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We present an extension ofN = 8 supergravity in which the natural symmetry group SO(8) is gauged. Local SO(8) invari- 
ance is shown to be consistent with the dynamically realized SU(8) symmetry. We mention possible implications of this re- 
sult for superunification. 

It is widely believed that among all supergravity 
theories (see, e.g., ref. [1], where further references 
may be found) the N = 8 theory [2 -4 ]  stands out as 
the unique and most promising candidate for a unifi- 
cation of  all fundamental interactions. Nevertheless, 
our knowledge of  this model remains rather limited 
at present; although the basic lagrangian has been con- 
structed, its possible extensions are not known and it 
is unclear how many free parameters it may contain. 
The question of  its ultra-violet behaviour cannot be 
tackled as yet since we lack sufficiently well-developed 
techniques to deal with a model of  such complexity. 
In view of  these deficiencies, any study of  the dynam- 
ics and the phenomenology of  the model is prelimi- 
nary, at best, even though there have been some en- 
couraging results [5]. 

In this article we present an extension of  the N = 8 
theory which, in addition to the local SU(8) symmetry 
discovered in ref. [4], is invariant under a local SO(8) 
group of  the conventional Yang-Mills type. Thus, in 
addition to the gravitational coupling constant 
(which we put equal to one in what follows), the 
N = 8 theory in the form given here admits a gauge- 
coupling constant g which, by the results of  ref. [6], 
has a vanishing one-loop/3 function. As the gauging 
also generates a scalar field potential which is absent 
in the ungauged version, there arises the possibility of  

non-vanishing vacuum expectation values of  the scalar 
fields or their composites which, in turn, might trigger 
spontaneous breaking of  supersymmetry, SU(8) or 
both. Whether such a mechanism is compatible with 
previously proposed ones to obtain spontaneously 
broken N = 8 supergravity without gauging [7] remains 
an interesting problem for further study. 

As is well known, the N independent supersymme- 
tries of  N extended supergravity are naturally com- 
bined with a rigid SO(N) symmetry group which, by 
means of  the (2 N) vector fields of  the graviton mul- 
tiplet, may be promoted to a local SO(N). This pro- 
gram has been carried out for N ~< 4 [8] and, more 
recently, for N = 5 [9]. The latter paper also contains 
lowest order results for N = 8. 

In their pioneering paper [4], Cremmer and Julia 
demonstrated that extended supergravity theories 
have more symmetries than the aforementioned rigid 
SO(N), which are hidden in the conventional approach. 
First, there is an (off-shell) local group H which is an 
invariance of  the lagrangian and which is realized with- 
out a kinetic term for the H gauge connections. Second- 
ly, there is an (on-shell) non-compact symmetry group 
G which is an invariance of  the equations of  motion. 
H is then isomorphic to the maximal compact sub- 
group of  G, and the scalar fields of  the theory are de- 
scribed as the coset space G/H. For N = 8, G = E 7 and 
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H = SU(8), and it is this case which we will consider 
in this paper. All lower N supergravities may be ob- 
tained by consistent truncation. 

The central result of  our work is that the local in- 
variance group SU(8) can be preserved in the process 
of  gauging SO(8). To clarify the significance of  this 
fact we recall how the gauging was achieved for N~< 5. 
There one started from the theory in its manifestly 
SO(N) invariant formulation, which is obtained by im- 
posing a local H gauge. The SO (N) group that was 
gauged was thus embedded in the rigid SU(N) × SU(N) 
subgroup of  G × H. Here we proceed differently by 
leaving the local SU(8) intact and by gauging the 
SO(8) subgroup of  E 7 instead. The conventional form 
with local SO(8) and without E 7 × SU(8) may be re- 
covered by fixing the local SU(8) gauge afterwards. 
At present, it is not known whether this theory fol- 
lows from a non-trivial reduction from 11 dimensional 
supergravity [10]. 

