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On-shell N = 8 supergravity with local SO(8) X SU(8) invariance is formulated in superspace. We compare the counter- 
term structures of the gauged and ungauged theories. 

N = 8 supergravity [ 1,2] is the most promising ex- 

tended supergravity theory from the point of view of 
superunification not least because of the discovery of 
a hidden local SU(8) invariance by Cremmer and Julia 
(CJ) [2] . More recently, it has been shown that there 
is an inequivalent and more general version of that 
theory which has a cosmological term and a local 
SO(8) invariance of the conventional Yang-Mills type 
[3] (in the non-gauged theory the 28 vector fields are 
abelian). An important aspect of the gauged theory is 
that the local SU(8) symmetry which appears to be 
necessary for the construction of superunified theories 
can be preserved. In this note we show to construct 
the gauged theory in superspace, at least at the level 
of equations of motion (there are no superspace ac- 
tions in the absence of auxiliary fields). Our motiva- 
tion is twofold: firstly, the manifest covariance afford- 
ed by the superspace approach provides consistency 
checks on the x space formulation, in particular on- 
shell closure of the supersymmetry algebra is auto- 

matic and the existence of the quartic fermionic terms 
is guaranteed; secondly, superspace is much more con- 
venient for discussing higher order invariants which 

may serve as counterterm lagrangians. 
We shall adopt a similar approach to that employ- 

ed in ref. [3] by maintaining as much of the E7/ 
SU(8) structure of the CJ theory as possible. To this 

end, we begin by briefly reviewing the non-gauged 
theory in superspace [4]. The basic variables are the 
vielbein EMA and the SL(2, C) X SU(8) connection 
fief’ from which the torsion TAB’ and the curva- 

ture RA,cD are constructed in the usual way [5]. 

Our notations and conventions are those of ref. [6], 
and in particular the tangent space group which acts 
on the indices A, B, . . . will be taken to be SL(2, C) 
X SU(8) throughout this paper. In ref. [6], a complete 
solution to the geometrical Bianchi identities was 
given and involves the following set of covariant super- 
fields 

(1) 
which have the indicated symmetry properties. x has 
dimension l/2 and its 0 = 0 components are the 56 
spin-l /2 fields of the theory. The other fields in (1) 
have dimension 1 and G and H are hermitean. The ten- 
sors (1) appear in the superspace torsions as follows: 

where 

(3) 

The only other non-vanishing torsion of dimension less 
than or equal to one is 

In order to go on-shell, it is necessary to further spec- 
ify the tensors S, N, G and H. For the non-gauged 
case, one has [4] 
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This shows that the scalars are present in the expected 
form and one may similarly demonstrate the existence 
of an E7 56 of abelian gauge fields. 

To generalize the above results to the gauged case, 
we shall assume that the scalars appear in the form 
(13) but now interpret the I, J indices as SO(8) indices. 
The E, connection (12) is now modified to 

a=-w-‘WV) (14) 

where CD denotes the SO(8) covariant derivative. Eq. 
(14) therefore includes the 28 non-abelian gauge fields 
AzJ and is in complete analogy with the correspond- 
ing definition in the x space approach (cf., eq. (13) 
of ref. [3]). Observe that the SO(8) indices are sum- 
med over and that the modified fi in (14) still takes 
values in the Lie algebra of E7. The SO(8) field 
strength is 

HdBj = f JIBS - ~ J~jk , 

J$ji = gr’X,jkl . 

In addition, one must impose 

D~X~k~ = (1/4!)EiklmnpqrX~mn X0;“’ . 

(5) 

(6) 

The superspace now describes the CJ theory, but the 
scalars and vectors do not appear explicitly in the tor- 
sions. However, one can show that the following addi- 
tional identities hold 

Ri/,, = 26 Ii Ril 
[k 11 =-‘I -i’mn /\ Pklmn , (7) 

DPij~J = 0 ) (8) 

where the components of the SU(8) self-dual one- 
form P are given by 

‘djklm = 261j Xcvklm ] ’ Pa& ijkl= -; iD&i x,jk[ . 

