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Using Bianchi identifies and commutation relations we investigate the off-shell field content 
of the ten-dimensional super Yang-Mills theory when central charges are introduced. Possible 
constraints are found, but it is not clear whether they allow the construction of an invariant action. 

1. Introduction 

The N = 4 super Yang-Mills theory in four dimensions [1] is often compared to 
N = 8 supergravity: these are the maximally extended theories if one restricts oneself 
to spin ~< 1 and ~< 2, respectively. Both theories are believed to share quite 
spectacular UV properties and might even be finite to all orders in perturbation 
theory [2]; for the N --- 4 theory, finiteness has been established up to three loops [3]. 
The investigation of these models, however, is hampered by the fact that they are 
known only on-shell, and it is generally assumed that only a complete off-shell 
formulation will completely reveal their properties. In particular one will need a 
superspace lagrangian in terms of unconstrained fields for the formulation of 
extended "superdiagrammar". 

Remarkably, both theories have resisted off-shell treatment so far. As for the 
N = 4 theory, it has even been plausibly argued that there exists no off-shell 
lagrangian possessing the full N = 4 supersymmetry [4]. This no-go result has been 
corroborated by an explicit analysis of the Bianchi identities in refs. [5-7] (in ref. [7], 
however, a possible constraint was overlooked). This analysis was carded out for the 
N ffi 1 theory in ten dimensions which, upon reduction, yields the d ffi 4, N = 4 
Yang-Mills theory [1], and even though off-shell representations were found, no 
off-shell lagrangian has been constructed. 

1 Aangesteld navorser N.F.W.O., Belgium. 
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In ref. [4] it was pointed out that the no-go result could perhaps be circumvented 
by introducing central charges*. It is this possibility which we will investigate in this 
paper. To this purpose, we consider the following algebra in ten dimensions 

( Q,,, QI3} = - ½ F~/3P~, - ½ P ' "  4"'~,0z~,,..4,, . (1.1) 

It has been shown that this is indeed the most general ten-dimensional off-shell 
algebra with central charges [9] if one does not enlarge the algebra by exotic objects 
such as fermionic central charges. Strictly speaking, the central charges which enter 
in (1.1) are not really central in that they do not commute with the Lorentz 
generators, but we will nevertheless use this terminology. In the reduction to four 
dimensions, one thus gets not only ordinary central charges but also tensorial ones. 

As our results are somewhat inconclusive we will lay some emphasis on the 
methods which we employ and which combine an analysis of the Bianchi identities 
with explicit component calculations. Although this is largely a matter of preference, 
the usefulness of such a hybrid method has already been demonstrated in other 
contexts, and we expect it to be quite necessary for the study of algebras like (1.1) 
about which little is known beforehand. 

In sect. 2 of this paper we construct the curvatures in a superspace with 126 extra 
bosonic coordinates as the group space of the algebra (1.1) and derive the Bianchi 
identities following general recipes [10]. One can then impose 

Fa# = 0 (1.2) 

as a conventional constraint [11] (without central charges, (1.2) would put the theory 
on-shell [5-7]). In sect. 3 we study the consequences of the Bianchi identities and 
impose two further non-conventional constraints, and in the following section we use 
the commutation relations to obtain more information on the higher dimensional 
fields and show that our additional constraints do not lead to equations of motion. 
Explicit component transformation rules are also given. The final section contains 
our conclusions. 

2. Algebra and Bianchi identifies 

The superspace under consideration is spanned by the coordinates (x~,, 0 a, z~,...~,~) 
where x~, denotes the ten-dimensional space-time variable, 0a a Majorana-Weyl 
spinor in ten dimensions and z~,,...,, the self-dual central charge coordinates. Thus 
the superspace has 10 + 126 bosonic and 16 fermionic coordinates. In terms of these 

* The possible relevance of central charges was also pointed out in ref. [8]. 
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variables the algebra (1.1) is realized by the following differential operators*: 

± r  + #n (9 (9 + ¼ r . + o % ( 9 .  + 
Qe = 00 e 4~M e "~ (gZM 

( ( 9 ) ( 9 z . , . . . . ,  " (2.1) P, = (9,, ZM = ~az M =- 

Covariant spinor derivatives may be straightforwardly derived in the usual fashion 
[10]. They are 

De = 'gga - ~ir .+e%O. - ¼irM+ fO# (9 , 

(9 
D. = (9., D M = (gZM (2.2) 

and they satisfy 

(9 
~/7 + a - ½ r u + e ~  , (De, D#) = - : .  e ~ .  (gz,~, 

(Oe, D,) = all other (anti)commutators = 0. (2.3) 

The commutation relations may be succinctly re-expressed as 

[D A, D. }  = TAsCDc, A . . . .  = {/~, a , /*l- . - /*,) ,  (2.4) 

where the non-vanishing components of the torsion are given by 

Tee" = - ½ g %,,, 

T.~ M = - ½ FM+aB, 

all others = 0. (2.5) 

For the formulation of supersymmetric Yang-Mills theories, one must also introduce 
superfield Yang-Mills potentials [10]. 