There are essentially two reasons for keeping the 
local SU(8) throughout the calculation, the first being 
technical: the E7/SU(8 ) coset structure turns out to 
be just as indispensable for the construction and the 
consistency proof of  gauged N = 8 supergravity as in 
the ungauged case, even though E 7 is no longer a sym- 
metry of  the theory since it is broken in a rather spe- 
cific way. The second reason is even more important. 
It has been known for quite some time [ 11 ] that an 
SO(8) Yang-Mills group is too small to comprise the 
observed particle states, and on the basis of  this ob- 
servation it has been argued that a gauging is undesir- 
able. Our results show that such an objection is not 
valid since both SU(8) and SO(8) may be relevant for 
the particle spectrum. 

It is important to realize that the existence of  the 
N = 8 theory with local SO(8) × SU(8) widens the 
range of  possible unification scenarios. One which we 
fred particularly appealing is the following. Unbroken 
Yang-Mills theories are known to have a confining 
phase; therefore, one may assume that the SO(8) 
group provides the force which binds the preons to- 
gether +. In that case, all "observable" states would 
have to be SO(8) singlets. Since the only fields of the 
gravitational multiplet which carry SO(8) indices are 

* One possible objection to this picture is the conjectured 
vanishing of the # function to all orders (J. Ellis, private 
communication). 

the spin 0 and spin 1 fields (see table 1), we are led 
to the conclusion that, of  the graviton multiplet, only 
the graviton, the gravitinos and the spin 1/2 fields are 
"observable", which would explain why the graviton 
is unconfined as was assumed in ref. [5]. Furthermore, 
since only part of  the basic multiplet is "observable", 
the supersymmetry must be broken by the very same 
mechanism that confines some of  the preons. Needless 
to say, this "preconfinement" mechanism would be 
non-perturbative and hence invisible in perturbation 
theory. In any case, it should be clear that, in presence 
of  the gauging, the E 7 group may cease to play a sig- 
nificant role as far as unification is concerned. 

In our conventions we will closely follow refs. [3] 
and [9]. The field multiplet of  the N = 8 theory con- 

a which is a singlet with respect to tains one graviton eu 
SO(8) × SU(8), 8 gravitinos ~p~ and 56 spin-l/2 fields 
xi/k which are assigned to representations of  chiral 
SU(8) and singlets under SO(8), and 28 vector fields 
A/J  which transform as a 28 under SO(8). The scalar 
fields are represented by a 56-bein ("Sechsundfiinfzig- 
bein") 

_IUi j  IJ UijKL 1 

C~-Lokl lJ  UkIKLJ , (1) 

which is an element of  E 7 in the fundamental repre- 
sentation, qY transforms under local SU(8) from the 
left, and under E 7 from the right; its inverse can be 
written in terms of  the same submatrices u and u 

I - 
cl~ - 1 = u ~]IJ --°kill  . 

_oifK L ttklKL~ (2) 

All assignments have been collected in table 1. Note 
that these are off-shell assignments in contradistinc- 
tion to the ungauged case with E7(rigid ) × SU(8)(local) 
where only the field strengths and their duals, but not 
the vector fields themselves, could be fitted into on- 
shell representations of  E 7. 

'Fable 1 

a i IJ × ijk v ijlJ eta qJ ta A U uijlJ 

SO(8) 1 1 28 1 28 28 
I 

SU(8) 1 8 1 56 28 28 
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We write N = 8 lagrangian as follows: 

1 - - "  

£ = - ½ e R  (e,  w )  - ~ e uvpa Jdlu "Yv Dp q¢ oi 

- ~ e [ F ; v l j F ; v K L  ( 2 S  IJ,KL - 5 I K 5  JL)  + h.c.] 

1 ,r~,+ ~ +  KL t, IJ, KL 
-- 2 ~ t '~v lJ ' - 'Uv o + h.c.] 

1 - .  

