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The complete structure of N = 8 supergravity is presented with an optional local SO(8) 
invariance. The SO(8) gauge interactions break E7 invariance, but leave the local SU(8) unaffected. 
Exploiting E 7 × SU(8) invariance and using explicit lowest order results, we first derive the complete 
action and transformation laws. Subsequently, we introduce local SO(8) invariance and prove the 
consistency of the theory. Possible implications of our results are discussed. 

1 .  I n t r o d u c t i o n  

Already  some years ago, supergravi ty  was in t roduced in an a t tempt  to fuse gravity 
with mat te r  interact ions in a consistent  fashion [1] (for a general  review of the 

subject,  see ref. [2]). The  largest ex tended supergravi ty  theory  is based on one 
irreducible multiplet  of N = 8 supersymmetry ,  in which the graviton is naturally 
combined  with particles of lower spin. This multiplet  is unique in the sense that  it 
is the only N = 8 supermult iplet  conta ining maximal  spin 2. Hence ,  the in t roduct ion 
of " m a t t e r "  multiplets of low spin fields is not  possible in this f ramework .  This is 

just one  aspect  of the restrictive power  of supergravi ty  which makes  it such an 
outs tanding candidate  for  a unified descript ion of e lementa ry  particles and their 
interactions• Local  supe r symmet ry  natural ly combines  particles of different spin 

and implies gravitat ional  interactions.  The  balanced decompos i t ion  in bosons  and 
fermions  has a softening effect on its qua n t um  divergences,  thus offering hopes  for 
a consistent  quan tum  theory  of gravity and a solution to the so-called hierarchy 

p rob lem in e lementa ry  particle physics. However ,  its main p rob lem is in making  
contact  with low-energy p h e n o m e n o l o g y ;  a l though several a t tempts  have been  
made  to show that  "superunif ica t ion"  is a viable idea, the dynamical  s t ructure of 
these theories  is not  at all unders tood ,  which hampers  the construct ion and investiga- 
tion of specific unification scenarios. 

The  initial const ruct ion of N = 8 supergravi ty  was based on tedious o rde r -by-  
order  calculations of the lagrangian and t ransformat ion  rules which revealed all 

• 1 generic terms, such as a Pau l i -moment  coupl ing and spln-~ contact  interact ions 
which are absent  for N ~ < 4  [3]. However ,  a complet ion of these results was 
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impossible due to the complicated internal symmetry assignments of the scalar 
fields. An alternative approach was to start from eleven-dimefisional supergravity 
instead which was expected to yield N = 8 supergravity upon reduction to four 
dimensions [4]. The crucial aspect of this approach was that the eleven-dimensional 
theory was completely known to all orders. The dimensional reduction, which was 
performed by Cremmer and Julia [5], led to surprising results. After a straight- 
forward reduction and certain duality transformations to replace antisymmetric 
tensor gauge fields by scalar fields in order to recover the anticipated SO(8) 
invariance, they recombined the various fields with new gauge degrees of freedom 
into representations of a larger internal symmetry group. More specifically, they 
arrived at a formulation of the theory with local chiral SU(8) invariance, in which 
the equations of motion are invariant under a non-compact E7 group of generalized 
duality transformations. 

Generalized duality invariance had been found previously in extended super- 
gravity, first for N = 2 [6]. Later, U(4) duality invariance was conjectured for the 
N = 4 supergravity equations of motion, and this invariance was then used to derive 
the full lagrangian and transformation rules [7]. Subsequently, a larger group of 
duality transformations was discovered to be relevant, namely the non-compact 
SU(1, 1) x SU(4) [8]. For N = 8 supergravity a similar attempt to construct the full 
theory by postulating SU(8) duality invariance was only partially successful [9]. 
For a more general discussion of duality invariance in field theory, we refer the 
reader to ref. [10]. 

As is well known, the extended supergravity lagrangian contains the appropriate 
number of vector gauge fields to have a local SO(N) invariance. Already some 
time ago, it was shown that this option can be realized for N ~< 5 [11, 12]. Recently, 
we reported a successful attempt to introduce local SO(8) in N = 8 supergravity 
[13]. However,  the crucial difference between this result and the earlier ones is 
that local SO(8) is introduced without affecting the aforementioned local SU(8) 
symmetry. In fact, both SU(8) and E7 are indispensable to prove the consistency 
of the gauged theory although E7 is explicitly broken by the SO(8) gauge field 
interactions. The possibility of having local SO(8)x SU(8) invariance may also be 
of phenomenological significance, especially in view of the observation that an 
SO(8) Yang-Mills group is too small to comprise the observed particle states [14]. 

The main purpose of this paper is to give a complete treatment of N =  8 
supergravity with local SO(8) x SU(8) invariance. The paper is organized as follows. 
In sect. 2, we introduce generalized duality transformations in extended super- 
gravity, and the characterization of the scalars as an E7/SU(8) coset parametrization. 
The implications of SU(8) and E7 invariance are then combined with the results 
of the lowest order iterative calculations [3], and this procedure yields the complete 
lagrangian and transformation rules. This is done in sect. 3. We have chosen this 
presentation because it allows us to discuss all aspects that are relevant for the 
consistency proof of N = 8 supergravity with local SO(8). The material of these 
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two sections constitutes a complete derivation of N = 8 supergravity entirely within 
a four-dimensional  context. Fur thermore,  the complete higher order fermionic 
terms have never  been given before, and they are needed for what follows. As a 
consistency check at this point, we have also established the supercovariance of 
the fermionic equations of motion. In sect. 4, we define a tensor T, .~kt that plays a 
special role in the gauging of N = 8 supergravity and derive a number  of identities 
that it obeys. These identities which are crucial for the consistency of the gauged 
theory are shown to follow from the E7 parametrizat ion of the scalar fields. The 
invariance and consistency of the theory with local SO(8)× SU(8) symmetry are 
then proved in sect. 5. This is the most  technical part  of this paper,  and we have 
therefore summarized our results at the end of that section. In a concluding section, 
we discuss possible implications of our construction and review open questions and 
conceivable further developments.  Finally, we have included two appendices. In 
the first, we collect those propert ies  of E7 that are relevant for this paper;  in the 
second we discuss the special SU(8) gauge choice. 

We have aspired to make  this paper  self-contained. Nonetheless, in order to 
keep it within reasonable proportions,  we have omit ted basic definitions and 
manipulations which are by now standard [2]. We follow the conventions of ref. 
[9], except that the symbol [il . . . . .  in] signifie.s antisymmetrization in the indices 
i l , . . . ,  i~ with strength one. In particular, we adopt  the chiral notation for the 
spinors which has also been defined in ref. [9]. The latter proves to be extremely 
convenient, especially f rom a technical point of view [manifest SU(8), Fierz reorder-  
ing, etc.]. In the appendices of ref. [9] the reader may find a number  of identities 
which are useful throughout this article. 

2. Generalized duality invariance 

The N = 8 supergravity theory is based on a massless supermultiplet  of physical 
states consisting of a spin-2 graviton, eight . 3 spm-~ gravitinos, 28 spin- l ,  56 spin-~ 
and 70 spin-0 states. These states correspond to a vierbein field e~ a, eight Rar i t a -  
Schwinger fields ~ ,  28 abelian gauge fields A ~  lj ,  56 Majorana  spinors X i~k and 35 
complex scalar fields. While the vierbein always behaves as a singlet under any 
internal symmetry group, the fermions are naturally assigned to the 8 and 56 
dimensional representat ions of chiral SU(8). We will follow the notation of ref. [9] 
where upper  (lower) SU(8) indices correspond to positive (negative) chirality 
components.  The 28 vector fields cannot t ransform under a complex internal 
symmetry;  the largest invariance group that they allow is SO(8). For that reason, 
we consistently assign capital indices to these fields. Since the vectors A~ ~I occur 
in the adjoint representat ion of SO(8), it is in principle possible to extend the 28 
abelian gauge invariances to a full non-abelian SO(8) group. This will be discussed 
in full detail in sect. 5 of this paper.  As it turns out there are subtleties in the 
internal symmetry  assignments of the scalar fields to which we return shortly. 
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As the vector fields A ,  u are abelian, they enter the lagrangian and the field 
equations only through their (Maxwell) field strengths 

Ftx vlJ iJ iJ + = O.A. -O~A.  ~Fr tv l  J + F ~  tJ. (2.1) 

We will systematically use (anti) self-dual field strengths which are related by 
complex conjugation in the metric convention that we employ. Complex conjugation 
corresponds to lowering and raising SO(8) indices. 

Although the vector potentials have SO(8) as their maximal symmetry group, it 
is possible to have a much larger symmetry when the equations of motion and the 
Bianchi identities are combined. The reason is that the equations of motion for 
A,~ tj lead to a second tensor which differs f rom the field strengths because of the 
supergravity interactions. Moreover,  by considering (anti) self-dual combinations 
of these tensors, one can accommodate  complex transformations.  Hence,  we now 
have a basis of 2 8 + 2 8  complex tensors which admit a much larger symmetry  
group than the aforementioned SO(8). Since this symmetry transforms field 
strengths into their dual tensors, such transformations are called generalized duality 
transformations.  

It is the purpose of this section to explore generalized duality invariance in the 
context of N = 8 supergravity. To make the presentation self-contained, we will 
partly repeat  the analysis of ref. [5] and in particular the counting arguments that 
lead to E7(+7). In sect. 3, we will then demonstra te  that the E7 structure of the 
theory in conjunction with the lowest order results of ref. [3] is sufficient to determine 
the complete lagrangian and transformation rules of N = 8 supergravity. 

As we have ment ioned already, generalized duality invariance has been used 
before in the construction of supergravity theories. This was first done for N = 4 
supergravity which has a U(4) duality invariance [7] that can be extended to 
SU(4)×SU(1 ,  1) [8]. Subsequently, an at tempt  was made to determine N = 8 
supergravity by postulating invariance under SU(8) duality transformations but this 
work only led to partial results [9]. Here,  we will consider possible extensions of 
SU(8) and describe the arguments leading to E7(+7). We should point out that so 
far it has not been understood why on-shell Poincar6 supergravities exhibit general- 
ized duality invariances. There  is an indirect relation with the symmetries that are 
known to exist in the conformal sector of the theory; for instance, N = 4 conformal 
supergravity possesses the same SU(4)x  SU(1, 1) symmetry as the field equations 
of N = 4 Poincar6 supergravity [15]. An analysis of N = 2 supergravity which has 
been completely understood within the conformal f ramework [16] reveals that the 
U(2) duality invariance of the Poincar6 field equations and the conformal U(2) 
symmetry coincide in the SU(2) sector (although this depends somewhat  on the 
particular off-shell formulation), whereas the U(1) transformations are not the same 
and cannot act consistently on the fields unless the Poincar6 field equations are 
satisfied. 
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Following ref. [9], we begin the analysis by considering that part  of the super- 

gravity lagrangian that contains the field strengths: 

~LP'= l r +  .~.~H;KL 8 t l  ~ F + ~  - -seP .,,t+ ( z.~ - KL ) KL 

l ~ +  r, IJ, K L r ~ + ~ v K L  
- -  ~ e / ~  . ~ L r b  t a  +h .c . ,  (2.2) 

where e is the inverse vierbein determinant ,  S t~'~L is some as yet undetermined 
(-)+ K L  function of the scalar fields, and v , ~  is bilinear in the fermion fields and also 

dependent  on the scalars. From (2.2), we readily obtain the spin-1 field equations 

O~[e (G+~"II + G - ~ I ) ]  = 0 ,  (2.3) 
with 

4 &Lf' a q - ~ v  
4- 

z l - -  e 6 F . , , z j  

2S11.KLZF + + 0 + ~:Lx F + = ~ .~KL .~ )-- ~ . .  (2.4) 

In addition, we have the Bianchi identity 

0, [e (F+"~,~ - F - '~H)]  = 0 .  (2.5) 
+ + / J )  

We now define a 56 dimensional vector (Fl.~u, F2.~ by 

+ 1 + + Fl .~ I I  = ~ ( G , ~ u  + F . ~ I I ) ,  
(2.6) 

F+ tl _L:::_+ ~.+ 2~xv ~ 2 \ * ' J  gvlY - - x l a v l Y !  • 

Note that the antiself-dual vector (F~.~ II, F2.~u)  is obtained by complex conju- 
gation: 

iJ + + . (2.7) ( F I ~  , Fz~,~u ) = (FI~ . , . I j ,  F 2 . , ,  IJ ) .  