~A = 6~:~T", T ~ = generator of Lie group, (2.6) 

* In the following, the index M will always stand for the quintuple [/'1... J*5]. 
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and the corresponding gauge-covariant derivatives 

6~A = DA + ~A- (2.7) 

The commutation relations (2.4) are modified as follows: 

[ ®A, ®,)  = TAsC~c + FAn (2.8) 

and from (2.8) one may read off the field strengths 

F~. = O~,~. + 0 . ~  + [ ~,, A~ ], (2.9a) 

F~,= O,d~, - D,~, + [d~,, ~ , ] ,  (2.9b) 

F,# = D,~¢ + D#~, + (d~,, G0) 

+ k r + 0  ~ + l  + , ~F M .a~M, (2.9c) 

F~M = 0~CM-- 0Md~ ~ + [d~, CM], (2.9d) 

F ~  = D~t~ M - 0MC ~ + [C a, d~M], (2.9e) 

FMN---- OMI~N-- ON(~M "]- [ ~M, (~N], (2.9f) 

which are graded antisymmetric, i.e., Fan = --(--)ABFBA. From the Ricci identity 
(2.8) and the generalized Jacobi identity we obtain the Bianchi identity 

IAB c = ( @AFsc - TA~OFoc )[ ABC) = 0 ,  (2.10) 

where the symbol [ABC) is meant to project out the graded antisymmetric part in 
the indices ABC. The components of (2.10) are 

~or~ + ~ r~+o~e~ + ½ r~+o~V~ + ( ~ )  + ( ~ ) = O, 

®~F~ + ®~r~ - %F~ + ½r~+~F,~ + ½r~+~FM~ = O, 

~ e ~  + ®.F=~ - % r . o  + ½r~+o~F~ + ~ r ~ + ~ r ~  = O, 

(2.11a) 

(2.11b) 

(2.11c) 

(2.11d) 

(2.11e) 



514 H. Nicolai, A. Van Proeyen / lO-dimensional super Yang-Mills theory 

6~,,FMN + ®NF,~M + ®MFN,, = O, (2.1 lf) 

°'D~F,p + °~o F~, + °~ For , = 0, (2.1 lg) 

6"~F~M + @MF~,, + °~Fut , = 0, (2.1 lh) 

6"~FMN + O~NF~M + ~MFN~ = O, (211 li) 

®MFNp + ®pFMN + ®NFpM = O. ( 2 . 1 1 j )  

Not all of these identities are in fact independent as a consequence of "identities for 
identities" [12]. 

3. Constraints and solution of Bianchi identities 

The set of field strengths (2.9) provides an off-shell representation for the algebra 
which, however, contains many superfluous fields. It can be restricted by imposing 
covariant constraints on the field strength which should not put the theory on-shell 
nor render it fiat. There is one condition which one can always adopt. It is called a 
"conventional constraint" [11] and in our case it is 

F~a = 0. (3.1) 

It does not imply any equations of motion but rather permits one to solve, for the 
gauge potentials, ~ and ~M in terms of ~ via (2.9c). Note that without central 
charges, (3.1) would have been too stringent because the theory would have been put 
on-shell [5,6]. We will now analyze the Bianchi identities (2.11a-c) assuming that 
(3.1) holds and discuss further constraints afterwards. A very important tool for this 
analysis is the use of Young tableau techniques that are described in appendix A, as 
well as the correspondence between irreducible representations and certain Fierz 
identities first observed in ref. [I 3]. 

Identity (2.11a) involves the following irreducible components: 

16.17-  18 
I'~v" 3! 144 • 672. (3.2) 

On the other hand, the field strengths appearing in I~av have the following 
irreducible decompositions: 

D 

F~,,,: 10 ® 16 = 16 • 144, 

F~,...~,~,,: 126+0 16 = 144 ~ 1200 • 672. 