-- 2 e x q k D X i j k  - ~6 el-~u li]kl 2 

qkl  
-- i ~ e [ X i ] k T V 3 , U ~ v l ~  u + h.c.] 

+ SU(8)-invariant four-fermion terms (3) 

where F ~ d  J ( F  ffv I J )  denotes the self-dual (antiself- 
dual) abelian field strengths of the 28 vectors A IJ 

F u v l J  = ~'+ a - k -  I J -  IJ • uvlJ -1 '  Uv - 2 3 [ u A v l .  (4) 

S IJ,KL is defined in terms of the submatrices of the 
56-bein by the condition 

(uijlJ + Oi]iJ ) S IJ,KL = ui/KL (5) 

and O + IJ is defined by --,t/b' 

u qIJ  0 +u v 1J -(x/2/144) r/e ifklmnpq Xk lm  °uv  Xnpq 

- ½ -~XkOu~yXX iyk + (X/2/2) ~ y [ P o u v 7  °] ~/o.  (6) 

The derivatives in (3) are covariant with respect to 
local Lorentz and local SU(8) transformations; hence, 
besides the standard spin connection co~ b, we have 
SU(8) gauge fields c'B u i / w h i c h  satisfy 

(c~pi])* = _  c~pJi; c~p i  i = 0 ;  (7) 

These gauge fields occur in D u according to 

Du¢i=a .dp  i + l c~ i j¢]  . (8) 

where ¢i is an SU(8) vector in the fundamental l"epre- 
sentation. 

The SU(8) gauge fields q3u i  ] do not correspond to 
dynamic degrees of freedom (at least classically); they 
can be expressed in terms of the physical fields of 
N = 8 supergravity. This dependence can be viewed as 
the result of an algebraic equation of motion (first or- 
der form) or of a conventional constraint (second or- 
der form). For our purposes it is most convenient to 
choose the second option; this brings our results in 
direct correspondenc e with those of ref. [3]. Also, 
the quantity aqi]kl which characterizes the scalar 
kinetic terms in (3), is dependent. The dependence 
of ~ u  and cB u on the 56-bein is determined by the 

requirement of E 7 invariance; the only quantity of 
that kind which contains one derivative is given by 
Du cp .qy-1 .  This 56 X 56 matrix transforms covari- 
antly under local SU(8), and takes its values in the 
Lie algebra of E 7. The dependence of ~ u  and ~ u  is 
now defined by 

l 0 - - ¼ V ~ u i ] k l  . (9) DuqY .q~-I = 
_ ! .  fff ,.¢ mnpq 0 

4 v ~ p  

The diagonal blocks of (9) characterized the SU(8) 
subalgebra and are used to express cBu in terms of 
the submatrices of c)y and their derivatives. The part 
of the algebra orthogonal to SU(8) defines _~ u in a 
similar fashion. Note that s~ u does not explicitly de- 
pend on q0 u in this way. Its classification as a com- 
ponent of the E 7 Lie algebra implies 

~ ifkl = 1 ~ eijklmnp q "~ umnpq " (10) 

This is a typical example of the kind of argument that 
is of crucial importance throughout this paper. It is 
not possible to show the validity of (10) directly from 
the explicit dependence of -~u on the 56-bein; in- 
stead, we have to rely on group-theoretic arguments 
based on E 7. 

It is possible to view the matrix 

as the connection of a local E 7 group. In that context, 
(9) specifies that the connection is pure gauge and has 
vanishing E 7 field strengths. Indeed, application of a 
second SU(8) covariant derivative D v on (9) and anti- 
symmetrization in/a and v leads to 

([D u, Dv]q)) qy-I 

:0 ]io :] 
8 L~ uq; o v 

Io *- 
v'2 o D.~.  - (u~v) .  (11) 

4 s~ v 0 /./ 

On the other hand, the commutator of two covariant 
derivatives is equal to the field strength; as SU(8) acts 
on qY from the left, the left-hand side of (11) takes 
the simple form 
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([Du ' Dv] ely ) .qy -1 