With these definitions, the equations of motion (2.3) and the Bianchi identity (2.5) 
can be fused into one 56 dimensional vector equation 

O ~ , [ e ~ F ~ , , ) + e w [ F ~ , ~  ) J = 0 ,  (2.8) 

where the 56 × 56 matrix w is given by 

~o ~ 0 " ( 2 . 9 )  

General ized duality transformations are now defined as complex rotations of the 
+ + 

56 dimensional vector (F1, F2 ): 

( F l+u v ~ / F t+ ~ 'I 
- + E l  4- , (2.10) 

\ F 2 , .~ I  \ F 2 , . ~ /  " 

Compatibili ty of (2.10) with eq. (2.8) then requires that the 5 6 × 5 6  matrix E is 
subject to a (pseudo-) reality condition 

E *  = w E w .  (2.11) 
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This condition contains all the information that can be deduced on general grounds 
and implies that the duality rotations form a subgroup of the non-compact  group 
Sp(56, ~)* [10]. However ,  the duality transformations must be further restricted 
because the tensors F1 and F2 are not independent.  From their definition, it follows 
that there is the relation 

+ I J  + .fl'~IJ, K L ~ , +  t O +  IY F 2 , ,  (S  -1 - -  u )  .Iv l g v K L  = ~ t . z v  , (2.12) 

which is not directly compatible with the duality transformations (2.10). 
There  are two resolutions to this problem. One is to limit the group of duality 

rotations to SU(8), which is still compatible with (2.12); this was the road taken 
in ref. [9]. The alternative is to insist on a larger symmetry group, and to introduce 
a "conver te r"  field OF which is a 5 6 x  56 matrix that transforms under duality 
rotations from the right and under some independent but smaller symmetry group 

f rom the left. In this way, we can formally express (2.12) by 

~ ( 1  - = , 

v 

where the 56 x 56 matr ix /2  is given by 

(2.13) 

0) 
Hence the group of duality transformations can be enlarged by the introduction 
of scalar fields ~V. However ,  not all of those fields will correspond to physical 
degrees of freedom. If the symmetry  which acts on OF from the left is a local gauge 
symmetry,  then the gauge f reedom can be used to reduce the number  of physical 
degrees of f reedom contained in OF. We have already mentioned that the fermions 
belong to representat ions of chiral SU(8). Therefore,  the tensor O ~  has a natural 
SU(8) symmetry group which may act on both sides of eq. (2.13). Now, we know 
that N = 8 supergravity describes 70 scalar degrees of f reedom whereas SU(8) has 
63 generators.  Thus, introducing a local SU(8) to maximally reduce the degrees of 
f reedom contained in OF, we find that OF has 7 0 + 6 3 =  133 degrees of f reedom 
which is precisely the number  of generators of the group ET. It was this counting 
argument  that inspired Cremmer  and Julia to conjecture that the group of duality 
transformations of N = 8 supergravity is E7 [5]. One accordingly parametrizes the 
matrix °F, which is called "sechsundffinfzigbein" in analogy with the vierbein in 
general relativity, as an element  of E7 in the 56 dimensional fundamental  representa-  
tion; 7 / t hen  transforms under rigid E7 f rom the right and under local SU(8) from 
the left. This SU(8) corresponds to the maximal subgroup of E7 which commutes  
with the matrix /2 which in turn guarantees the consistency of (2.13). Explicitly, 

'~ Here in a complex basis. 
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the SU(8) transformations are parametr ized by 

329 

U = exp [~//kOi]'l 0 1 ~[ . ,~.a  , (2.15) 
o[p zx q]J 

where A /  is an antihermitian and traceless 8 x 8 matrix. Hence,  the 56-bein 
transforms according to 

~/'(X ) "~ U (X ) ~P(x ) E  -1 , 
(2.16) 

U ( x )  e SU(8), E E ET. 

The restriction (2.11) specifies that we have to take the non-compact  version of 
ET. This group is denoted by E7(+7) since there are 70 off-diagonal generators for 
the non-compact  directions and 63 generators which belong to the maximal compact  
subgroup SU(8). According to eq. (2.16), the 133 scalar fields contained in 7/" fall 
in classes that are gauge equivalent with respect to SU(8). We are therefore dealing 
with the ET/SU(8) coset space. It is possible to set 63 parameters  of the diagonal 
generators in 7# equal to zero by means of a suitable SU(8) transformation. In this 
way, one obtains a specific parametr izat ion of the coset space. Such a gauge choice 
is further discussed in appendix B. 

We should emphasize that the above arguments are not sufficient to establish 
that the group of duality transformations is really E7¢+7), and they should not be 
taken as to replace a logical and deductive derivation. More detailed considerations 
which lend additional support  to this hypothesis will be presented at the end of 
this section. 

The 56-bein ~U is now decomposed into 28 x 28 submatrices as follows: 

[uq  u VqKL] 
= [VklU UkIKL j , (2.17) 

where capital indices refer to E7 and little ones to SU(8). Observe that the individual 
indices run f rom 1 to 8 and that the index pairs are antisymmetric. The inverse 
56-bein W-1 is related to W by complex conjugation (see appendix A), and we have 

,=[ u"H 
[_VqKL UklKL] . (2.18) 

Note that ?/" 1 transforms under E7 f rom the left so the capital indices in ~ i refer 
to rows and not to columns as in (2.17). The 2 8 x 2 8  matrices u and v 
("achtundzwanzigbeine")  can be parametr ized in terms of 133 fields. E7 and SU(8) 
assignments of all fields which occur in N = 8 supergravity have been collected in 
table 1. 

We now continue our analysis within the context of the conjectured E7/SU(8) 
coset structure by observing that the compatibility of (2.12) and (2.13) enforces 
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TABLE 1 

a + + lJ  X ijk '" U iiIJ 

SU(8) 1 8 1 56 28 28 
E7 1 1 56 1 56 

the identification 

(S -1 - ~)~J'~ = (u-~)IJ ,i~:~, 

(U-1)UqU'/KL = 6~L. (2.19) 

Consistency then requires that the right-hand side of (2.19) be symmetric under 
the interchange of the index pairs [IJ] and [KL]. This is indeed the case as may 
be easily verified by using basic propert ies of E7, s e e  appendix A. An equivalent 
form of (2.19) is 

'" q . _ i . ) i j l J ) s l J ,  K L  i/ ( u ' u  = u ~ t .  (2.20) 

The dependence of S u'm- on the scalars is now entirely fixed. Moreover,  f rom 
(2.13) we infer that 

O~ q i/ .-.+ ~J =-u u t a ~  (2.21) 

must be an SU(8) covariant tensor. Since it is impossible to construct non-trivial 
SU(8) covariant and E7 invariant quantities not containing derivatives from the 
56-bein, and since the generic terms that describe the coupling to the field strength 
in supergravity do not contain derivatives, we conclude that O+~ ~j is a bilinear 
expression in the fermion fields which is SU(8) covariant and independent  of the 
scalar fields. The result and the relevant coefficients may thus be read off directly 
from the lowest order results of ref. [3]. We find 

I ' J  + v i J  1 / ' ~  i j k l r n n p q  - 
= - -  ~ , w Z , r l  e ) ( k l m O ' u . v X n p q  

1 7  ,~ i i k  1 / ~ ' ; ' i  [o  o - ] _ _ j  (2.22) 

The duality phase r/ which we have introduced here can assume the values +1. 
The multiplication of the 56-bein with the vector ( F ~ - , , , F 2 ~ )  yields two 28- 
dimensional vectors. One of them equals 0 ~  ii according to the constraint (2.13). 

--q_ 

The other one can be interpreted as a modified field strength F,~, which is SU(8) 
covariant. Hence,  

+ .  , 
\ 0 ,~ ,  ) 

and F+,o is explicitly given by 

(2.23) 

- - +  I J ~ +  + 1.1" 
Fungi i = uij l~ l ~ l y  + Vi iuF2~v (2.24) 
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Using the definition (2.6) of F~', F~  and some formulae of appendix A, we obtain 

ij -- + + ij ["1 + K L  
U I j F ~ v i j  =Fl~,v/1 + u  IjUijKLt. . , , tzv 

__ OIJ ,  K L ~ , +  + ( S I J ,  K L - -  ii ",,,.-~+ K L  
- o * ,~IvL - ,  u u V i i r L ) U ~ ,  , (2.25) 

and the inverse relation 

F ~ u  = (u"u - ,u, ,=+ '" ~-'l.) )l'~t~vij - - ( b l i j  IJ  " } - U i j l J ) O ~ v  ij (2.26) 

At  this point, we return to the lagrangian (2.2), which we rewrite in the following 
form: 

G o ' =  8er,vl~..rl r +  t~+tXVl j  1 r , +  r~IJ, K L z ' ~ + p . v K L  - -  - a e r , v u a  ta + h.c. .  (2.27) 

The first term in (2.27) vanishes by partial integration when the equations of motion 
are fulfilled. The second term can be re-expressed by use of (2.25): 

O +  IJCIJ ,  K L ~ , + I x v  
Ixv o 1" K L  

+ q - + ~  O +  U ( ¢ U . K L  ii V ~ 0  +"~a:L (2.28) = O , v  F i i - - ~ v  \ ~  + U  1J i jKL]  • 

The first term on the right-hand side of this equation is manifestly E7 × SU(8) 
invariant whereas the second is not. Since we expect the full lagrangian to be 
E7 × SU(8) invariant on-shell, i.e., when the fields satisfy their equations of motion, 
we are thus forced to add an E7 non-invariant  contact interaction to (2.2) to absorb 
the second term generated in (2.28): 

~ , ,  1 .-.~+ IJ  z ~ I J ,  K L  "" 
= - a e u , ~  t a  + U " u V i j K L ) O  +"~KL +h .c . .  (2.29) 

All the remaining terms in the N = 8 lagrangian must be manifestly E7 × SU(8) 
invariant. Indeed, it is straightforward to verify that this requirement  leads to SU(8) 

covariant spinor field equations. To examine the covariance of the spin-2 and spin-0 
field equations is somewhat  more laborious. The fact that the lagrangian is manifestly 

+ + / ~ v  
invariant under duality transformations modulo a term (F,,vt/7 u +h.c.) can also 
be shown in the general case [10]. 

The conjectured local SU(8) invariance necessitates the introduction of SU(8) 
gauge fields ~ l , i i  which obey 

~31.ij : --~3tzj  i (antihermiticity) 
(2.30) 

~ , / i  = 0 ,  (tracelessness), 

and occur in SU(8) covariant derivatives according to 

D~& i i 1 i i =0,~b +~9a, i4) , (2.31) 

where 4) ~ stands for any SU(8) vector in the fundamental  representation. At  the 
classical level, these SU(8) gauge fields do not correspond to dynamical degrees of 
freedom. There  is no kinetic term quadratic in the associated field strength ~r,~ (@)~ i. 
The fields ~ f j  can be expressed in terms of the physical fields of N = 8 supergravity. 
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This dependence can be viewed as the result of an algebraic equation of motion 
(first order form) or of a conventional constraint (second order form). We found 
it convenient to choose the second option. The constraint that determines Y3, must 
be E7 invariant and SU(8) covariant. There is only one possible expression of this 
kind which is Dfl/" • 7/'-1. The crucial observation is that this 56 × 56 matrix takes 
values in the E7 Lie algebra. This permits us to impose the condition 

ijkl-] 

O f f / "  7/"-1= -}x /2 [  0 0 J" (2.32) 
t M.mnpq 

Since the diagonal blocks of (2.32) characterize the SU(8) subalgebra of E7 we 
have imposed exactly the right number of conditions to determine ~ ,  in terms of 
the submatrices of 7/" and their derivatives. Explicitly we get 

~ ij 21 ik ~ iklJ 
=g[1.1 I J O ~ l g j k I J - - l . )  O~Ujk ! j  ) . (2.33) 

Of course, one may modify the constraint by the addition of extra covariant terms 
bilinear in the fermion fields; this would amount to a redefinition of the field ~ , .  
The off-diagonal blocks in (2.32) specify the part of the E7 Lie algebra orthogonal 
to SU(8) and define a new quantity ~¢,. Note that ~ ,  does not depend on ~ ,  in 
this way. We obtain 

-2x/2(u uO~,v --V'U O, Ukln). (2.34) ~ t  ijkl : - -  ii kllJ "" 

It is important that the classification of ~¢~ iikt as a component  of the E7 Lie algebra 
entails that ~¢iikt is completely antisymmetric and self-dual in its indices: 

~2~ ~ TM = 2~ ~ E  ijklrnnpq ~p~mnp q , (2.35) 

This is a typical example of the kind of argument which is of great importance 
throughout this paper. One cannot show the validity of (2.35) directly from (2.34) 
but must rely instead on group theoretic arguments based on E7. 

Applying a second SU(8) covariant derivative D~ to (2.32) and antisymmetrizing 
in/z and t, there are two ways of evaluating the resulting expression, namely either 
by using (2.32) directly or by observing that the commutator  [D~,, D~] yields an 
SU(8) field strength ~r (~  (Ricci identity). In this manner, we arrive at two 
important identities: 

j 1 jklm 
~ t x v ( ~  )i @ 12(~2~lMklm~v - -  (/z ~ u)) = 0 ,  (2.36) 

O ~s~v  iikl - O ~ t ~  ijki = O . (2.37) 

Eqs. (2.35)-(2.37) originate from the E7 structure of the 56-bein and indirectly 
characterize the E7 Lie algebra. On the other hand, these are precisely the identities 
that can be derived by requiring the supersymmetry of the N = 8 supergravity 
action without presupposing E7 as we will demonstrate in the following section [91. 
This illustrates once more how the group of generalized duality transformations is 
restricted to the E7(+7) subgroup of Sp(56, R) by supersymmetry. 
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3. N = 8 supergravity 

The E7 × SU(8) structure of N = 8 supergravity described in the preceding section 
greatly facilitates the construction of the complete lagrangian and transformation 
rules. In fact, as will be shown in this section, a comparison of the results implied 
by E7 and SU(8) with the lowest order results that were obtained some time ago 
[3] completely determines the theory. In particular, all quartic spinorial couplings 
in the lagrangian as well as the quadratic spinor terms in the t ransformation rules 
can be obtained in this fashion and we remind the reader that those terms had not 
been worked out up to now for the four-dimensional theory. Of course, the structure 
imposed by E7 and SU(8) invariance is entirely in agreement  with the lowest order 
results of ref. [3]. 

We start by giving the full t ransformation rules. Since E7 and supersymmetry  
transformations must commute  modulo equations of motion, all supersymmetry  
variations are manifestly E7 invariant with the exception of those of A ,  u which 
cannot t ransform under ET. The requirement  of SU(8) covariance then further 
restricts possible supersymmetry  transformations: 

[ 0 i o . . . .  '1 e [ i X j k l ] " ~ 2 4 ~  ] k l v w x y  E X 
6 7 / .  

