value becomes proportional to 

F x ~mnr ,  p (28) 
mnp1881[i j  i KL] " 

Therefore, this classical solution describes a spontaneously broken realization of  gauged N = 8 supergravity in 
four dimensions, whose origin may be traced to a "spontaneously induced parallelism" on S 7. Actually, given the 
solution (28), one can now proceed to analyze the symmetry breaking purely within the four-dimensional con- 
text and to verify that eq. (28) indeed leads to a stationary point of  the four-dimensional scalar field potential 
[8]. It is also straightforward to calculate the expectation value of  theA 1 and A 2 tensors of  ref. [8], and thus 
the various mass matrices of  the four-dimensional theory from eq. (28). 

The tensors Smn p satisfy the following identities: 
9 SrnntSpqt = _ 2 r n ~ 6 p q _  1 _ pqrst,, s[mnPsq]  rs = _ 1 .gm7 em n Orst ' .~m7 emnpq[r b S s] ab. (29,30) 

From eq. (29), one shows that 

Smnp.~ l = St[mnSpt  qt ,  S tmnStpq  = Smnp;q - m2 (gmpgnq - gmqgnp) ,  (31) 

which are indeed the necessary and sufficient conditions for Stun p to be a parallelizing torsion [9,12]. 
We now turn to the characterization of  the symmetry breaking. The little group of  ~ at a given point y is 

known to be G 2 [ 13]. Hence, this group leaves the torsion invariant at this point and induces global motions 
on S 7 which map every torsion to an equivalent one. Therefore, the group of  rigid motions on S 7 is reduced from 
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SO(8) to G2, and the gauge symmetry is reduced accordingly. 
Finally, we discuss how supersymmetry is broken by the solution (26). Therefore, we return to the integrabil- 

ity condition, eq. (3), and insert the value of Fmnpq associated with eq. (26). We then evaluate the resulting ex- 

pression by using the identities (29) and (30). From the fact that the field equations are satisfied, we infer that it 
is sufficient to analyse eq. (3) for seven-dimensional indices only. After contraction with I "ran, we find that eq. 
(3) becomes 

[,mn6Rmn(q 0 = 1 2 - ~ ( 1 4 m  7 + lOmTFmnPSmnp)e. (32) 

The eigenvectors of the matrix ([~rnnp Smnp ) are 

(FmnPSmnp) ~ = - 4 2 m  7 ~ ,  tpmnp.~ .~ ~., ~mnp,Pq~ = 6m7Fqd 2 (33) 

where the spinors ff and F mff span the one-dimensional and seven-dimensional subspaces that are left invariant 

by the action of G 2. Clearly, eq. (32)has no zero eigenvalues, so that all eight supersymmetries are spontaneously 
broken. The eigenvalues of the matrix in eq. (32) characterize the scales at which the supersymmetries are 
broken. As a consequence of eq. (32), seven supersymmetries are broken at the same scale. Altogether, there are 
thus two supersymmetry-breaking scales which are expressed in terms of the S 7 radius through eqs. (32) and (33). 

We conclude with a comment which may be relevant for the phenomenological interpretation o f N  = 8 super- 
gravity. So far, it has been generally assumed that the higher modes of Kaluza-Klein theories may be neglected in 
the analysis of the low-energy sector. While this is undoubtedly true for the unbroken theory, it is not necessarily 
true for the broken theory. Since the whole mass spectrum of the theory is shifted by units of the order of the in- 
verse S 7 radius by the symmetry breaking, one cannot a priori rule out the possibility that some of the previously 
massive states become massless. Such a "level crossing" would obviously affect the phenomenology at low ener- 
gies, and therefore this possibility deserves further investigation. 

A detailed account of the results reported here will be published elsewhere. 

We are grateful to M.J. Duff for his collaboration at early stages of this work. 
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