[-6 [i c~r(q 0 -~ J] 0 

=LO Im ' 'urn] 6[kp~r(c.B)uvllql l (12) 

where 9r(~)uvij  denotes the SU(8) field strengths. 
Equations (11) and (12) play a crucial role in establish- 
ing the invariance of the supergravity action; this re- 
quires a number of partial integrations which lead to 
SU(8) field strengths by means of the Ricci identity 
(12) or to derivatives on ; / , .  By using (11) and (12) 
we find that the antisymmetric derivative of ~ u  
vanishes, and that the SU(8) field strength can-be ex- 
pressed in terms which cancel against other variations. 
Indeed, (11) and (12) were previously found by re- 
quiring supersymmetry invariance of the action [3]. 

The gauging of SO(8) is now effected by further 
extending the covariant derivative with respect to 
local SO(8) embedded in the E 7 group. For instance, 
we define 

D u ltiflJ ~ 3 u uff IJ 

-- 2~rAK[Iu ..JIK (13) + c~**kIiUj]klJ - ° " ta  "'tl ' 

where A/u J are the 28 vectors o f N  = 8 supergravity. 
At the same time, we replace the field strengths F/{ 
by their fully SO(8) covariant counterparts 

- IJ ~ --IK--KJ (14) Fur IJ = 2~[uAv] - zg~l[ Av] • 

The presence of the order g terms in the lagrangian 
and transformation rules violates the supersymmetry 
invariance of the original action. To re-establish the 
invariance, one has to introduce new terms in the 
lagrangian and transformations. These can be param- 
etrized in terms of three tensorial functions A 1-3 
which depend on the scalars contained in the 56-bein. 
The parametrization takes the following form [9] 

5gfip = -- x /~ g-ff/'ylsA~i 

5 gX ffk = --2g -glA 2l i lk ,  

£g = x /~geA 1 . .~i  ,Uv~b/ + h 
l] ~" l . l ~  r l) . . . .  (15) 

l i + ~geA2jkt ~Tu ×jkt ÷ h.c. 

+ geA~'k' lmnXi/k Xlmn + b.c., 

£g2 =g2e(]lA~'] 2 ± A i ,2, 
- 24  2 j k l  1 .  

Note that the SU(8) tensors AI_  3 must satisfy certain 
symmetry properties as a consequence of the way in 
which they appear in (15). 

The new variations of the lagrangian induced by 
the SO(8) covariantization come from three sources. 
One set corresponds to a direct covariantization of the 
variations of the original lagrangians; because of the 
supersymmetry invariance of the original action, these 
covariantizations vanish as well. The second class of 
terms originates from the standard variation of A/u "/in 
the covariant derivatives. The third class is generated 
through the Ricci identity which now, in addition to 
the SU(8) field strengths, lead to new g dependent 
terms proportional to the SO(8) field strengths. How- 
ever, only vectors and scalars are not inert under 
SO(8) (see table 1) and, in fact, it is easy to show 
that all new variations containing the SO(8) field 
strength are governed by eqs. (11) and (12), but now 
with derivatives that are also covariant with respect 
to local SO(8). 

The variations proportional to the SO(8) field 
strength are sufficient to determine the functions 
A 1-3" One first considers the SO(8) modification in 
(12) which takes the form 

([Du ' Dv]qy ) .c);-1 = eq. (12) + 2gq;FuvC); -1,  (16) 

where 

I [I J] 
6[MF(A)uvN] 

0[K L] . (17) 
Fur(A) - -  0 8 [ p F ( A ) u  v Q]j  

It is of crucial importance in the explicit calculations 
that the right-hand side of (1 6) takes values in the Lie 
algebra of E 7, even after the introduction of the gauge 
coupling. 