(3.1) 

8 x  irk = _ ~  ijkl v % t  + 3o'P.~F.v Fiie k3 

1 ~We iiklmnpq - , ~ (3.2) 
- -  ~ ' V  .&l ~ .  X l m n , I ( p q r  )~,  , 

aAp. u = - ( u ~ y  + V~ju )( ik  Vp.X ~ik + 2~/2fitpp. i) + h.c. ,  (3.3) 

i i 1 - -  " - -  it p o  &b.  = 2Dp.e +~/2Fp,~ o" "/p.ej 

[ 1 i j k l r n n p q -  Otr \ 
- -  1 ,1442Qe ~ k l m O "  ) ( n p q J ' y p ,  Oroo .Ej  

v j 1 - -  - v "" 
-[- l()~ikl 'y Xikt)T, ,Tp.e +~x/2(t)p.kT X'1k)T , , e i ,  (3.4) 

($ep." = ii~,~O., +h .c . .  (3.5) 

The derivatives Dp. which appear  here and later on, are covariant with respect to 
both local Lorentz and local SU(8) transformations.  For example,  in (3.4), we have 

D p . e i  ~ e l  ab i + l~rdpiiej (3.6) UpF,  - -  ~ 0 9 p . a b O "  ~ 

where ~pij has been defined in (2.33). The spin connection ~Op.ab may be treated as 
an independent  field (first-order formalism), or one may insert the solution of its 
(algebraic) field equation (second-order formalism), which when expressed in the 
Cartan torsion tensor reads 

a . ~ i  a ~  __ 1 - irk b 
Rp.~ (P) = ~'EP. T Lffv]i n'- ~gp.vabX ~1 Xiik . (3.7) 
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Note that the right-hand side of this equation follows straightforwardly from the 
fermionic kinetic terms in the N = 8 lagrangian and that a knowledge of the other 
interactions is not required at this stage. This leads to the standard solution for to. ~b, 

ab 1 c c a ~o. =~e .  (O~b --J2bc --J'2~b), (3.8) 

with modified objects of anholonomity 

12ab c = ea"eb ~ ( a . e f  - aoe. c - ~ .  3/c&~li 
1 - i j k  d \ (3.9) 

- - ~ 8 ~ . c d X  Y X i j k ) .  

Hence, to. ab depends on e .  a, ~ i  and X ijk. Eq. (3.8) may be alternatively expressed 
in terms of the contortion tensor K .  "b : 

to~.~b (e, t), X) = Oj.~b (e) +Kg~b(0, X), 

gcab 1 7 i  c - -  - -  1 7 i  a - -  
= --21friar/ ~ffbli - t ' 2 q l [ b ' Y  tllc]i 

.1_1 7 i  b - -  __ 1 - ilk d 
21f f[c 'Y  I f fa] i - i -  2 4 F ~ a b c d X  ")1 , ) ( i l k .  (3.10) 

We have also introduced the supercovariant generalizations of the SU(8) covariant 
quantities , ~ f i k t  and ff~S~ q which will be defined shortly. 

Let  us now comment on the derivation of (3xl)-(3.5). The variations of 7/" and 
e~ ~ as well as those of ~bf and X qk into s~. and ff'~ follow directly from E7 × SU(8). 
The specific coefficients are obtained by comparison with the lowest order results 
of ref. [3]. So only 8A~.  u and the higher order spinor terms in the variations remain 
to be determined. The variation 8.4, .  u is most easily obtained by imposing the 
commutator  of two supersymmetry transformations on A .  u : we already know how 
t). and X vary into the field strength Fgv, and that these terms should lead to a 
general co-ordinate transformation of A .  u. Furthermore,  the only possible terms 
in the commutator  which would not appear in the commutator  on one of the other 
fields must be such that they can be written as a gauge transformation. Indeed, 
one finds that (3.3) gives rise to 

[8(e 1), t~(e2)]A~ 1I 

. . . . .  4~/2c3~[(tlii t'l + viiu)gi2e { + h.c.]. (3.11) 

The next step is the computation of the supercovariant extensions of sO. and _P~q. 
These are given by 

ijkl ..t i jkl  A / 7 [ i  j k l ] ±  1 i j k l m n p q 7  "x 
p. =,574£1z - -° t (~l . l  ~ X  m ~ T I E  ~ J l ~ m X n p q )  , 

A_+ --+ , 1 7 k  It - -  2~L1110!'~7 i F •vij = F .~,ii -t- ~q l  x "y or~xu X i j k  {O'.v, O r Oct 

(3.12) 

(3.13) 

Already here, one encounters a stringent consistency check: the extra terms in 
(3.13) required for the supercovariantization of the field strength P.+~ii must be E7 
invariant. This means that the scalar fields which are present throughout the 
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calculation of F,~ij must cancel in the additional terms which, indeed, they do. Here  
we should point out that the SU(8) gauge field ~ ,  is already supercovariant by 
itself because 

2 , ~  .,/I j k l m  ~ 2 ~ j k l m  / I  
~'JO~ol lz i  j - -  ~ . ~ i k l m , . ~ l z  T ~ ,  'Y~ ~ . i k l m  , (3.14) 

with [cf. eq. (3.1)] 

- 1 - m n p q  
~ i j k l ~ e [ i X j k l ] - I " ~ e i j k l r n n p q e  ,1( ° (3.15) 

We then return to the commutator  [6 (e 1), 6 (e2)]A, IJ and analyze all x2e ~e2 terms. 
After parametrizing possible X2e terms in &¢ and &0,, we find that all terms cancel 
except one which can be expressed as a field-dependent supersymmetry transforma- 
tion with parameter  

I =  - -  - j  k e i - 4 2 ( e  2e 1)Xiik. (3.16) 

In this way, 6X uk has been entirely determined: it must be supercovariant and 
therefore the only quadra t icspinor  terms that can appear apart from the super- 
covariantizations of ~ ,  and P~,v are of the type X2e. Possible x2e terms in 64J~, that 
can be absorbed into the spin connection oJ, ab are not restricted by the above 
arguments. Finally, the fact that the supersymmetry transformation with parameter  
(3.16) appears in the commutator  uniquely fixes the ~OXe term in &~, [(3.4)]. 

It is not difficult to convince oneself at this point that the transformation rules 
(3.1)-(3.5) are already complete: by invoking ET×SU(8) we have obtained all 
variations modulo manifestly SU(8) covariant higher order fermion terms. However,  
the latter should be invariant under E7 which excludes possible modifications by 
unknown functions of the scalar fields. Since all such terms without scalar 
modifications are contained in ref. [3], it suffices to split them into two sets. One 
set consists of those terms which will become part of the E7 invariant expressions 
.~ ,  and P~,v; they will pick up modifications by scalar fields in higher orders whose 
structure is fully known by the use of ET. The remaining terms will then be unaltered 
in higher orders. An evaluation along these lines is extremely straightforward and 
has the virtue of verifying the compatibility of the E7 x SU(8) structure with the 
explicit calculations of ref. [3]. 

We remark that there is one subtlety when comparing with the lowest order 
results since those have been obtained in a special SU(8) gauge. Therefore,  the 
supersymmetry transformations will differ by compensating field-dependent SU(8) 
transformations with parameters proportional to e)¢ in order to maintain the chosen 
gauge. Fortunately, the SU(8) parameters are necessarily proportional to the scalar 
fields as well, so this effect is only relevant at higher orders in the scalar fields and 
our derivation is not affected by it since the comparison takes place at the very 
lowest order. 

It is also straightforward to continue the arguments outlined above and to compute 
the full commutator  [8 (e x), 8 (e z)]. One then finds, in addition to (3.16), the standard 
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general coordinate transformation and field-dependent supersymmetry,  Maxwell 
and local Lorentz transformations which are already present  in lower N super- 
gravities, as well as a field-dependent SU(8) transformation. We leave this 
computat ion as an exercise for the reader. 

Our  method of combining E7 × SU(8) with lowest order results likewise applies 
to the N = 8 supergravity lagrangian. One first writes down those parts of the N = 8 
lagrangian which are implied by ET, i.e., (2.2) and (2.29). Subsequently, one includes 
the usual kinetic terms in a manifestly E7 × SU(8) invariant form. In particular, the 
scalar field kinetic term will be proport ional  to [5] 

Tr  ( D ~  • D ~  -1) 1...4 ,.¢,/ i jk l  
= --40w..ta.  i j k l . . ~ t x  , (3.17) 

whereas the derivatives of the scalar fields in the Noether  coupling must be contained 
in ~ , .  Our  procedure turns out to be most useful for the determination of the 
quartic spinorial terms. One rewrites the quartic terms which, in ref. [3], have been 
given in SO(8) notation, in terms of chiral SU(8) spinors. The resulting expression 
contains two pieces one of which is obviously chiral SU(8) invariant whereas the 
other is not. One then discovers that the terms which are not manifestly SU(8) 
invariant fit exactly into the E7 non-invariant contact term (2.29) and hence their 
scalar modifications are again uniquely determined by E7 invariance. The SU(8) 
invariant terms will not be modified. The final result is 

5 ~ =  
1 x 1 l a . v p o ' l T i  r ~  ~ --i 

- 5 e R  ( e ,  o ) ) - ~ e  t ~ o , 3 , ~ _ l o ~ i - t p , D o y v t ) ~ i )  

_le(~ijk , r ,  - i j k "  ta- 1 .,11 i jk l  .41x 
"y L l l x X i j k - -  X D o , ' ) /  ) ( i j k ) - - ~ e . 3 c g . ~  ~ i jk l  

1 r ~ +  z , . ~ I J K L  l J  +txv  
- g e k r u ~ u ( z a  ' --6KL)F KL+h.c.] 

1 r ~ +  t'.,IJ KL . , "~  + I z v K L  - - .  
- - ~ e [ l ' ~ v l J ~  " ( J  ~- n . c . J  

1 c ~ +  I J z ~ I J K L  ij , , . . . . ,~+I~vKL 
- ~ e k u , ~  t o  " t u  u V q K L ) ~  +h.c.]  

1 - v Ix ^ i jk l  - ~ 4 e [ x q k ' y  Y O~l(M,  + M ,  iikl)+h.c.] 

! r [ i - - j ] ' ; ' t ~ - - u  
- 2 e q  ~ ~ qJ i qJ j 

1 - -  --i  p.u A - - j  k +~x/2e[qtAo- y Xqk~b~,tO~ +h.c.]  

1 - i j k  Ixv I m n a ~ p f f t q  
+ e [144"t'~e i j k l m n p q ) (  O" ,~ ~'p. 'e" v 

1 7 i  ,u,v X 7 j k l  
+ g ~ o "  T X i k t ~ i Y ~ X  +h.c.]  

..~_ ~ ~ r i i k l m n p q  - txv 7 r __ 
864 vzr/e  Le Xqkcr Xlrnn q~,Y~Xpq~ ~- h.c.] 

_ 1 - i k l  ix - - j rnn  " '  

y~ex y XyklX To,Ximn-gge(x '1k 'YaXijk)  2 • 
1 / _ ,  

(3.18) 

This langrangian is written in first-order gravitational formalism in order to facilitate 
the comparison with ref. [3]. Consequently, O01x a b  i s  t reated as an independent  field 
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whose algebraic field equations have already been solved in (3.7)-(3.10). One can 
substitute this solution back into the lagrangian. Retaining only oJ. "b (e) in the 
covariant derivatives, one then obtains additional four-fermion contact terms 
through the Palatini identity [17] 

o.~(o)(e)+K(tO, X))=o.cC(to(e))-½e(Kb"~K,,  b~ - - K b b ~ ' K ~ ) .  (3.19) 

The langrangian and transformation rules reveal higher order fermion terms that 
have not been given in ref. [5]. While these terms were already contained in ref. 
[3], their existence is also evident f rom the superspace formulation of the theory 
[18] as well as from the five-dimensional results [19]. Notice that the contact terms 
c a n n o t  be absorbed into the standard supercovariantizations as is the case for 
simple N -- 1 supergravity in four and eleven dimensions [1, 4]. As a consistency 
check on our results, we have verified the supercovariance of the fermionic field 
equations which we here record for future use: 

6S  

8tO'. 

6S  
6g ~ik - 

gupo" A 1 - ~ -  kl po- 1 v . jk l  ~ 
e y~tOp~i +4eFo~  ~r ]/,Xikl +]Tey y 1` ~ i i k t  (3.20) 

+ ln /~e  , i k ' , . , w q r -  0 " " "  " , 
( ~ T l e  1`Iron 1`pqr)3,/v1`i]k 

1 ^ 1 - -  ~ - -  lm . v  npq 
~ e ~ x #  ~ + ~4x/2r lee  iiktm.oqF.~ cr X 

+ ~6e ( 2  l.,,, . 1 - l.,,, . "y .1` t , . f f i ) ' y  X i k ] n  - -  48e-- ~ "Y.1` . - , , ) 'Y  1`Uk . ( 3 . 2 1 )  

The supercovariant  Rari ta-Schwinger  field strength ~.vi and the supercovariant  

derivative/9.1`ijk are defined by 

A 1 - -  " +  po" i 
tO.vi =--D[.tOv]i + ~ /2Fo , . ip"  Y[.tOv] 

1[ 1 - k l m  npq~. 0 o ~ [  
- -  2 t 1 4 4 T l e  i jk lmnpq1`  0"0o-1` )~/[pO" ~llv] 

1 - ikl  p 1 - -  -- j  k 
+ ~(1`~klYo1` )3' Ye,  tO~]i + ~x/2(tO,tOv)X~ik , (3.22) 

l ~ . 1 ` i j  k 1 ^ l, l 3 ~ - , +  o o - _  ~ O.1`iik "}-2S~z, i j k l T  t O .  - -  21~ oo'[ij or  l iE.k] 

1 - -  - lmn pqr 
+ ~x/2(~e~ikl,~,pq1` 1` )tO,,. (3.23) 

We remind the reader that the derivative D .  which enters in (3.22) and (3.23) is 
covariant with respect to both local Lorentz and SU(8) transformations and now 
contains the f u l l  second-order  spin connection ~O.ab (e, tO, X). Since the supercovari-  
ance of the fermionic field equations does not put any restriction on the X 4 contact 

terms those must be checked separately. We have verified that all s g . e x  3 variations 
cancel (in ref. [3] the t ̀ 4 terms were determined from the f . v e 1 `  3 variations). 

One may prove that the full N = 8 supergravity action is indeed invariant under 
the supersymmetry  transformations (3.1)-(3.5). However ,  this is not necessary 
because here we rely on the work of Cremmer  and Julia [5] which was based on 
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the reduction of eleven-dimensional supergravity [4]. The invariance of the eleven- 
dimensional theory has been completely established, and the four-dimensional 
theory follows unambiguously from the reduction procedure adopted in ref. [5]. 
The only potentially critical step occurs at the point where seven antisymmetric 
tensors have to be converted into seven scalar fields which is necessary for the 
restoration of symmetries.  But in ref. [20] it has been explicitly shown how the 
supersymmetry  can be preserved throughout this calculation. 