(9) 

Eqs. (7) and (8) may be rewritten in the form 

dfi++&=O, (10) 

where 

fi= 
0. Ukl _pijkl 

-Pijkl I h ijkl ’ 

&i,, = 26 f@il I, . (11) 

Hence 6 is an E7 Lie algebra valued one-form with 
vanishing curvature so that (10) has the solution 

fi==-v-l dcy, (12) 

where the 56 X 56 matrix V E E, may be written as 
a block matrix 

$J.. 
c23= ‘J 

[ 

vIJij 

. (13) 
uZJij iiIJZJ 1 

The rigid E, group acts on the indices IJ from the left 
whereas the local SU(8) group acts from the right. 

270 

FIJ = dA, + sAIK A A,, > 

and there is a corresponding Bianchi identity 

ci3FIJ= DFIJ= 0 , 

(15) 

(16) 

where D now stands for the fully SO(8) X SU(8) co- 
variant derivative. The introduction of a local SO(8) 
gauge invariance changes the identities (7) and (8) 
which become 

Ri.+‘Fiklm ,-,Pjklm _@“i+O, 
I a (17) 

DPijkl - gFijkl_ rijkl = 0 ) (18) 

where 

F’i,, _Fijkl 

-Fijkl 
Qkl 1 

0 

KL v’ 
FIJ 1 (19) 

F’jkl = 26[likFj’lI , FIJKL = 261’,FJlL1 . (20) 

It now remains to be shown that the identities (16) 
(17) and (18) are satisfied, and, as it turns out, only 
minor modifications from the CJ theory are necessary. 
The functions N, G, H and the one-form P are unalter- 
ed [up to SO(8) covariantizations as in (14)], while 
Sij and 0: xykl get g dependent additions 
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J+ (g) = _igA ;j ) (21) 

D’, xTkz(g) = -diikl > (22) 

where the tensors A 1 and A 2 are defined by 

@IS 
ii + +Jii) @K,rIcKLmk _ UJKmt#Imk) 

= -4 
a/@ + ;#iAil]k . (23) 

They are the superspace analogues of the correspond- 
ing x space quantities introduced in ref. [3] and have 

the required symmetry properties [3]. The compo- 

nents of the SO@) field strength are given by 
. 

FZPIJ = ecyp(LI~~rl + v -IJij ) ) FLjilJ = 0 , 

P.$fiIJ = -~if@~g”k(~‘Jjk t uIJik), 

F a&,&J = %j farpIJ + %&jIJ, 

f Q PIJ 
= $fDi.(qJii + CIJii) 

+ $ ‘v$ @‘“ii + UIJjj) _ (24) 

It is now straightforward to verify that the a fly, 
a fit anda bc components of (16) and the afl and a b 
components of (17) and (18) are satisfied. Further- 
more, these are the only components of these identi- 
ties that need to be checked since the higher dimen- 
sional components follow by using the “identities for 
the Bianchi identities” [7] . Namely, from (17) and 
(18), a little algebra suffices to show that 

DIij = -iliklm A piklnl f ;piklrn A liklm , (25) 

DIij~l = -4P, [iik A Im,] . (26) 

Note that in these identities for identities the g depen- 
dence has dropped out altogether and therefore the 
proof may be taken over from that of the non-gauged 
theory . Thus, we have a complete solution to all the 
Bianchi identities and the constraints we have chosen 
are consistent. The independent component fields are 
the scalars V leEO, the 56 spin-l/2 fields &jk leZO, 
the 28 SO@) gauge fields AmzJ I e =. and the eight 
gravitinos and the vierbein which appear as the 6 = 0 
components of LYrna and Ema, so our constraints cor- 
respond to the on-shell representation of supersym- 
metry for N = 8 supergravity. 