The extra term (16) occurs in gg~ and g~x  varia- 
tions of the lagrangian whose cancellations require the 
following values of A 1-3 

A 0' = -- (4/2"1) Tm iim , 
x 

A2m ijk = - (4/3) Y m [ijk] , (18) 

A i~ "k'lmn = (V/~/108) rl eijkpqr[ lm Tn ] pqr , 

where the SU(8) tensor 7" is defined through 

Tlktl =_ (uiJlj + o ijlJ) 

-- o kmKI) , (19) X (UlmJKukmKi OlNJK 
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which is manifestly antisymmetric in i and j .  Note 
that T is not invariant with respect to the full E 7 
group, but  it is invariant under local SO(8) and co- 
variant under SU(8). 

In order for the ,;olution (18) to be consistent, the 
tensor T has to obey a number o f  non-trivial identities; 
these can be shown to follow from the E 7 structure of  
the 56-bein. For  instance, one can prove that T can be 
decomposed as follows: 

Tikif = Ti [kij] + ~6} iVmf]mk  , (20) 

where T m ]mk is symmetric in ], k and T I [kif] is com- 

pletely antisymmetric in ki] and traceless, i.e., 

Tk[ki/] =0 .  (21) 

Having found the solution, one must now establish 
the invariance of  the lagrangian in order g and g2. 
This requires further identities on T, such as 

Durlk i /  : -- ¼ X/~ " 

X (--2.¢{kmn[iT]]imn -- 2;~ i jmnTk  u -- lmn 

+ 2_ x [iT]] _q~kmnp + l_6ks; ~ mnp[iTJ ] 1 
3Vl rnnp u 3 l u mnp J ' 

A 2pifkA p lmn -- 26~]mkn [A 212 (22) 

[if Ar  A k ] p q _  66[if A k] A pqr 
+ 186[ lm~2n]pq  2r [lm 2pqr 2n] 

- 9 6 [ i A /  A k]pq _ 9 A  PlifAk] = 0 
[l 2 mpq 2 n] 2[l 2 mn]p ' 

where we remind the reader that ,  by  (18), A 2 is just 
the antisymmetric part of T. 

It is instructive to impose an SU(8) gauge choice 
which corresponds to an explicit parametrization of  
the ET/SU(8 ) coset space. In the symmetric gauge 
[4], the 56-bein becomes 

I 0 - -¼~¢~f f ) i jk l l  (23 ) 
Q2 = exp _~Vt2~ )mnpq 0 

Inserting this parametrization into T, we obtain the 
functions A 1 ~ as infinite series of  the self-dual scalar 
fields ¢ifkl. ~V-e-here give the expansions for A 1 and 

A 2 up to cubic order 

A ~] = (1 - 9Ag 1¢12) - 1/2 6 if 

+ 1 V ~ ( f l k m  n dPmnpq (ppqk] + O(¢4)  , 

A21 ijk = _½ X/~ (1 -- T~4 [c~l 2) ¢i]kl _ 3 Cmnl[iC]k]mn 

+ -~6 N/~ dPlpqr (ppqs[idp/k] rs + O(q~4), 

k b 12 = ¢ijkl ¢ijkl , (24) 

A 3 is related to A 2 by (18). In the reduction to N = 5, 
these results can be compared with those of  ref. [9]. 
Both SO(8) and SU(8) are affected by  the gauge 
choice (23); however, the non-trivial SO(8) subgroup 
acting on both  SO(8) and SU(8) indices is preserved. 

i from (9), we find Determining q~ u/ 

i _ if c15 u ] - - 2 g A  u + nonlinear SO(8)-covariant terms. 
(25) 

Observe that in the gauge (23) there is no longer a dis- 
t inction between SO(8) and SU(8) indices. Equation 
(25) shows that AIu J will now couple minimally to all 
fields that carry SO(8) and/or SU(8) indices. This 
corresponds to the standard formulation of  super- 
gravity with local SO(N) that  has been obtained for 
N < 5 .  

A more detailed exposition of  these results will be 
given in a forthcoming publication [12]. 
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