To conclude this section, we want to exhibit two examples of supersymmetry  
variations that cancel because of the identities [(2.35)-(2.37)]. Namely, by consider- 
ing the variation 60~ = 2 D :  ~ one obtains the following terms after a partial 
integration: 

~ ~ t.tvpo" - i  1 - Ix v i jkl  e e "yv[Dix, Do]O,~i+gexi/kV T e t D ~ v  +h .c . .  (3.24) 

The first term leads to the gravitational curvature tensor and the SU(8) field strength 
by means of the Ricci identity. The gravitational term cancels against the variation 
of the Einstein lagrangian in the usual fashion. In the second term, we use the 
relation yixyv = 6ix~ + 2cr,~. The part  involving 6 Ix" will cancel against the variation 
of the scalar kinetic term. Thus, we are left with 

t ~ '  1 Ix ~o,~- i j 

1 - ~ . . . .  i/kl _D~,,~f/kl)+h.c.. + geXijk (3" e I ( L I ~  ,3~ v (3.25) 

It is here that the identities (2.35)-(2.37) become crucial. Because of (2.36), the 
.../I ,,,"1 j k l m first term is proport ional  to ~ [ ~ i k l , ~ l  , which cancels against part  of the XO,~ 

term in (3.18). The remainder  cancels against the vierbein variation in the scalar 
kinetic term; this step requires the self-duality of ,,~fft, i.e., eq. (2.35). Finally, the 
second term in (3.25) vanishes by itself on account of (2.37). 

4. T identities 

Our discussion so far has amply demonstra ted the importance of the E7 group 
for N = 8 supergravity. In particular, the requirement  of E7 invariance severely 
restricted and, at the same time, uniquely fixed the form of the possible couplings 
of the scalar fields which had been the main obstacle in the first at tempts at 
constructing the N = 8 lagrangian. Surprisingly, there is still more  to come, and we 
will see that E7 continues to play a vital role in the construction and consistency 
proof of the gauged N = 8 theory to be presented in the following section even 
though it is no longer a symmetry of the theory. Namely,  the introduction of a 
local gauge coupling in N = 8 supergravity naturally leads to the following SU(8) 
tensor: 

Tiikl =-- ( t l k l l j  .~_ l) k l l J  ) ( b l i m J K U  ] rnKl  __ V i m J K  v ] m K I  ) . (4.1) 
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This section then is devoted to a study of those of its propert ies  which we will need 
to know in sect. 5. The tensor T Y  is obviously cubic in the 28-beine u and v, 
manifestly antisymmetric in the indices [ k l ]  and SU(8) covariant. However ,  it is 
n o t  E7 but only SO(8) invariant as is easily seen from the way in which capital 
indices are contracted in (4.1). Hence  we will regard these indices as belonging to 
SO(8) rather  than E7 from now on. The  definition (4.1) again illustrates the fact 
that one must r e n o u n c e  E7 if one wants to construct non-trivial SU(8) objects (i.e., 
other than the unit matrix) f rom the 56-bein. 

The tensor T Y  obeys a number  of non-trivial identities which will be derived 
presently. It is gratifying that these precisely coincide with the identities that are 
needed to establish the consistency of N = 8 supergravity with local SO(8). 
Moreover ,  we will show that a large class of SU(8) tensors cubic in u and v with 
fully contracted SO(8) indices, which are relevant for the gauging, can be expressed 

in terms of T 's .  
We begin by recalling that, f rom (2.18) we have the relations 

• " I.I " ij 

u ' l .U k l  --  V " " V k t u  = • kl, (4.2) 

U iiuV ktU _ V i:UU klu = 0 ,  (4.3) 

and, conversely, 
u " , u i f f  L - v q u v  iiKL = 8 ~ C ,  (4.4) 

i/, ii 
U UI.)i]KL -- UijUg KL = 0 .  (4.5) 

From (4.4) and the [ /J]  ant isymmetry in (4.1), we immediately deduce the traceless- 

ness property 

Ti ikl --~ 0 .  (4.6) 

If G is any generator  of E7 then, by well-known theorems,  the matrix ~/ 'G~ -1 is 
also an element  of the E7 Lie algebra. Specializing to the SO(8) subgroup of E7, 

this fact at once leads to the following identities ([/Jr] indicates antisymmetrization 

in the indices I J ) :  

( Ll iJKILl k f fK u i/KII)klJK )[ I j  ] 2 ~[  i ' - -3O[k(bl l lmKIUllm JK - -V i]mKIVt]mJK)[ IJ]  , (4 .7 )  

(u iiK~v ~uK _ v ii~:~u ktjK )[/3"] = l n e  ~/kgm.pq (blrrtnKI1)pqJK __ 1.)mnKIUpqJK ) [ i j ]  , (4 .8)  

which will serve as the basis for our further arguments.  The relation 

m - V~ijKV -- 3oE~ ,:? (4.9) 

is a direct consequence of (4.7). Next we consider the expression 

(1.) klIJu iJKj -- U kllJU i iKJ)(Llmn IK "}- OrrmlK ) ,  (4.10) 
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which can be rewritten as 

- ( u ~ u u , J  K - V k l u V , , , ~ K  )(U "KJ + V ~jK: ) 

'" 1 K  i j JK  ,, z kI  U k l I J  ) 
- - ( U l l j K U r n  n - -  IJ U m n i K  )~ !.l i j  -t- 

2_~[k " r  l]ij 2 ~ [ i  "r' ]]kl  
= - - 3 0 [ m  I n ]  - - 3 0 [ m l . n J  , (4.11) 

by use of (4.9). On the other hand, (4.8) tells us that (4.10) is antisymmetric in all 
four indices [ i j k l ] .  Thus, 

( u k l I J u i J K j  _ _ u k l l j u i j K J ) ( b l m n l K  _ } _ U m n l K  ) __ 4 ~ [ i  "l" ikl] 
- - 3 o [ , .  1 , ]  ( 4 . 1 2 )  

The fact that the right-hand side of (4.11) is not manifestly antisymmetric in [ i f k l ]  

implies that T should satisfy certain restrictions. To exhibit this, we contract the 
right-hand side of (4.11) with 6~, making use of (4.6). Thus, we get 

1 ~[i,-/-, j ] m l  7 ,  T, lij ± 1, T, [ifl] l_~[i.- r,  /]rnl -T.tiS+½T.[ii]l+s . . . .  = - - 6 / - n  T 2 I n  + 3  . . . . .  ( 4 . 1 3 )  

where the second line follows by a simple rearrangement of the upper indices. 
Further contraction with &? and 87 leads to 27", [is1" and 2T,  Ets]", respectively. Since 
the original expression is antisymmetric in the indices [ i f l]  by virtue of (4.11) and 
(4.12) being equal, both contractions should lead to the same result up to a minus 
sign. So we conclude that 

T k  [is]k = 0 .  (4.14) 

Substituting this relation back into (4.13) and noting that, by (4.12), (4.13) must 
be equal to its antisymmetric part in [ i j l ] ,  we learn that 

7.'1", lij ± 1.  r ,  [iil] t I~[ i 'T '  j ] m l  - -  2Tn[lii] (4.15) 
- - ~ i  n T ~ i n  T ~ O l l l l , F t  z 

or, equivalently, 
= T [ l i j ] ± 2 ~ [ i ' t "  j ] m l  

T k  lij l k  ~ v o k , , ,  • (4.16) 

Furthermore,  from (4.6) and (4.14), we infer that 

Tk  tk~sl = 0 ,  (4.17) 

T k  iki = T k  ski . (4.18) 

Therefore,  eq. (4.16) displays the decomposition of the tensor T into two irreducible 
components. We emphasize that (4.16) is really a consequence of the underlying 
E7 structure of the 56-bein 7/" because, in (4.1), only the antisymmetry in the last 
two indices is manifest and, a pr ior i ,  other irreducible components could appear 
on the right-hand side of (4.16). 

Corresponding to (4.12), there is a relation with all SU(8) indices in the lower 
position. It follows directly from (4.8) and (4.12) and is given by 

VklI.I .bl i jKJ I J  ,,," I K  - - U k l  U i j K J ) [ b l m n  - I - l - ) m n l K )  

1 pqr 
- l~r le i sk tpq4~T,~  . (4.19) 
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To derive further identities, we combine (4.4) and (4.5) into one  equation: 

(l~ UKL . . . .  -Iv D t lKL)u i j lJ  ~" (Uii K L  "Iv I)ijKL)'I.) ijlJ ..IV6KL.IJ (4.20) 

Multiplication of (4.20) by 

and 

k m K M  x 
(U kmKMIAlm L M  --  I.) V l m L M  ) 

U klKMbl m n L M  l,I kl m n L M  ) 
- -  KMl)  

yields two more identities, viz. 

. . . .  ~ l J  I km L M  
T k l i l U  ' l l j  -t- Tlk 'I t~iUj = O K L ( U  KMUlm - -  Vk"KMvtmLM), (4.21) 

T,j [ klm U n ]HJ 1 - -  ~ T ~ E  klmnpqrSTlpqrl, lsj IJ 

3 ~ I J  / k lKM mn u k I K M u m n L M  ) = - ~OKL ~V U LM -- , (4.22) 

which, when used together with their complex conjugates,  imply the fol lowing 
relations: 

"" k i/ U ijIJ ) = 
T l k " ( u i / J  + v i i l J ) +  T t i j (u  IJ -t- 0 ,  (4.23) 

Tjrk~ (u"lJ u + v~lJ u )  : 2 4 T / E  klmnpqrsTipqr(Usi  IJ q- Us/H)  • (4.24) 

In order to bring these relations into a form which only contains the T tensor, we 
multiply once  more by appropriate expressions of type (uu -vv).  The result is 

Ttk~i,r- Tk "I" .i~ (4.25) Jt m i ]  = ~ l i ]  l m ) 

T l k j [ m T l n p q ~  __ 1 mnpqrstu,-rk '-I'J • - - ~ r / e  * li~--s,,. (4.26) 

Notice  that the last identity expresses antiself-duality rather than self-duality. The 
most  non-trivial identity is obtained by considering a product of (4.24) with 

( UpqlKUrs JK  IKt)rsJK ) ' - -  blpq 

it reads 

,'r [i jkel] . r r  T[m[ i ikT l]npq]  1 ijklrstu y vwx 
- -  57-6 E E mnpquvwx z r s t Z y  I r O [ r n  I npq] - -  

1 ijklrstu e y vwx + ~ V 6 e  m.pq~,wxyT r~Tu • (4.27) 

From (4.27), various identities may be deduced by suitable index contractions. The 
one  which we will need later on is obtained by contracting three pairs of indices 
and is given by 

• l [ ~ i " r  [lmn]'r 'k  -[- T j [ l m n ] T i l m n ) .  (4.28) T k D m n ] r k [ j m n ]  = 6 t o i l  k ~t Iron 

Evidently,  this identity as well as the identity (4.27) only involves the fully antisym- 
metric part of T. 
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To investigate the behaviour of the tensor T under supersymmetry transforma- 
tions, we observe that, from (3.1), we have 

t ~ u i Y  = --  2~ /  2~,i iklV kllJ , (4.29) 

8 V i i u  = --  2 x / 2 X u k t U  k t l ' ( 4 . 3 0  ) 

where Xi jk t  has been defined in (3.15). Actually, the self-duality of Zijkt, which is 
already required in order for (4.29) and (4.30) to be consistent with the E7 structure 
of the 56-bein, is the only important aspect in what follows, and its replacement 
by any other self-dual tensor would not affect the subsequent considerations. 
Inserting (4.29) and (4.30) into (4.1), one finds, after some straightforward manipu- 
lations based on (4.9), (4.12) and (4.19), that 

t ~ T l  iik ..~ - 2 x / 2 { - 2 . , y , " " i D T k  ][t,,~, ] - Z m ' k T i l m n  

+ 2 ~ [ i , r k ]  , c imnp + 1 8 1 z m n p [ i T k ] m , w }  " ( 4 . 3 1 )  
3Ol  ,t mnp.d" 

l Note that the right-hand side vanishes upon contraction with 8~ as it should be. 

From (4.31), one readily derives that 

~ T k  ikj - -  7_~/~r ~'ikrnn,qr'i • . 
- -  3 v z , \ ~  I k m n  + , ~ ' J k ' n n T ' k m n ) .  (4.32) 

The right-hand side is symmetric in the indices i and ] as was implied by (4.18). 
Since eq. (2.32) is equivalent to 

1 klIJ 
D u u i j  I I  = - -  4 . % / 2 ~ g i j k l V  , (4.33) 

1 ]--~ .~ kl 
D , v u u  = - ~  Z..3~t~ijklU IJ ,  (4.34) 

which has the same structure as (4.29) and (4.30), we can repeat the previous 
manipulations, in accordance with the remark made after eqs. (4.29) and (4.30). 
In this way we arrive at two new identities which are the direct counterparts of 
(4.31) and (4.32), namely 

"" = 1 . / ~ r  ,'~,./I mni[j 'T"k] ,.,/I mnjk ' l " i  
O ~ T t  ~lk -~v~l-~.~s~ ~ [ lmn]--~ * t,,',n 

2-f~[Jrrk] ,..4 imnp ~ l~Ri,../I rnnp[]rrk] ] 
+ 3 0 l  ~t rnnpO:~t~ ~ 3Ol.3~,p. z ,~-os, (4.35) 

D , T k i k i  ~ . / ~ r . . . ~  ikmn,'f-,j ~ , . . / I  Jk,,, , ,Ti ~ (4.36) 
24vz.,~l..Yg.tt 1 k m n  T . . ~  Jt k m n  S • 

5. N = 8 supergravity with local SO(8)  × SU(8)  invariance 

So far we have been assuming that the 28 gauge potentials A ,  1I have 28 
corresponding abelian gauge transformations. On the other hand, it is a striking 
feature that they also fit into the adjoint representation of SO(8), and therefore 
one could envisage the possibility of a local SO(8) symmetry instead. In the 
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framework that we have adopted in this paper such an SO(8) group can only be 
embedded in the E7 group of duality transformations. Since the SO(8) rotations 
are real they do not entail any duality transformations [in fact, SO(8) is the maximal 
subgroup of E7 with this property] so this SO(8) invariance can be imposed at the 
level of the lagrangian rather than of the field equations. 