(3.3a) 

(3.3b) 
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This shows that identity (2.11a) relates the 144's of F~, and FM. and eliminates the 
672 of FM.. Multiplying (2.11a) by (F~-)a" we find 

F~. = F~+.~W~ + W~., (3.4a) 

1 
F~,...~,. = - 33---g/'t,,...~,fW~,la + r[,.~2f~3~.,,3,. (3.4b) 

Here, W.(16), W~,(144) and W~,o,(1200)____~e irreducible (i.e., F traceless) gauge- 
covariant superfields. The fact that the 16 and the 1200 are not'restricted by the 
identity is mirrored by the existence of corresponding Fierz identities 

r~+.~r~+ f ~  + (B'r,~) + (~,,~) = o, 

F+ + 8 ~, ~,.,r;,~2~ ~ 3 ~ , ~  + (P~") + ( ~ )  = o. (3.5) 

Identity (2.11b) involves 

16.17 
I , a , : - - - ~ - - . 1 0 = ( 1 0 ~ 1 2 6 + ) ® 1 0 = 1 ~ 4 5 5 5 4 ~ 2 1 0 5 1 0 5 0  +, (3.6) 

while the relevant field strengths contain the following irreducible pieces: 

F~,: 45, (3.7a) 

F~l...,~=: 126 + 19 10 = 210 • 1050 + . (3.7b) 

Hence, identity (2.11b) may be used to express F~= and FM= in terms of 6D, F¢, or, 
equivalently, 

®~Wo: 16 19 16 = 1 • 45 • 210, (3.8a) 

®,,W~t~: 16 19 144 = 45 • 54 ~ 210 • 945 • 1050 + . (3.8b) 

Contracting I ~ ,  with (F o- )=~ and (Fo~...ps)"O, respectively, we get 

a #  
F~, = ¼(F~ )"O@,W~ + ¼(F~ ) ~,W=I ~, (3.9a) 

F~, l [ ( r 2 ,  . r . ~ ° ' e . w e + ( r  - ~ '  ..~,) ®.W~ } (3.9b) . . . / ~  [ ~ -- .  ~ / \ ts~ - • 

(3.9a, b) correspond to the 45 and 210 • 1050 of identity (2.1 lb) while the 1 and 54 
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parts (=  antisymmetry of F~, in/u,) entail the constraints 

6~W~=O, (3.10a) 

= o .  (3.lOb) 

The 945 of ~I,V~/~ remains unrestricted. 
Identity (2.11c) contains 

I~a~,...a: (10 • 126 +) ® 126 + = 54 • 210 • 945 

1050 + * 1050 + * 2772 + * 4125 * 6930 + . (3.11) 

Since of the three field strengths that enter this identity two have already been 
determined, there remains only 

125-126 
F,,...~,,, .... : 2 = 945 * 6930 + . (3.12) 

This field strength may then be solved in terms of ®~F~M and F,M or, equivalently, 

@,W~,@,W~/~: see (3.8), 

®~W~,p/~: 16 ® 1200 = 210 ~ 945 ~9 1050 + ~ 4125 @ 5940 @ 6930 + . (3.13) 

We obtain 

- (F~,.. . rE,,  1 ~/~®~ly,, ,  ,o~ (3.14) 
-~s I 21 3 4 s ~ t ' ] 9 4 5 ~ 6 9 3 0 ÷  . 

from the 945 and 6930 + components of (3.11). The 45's of 6~,I,V~ and °-0~14/~p and the 
5940 of ®~W~,p¢~ are not restricted by (3.11) as they do not enter; the 54 of 6~,~W~p 
has already been eliminated in (3.10b) and the 2772 + of (3.11) is trivially fulfilled. 
The 210 and 1050 components of (3.11) relate the 210 and 1050 components of 
® W~,pa to those of ®,W~ and ®~W~a while the 4125 of ®~W~,pa is constrained to 
vanish by (3.11). 

This exhausts the list of independent Bianchi identities since the remaining 
identities follow by application of covariant derivatives. Let us now list the results 
found so far and discuss possible further constraints. The fundamental superfields 



are 
spinor derivatives have the following irreducible components 

~I,V~: 45 • 210, 

@W~a: 45' ~ 210' • 945' • 1050 + ' ,  

® W~pa: 210" • 945" ~ 1050 +" ~ 5940 • 6930 + , 
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W~(16), W~(144) and W~.o~(1200 ). The above analysis has shown that their 

(3.8a') 

(3.8b') 

(3.13') 

where the primes distinguish between different representations of the same dimen- 
sion. We now adopt the following additional constraints: 

F~M=FMN=O, (3.15) 

which do not lead to any equations of motion as will be shown in the next section. 
Eq. (3.15) tells us that (i) 210 = 210' and 1050 +' = 0 [from (3.9b)]; (ii) 210' = 210" 
and 1050 +" = 0 [by (3.11)] and (iii) 945' = 945" and 6930 + = 0 [from (3.14)] so the 
above table becomes 

~ I ,  VB: 45 • 210, 

6D~l,V~t~: 45' ~ 210 • 945, 

~l,V~pa: 210 • 945 • 5940 (3.16) 

(the two independent 45's are linear combinations of the physical field strength F~ 
and an auxiliary H~).  The non-conventional constraints (3.15) simplify the analysis 
of the remaining Bianchi identities. 