We remark that although it is possible to give a 
completely geometrical interpretation of the CJ theory 
in terms of a superspace with 56 additional coordi- 
nates [8] it is not easy to find such a formulation for 
the gauged case. The enlarged space should presumably 
have the structure of an SO(8) principal fibre bundle 
over N = 8 superspace although we have not investigat- 
ed the details of such an approach. 

To summarize, the superspace geometry of the 

gauged N = 8 supergravity is rather similar to that of 
the ungauged theory, the additional torsions and cur- 

vatures being given by just (21) and (22) and this 
mainly as a consequence of the fact that the SO(8) can 
be effectively “screened out”. To make contact with 

the component version, we shall explicitly compute 
the additional g dependent variations of x and the gra- 
viton field $,” that arise from these changes. For this 
purpose, we note that we can define a supersymmetry 
transformation of a component field which appears as 
the first component of a superfield by [9] 

‘SI,=o = ~~Dl,Sl,=o -~“;iD~iS)B=o ) (27) 

where &? lo =. is the x space supersymmetry transfor- 
mation parameter, We find 

For the vielbein itself, we have 

SEMA = DMtA •t EMc.$BTBcA , 

and with 

(29) 

E a=e m ,“(x) t . . . , EmQ = G,*(x) -t .,. . (30) 

we obtain 

6Grn q(g) = -$igAJ jiem”(u,)“; Fsi . (31) 

These are the only modifications to the supersymme- 
try transformation laws [apart from SO(8) covarianti- 
zations] and agree with the results of ref. [3]. 

We now turn to the discussion of the counterterms. 

For the non-gauged theory it is known that there is a 
linearized three-loop counterterm [IO] which is glo- 
bally SU(8) invariant [l l] . Fully non-linear E7 
X SU(8) invariant counterterms have been shown to 
exist starting at eight loops. These are ordinarily ex- 
pressed as superspace integrals over functions of the 
geometrical quantities [8,10]. It is easy to see that any 
E7 X SU(8) invariant counterterm (which should be 
ultimately expressible in terms of the E7 singlet super- 
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Volume 109B, number 4 PHYSICS LETTERS 25 February 1982 

field xajjk and its derivatives) will have an SO(8) 
X SU(8) invariant extension. Since the g dependent 
terms are hidden in the 0 expansion of xQ jjk, this ex- 
tension is given by the same expression as before but 
now with the more general torsions and curvatures of 
this article. However, relaxing the requirement of E, 
invariance there are now many more invariants in the 
gauged theory. For example, if L? is E, X SU(8) in- 
variant 

I = j‘d4 x d32f3 EJ?~“~(u, u) (32) 

is a new invariant: here, lJCov is the SO(8) covarian- 
tized version of .L? and f(u , II) is any SO(8) X SU(8) 

invariant function of the scalar fields such as A ijAlii. 
Therefore, corresponding to any invariant of the un- 

gauged theory there exists an infinite set of invariants 
in the gauged theory. Moreover, there are entirely 

new ones, for instance 

I = j- d4x d320 EC.. l,kpqr[m AZnPqrXiik X”;zmn + h.c. 

(33) 
How can one conceivably curtail this proliferation of 
counterterms? One possibility is that the counterterms 
which actually arise in perturbation theory should 
meet the requirement 

lim I(g) = E7 X SU(8) - invariant . 
g-0 

(34) 

Neither (32) nor (33) satisfies (34), and it is not dif- 
ficult to convince oneself that, if (34) is true, the coun- 
terterms of the gauged and ungauged theory are in 
one-to-one correspondence. Eq. (34) would mean that 

the g-dependent breaking of E, down to its SO(8) 
subgroup is entirely contained inside the torsions and 

curvatures in accordance with the basic structure of 
the theory at the level of the equations of motion. Un. 

fortunately, we have not been able to find an argu- 

ment that would prevent the appearance of counter- 
terms like (32) and (33) in higher orders *I . In order 

to make further progress it is clear that we shall need 
a deeper understanding of quantum supergravity than 
we have at present. 

*’ We remind the reader that the E7 invariance of the un- 

gauged theory holds only on-shell and could be broken in 

the quantum theory. 
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