Obviously, the embedding of a local SO(8) group into E7 violates the original 
duality invariance of the field equations. Nevertheless, the E7/SU(8 )  cose t  structure 
of the scalars remains intact and, as we shall see, this property is indispensable for 
the construction of the gauged N = 8 theory and the proof of its consistency. It is 
important  to realize that the local SU(8) invariance is not affected by the gauging 
of SO(8). In order to compare with the conventional formulation of gauged N ~< 5 
supergravities [11, 12], one must select a special SU(8) gauge so that local SU(8) 
invariance is no longer manifest. The detailed discussion of the special gauge 
condition has been relegated to appendix B. 

The starting point for gauging SO(8) is the further covariantization of the 
derivatives and field strengths with respect to local SO(8). Hence, the SO(8) field 
strength is 

F t ~ v l J  ~ ~ . ,  I y  ~ A I K  A K J  = Z0[~zqtv] --zg.x-l[~ z~l.v] 

- = F ~ u  + F ~ . " ,  (5.1) 

and all derivatives which act on SO(8) tensors acquire an extra gA S modification. 
For example, we have 

I J  I J  _~_ rm k l J  ,~ A K [ I J ]K  
D,uij  =O,uij ~,[iUj]k - - zg .~ ,  Uii • (5.2) 

It should be understood that these replacements are to be performed in all 
expressions containing field strengths or covariant derivatives. In particular, the 
quantities ~t ,  and ~ ,  are still defined by eq. (2.32) but will now differ by g-dependent  
modifications because the derivative on the left-hand side of (2.32) is now 
SO(8)×SU(8) covariant. Note that the gauge potentials and the 56-bein are the 
only objects carrying SO(8) indices. Of course, by including the SO(8) covariantiz- 
ations in the lagrangian and transformation rules we have violated the original 
invariance under supersymmetry. It is the purpose of this section to establish that 
supersymmetry can be restored by adding appropriate modifications to the 
lagrangian and transformation rules. For the reader who wants to skip the rather 
involved details of their derivation, the additional terms have been summarized at 
the end of this section. 

Many of the supersymmetry variations of the action with local SO(8) will still 
vanish since they occur as SO(8) covariantizations of previous terms. However,  
there are additional variations as well. One source of these terms is the supersym- 
metry variation of A ,  zJ in the covariant derivatives on the 56-bein which, in turn, 
leads to new variations proportional to get~ and gex in the quantities ~t,  and ~ ,  
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via the defining condition (2.32). A straightforward calculation gives 

i 4 i - k lm - - - k  l 8gl~d~j=~gTjkl(emT.X + 2x/2e ~0~,)-h.c., (5.3) 

= - T 4 2 g S t , , , T . ]  (esY~X +2x/2e tO.) ~ g ~ k l  16 -- [i jkl] . . . .  - - - m  n 

2/-g ,k~r.,.orm....J , - ~ + 2x/2gmG~.), (5.4) -~v .~gr le  Or 1 stutF-. • . X m n v  

where we have consistently ignored terms proportional to g A .  u since those occur 
as SO(8) covariantizations of previous results. Note also the appearance of the 
tensor T/kl which we have defined and analyzed in the previous section in these 
expressions. Insertion of (5.3) and (5.4) produces the following variation of the 
lagrangian (3.16): 

e-16~,~  1 -1 ,,,oo-- i =~g(2e e ~ofy~,Oo- + Xinp'y"X rap) 

x T /k l (~  ~7 .Xkl~  + 2x/2ekO.l)  

--8~b~[ior X i k l ] ) T m  ( e n Y . X  +2x/2e ~ .  ) 

i/X- ri .~ ikl.-,.~,,p,- q~,+2x/~iEqO~l)+h.c. " 
2 f fVZg ' l '~e  ijklmnpql[Ju 0" X l r t e s T . , ) (  

(5.5) 

A second series of terms is generated by the fact that the commutator  [D.,  D~] 
now also yields an SO(8) field strength and that the identities (2.36) and (2.37) 
consequently have extra terms. We get 

J; .~(Y3)]  + 1 - ' "  s¢ iklm 12~.~.~kl,~ ~ - ( ~  ,--.v)) 

4 / I K  ]k i k J K ) F . v H  
= ~ g ( . U i k  u j K - - U i k l K U  , (5.6) 

= 4 4 2 - ' V l i m u  kl "" D .  s ~  TM - D . s ~ .  i~kt - s ~ ~K - u "my  ku t , : )F . f f  . (5.7) 

Inserting these terms into (3.23) and using the substitution (2.26) for the SO(8) 
field strength, we find that the dependence on the scalar fields can again be expressed 
in terms of the T tensor by employing the equations of the preceding section. The 
result takes the form 

e - '  8.~.~ = - ~gT/"'ff '++..,k, ( g ' y °  o - " " t G i  -- i i o - " " 7 ° O  'o) 

, k l , , , , q l ,  X o" e lff',~ 

t 2  ~ j k l ~ -  i - i  Ixu P • - 0 l.J,v i 
5g l i  tJ , , , k l te  tr 3, tgoi--ejT or t)o ) 

8 - -  j k l -  t~v + im 
- ~ , / 2 g T m  XE,kO" e ~ O , ~  +h.c . .  (5.8) 

Quite remarkably, the introduction of the tensor T]  g~ has enabled us to recast the 
variations of the original lagrangian induced by the gauging of SO(8) into a form 
where the SO(8) indices have disappeared altogether, and this circumstance con- 
siderably simplifies our construction. 
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It is now advantageous to rewrite (5.8) in terms of the supercovariant  field 
strengths (3.13). The combined result of (5.5) and (5.8) then may be expressed as 

follows: 

8 ~  = (Sg~)~ + (8~&°)2, (5.9) 

- i 4 .,.ikl~+,~ ,_i _ +ejwtop`) - ~g~ i r kt~,e 7~gJ~j 

q l / ~  , ' r ' , npq - i j k  p`v l~-v mr 
2f f 'v  L g T 1 E  i]klmnpq I • X or  E Jt" p.v 

1_ - -  ikl  A P. _ imrt 
+ 9 x / 2 g T i  sg  ikt,,,(en'Yp.X +242~Cito~a)+h.c. ,  (5.10) 

e -1(8~ ' )2  = 2 ~.. jkl . . . . .  inp + 3X/2Xj.py X ektoM 9 g l i  t - - ' ) ) ( i n P . l ( k l  rnE ) (  - - -  p` i n p -  

+ x/-2£'m"yvXtikl(g~p`ma(2yp'y ~ + y ~ y p ' ) e .  -- fm]  ( 2 y " y  ~ + V ~Y P')top.-) 

tt vptr --n - i - i 
+ 3 e  l e  t o o ' Y r r X k l n  ( e  Yv top . i  -t- e f y v t O p . )  

p. v p o  - i - rrt 
+ 3 e - l e  too'YAOo./e Tp.Xklm 

- p . , ,  - [ i  m ]  - p . , ,  - i  m 
+ 16to~[~or Xikt] e top` + 8e[,.or Xikt]top.to~ } 

1 jkl  1 i m n p q r s t -  p.v - 

+¼42ejk~.,.~r)?., .p(r~rp.-. ,  p, ~, o, . . . . . . . .  "1-,:31 y )X te~y.t~p. * e  y,,top.~) 

klrnnpqrs~ or )(. ( e  "yvtop.j n t - E j y u t o p . )  

- m  p.v n p q - [ r  i] - m  p.v npq - r  i 
+2eik~m,,gqr(2to~or X e t o p ` + e  or X top.to~)} 

+ ~ x x / ~ g T .  imie-1 . . o , ~  , . r  x . k -  
e t - - / - - I / / . k T  qJoEiorcrX~Jvi 

+ (g kV xtook + gkV % o~)47p.,or~to~;} + b.c. (5.1 1) 

where we have used (4.16) in the last term of (5.11). Obviously the supersymmetry  
of the original action is thus affected by the presence of the non-abelian SO(8) 
covariantizations. To restore invariance, we must therefore add new terns to the 
lagrangian. We first observe that variations such as (5.10) can in principle be 
cancelled by standard supersymmetry  variations (3.1)-(3.5) of terms quadratic in 
the spinor fields. Therefore,  we propose to include the following interactions into 

the original lagrangian: 

& P g = x / 2 g e A i i ; "  ~ .  _ 1  - - i  _ p. ikt llllp.ior glv] "- ~ge/~  2ikllffp`i'y X 

ijk.lrrtn - 
+ g e A 3  Xii~Xt~.  + b . c . ,  (5.12) 

where A1, A2 and A3 are SU(8) covariant tensorial functions of the scalar fields 
contained in the 56-bein. Note that these tensors must satisfy certain symmetry 
propert ies  as a consequence of the way in which they occur in (5.12); for example,  
A~ must be symmetric under interchange of the indices i and/'. 

with 

e - l ( s g ~ ) l  ---- 
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The variations of ~Lt'g due to the supersymmetry transformations (3.1)-(3.5) can 
be divided into four different sets of terms which we write as follows (ignoring a 
total divergence): 

t~.~g = ((%~9~g) 1 q- (6.~g)2 "b (6~g)3  n t- (6~L°g)4, (5.13) 

with 

x/ -  ii 6S ik~ ~ 6S 
( t~g) l  = 2 g A l g j y , ~ , . + 2 g A z ,  g ~ + h . c . ,  (5.14) 

e 1 ( ~ g ) 2  = ii A+t~v - k - 2 g A 1 F  ik(ejyv4J,~ +gky~A9,i) 
• A 

_ _ g A 2 i I k l f f . + . V ] k  - i - i  

1 / " ~  . 4  j k l ~ - -  m n - i  ~xv pqr 
- - ~ v z . g ~ E j k l m n p q r . , ~ k 2 i  l " ~ v  E O r X 

A 
l~ A ~ . -  i j - k  t.tv Iron 1_ --  i]-  tx mnp ~ 

- -ug . ,Z taOk ,  lmn-r '~v  E O r X +6x/2gAleiy X ~ p . i m n p  

1 i l l  - i  ~ v m - m  v ~ i 
+ g g m 2 i  ( e  "y "y ~O. - e  "y "y I [ I t x )S~u jk lm 

+2gA  31ik.,,,,,gpY"X t,,,, s~l iikp + b.c. ,  (5.15) 

e - '(6~g)3 = -4x/2gD,~A ~g,o-"~b~ i + ",/2g6A i~o,~o" "~b~ i 

1 ikl - i t~ 1 ikl - i  t~ 
- g g O ~ A 2 i  e T Xikl+ggt~A2i ~, 'Y Xikl 

ijk, lmn - 
+gSA3 XiikXt,,,, +h.c . ,  (5.16) 

e 1(6~?g)4 = remaining terms (proportional to X 3, X2tp, Xtp 2 and 413) , (5.17) 

where the remaining terms (5.17) will be studied in more detail below. The first 
variations (5.14) are proportional to the spinor field equations, and their cancellation 
requires that we introduce extra field transformations 

- - x / 2 g A  1F~j'y~, (5.1 8) 

6 ~  iik = - 2 g A  21iik~ I • (5.19) 

This modification will generate terms of order g2 in S~g; these variations will be 
considered in due course, and for the moment  we proceed with the analysis of the 
standard variations of ~e. The cancellation of the e~F,,~ variations contained in 
(5.10) and (5.15) requires 

4 T i i k t  ~_ .,t ikl ± . ~ a i E ~ t ]  w'f"12i w ~'x- l ' l  ,,i = 0 ,  (5.20) 

from which we can solve A1 and A2 in terms of T. However,  the consistency of 
this equation demands in the first place that the tensor T/kt admits a decomposition 
according to (5.20), i.e., in terms of a tensor A2i ikl antisymmetric in [jkl] and a 
tensor A ~ symmetric in (if). Now, we know already from the previous section that 
this is indeed the case, and eq. (4.16) ensures the consistency of (5.20). So, here 
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we see explicitly why E7 plays such a crucial role in establishing the consistency of 
gauged N = 8 supergravity. 

Thus, we only have to project  out the appropriate  irreducible components  by 
making use of (4.16) in order to arrive at the solutions 

A ~i = 4 Tk 'ki , (5.21) 

A 2i jkl = - -  4 T  i [ ] k l ] .  (5.22) 

Note again that the solution for A ~J is indeed symmetric in i and j by virtue of (4.18). 
We next turn our attention to the e)cF,,~ variations in (5.10) and (5.15). Using 

(5.22), we find that they cancel if 
1 - -  p q r  

A 3 i j k , l m n  = - -  108x/2r/e iikpq,tt,~Tn] • (5.23) 

This equation evidently yields the solution for m3, but again we have to verify its 
consistency. In the case at hand, this implies that the right-hand side of (5.23) must 
be symmetric  under the interchange of the index triplets [ i jk]  and [ lmn] .  This can 
be shown by use of the Schouten identity on the 8-index Levi-Civi ta  tensor*, if 
and only if the antisymmetric component  of T is traceless. Again we only have to 
refer to (4.17) which guarantees the consistency of (5.23). 

Having obtained the solutions for A1-3 in terms of the T tensor, we can now 
further evaluate the variations (5.15)-(5.17). To proceed with (5.16) we use the 
identities derived in the preceding section for the supersymmetry  variations and 
derivatives of T. By a straightforward insertion of (5.21) and (5.22) into (4.35) and 
(4.36), we deduce the formulas** 

i i _  1 . / - 4 { A i  ,.,/I j k l m  ~ A J  ,../I i k l m ~  
D • A 1  - 24v,ad.t'l-2klm.5~t~ "r~2klm'5~ta- I ,  (5.24) 

D ~ , A  2/kl  = ½x/2A l i , ~ ,  "ikt ~- 3_./-4 .~ mn[ika t] T 4 v ~  0:l.t. t ¢ '12  iron 

. .~_1 / "~  .¢ m n p [ j ~  k a  l] 
4 ~ Z . N g ~ x  O i Z ' t 2  , . . p ,  (5.25) 

and similar ones for the supersymmetry  variations of A 1-3. 
We then reintroduce the T tensor and rearrange the result such that .~¢,, enters 

only through its supercovariant  extension s~,. Thus, (5.16) becomes 

e 1(8~g)3 2 / ~ -  ,a ,-  imi  ~ - tz k in  
= - - ~ x ! z g l  m "3~ ik ln l? ' j ' ] /  X 

+ ~ x / 2 g T k t ' m " l { 3 , ~ , r ~ , , g W " X  iik __ ~ . i l m n ~ j ]  / " X  iik 

+ 2x/2s~, i l , , , ,  (g kcr"~O~ + gio'"~d/~)} 

2 / " ~  ~ i m j t ~  - v k l n -  ~'t~ 
- -  g s v z g l  m ~ Z X k l n ' ~  X e iO" U, l t x j  

3 - v k ln  u ~ - ~ v 
- -  2 X i l n ' Y  X ( g k Y  "~ I[Ip.] - -  C j y  "y ~ l l . k  ) 

• I.e., e[i]k lmnpqXr]  = O. 