Identity (2.11d) determines ~ F ~ ,  which has the irreducible components 

1 6 0 4 5 = 1 6 ~  144~560.  (3.17) 

These are determined as space-time derivatives of W~ and W~. 
Identity (2.11e) reads 

@MF~ = 6"~FMa, (3.18) 

and tells us that the central charge components of W~ and W,~ are entirely 
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determined in terms of space-time derivatives of W~ and W~.p~: 

@[~1...//,5] W= ~0~(-  3~6 r[/~l...~4W~5] + F[//.I/~2W~3/~4~5] ) , 

= ( % -  w.,, + q,, .  w.,.,.,,). 

Identity (2. l 1 f) has the irreducible components 

126. 125 
IMNa" 2 

(3.19) 

- -  × 16 = (945 • 6930 +)® 16 

= ( 144 ~ 560 • 1200 • 720 + 3696 • 8800) 

(1440 ~ 8800 • 5280 ~ 34992 ~ 30800 • 29568). 

(3.20) 

720 • 3696 • 8800 • 8800 • 5280 • 25200 

34992 • 30800 ~ 29568. (3.22) 

we find which components are determined by the identity, which 

(3.23) 

(3.24) 

From (3.20) 
reduces (3.22) to 

®MW~p~ = as 6~MW~.(3.21 ) • 25200. 

Identity (2.11g) is the usual Bianchi identity 

®i~F~ol = O, 

and implies that the first component of F~ is just the physical field strength. 

This identity relates central charge components of W~, and W~o~. Those of W~ 
have been determined in identity (2.1 le): 

~MW~ = °~ I'Ve( 144 ~ 560 • 720) 

+°~W~,.2~3(560. 1 2 0 0 .  1440 • 8800). (3.21) 

In principle, @MW~.o~ could have the following irreducible components: 

@MW~.o. = 126 + ® 1200 = 144 ~ 560 • 1200 • 1440 
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Identity (2. l lh) states that F~. has no central charge components, 

®Mrs, = 0. 

519 

This result could also be obtained by working out (®,, ®p)F~, using the result of 
previous Bianchi identities (2.1 l d) and (2.1 l b), and the commutator rule (2.8). This 
illustrates the earlier mentioned mechanism of "identities for identities". Eq. (2.1 lh) 
is not an independent identity. However, we still analyze it because it gives the result 
(3.25) directly without the algebra work. 

Identities (2.110 and (2.11j) are identically satisfied due to the constraints (3.15). 
We recapitulate our results, while giving names to the free components. The 

curvatures are 

F~: 45, 

F~,,: 16 (W,,) • 144(W~,,), 

FM,~: 144(W~,,) $1200(W~,o,,). (3.26) 

F~ has only nine independent components due to (3.24). Its supersymmetry and 
central charge transformations are determined by 

® F~,=6~W~(16 ~ 144) +°'~W~(16 ~ 144 ~ 560), 

®urn, = 0. 

F~. is contained in W. and/or  
mentioned in (3.26) are then 

(3.27) 

W~. according to (3.9a). The three superfields 

W~: W~lo= o = h, (the physical spinor), 

®aWo -- 45( F~, + H~(2) ) * 210(H(4)), 

®MWa = 16(@.W~,~) ~ 560( ®~,W~. + ®~W~.o. ) ¢ 1440(®~W, oo,); 

~ . :  w.ol._0 = x~, 

®.W~a -- 45(H (2)) • 210(H (4)) • 945(K) ,  

®MW~a = 144 ~ 560 • 1200 • 1440 ~ 720 • 8800, 

(3.25) 
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w ,p.10_0 = 

6D~W~,oO = 210(H (4)) • 945(K)  $ 5940(L) ,  

®MW~,oO = ®MW~t~ • 25200 ( o ) .  (3.28) 

Let us conclude this discussion by comparing the previous results with-those from 
the analysis of Bianchi identities without central charges [1,2]. In this case d~ M is 
absent, so (2.9c) teaches us that we can only constrain the l0 irreducible component 
of F~a(10 • 126 ÷ ) as a conventional constraint. In fact the full constraint F~a = 0 
would put the theory on-shell. The curvatures are then 

F~a: 126+(B), 

F~: 45, 

F~,: 16 (X) • 144(X ). (3.29) 