• * Note that the identities (4.35) and (4.36) remain valid in the presence of a non-vanishing gauge 
coupling g. 
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__ 11,1 e Iron ~v  pqr k - k ik~,~q,~ Cr X (~ ~/~O~i + ej%,¢~)} 

+ ~x/~gTiFikll{3~E,,ktY.X ~,,i (g,,,] 'Y "'y ~b~j - ~.-~l Y VY%i)} 

+ ~E~ v . x  ~"' ( g . ] v " y " ~ : ,  - 6 , , ] v  %%-,)} 
1 . / ~  q ~ [ l m n ] - s t u  v t~ iik 

~ v  [ . . g l  k X "]/ Y X 

x {3he  - r -, ij . . . .  , , (~0,,y,e + tO~,y.e~) 

-~ Tie  il . . . .  tu ( ~ , i Y u  e r --r + ~ .v .e , ) }  

16 ,T, l m n r :  - i  ~ u ~ i  - j  tzv i 

X (~ . [ jX lmn]  -~- 2141~jlmnpqrs~Px qrs) 

/ - __ 1 - p  qrs~,Ti la.u~] 1 
- - t e [ j X l m n ] l - 2 4 T l e j l m n p q r s E  ) (  ) q l ~  Or I[J,,t 

4 - ,.~ - x,-t.[ijk] 3 - T j i k l  
-.F ~ g { ( X m n p X i j k  - - . . ) X n p i X ] k m )  l l - f f X n p k X t f f n l  i ~i 

X {g[I)( mnp] .~_ 2~1,~e Imnpqrst-  I eqx,,,t + h.c.. (5.26) 

A t  this point, we have determined all terms proportional to ~ .  Combining those 
terms,  which  are given in (5.10),  (5 .15)  and (5.26) ,  leads to a vanishing result. 
H e n c e ,  the only  variat ions left are those  cubic in the f ermion  fields, conta ined  in 
(5.11),  (5.17) and (5.26).  W e  have  not  yet  presented  (5.17);  its direct eva luat ion  
using (5.21)  and (5.23) gives 

2 , - r , [ j k l ] r : -  - [ i  pmn] 
e - l ( t ~ , ~ g ) 4  = 6 g l i  toxktpX,~,: X 

_~_~-  - i n n  p ,'~-- --[i pmn] 
D X ] k p X l m n  X e - -  Z ' X i k l X m n p e  X 

- -  ~6"~E ipqrstuv - rau - 
Xqrs Or ,l(tuvXiklO"~uEp 

. . ~ 1 / ' ~  - m n p  q r [ i / -  g - - s ]  - s ]  Ix 
~2~lZ, 'r~EjklmnpqrX )(  [,6s" Y {11:o. " ~ 8  Y ~[]tzs) 

X/'2- p, ipq g __ -i U . . . . . .  
- -  XiklY X p t l t u . q - - t O r t y  X j k l ( E  "y t [ l v m + e m y  t~v ) 

--i v - rn  ~ - ~t m 
+t/t~y Xikt(e Y ~b.m +e~y  ~O. ) 

- ~F. i - - m  u 
- x . , c r  ( ~ v  #,.., +6~mv"~07)} 
+lJ~g ,-,-i,i , 1 / " ~  klmnpqrs- ~xv - 

/ t  i - -  108 v z e  Xmnl :~0" ")(q rsElO'uvX~ikl 

e y~4m) -- ~'I~E - lrnn ~v  pqr / ~ _t k _~. - k  
iklrnnpqrX or X k i~/Izq ] v 

+ 62~,..y~'X k m n ~ . [ k e j ]  "-~ 4 X k l m Y t ~  X klmgitTtxu~Ivj 

+ 2#~. , .y .X ~m" ( g p ' ~ " ~ k  + gkO'~"~O~) 

--k I - I~u --l O p,v - k  +4,f2tp~b.e~o- X i k l - - 4 x / 2 ~ y  O" ~ . i e  Y o X ] k l  

- - 1  t ~ u p o  T k  A ~  - 

+ t~e e qt r~Y q]vkEl° 'x~tl lpi  

+4e-Xe..o~io.x~b~i(gky~&ok +&yx~b~)}+h.c..  (5.27)  
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A rather tedious calculation now shows that also the terms cubic in the fermion 
fields cancel. Most of the manipulations that play a role in establishing this cancella- 
tion are standard, but we have to rely on the basic propert ies (4.16)-(4.18) several 
times throughout  the calculation. Some of the X 3 variations are particularly difficult 
to deal with. Their  cancellation requires the use of the following identities: 

e l m n p q r s t { g q ) ( r s t ~ r q a [ i X . i k ] m  "~ I E r n O ' g U X i j k ~ ( n p q o r t ~ u X r s  t 

1 -  gtu - 
- -  6 E [ i O  r Xik]mXnpqO'~vXrst} = 0 , 

k l m n p q r s  r - - 1 - p.u - 
E ~ , E p X q r s , , l ( m n i X k l i  - -  ] ~ E i  Or X k l j X m n p O r ~ z v X q r s  

- ~ e i o "  Xk~iX,,,po',,~Xq,s} = 0 ,  (5.28) 

which can be proven by repeated use of Fierz reordering and Schouten identities. 
Hence,  we have now established the invariance of the action in first order of the 

coupling constant g. However ,  as we have already mentioned,  the new supersym- 
metry  transformations (5.18) and (5.19) induce variations of the new terms (5.12) 
that we had to include in the lagrangian. These terms, which are of order g2, have 
the following form: 

e - l t ~ g , ~ g  2 -  i~ J i k  1 i k l m  = g  eiy ~ . ( - 6 A a A l k i + ~ A 2 k t m A 2 i  ) 

2 - l i j k  2 - -  m m n p  
- -g  e X (3x /2Al lmAEi jk  +4Aai.ik,mnpAEl ) + h . c . .  (5.29) 

Since these variations are simply linear in the fermion fields, we expect that, in 
analogy with lower N gauged supergravities, they can be cancelled by the variations 
that arise from a potential. The first term of (5.25) suggests that this should take 
the form 

2 3 i j  2 ~Lfg~ = g e (zlA1 [ - l l a  ~j~, [ z) (5.30) 

and, in the remainder  of this section we will demonstra te  that the variations of 
(5.30) cancel against (5.29). It is here that we will need the quadrat ic  T identities 
of the previous section. 

Let  us first consider the g2e4, variations. The first term in (5.29) should cancel 
against the vierbein variation of (5.30), and this requires that the following relation 
hold: 

Q A  ikA A i A k l m  1 i k l  n k l rn  
ox"x 1 ~ l k j  - - r X 2 k l m . t ' 1 2 j  = g 6 i ( 1 8 A x  A l k l  - A 2 k t m A 2 n  ) .  (5.31) 

To prove (5.31), we contract identity (4.25) with 6t, and make use of (5.20) to obtain 

A ~ k A l k i - - 1 6 A i z k l ~ A 2 i  k;" =k(6~Ak;A ,k t - -½A2k i""Ak2p , , , ) .  (5.32) 

On the other hand, identity (4.28) is equivalent to 

1 a i , , , , t k  1 i k tmn+Ai2klmA2iktm) (5.33) 
1--6z~'k2k "t'-12jmn = 8 • 18 (6 j A 2 t m n A 2 k  

by virtue of (5.22). Substitution of (5.33) into (5.32) yields the desired result. 
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The cancellation of the g2e X terms is somewhat more complicated• We first vary 
the tensors A1 and A2 in (5.30) using formulas (4.32) and (4•33). This gives 

1 - -  2 ijkl m 1 --  2 ijkl m n 
t~x.~g2=~x/2g eX AlimA2jkl--~x/2g eX A2nliA2mkl+h.c., (5.34) 

where xijkt has been defined in (3.15). Comparing it with the second term in (5.29) 
and inserting the solution (5.23) for A3 into (5.29), we immediately see that a 
necessary criterion for the cancellation to take place is 

m __ 1 A r n n P A  qrs 
- - A  l i m A  2 ikl -i- ~ T l e  mnpqrs[ ik.,'121] .r12i 

= antisymmetric and self-dual in [ijkl], (5.35) 

since all the terms in (5.34) are antisymmetric and self-dual in [ijkl]. To show the 
validity of (5.35), we rely on identity (4.26). Substituting (5.20) into (4.26) and 
contracting the indices l and m, we obtain the following relation after using the 
Schouten identity and relabelling indices 

m __ 1 A r n n p A  qrs 
- A  l i m A  2 ikl "1- ~4 "qe mnpqrs[ jkl"121] r3t 2i 

1 , 4  mr .4 npq 3 A m A n 
= - - 2 4 ~ e i j k l m n p q ' ~ l  -'~-2r q - 4 r X 2 n i [ j l - X 2 k l ] m "  (5.36) 

Now, a simple calculation shows that 

3 A  ~ n i u A  ~k l]  m = 3 A  ~n[i j  A ~ k l ) m  

1 1 rstuvwnp A q A m 
= 24T~E ijklmnpq ( ~ 1 7 E  t3t2  rst r x  2 u v w )  , (5.37) 

which proves the assertion (5.35). 
The other important observation is that (5.35) is also sufficient. Exploiting the 

fact that the dual of a self-dual object is again self-dual, we obtain from (5.36) 

m 1 mnp qrs 
- A  l i m A  2 ikl -b 2~TIe  m n p q r s [ j k A  El] A 2i 

m 3 
= - A l m [ i A E j k l ]  d - ~  1 T l e  . . . .  p q .  • q k l m n p o A 2 r  A 2 s  (5.38) 

Identities (5.36) and (5.38) permit us to rewrite the second term of (5.29) in the form 

1 --  2 ijkl m 3 m n -Sx/2g eX {AlmiAEikt-~A2,i~A2mkl}+h.c., (5.39) 

which precisely cancels (5.34). This concludes the proof of the invariance of the 
gauged N = 8 supergravity action under the transformations (3.1)-(3.5) and (5.18), 
(5.19). 

Let us now summarize our results. The introduction of a local SO(8) gauge 
coupling in N = 8 supergravity requires additional terms in the action and transfor- 
mation rules in order to preserve local supersymmetry. For the lagrangian, these 
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terms are given by 

{ x / 2 g e A l i i t ~ c r  ~b, + g g e A 2 i .  t ~ y  Xjkl 

1 - -  i j kpqr lm A n - __ 
+ ra~x/2g~lee .'12pqrXijk.)(lmn "1- h.c.} 

+ g2e(3]A~l  2 - 1 1 a i 2 j k t l 2  } . 

Likewise, the transformation rules (3.1)-(3.5) must be supplemented by 

- -  - j i  6gt~i~ = -- ~ /2gefyu .A x , 

~g.~ ikt = _ 2 gg  iA  ziikt . 

The tensors A 1 and A2 can be expressed in terms of the T tensor of the foregoing 
section, and their explicit solutions are given by 

A iil = 4 TkikJ ' a zi ik` = _4Ti[ik'~ " 

6. Conclusions and out look  

In this paper we have given a comprehensive and self-contained treatment of 

N = 8 supergravity with an optional local SO(8) invariance. The complete lagrangian 

and transformation rules have been derived and the consistency of the model with 
an optional local SO(8) invariance has been fully established. The cancellation of 
all g-dependent  quartic fermionic terms constitutes yet another stringent con- 
sistency check on the ungauged theory itself. It is rather impressive how tightly 
everything fits together in the narrow and intricate framework of N = 8 supergravity. 
The E7/SU(8) coset structure of the scalar field sector has been seen to be of crucial 

importance in the construction of the theory, even in the case of gauged N = 8 
supergravity where E7 is not a symmetry of the equations of motion any more. We 
do not know whether it is the ultimate fate of E7 merely to play an ancillary role 
or whether one should attribute some deeper significance to its existence. 

It is noteworthy that gauged N = 8 supergravity is a theory al l  of whose invari- 

ances are local gauge symmetries. To put our construction into a somewhat more 
general perspective, we remind the reader that the conventional formulation of 
non-linear or models on a coset space G / H  is based on the decomposition [5, 21, 

22] 

a,,g . g  l = a , ~  +b ,~ ,  (6.1) 

according to which any element of the Lie algebra G of G may be uniquely 
represented as a sum of a term b, which lies in the (maximally compact) subalgebra 
H c G, and another term a,~ which belongs to the part of G orthogonal to H. The 
field b,  then becomes the composite gauge connection of the subgroup H c G. The 

invariance group is Grigid × Hlocal (corresponding to E7 × SU(~) for N = 8 super- 
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gravity) and acts on g (x) ~ G according to 

g ( x ) ~ h ( x ) g ( x ) g o  1 , h(x) 6 H, g 0 ~ G .  (6.2) 

In our case, the derivative which appears  in (6.1) is covariantized with respect to 
some other group K which is embedded in G and therefore acts on g from the 
right [K corresponds to the SO(8) subgroup of E7]. Eq. (6.1) is consequently 
replaced by the decomposit ion 

@~,g . g -  1 = ~ ..[_/~tx, 

(6.3) 
~ . g = - O . g - g A . ,  A . ( x ) ~ K ,  

where the gauge field A .  is fundamental  and transforms according to 

A . ( x ) ~ k ( x ) [ A . ( x ) + O . ] k - l ( x ) ,  k ( x ) ~ K .  (6.4) 

The invariance group is now Klocat x Hlocal [corresponding to local SO(8) × SU(8) in 
gauged N = 8 supergravity] and acts on g(x) in the following way: 

g ( x ) ~ h ( x ) g ( x ) k - l ( x ) ,  h ( x ) ~ H ,  k ( x ) ~ K .  (6.5) 

It is of utmost  importance that the left-hand side of (6.3) is still an element  of the 
Lie algebra G and therefore the decomposit ion into pieces lying in H and its 
complement  still exists; this circumstance has been fully exploited in our construc- 
tion. In complete analogy with (5.2), one may define a K × H covariant derivative 
D , g  by 

D,,g =--O,,g - b,g - g A ,  (6.6) 

which transforms in the same fashion as (6.5). Note that K is realized as an ordinary 
Yang-Mills group whereas H is realized dynamically. 

There  are many unanswered questions, and in the rest of this section we want 
to discuss some of the outstanding problems that seem to be crucial in reaching a 
bet ter  understanding of N = 8 supergravity. These concern possible applications 
of supergravity in e lementary particle physics as well as problems of a more technical 
nature. 

First of all, one would like to know whether there exist further extensions of 
N = 8 supergravity beyond the introduction of a local SO(8) gauge coupling or 
alternative versions such as ref. [23], and to what extent these are compatible with 
each other. This is important  because a knowledge of all possibilities is indispensable 
if one wants to address the question of phenomenological  applicability of N = 8 
supergravity. Now, it is well known that the four-dimensional theory can be obtained 
by dimensional reduction of eleven-dimensional supergravity [4, 5]. More recently, 
the possibility of spontaneous compactification [24] of the eleven-dimensional  
theory has been investigated [25-27], and there are several indications that gauged 
N = 8 supergravity may be obtained by reduction on a seven-sphere S 7 [28]*. While 

* This has also been noted by A. Casher and F. Englert (private communication). 
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this seems to exclude any further extensions beyond the gauged theory, it leaves 
open the possibility of reducing on intermediate manifolds as first suggested in 
ref. [25]. Not  all supersymmetries  would be preserved at. low energies in' such a 
scheme, and one may regard this as a desirable feature from a phenomenological  
point of view. 

The next question is that of the ultraviolet behaviour of the quantized theory. 
The issue here is not one of renormalizability but rather  one of non-renormalizabil i ty 
versus finiteness. Fully symmetric counter terms have been shown to exist in the 
original version of the theory [29], in the gauged theory [30] and in the eleven- 
dimensional theory [31]; see also ref. [26]. Their  existence thwarts any hope for 
an "easy"  proof  of finiteness to all orders, but there is some reason to believe that 
these counter terms actually appear  with vanishing coefficients. This belief is suppor-  
ted by a number  of non-renormalizat ion theorems in N = 1 supersymmetry  [32], 
by the vanishing of the /3  function up to three loops in N = 4 super Yang-Mills 
theory [33], and by the vanishing of/3g at one loop in gauged N / >  5 supergravities 
[34]. On the other hand, the prospects for a finiteness proof to all orders are 
virtually hopeless if one cannot find a proper  off-shell formulation of N = 8 super- 
gravity and a corresponding superspace formulation in terms of unconstrained 
superfields. At  present,  there is only tenuous evidence that this is possible at all, 
and we regard this as a very difficult problem. We mention here that the correspond- 
ing on-shell formulations in superspace exist for both gauged [30] and ungauged 
[18] N = 8 supergravity. While these elucidate the counter term structure of the 
theory, they do not permit  the construction of superspace actions in the absence 
of auxiliary fields. 

Apar t  f rom the purely technical aspects, one may ask oneself whether the off-shell 
structure of the theory could possibly affect the physics. For instance, a proper  
computat ion of anomalies will certainly involve the auxiliary fields. Being an on-shell 
invariance, E7 will be broken in any off-shell t reatment  and, perhaps,  by quantum 
corrections; however,  we remind the reader that the associated anomalies are 
harmless because the E7 symmetry is not gauged. On the other hand, we believe 
that the local SO(8)× SU(8) invariance can be maintained off-shell in view of the 
occurrence of both local SO(8) and local SU(8) transformations in the commuta tor  
of two local supersymmetry  transformations.  While this commuta tor  will be 
modified off-shell by additional terms, it is difficult to see how the algebraic structure 
could break down if these additional terms are proport ional  to equations of motion. 
This point of view is fully confirmed by the off-shell structure of N = 2 supergravity 
which has been completely analyzed within the context of conformal supergravity 
[16]. That  theory has an off-shell SO(2)× U(2) invariance which is analogous to 
the SO(8)x  SU(8) invariance of N = 8 supergravity in that the conventional de 
Sitter N = 2 supergravity is recovered by fixing the U(2) gauge. 

The gauging of N I> 4 supergravity theories leads to scalar field potentials ( n o t  

cosmological constants) which are unbounded f rom below. However ,  the (euclidean) 
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Einstein action itself is unbounded from below; this circumstance has been recog- 
nized some time ago and at tempts have been made to deal with it [35] (for a 
discussion in the context of supergravity, see also ref. [36]). There  is absolutely no 
reason to expect the scalar field sector to remain exempt from a problem that 
afflicts the gravitational sector, especially if both stem from the Einstein action in 
eleven dimensions. As for Einstein gravity, stability has nevertheless been estab- 
lished for asymptotically fiat metrics, and there are similar results for de Sitter 
metrics in the presence of a cosmological term [37]. A recent result is that an 
anti-de Sitter background can also be stable in the presence of an unbounded scalar 
potential, under certain conditions and within natural boundary conditions [38]. 
The relevance of this result for gauged extended supergravity has been demon-  
strated. The problem of making the functional integral well defined remains. One 
may even try to attach some intrinsic physical meaning to the (quantum mechanical) 
unboundedness of the potential [39]. On the other hand, we have recently pointed 
out that, in going from N = 4 to N = 5, the situation improves in that, for N = 5, 
the unbounded configurations form a set of measure zero in the space of scalar 
fields [12, 13]. So, either the functional integral, although being improper,  
stays well defined, or one has to resort  to the kind of remedy proposed in 

ref. [35]*. 
Another  question of interest concerns the "h idden"  local SU(8). Cremmer  and 

Julia have conjectured that the local SU(8) becomes dynamical and that the Green 
functions that involve the opera tor  corresponding to ~ ,  acquire a pole for timelike 
or lightlike momen ta  [5]. This phenomenon has been shown to occur in various 
two-dimensional  models [41 ], yet the basic method of 1 / N  expansions which proved 
to be so useful there appears  to offer little help in N = 8 supergravity mainly because 
crucial propert ies such as the presumed finiteness will be immediately lost as soon 
as one deviates by an arbitrarily small amount  from the supersymmetric  theory. 
Again, fundamentally new ideas are needed if one wants to make progress with 
this problem, and the very specific propert ies of N = 8 supergravity will undoubtedly 
play a decisive role in its resolution. A related question is whether  there are 
qualitative differences between the gauged and ungauged theories. It has been 
shown in ref. [10] that the hamiltonian of the ungauged theory is E7 invariant. 
Therefore,  the spectrum must be degenerate  with respect to E7 and, in order to 
avoid negative metric states via non-unitary representations, it has been argued 
that the dynamics must give rise to infinitely many bound states at the Planck mass 

* As for mathematical  rigor, we remind the reader that a similar situation arises in constructive 
quan tum field theory. In ordinary two-dimensional  P(~b)2 models, the action is also unbounded  
from below because of the necessary Wick ordering but its exponential  is still integrable because 
the unboundedness  only occurs on a set of measure  zero in the space 5¢'(~ 2) [40]. The following 
example (which arose in conversations with C. Wetterich) nicely illustrates this mechanism:  the 
"potential"  V ( x ) =  ½ In Ix l + x  2 is unbounded  from below, but  nonetheless  J exp [ - V ( x ) ]  dx is well 
defined. 
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scale which are classified according to unitary representat ions of the non-compact  
E7 group [42]. The SO(8) gauge interactions break the Ev invariance, so that the 

infinite degeneracy of the bound states will disappear,  and one may wonder  whether  
all bound states survive for arbitrary values of the gauge couplings. This scenario 
presupposes a smooth connection between gauged and ungauged theories as g 
tends to zero; however,  there is an alternative possibility to be discussed below, 
according to which the theory exhibits a discontinuous behaviour at g = 0. 

This, at last, brings us to the most important  question: what is the role and 
relevance of N = 8 supergravity in the world of particle physics? Already,  several 
at tempts have been made to establish a connection, and we presently perceive two 
different mainstreams. The first is based on the assumption that the graviton 
multiplet contains the fundamental  particles, possibly quarks and leptons. This 
approach has been advocated in refs. [25-27]. Grand unification would be bypassed 
in such a scenario (so, proton decay, if observed, would rule out this possibility), 
and by dimensional reduction on a suitable manifold one is directly led to low 
energy groups such as SU(3)x  SU(2)x  U(1) [25] or SU(4)x  SU(2) [28]. However ,  
the fact that nature prefers one ground state over another  must be explained, and 
the viability of the scheme will crucially depend on the low energy fermion spectrum 
which has not been worked out in either of the two cases cited above. The second 
possibility, investigated in refs. [43, 44], is that the particles of the graviton multiplet, 
with the exception of the graviton itself, are unobservable preons, that the hidden 
local SU(8) indeed becomes dynamical and that the particles which we observe are 
bound states of preons which fur thermore  fall into supermultiplets. In this way, 
there is no scarcity of particles, and it requires considerable ingenuity to extract 

three SU(5) generations [43, 44]. 
To this list we want to add here still another  and intermediate possibility: we 

have recently suggested that the SO(8) Yang-Mills  group provides the force which 
binds the preons together  [13]. This mechanism would give us a well-defined 
preconfinement  criterion (namely "SO(8) neutralness").  Since the only supergravity 
fields that carry SO(8) indices are the spin-0 and spin-1 fields, we conclude that, 
of the graviton multiplet, only the graviton, the gravitinos and the spin-~ fields 
could possibly correspond to observable particle states. Thus, the N = 8 supersym- 
metry  must be broken by this mechanism in a non-per turbat ive fashion owing to 
the non-per turbat ive  character of the preconfinement  mechanism itself. Just as in 
the second scenario above, one would assume that the SU(8) connections Y3,,ii 
become dynamical, but in view of the breakdown of supersymmetry  one would no 
longer be forced to put the bound states into N = 8 supermultiplets. This might 
help in reducing the abundance of particle states, but it also illustrates the central 
d i lemma that one confronts given the present state of the art: on the one hand, 
supersymmetry  must be broken in any realistic scheme but, on the other hand, the 
more supersymmetry  is broken,  the more the theory loses its predictive power 
because our methodology so far exclusively relies on group theoretic considerations. 
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The SO(8) confining forces would necessarily determine the fate of E7 since 
physical states would then automatically be neutral with respect to E7. In this way, 
the generation of infinitely many states would be avoided. It  has been claimed [45] 
that the SO(8) /3 function may vanish to all orders; one interpretation is that, in 
this case, the preconfinement would persist at all energy scales and become per- 
manent.  Note that this scenario radically differs from the one outlined above in 
that it assumes a discontinuity at g --- 0. 

However ,  the above picture suggests a further and less speculative line of thought. 
The gauged N = 8 theory contains the two SU(8) tensors A~ and i A2ikl which were 
introduced in the previous section, and we stress once more  that E7 must be broken  
if one wants to construct such non-trivial SU(8) objects out of the 56-bein. It is 
an additional bonus that the tensors Aa and A2 emerge rather naturally. We recall 
that the scalar field potential  is simply the difference of two positive definite terms, 

see (5.30), 

2 4  112jkl - - 4  r i l l  " (6.7) 

Clearly, these tensors can serve as order parameters  which could monitor  the 
breaking of SU(8) down to lower G U T  groups (as for the tensor A~ j, a similar 
picture has been advocated in ref. [46]). If we tentatively adopt the viewpoint that 
the functional integral makes  sense despite the apparent  lower unboundedness  of 
(6.7), in accordance with the remarks  before, one could plausibly argue that (6.7) 
will induce a cosmological constant at the Planck mass and the theory will undergo 
a phase transition as one moves to lower energy scales. The requirement  of a 
vanishing cosmological constant in the non-symmetr ic  phase yields the condition 

(at the tree level' 

[(A~ikt)t 2 = 181(at)t 2 ~ 0 .  (6.8) 

Remarkably ,  A'zjkt is precisely the tensor that was used in ref. [43] to prove that 
the maximal G U T  group contained in N = 8 supergravity is SU(5): it is in the 420 
representat ion of SU(8) and, moreover ,  its tracelessness, which had to be  put in 
by hand in ref. [43], is automatically ensured by (4.17)! It is not difficult to verify 
that the maximal unbroken symmetry group allowed by (6.8) is in fact a product 
of SU(5) and some residual symmetry group, which can be U(1) or SU(2) or nothing, 
depending on which components  of A ~ acquire a non-vanishing vacuum expectation 
value. Some of the fundamental  fermions would become massive by this mechanism. 
So we conjecture that the tensors ml and A2 will have some role to play in a future 
application of N = 8 supergravity. 

Nevertheless, there remains a chief obstacle in the way of reconciling N = 8 
supergravity with present-day particle phenomenology.  The left-right asymmetry  
of our world is a well-established experimental  fact. It  is a puzzle why all approaches 
appear  to suffer from a chirality problem of one kind or another  in that they have 
difficulties incorporating this feature in a natural manner .  In the Kaluza-Klein  
scenario, it is hard to see how a vector-like theory can be avoided if that theory 
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originates from an initially left-right symmetric theory [25]. One possibility which 
suggests itself here is that one should not reduce on a trivial product of space- t ime 
and some internal seven-dimensional  manifold but rather on a non-trivial fibre 
bundle which can be represented as such a product  only l o c a l l y ;  only in this way 
could the structure and topology of space- t ime become interlocked with that of 
the internal manifold. In the scenario of ref. [43], there is too much helicity, but 
perhaps the problem can be circumvented at the expense of introducing infinitely 
many states which could pair up with the unwanted helicities and thereby remove 
them to the Planck mass scale. On the other hand, if one adheres to the preconfine- 

• 1 X iik ment  picture, one only needs to look at how the 56 spln-~ fields decompose 
with respect to the SU(5) subgroup of SU(8) (one gets one singlet, three 5's, three 
10's and one 10) to realize that this picture is too simple-minded in this respect: 
it is in contradiction with standard SU(5) G U T  phenomenology (e.g., see ref. [47]) 
since it gives the wrong colour assignment in the SU(3) sector. However ,  at least 
for the time being, one should not be discouraged by these deficiencies since they 
may just reflect our current lack of understanding of the underlying dynamics. 