The supersymmetry transformations constrained by Bianchi identities are 

8B = 144(X) (B 1200(z),  

8F~, = 6D~(16 ~ 144 ) +@~X~(16 <9 144~ 560), 

(~h = 45( F~ + H (2)) ¢ 210( U (4,) 

8 X = 4 5 ( H ( 2 ) ) ~ 2 1 0 ( H ( 4 ) + 6 D ~ , B ) ~ 9 4 5 ( K ) ~  lO50+(@,B) .  (3.30) 

One finds that (3 .26)-  (3.28) and (3.29) and (3.30) are quite similar. The same free 
fields appear. But the set with central charges does not have the B field (126 ÷ ) in the 
dimension - 1 sector. The dimension - 2 sector is not yet complete in (3.30). This 
equation does not yet contain 8r. This has to be determined by using the commuta- 
tion relation on the fields which we already know. In the next section we will do this 
analysis to determine the fields up to dimension ~. 

4. Components, commutators and constraints 

In sect. 3 we analyzed the Bianchi identities. We first imposed the conventional 
constraint F~a = 0, which expresses A, and A M as functions of the unconstrained 
superfield A~. It then became clear that more constraints could be used to reduce the 
off-shell fields. Using all the Bianchi identities we got some information about what 
these constraints imply. The analysis taught us all the component fields of dimen- 
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sions -32 and 2 and revealed already a new field ~(25200) at dimension ~. However, 
several questions remain unanswered. 

(1) Are the extra constraints not too strong, i.e., do they not imply the equation of 
motion? Therefore we should still check that ~ h  = 0 is not implied. This is an 
equation of dimension -52. 

(2) Are there more new fields at dimension ~? 
(3) Are all the previously mentioned fields necessary, or can we impose more 

constraints? Therefore we want the transformations of the fields of dimension 2 to 
see what is implied by constraining one of them to zero. Also these transformations 
are of dimension ~. 

Therefore we will investigate all remaining equations of dimension -52. They are in 
fact contained in the Bianchi identities, but at higher 8 orders. So one should act 
with more derivatives on these identities and then use the commutator algebra to 
find out what are the consequences at this dimension. In fact, this reduces to the 
commutator algebra of two supersymmetry derivatives (or transformations, further 
"8 ") on the fields of dimension 3. This analysis will also show the usefulness of the 
techniques of using irreducible representations for analyzing closure equations in 
components. The equations are always the product of the field with the symmetric 
application of two transformations. Using (16 ® 16)~ = 10 • 126 + this means that 
closure equations contain the irreducible representations contained in the products 
with 10 and with 126 + . 

We start by the commutator on ~. So these equations contain 

I 

10® 1 6 = 1 6 ~  144 which has to be@~X, 

126 + ® 16 = 16 • 560 ~ 1440 has to be ~MX (eq. (3.28)) .  (4.1) 

The equations involve 8F~ [eq. (3.27)] and 

8H (2) = 16 ® 45 = 16 • 144 • 560, 

8 H  (4) = 16 ® 210 = 16 • 144 ~ 560 • 1200 • 1440. (4.2) 

Eq. (4.1) tells us that the content of the irreducible representation in (4.2). 
1440: ~ n  (4) must give 6~M~(1440 ) = ®~¢(1440). 

1200: Unconstrained by (4.1). So 8H(4)(1200) can be a new field, which we call 
~(3). 

560: We denote 8H(4)(560) by ~(2). Then the equation gives 8H(2)(560) which will 
thus contain ®1" + ®,X + ~(2). 

144: If again 8H(2)(144) is denoted by ~(l), we obtain here 8H(2)(144) as ~ X  + 
®,X + ~(~)- But we can use here more information. We know that the commutator 
closes on-shell. On-shell means that ~ = Q ~  (16) is zero, but ®~X(144) is present. 
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Therefore these terms close without ~H (2) and ~H ~4). We can thus conclude that 
/~H (2) does not contain ®~,X(144) 

16: There are now two equations in (4.1). They fix completely both 16's in (4.2). 
The result is thus 

8H <z)= 16(®,~ + ®~X) ~ ~ ( ®~,X + ~o)) ~ 560( o~¢ + ®~,X + ~'2)), 

8Z( ' )=  16(6"~2~ + o ~ X ) ~ - i - - ~ ( ~ o ) ) ~  560(~(9))~ ~ ( ~ 0 ) ) ~  1 4 4 0 ( % , ) .  