At  any rate, the best strategy is probably to improve our presently inadequate 
technology to the point where we can deal with a model of such complexity as 
N = 8 supergravity. Only then will we be able to extract meaningful and reliable 
predictions f rom the model  and to find out whether it has anything to do with 
physics at all. This is certainly a very difficult and challenging task, especially 
because the theory is more  complicated than all of its predecessors and, if relevant, 
only at energy scales far removed from the presently accessible ones. But, as 
experience has taught us, one may safely predict that future analyses will reveal 
still more  surprising features which, in turn, could suggest further lines of research 
as well as solutions to seemingly insurmountable problems. Meanwhile, we will 
have to content ourselves with the rather striking mathematical  beauty of N = 8 
supergravity. 

Note added in proof 
Meanwhile it has been shown that the scalar field potential (6.7) has several 

stationary points. Apar t  f rom the trivial one where A lqOC S ~i and A2~jkt--0, which 
preserves eight supersymmetries,  two other solutions are known which break 
supersymmetry  [49]. The condition that the potential  has a local ex t remum or saddle 
point follows from eq. (5.34); namely the self-dual part  of 4 A l , , ~ A 2 ' ~ i k l l  - 

3 A2'~, ,~i /A2nkt] , ,~  must vanish. 

Appendix A 

SOME PROPERTIES OF E7 

For the reader ' s  convenience, we briefly recollect in this appendix those propert ies 
of E7 which are relevant in the context of N = 8 supergravity and which are used 
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in this paper. A more comprehensive treatment may be found in ref. [5] where the 
original references are also quoted. 

Any element E~ E7 in the fundamental 56-dimensional representation can be 
written as 

E = exp G,  (A. 1) 
where the generator G is of the form 

[ AIKL AX~e°o ] G = [ ,vMNKL • (A.2) 

Here, all individual indices/, J , . . .  run from 1 to 8; the 28 index pairs [ I J ]  . . . .  are 
antisymmetrized. Hence, E and G act on 56-dimensional c o m p l e x  vectors 

z = (xu, yU) ~ E z .  (A.3) 

Complex conjugation is effected by raising (lowering) indices, for instance, 

( A I j K L )  # = A IJKL . (A.4) 

This convention applies throughout this paper. The E7 Lie algebra is now entirely 
characterized by two statements, namely 

_ ~ [ K ~  L] ( A . 5 )  A I j  K L  - o [ I  z t j ]  , 

where A /  is an SU(8) generator obeying 

A / = - A  Jr, (antihermiticity), (A.6) 

A t1 = 0, (tracelessness), (A.7) 

and, secondly, the self-duality constraint 
1 ,~ M N P Q  

,~,IJKL = ~ ' r l E  I J K L M N P Q  .~" • (A.8) 

In (A.8) we have included a duality phase n = +1. Therefore, the diagonal blocks 
in (A.2) correspond to 63 degrees of freedom, while the off-diagonal blocks 
represent 70 (non-compact) degrees of freedom, so the E7 Lie algebra contains 
133 generators. " 

We next introduce the 56 x 56 matrices 

~---(~0 O ) ,  co~(~  ~) ,  (A.9) 

which satisfy 
~2=O9 2= 1, f&o = -wf2.  (A.10) 

These matrices are useful because the following relations hold: 

E -1 = ~2E~/2, (A.11) 

E = ~oE*~o. (A. 12) 

Their proof follows directly by exponentiation of the corresponding relations for 
the generators 

G = - ~ G  '~/-2, (A. 13) 
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G = w G * o ~ .  (A.14)  

T h e  re l a t ion  (A.11)  [or (A.13)]  m a y  also be  used  to  cha rac te r i ze  the  (maximal ly  

compac t )  SU(8)  s u b g r o u p  of E7 which consists  of all e l e m e n t s  tha t  c o m m u t e  with 

/2. A n o t h e r  c o n s e q u e n c e  of (A.11)  is the  ex is tence  of an E7 invar ian t  sesqu i l inear  

fo rm 
( Z 1 ,  Z 2 ) ~ -  Z ~ ~'~Z2 • (A.15)  

Eq.  (A. 12) on the  o the r  hand  al lows us to def ine  p s e u d o r e a l  r e p r e s e n t a t i o n s  because  

the  vec to r  oJz* t r ans fo rms  in the  same  fashion as the  vec to r  z. Hence ,  we may  

impose  the  p s e u d o r e a l i t y  cond i t ion  

z = toz*¢=~xu = ( y U ) . .  (A.16)  

Eq.  (A.11)  has been  expl ic i t ly  wr i t t en  out  in eqs. (2.18) and  (4 .2)-(4 .5) ,  and  we 

will t he r e fo re  not  r e p e a t  these  express ions  here .  W e  note ,  however ,  tha t  (4.3), 

when  mul t ip l i ed  f rom left  and  r ight  by  u - l ,  i m m e d i a t e l y  gives 

(lg --1)IJijl)ijKL : U iiIJ (U -1)KLi j  (A. 17) 

so the  quan t i ty  ( S - 1 - ~ )  Ix'lcL of eq. (2.19) is symmet r i c  unde r  the  i n t e r change  of 

the  index pairs  [IJ]  and [ K L ]  as was as se r t ed  there .  A n o t h e r  useful  r e l a t ion  is 

o b t a i n e d  upon  mul t ip l i ca t ion  of (4.2) by  u 1 and  subsequen t  inser t ion  of (A.17) .  

I t  is 
(hi 1)IJij = blii IJ -- uk l lJ  (bl-1)KLkllOijKL . (A.18)  

Appendix B 

SPECIAL GAUGE CHOICE 

F o r  comple t enes s ,  we discuss some  aspects  of the  t heo ry  in a specia l  SU(8)  gauge.  

A s  we have  m e n t i o n e d  in sect. 2, such a gauge  choice  c o r r e s p o n d s  to an expl ic i t  

p a r a m e t r i z a t i o n  of the  E7 /SU(8 )  coset  space.  In  the  symmet r i c  gauge  [5] one  

chooses  the  fo l lowing fo rm of the  56-be in :  

[ 0 1 
- 147eZ'n "  0 J '  

where  the  se l f -dua l  fields (~ijkl jus t  r e p r e s e n t  the  70 scalar  degrees  of N = 8 super -  

gravi ty*.  By impos ing  a special  gauge,  we can no longer  d is t inguish  b e t w e e n  the  

* The normalization of 45 is such that we agree with the conventions of ref. [9] in lowest order. As 
was pointed out in ref. [5], the terms of higher order in 45 as given in ref. [9] do not coincide with 
those implied by the symmetric gauge. Indeed, the results of refs. [3, 9] are based on a different 
parametrization of the cosets. The reparametrization that relates the two fields is given by 

s y m m .  g a u g e  1 -- m n p o  
(45iSkl) = 45iSkl d i -2445mn[i l~Jkl ]pq45 -}- 0 (45  5) • 

Note that the right-hand side is self-dual as required by the structure of the E 7 Lie algebra. 



360 B. de Wit, H. Nicolai / N = 8 supergravity 

indices/ ,  J , . . .  and i, j . . . . .  so that we only retain manifest invariance with respect 
to the rigid diagonal SU(8) subgroup of E7 × SU(8) 

~ ' ( & ) ~  U T ' ( & ) U  1, (B.2) 

where U is an arbitrary rigid SU(8) transformation. According to (B.2), the fields 
&~ikt and their complex conjugates d~ i~k~ transform as 35-dimensional representations 
of SU(8). However ,  the E7 t ransformations also survive the gauge choice but they 
are now realized in a non-linear fashion. In accordance with the general theory of 
non-linear realizations [21], the new E7 t ransformations are accompanied by an 
extra field-dependent local SU(8) transformation in such a way that the gauge 
condition remains preserved. Hence we have 

~/'(&) -~ U(t~)~/'(t~)E -1 , (B.3) 

where U(&) is the compensating SU(8) transformation. For this reason, E7 will 
now also act on quantities that previously carried SU(8) indices and were inert 
under E7, such as the fermion fields. It is straightforward to show that the transfor- 
mations (B.3) indeed generate the E7 group. 

Following ref. [5], we introduce the standard variable [48] 

( tanh x/8!-~'~ '~" 
Ylj, kt ~ C~ijmn \ - ~  } kZ' (B.4) 

where we regard y and & as 28 × 28 symmetric matrices whose indices are represen- 
ted by antisymmetrized index pairs. In this way, we obtain an explicit representat ion 
for (B.1): 

[ p - W 2  _ p  1/2y] 

~(&) = L_/5-1/237 /5-1/2 J , (B.5) 

with 

p(&)ijkt ~kl -r~,kl ~Oii  --YijmnY • (B.6) 

While the fields & may assume arbitrary values, the variable y is clearly shbject 
to the matrix constraint 

- yy > 0 (B.7) 

in order for the matrix P(&), (B.6), to be positive definite. The restriction (B.7) is 
familiar from lower N theories and basically due to the fact that the field redefinition 
(B.4) compactifies the initial domain of O~jk~. 

From (B.5) we read off explicit formulas for the 28-beine u and v 

Uii kl = (g-1/2)iikl ' 
(B.8) 

viik~ = --(P-1/2)ijm"ym,k~ = --Y~m, (P-1/2)m"kt • 
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We leave it to the reader to verify that (B.5) and (B.8) indeed satisfy the E7 
requirements presented in appendix A. 

According to (2.19), the variable y is related to the quantity S u'KL used there, 

( S - 1 )  ij,kl ~- 8 iJkl - -  ~ ij, kl , (B.9) 

where we no longer distinguish between SU(8) and E7 indices. However, since 
S u'KL originally carried E7 indices, its supersymmetry variation retains the same 
structure, regardless of the gauge choice 

U i J l j ~ y  I J 'KLu  k lKL "~" 2 ~ / 2 X  Ukl, (B. 10) 

where X ukt has been defined in (3.15). 

We may substitute the above parametrization (B.8) into the tensor T/k t  defined 
in (4.1). When expanding T as an infinite power series in the self-dual scalar fields, 
one finds that up to order ¢4 

T#'J(4,) = ~ (1+~1¢1  ) 8 k , - ~ 4 2 ( 1 - ~ 1 4 ,  - 94~m<'~C~ak~. 
(B.11) 

+ ~42¢~.~"~c '~ ~"~- ~ 4 ~ " ~ ¢ ~ . ~ ' e ' a  ~ + o(¢ ~), 
with 

I¢ 12 --- ~ ~k%k, • 

The tensors A 1-3 of sect. 5 may be directly obtained from (B. 11) and the correspond- 
ing expressions have been given in ref. [13]. At  this point, it becomes glaringly 
obvious why any attempt at constructing gauged N = 8 supergravity in a special 

SU(8) gauge is doomed to fail: there is an infinite variety of possible tensorial 
structures that can (and will!) appear on the right-hand side of (B.11), and which 

would be unmanageable were it not for our knowledge of the full E7/SU(8) coset 
structure of the scalars. In the truncation to lower N supergravity, most of these 
complicated terms disappear, or collapse into simpler structures* which is the reason 
why such a construction was still feasible for N ~ 5 [11, 12]. 

In the gauge (B.1) both local SO(8) and local SU(8) are affected, but the diagonal 
SO(8) subgroup remains preserved 

7z(¢) ~ O ~ ( ¢ ) O  -1 , (B.12) 

where O ( x )  is an arbitrary local  SO(8) transformation. Therefore, it is convenient 
to decompose SO(8) x SU(8) into the diagonal SO(8) subgroup (B.11) and an SU(8) 
remainder. The corresponding decomposition of the gauge fields is then obtained 
by 

i i ii ~ ,  j --> ~ ,  j - 2 g A ,  , 

A ij ~ A  q " (B.13) 

• For instance, while there remain still a few independent structures for N = 5, the tensor T becomes 
a sum of terms proportional to just 8~1 and e qkt with two simple functions of I~ 12 for N = 4 [12]. 
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Because of the different  decompos i t ion  of S O ( 8 ) × S U ( 8 ) ,  the fields A~  in the 

covar iant  derivat ives will now act on both  SO(8) and  SU(8) indices, whereas  the 

~ i j  couplings r ema in  unchanged .  Since A~  now corresponds  precisely to the 

d iagonal  gauge t ransformat ions  (B.12), its coupl ing will r ema in  in the s tandard  

min imal  form independen t l y  of whether  the gauge (B. 1) has been  imposed.  In o ther  

words, the effect of the special gauge is to replace the original  min ima l  couplings 

of A f t  by a min ima l  coupl ing covar iant  with respect  to (B.12). In t roduc ing  the fully 

SO(8) covar iant  derivat ive 

~,~Xi l . . . ik  ~O~Xi~. . . i k  - g A t x i l i x i l z . . . i k  - . . . .  gA ,~k~X,~  . zk , i ,  (B.14) 

where  X stands for any SO(8) tensor  covar iant  with respect  to (B.12), we are now 

able to rewrite the quant i t ies  ~¢, and  ~3, in a more  suggestive form. These  are now 

de t e rmined  from the SO(8) covariant ized vers ion of (2.32), and explicitly given by 

[for the original  ~ ,  of (B.13)] 

2/r~-l/2,-r-,~ ~ 1/2x ik  2e~-l/2-,-v-,-,~ z ~ - l / 2 \ ~ i k  
~?~rtij = - 2 g A S  i +g~,F ~ F  ) it, - g t r  y w , ~ y r  )) ik ,  

(B.15) 

The  decompos i t ion  (B.13) is explicitly exhibi ted in (B.15). This  then  corresponds  

to the s tandard  fo rmula t ion  of supergravi ty  with local SO(N)  that  has been  ob ta ined  

for N~<5  [11, 12]. 
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