(4.3) 

The same analysis can then be done for the commutator on X~- The equations are 

? 
10 ® 144 = 16 • 144 • 560 ~9 720 = ®,X~,, 

126 + ® 144 = 144 ~ 560 • 1200 • 1440 • 720 • 8800 • 5280 

? 
= 6DMX =®~ X + 0~,.  (4.4) 

In the commutator enter ~ H  (2) and ~ H  (4) [given in (4.3)] and 8K 

8K = 16 ® 945 = 144 • 560 • 1200 ~ 720 ~ 3696 • 8800. (4.5) 

The first important remark here is that (4.4) has an equation for the 16 representa- 
tion. 8K does not contain a 16, and 8H (2) and 8H (4) are already completely fixed in 
terms of @~(16) and ®~X(16). So this equation could imply 6"~,(16) = @h = 0 and 
thus put the theory on-shell. However, when we use the explicit transformation rules 
of 8X~ in H (2) and H (4), and of these last fields in ~ [the formulae are given at the 
end of this section, eqs. (4.11)] we see that the equation is automatically satisfied! 
Therefore the theory is not put on-shell. 

The result for 8K after applying all the equations of (4.4) is 

8K= 144 ( 6~, X + ~(') ) ~ 560( ®~,X + ®~," + ~(2) ) ~ 1"~-~ ( 69~,'r + ~(3)) 

720( ®~X ) ~ 3696 (q~) • 8800( o~,, ).  (4.6) 

This reveals the possible existence of another dimension ~ field: qff3696). Further, it 
is important to know if all the terms in (4.6) actually occur, as this will be needed for 
the investigation of possible further constraints. Indeed, as we saw in the previous 
paragraph, there can be cancellations from contributions of 8H (2) and 8H <4) in the 
commutator, such that some terms in (4.6) are zero. However, this is obviously not 
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possible for the 1200, 720 and 8800 representations, which shows that these are 
actually present. 

Finally, we consider the commutator on ~. It contains 

10 ® 1200 = 560 ~ 1200 ~ 1440 ~ 8800, 

126 + ® 1200 = 144 ~ 560 ~ 1200 ~ 1440 ~ 720 ~ 3696 ~8800 ~ 8800 

5280 ~ 25200 ~ 34992 ~ 30800 ~ 29568. (4.7) 

It teaches us 

8L -- 560( ®~,X + ®~ + ~(z)) ~ ~ ( ®~0 + ~O)) 

1440( °'D~z ) • 3696 (q,) • 8800( ®~z ) 

11088 ( a " )  • 8064(0') • 25200(a),  (4.8) 

where we can only be sure that the q, and the o actually occur. All other terms could 
be absent due to cancellations. We remark in (4.8) the appearance of the field o [see 
(3.23), (3.28)] and of two other new fields o' and o". Our final field content is thus 

dimension 3: A( 16 ), X(144), ~(1200), 

dimension 2: F~(45, but constrained to 9), 

H~2)(45), H(4)(210), K(945), L(5940), 

dimension ~: ~o)( 144 ), ~(2)(560), ~(3)( 1200 ), 

q,( 3696 ), o"( 11088 ), 0'(8064), o( 25200 ). (4.9) 

If the same analysis is done for the set without central charges, we have also the 
dimension - 1 field B(126 + ). We find exactly the same formulae and thus the same 
fields as in (4.9) with the addition of B(126 + , dim 1). The content of the transforma- 
tion laws is the same, apart from the addition of ®,B (210~ 1050 + ) to 8 X and 80. 

Can we now impose more constraints? If we consider non-abelian Yang-Mills, we 
better not have constraints which imply the vanishing of space-time derivatives of 
fields. Such constraints, can, for non-abelian Yang-Mills, only imply the vanishing 
of the field itself. It is clear from (4.3) that H ~2) o r  n (4) cannot be put equal to zero, 
as this would put the theory on-shell [®~A(16)= 0]. Therefore, (3.28) shows that X 
and ~-are necessary. In the remarks after (4.6) we pointed out that ®~,X and 6D~z 
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terms do occur in 3K. Therefore K cannot be constrained to zero either. The only 
remaining possibility at dimension 2 is thus L = 0. Therefore the ®~X and @~" terms 
in (4.8) should be absent. This is a possibility which we could not exclude by the 
group theoretical method. This remains to be investigated using explicit calculations. 
If these cancellations occur the constraint would imply 

L(5940) = 0 - ~ 0 =  o = o ' =  o " =  0 (4.10) 

and if the f (2) or ~:0) fields occur in (4.8) they are also constrained to zero. This also 
applies in the case without central charges. There too (4.10) is the only constraint 
which cannot be excluded up to dimension 2. 

We finish this section by giving the transformation rules which we needed for our 
explicit calculations: 

ax. (8.,r_!r ~o.<2)3(a~,r,o-±r ~/4<4)  = 8z~,p/Cl~tvp + 6~pvpar / ' 'ppo,r  

+ F, potK,,o, 

+ ~ .X.  and ~%po terms, 

1 ; ' / - ,  /:(2) -'1- - / - '  (3) + ~ . [ , , ~ p o ]  e [ ~ , p o l + ( % X , + % Z ,  po)terms. (4.11) 

5. Conclusions 

In this paper we have studied possible off-shell representations of the ten-dimen- 
sional super Yang-Mills theory with central charges. Let us now repeat the argu- 
ments of ref. [5] which show that within a set of reasonable assumptions there can be 
no off-shell lagrangian. In the preceding section we found the following fields whose 
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degrees of freedom are indicated in parentheses. 
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dim 1:  A~(9), 

dim -~: ~( 16 ), X~,(144),  %~p(1200), 

dim 2: H~(2,)(45), H(~a)po(210), K, po (945), Loa,,~ (5940) . (5.1) 
/z /zv 

The physical fields are A~(9) and ~(16), and it is obvious in which form they will 
appear in the lagrangian. On the other hand, the auxiliary spinors X~ and z~p must 
be paired with dim ~ fields of the same irreducible type in order to drop out on the 
mass-shell irrespective of what other irreducible representations appear at dimension 
~. Hence those latter fields cannot enter the lagrangian, and the number of fermionic 
degrees of freedom is given by 16 + 2 × (144 + 1200)= 2704. Inspection of the 
bosonic degrees of freedom in (5.1) shows that the numbers do not match, regardless 
of whether a higher constraint L(5940)= 0 can be imposed or not. Clearly, if all 
representations contained in the off-shell multiplet are to appear in the lagrangian, 
no such lagrangian can exist, and we arrive at the same conclusion as in the case 
without central charges. Thus, the introduction of central charges does not improve 
the situation unless some better set of constraints than the one proposed in this 
paper is found. We stress once more that in view of the dimensional argument just 
given, higher order algebraic or derivative constraints will not help either. 

What possibilities then are left for the formulation of off-shell N = 4 super 
Yang-Mills theory? One which might work is to renounce the ten-dimensional 
Lorentz invariance or, equivalently, the full N = 4 supersymmetry [14]. Another, 
which we find rather intriguing, could be the introduction of additional "outside" 
multiplets which would serve as Lagrange multipliers to eliminate the unwanted 
fields of dimension >t 2: this is precisely the mechanism which allows one to go 
off-shell in ten-dimensional linearized supergravity [15]. It is not clear whether the 
conventional superspace approach is adequate for this kind of problem [16]. 

We are indebted to P. Howe for stimulating discussions and for his help in 
straightening out our conventions. 

Appendix A 

R E P R E S E N T A T I O N S  A N D  T H E I R  P R O D U C T S  

The SO(10) representations are characterized by five numbers 

(A.1) 
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For bosonic representations these are integers which correspond to the number  of 
boxes in the different rows of the Young tableaux. If ~5 ~ 0, then there are five 
antisymmetric Lorentz indices and the representation can be self-dual or antiself- 
dual [(1, 1, 1, 1, 1) = 126-, (1, 1, 1, 1, - 1) = 126-]. For spinor representations, the h i 
are half integers (the number of boxes in the row + ½). ~5 is positive for chiral 
representations, and negative for antichiral representations (see appendix B): (½, ½, ~, 1 I ~, ~) = 16, (½, ~, ~, -~, l )  = 16. The dimensions of these representations are given 

TABLE ] 
Dimensions of irreducible representations in d = 10 

Bosonic 

• 1 

Q lO r'rn 54 
[345 E~ 32o [ ]  77o 

[~ 120 ~]~ 945 ~ 2970 ~ 4125 

~] 210 ~ 1728 ~ 5940 ~] 10560 

~ 126+ ~ 1050+ ~ 3696÷ ~ 6930÷ 

8910 

6930 + 2772 + 

Il l l  210 
EF ~ 1386 ~F] 4410 
~ ]  4312 ~F~ 17920 ~ 27720 

~ 8085 ~ 36750 ~ ] 72765 64680 

~ ] 50688 + 20790 ~ 

Fermionic 
le 16 
I r-I 144 I r'rl 72o 
IF] 55° IE~ 3898 I L~  8OB4 

,'°° I N  
I ~] 1440 I ~ 11088 i ~ 34992 I ~ ] 

i~ 672 [ ~ 5280 [ ~ 17280 ! ~ 

30800 

55440 

29568  26400 9504 
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by [171 

2 4 5 

dim(X,, X2' . . . .  )~5) = 8!6!4!2! I-I ( q  - 12), 
p>q 

1 

lp = 17~pl + 5 - p .  (A.2) 

Table 1 gives the dimensions for the representations with ~l ~ 3, ~2 ~ 5. We also 
note that we write the indices of the fields always in the form of a Young tableau 
rotated by 90 ° . 

For making products of representations, one can use the methods of ref. [18]. 
These simplify in most of the cases we need. For example, multiplication with 10 is 
straightforward multiplication with (1,0, 0, 0, 0) + (0, 0, 0, 0, - 1). Note that the last 
one does not satisfy eq. (A.1). This is called a generalized Young tableau. 

A p p e n d i x  B 

G A M M A  MATRIX AL GE B R A 

We use upper and lower spinor indices, where the charge conjugation does the 
raising or lowering in the following way 

=- e a = c a ~ e ~ ,  e~ = e t ~ c ~ ,  

°, °. (B.1) 

Normally we do not write spinor indices. It is then implied that they are contracted 
from upper left to lower right as in the first line of (B.1), and indices on F symbols 
are in the same position as in the second line of (B.1). 

In the appendix of ref. [5] general formulae for gamma matrix algebra in an 
arbitrary dimension are given. We define 

F (  k ) = r ,l, (B.2) 

where [. . .  ] has weight 1. The matrix F* is defined as 

F* = t-L-~ ~' '~'°/" (B.3) 
10! - ~m...mo" 
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It  also satisfies the last equat ion of (B.1), and 

i = t~,...~,o O0-k) (B.4) 
r* (10- k)! 

F (k) denotes in general a g a m m a  matr ix  with k indices, while in F (~-) the order  of the 

indices is reversed (or a minus sign for k = 2, 3 rood 4). F* defines the chirality. A 
spinor which satisfies 

F*X = X 

is chiral (16, 144 . . . .  representation).  If  

F*X = - X 

then X is "ant ichi ra l"  (16, 144 . . . .  ) representat ion.  No te  that  we took the super- 
symmet ry  opera tor  as a product  with 16. Therefore  the pa ramete r  e must  be  
antichiral (16). Also the superspace co-ordinate  0 is antichiral. In sects. 2 and 3, F 
matr ices have been projected on chiral spinors. We use the nota t ion  

1 + F *  r2=2r. .  

Duali ty  is defined by 

i 
X~l ' "  "~5 = ~ e~'l"" "~loX~6 "" "~10" 

This satisfies 

.~" = X,  X-  Y = - X .  Y, F(S)F. = p(5). 

Again, to have the @[~,...~,1 operat ion to be a mult ipl icat ion by 126 + , we take the 
pa ramete r  ZEu,...~,I to be antiself-dual 0 2 6 - ) .  

The  Fierzing rule is for d = 10 

For  g a m m a  matr ix  algebra we make  use of the following formulae 

(m) p ( n ) p ( m )  = r w , [ _ ) m c ( m  n ) F ( . ) .  

General  formulae c(m, n) and tables for various dimensions have been given in ref. 
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[5]. These  are the basis  for  a more  general  fo rmula  which we often used 

__ ~m'mV( x(m) F F ( ' )  ]",(p+m) F(n)E(m)  = ( " "~ p Pl."Pp 
--PI ' "  ' P p ~ l ' "  'kl'm ~1"" "/~m 

j-~p "[p , . . -pp  2-- "pp ipp] + " "" ) 
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where  

( - ) " * '  = + 1  

- 1  

for m = 0, 3 m o d  4,  

for m = 1,2 m o d  4,  

TABLE 2 
x(_ m> for n = l and  n = 5 P 

m odd: x ( m ) = O i f n  = 5; f o r n  = 1 

1 3 5 \ 
0 8 48 0 
l 8 56 56 
2 8 64 120 
3 8 72 192 
4 8 80 272 
5 8 88 360 

m even for n ~ I 

- -  p ~  ~ m  0 2 4 

o 1 (-:I) (;02) 
l 1 (_2,8) ( 70 )  
2 1 (_~)  (9~)  
3 1 ( 2  o ) (~,~) 
4 l (_3]) ( ,6~)  

5 l ( 302 ) (1902) 



530 H. Nicolai, A. Van Proeyen / lO-dimensional super Yang-Mills theory 

and  the  x coef f ic ien ts ,  w h o s e  d e p e n d e n c e  on  n has  b e e n  suppressed ,  a re  g iven  by  

x~ m) = 0 for  m < 0 ,  

X~o m) = c ( m ,  n ) for  m = 0, 3 m o d  4 

= " c ( m , n )  f o r m =  1 ,2  m o d  4 ,  

X(pm)= x(m_,l + X(pm-2). 

T h e  resu l t ing  coef f i c i en t s  a re  g iven  for  the  m o s t  useful  cases  n = 1 a n d  n = 5 in  

t ab le  2. 
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