
Nuclear Physics B188 (1981) 98-108 
© North-Holland Publishing Company 

E X T E N D E D  S U P E R G R A V I T Y  W I T H  L O C A L  SO(5)  I N V A R I A N C E  

B. DE WIT 

NIKHEF-H, Amsterdam, The Netherlands 

H. NICOLAI 

CERN, Geneva, Switzerland 

Received 23 March 1981 

W e present a version of N = 5 supergravity with local SO(5) invariance and a lowest order 
calculation for N = 8 supergravity with local SO(8). The implications of these results and related 
aspects are discussed. 

1. Introduction 

Extended supergravity theories are invariant under N independent local super- 
symmetries which are naturally combined with a rigid SO(N) symmetry group (see, 

e.g., ref. [1]). Already some time ago, it was shown that this rigid invariance can 

be extended to a local one for N = 2 and 3 [2]. In the case of N = 4, two different 
versions with local internal symmetry exist corresponding to the two variants of 

the N = 4 theory [3], one with local SU(2) x SU(2) [4] and another with local SO(4) 

[5]. In the presence of a gauged internal symmetry, the graded Poincar6 algebra 
is replaced by the graded de Sitter algebra, and the invariant lagrangian acquires 

a cosmological term. 

Beyond N = 4, no such results have been available so far. By consistent truncation, 
all extended supergravity models can be derived from the N = 8 theory [6-8]. There 

are at least two reasons why theories with N > 4 deserve even more attention than 

the case of lower N :  
(i) Theories with higher N, and in particular the N = 8 theory, have a better 

chance to be of phenomenological relevance. In fact, there have been some recent 
attempts in this direction [9]. Therefore, it is quite important to study all aspects 
of these theories, such as the various possible ways in which higher N supergravity 

can be realized. Two generalizations of the original N = 8 theory have been 
discovered [10, 11] which exhibit a cosmological term. But in both cases the internal 
symmetries remain of the rigid type. 

(ii) For N > 4, extended supergravity theories with local SO(N) exhibit interest- 
ing properties when they are quantized (under the assumption that these theories 
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exist!). In the one- loop approximation,  the cosmological constant which is induced 
by the gauging of SO(N),  is only finitely renormalized [12]. This is equally true 

for the gauge coupling constant which, by supersymmetry,  is directly related to the 

cosmological constant. This phenomenon  may be viewed as another  positive indica- 
tion that supergravity will eventually lead to a consistent quantum theory of 
gravitation. Independent  of the direct phenomenological  applicability of these ideas, 
it is therefore of considerable theoretical interest to investigate higher N super- 

gravities with gauged SO(N).  
In this paper  we present N -- 5 supergravity with a local SO(5) invariance. The 

full non-l inear structure of this theory is given up to terms quartic in the spinor 
fields. These latter terms are not required for a determinat ion of the extra terms 
induced by the non-zero gauge-coupling and we have simply assumed that no 
inconsistencies arise in that sector. There  is no problem of principle in completing 
these couplings, but under  the previous assumption this would only amount  to yet 
another  check on the correctness of our results. At  this point, we wish to remind 
the reader  that the quartic terms for pure N = 8 supergravity in five dimensions 
have been fully worked out by Cremmer  [13]. 

The reason for considering the case of N = 5 is twofold. First of all, the construc- 
tion of N = 5 supergravity with gauged SO(5) will constitute the first example of 
an extended supergravity theory to which the results of ref. [12] apply and which 
has vanishing one- loop/~  function. A second reason is that the case N = 5 is still 
algebraically manageable  in contradistinction to the case N >/6; the spinless fields 
occur in the fundamental  representat ion of SO(5) which entails comparat ively 
simple tensorial structures for the non-polynomial  modifications present  in these 
theories while, for N t> 6, the scalar fields carry at least two indices, and one may 

build arbitrary strings. 
We will also give the lowest order  results for the case of N = 8 with local SO(8). 

These we compare  with our direct N = 5 calculation and we establish full agreement  
up to the order  we have investigated. 

The plan of this paper  is as follows: in sect. 2 we present N = 5 supergravity. 
We have constructed this theory by truncating the N = 8 algebraic equations of 
ref. [8] to N = 5. Their  solution leads directly to the N = 5 lagrangian and transfor- 
mation rules. In addition, at the end of sect. 2, we make  contact with the work of 
Cremmer  and Julia by showing that our results are fully compatible with the coset 
formulation of N = 5 supergravity. The gauging of SO(5) is described in sect. 3 
where we also discuss the truncation to N = 4. Sect. 4 contains our conclusions, 
and, finally, we collect our lowest order  N = 8 results in an appendix. 

In our notation and conventions, we will mainly follow ref. [8] and adopt  the 
chiral notation used in that paper.  Upper  indices on spinors denote  positive chirality, 
and raising (lowering) indices corresponds to complex conjugation (cf., eq. (2.1) of 
ref. [8]). The only difference is that, in this paper,  the symbol [il . . . . .  i,] signifies 
antisyrnmetrization in the indices il . . . . .  in with strength one. So, for instance, we 
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l • 8 (" + permutations) ~ - -  • • 

n! (6~ ,. 

This accounts for some difference in numerical factors. 

(1.1) 

2. Extended supergravity with N = 5 

The field content of N = 5 extended supergravity is as follows. The gravitational 
degrees of freedom are described by a vierbein field V~ and a spin connection 
to~ ab. There  are three irreducible spinor fields which can be assigned to representa- 
tions of chiral U(5) : 5 gravitino fields $~, 10 spin-~ fields X ijk in the antisymmetric 
representation of U(5) and a singlet spin-~ field X 678.. Furthermore,  the complex 

scalars ~b i = (~bl)* belong to the fundamental representation of U(5). The 10 abelian 
it vector fields A,, cannot transform under U(5), and are assigned to the antisymmetric 

representation of the SO(5) subgroup instead. 
Following ref. [8], the lagrangian of N = 5 supergravity can be written 

£ e = ~ V R ( V ,  to) 1 , , ~ . : ,  ,~,.,. 

1 , t r - i j k ~  1 , r r - 6 7 8 ~ t  .1 , r r  ~v i 
- - i ~ v X  I ~ X q k - ~ V X  l ~ X 6 7 8 - ~ v g  a~,a.~ 

- ~ V ( ( 2 S  ii'kl-~ik~ex=+ ~+"~ +h.c.) 0 O ) F ~ v l j l "  k l  

1--T;'roij'klt'~+ [ " l+"vk l  + h.c.) 
- -  2 ~" ~ 0  l" i.~vkltJ 

1 t 72 ijklm - 
- -  12 V ~ E  X i i k ' Y " Y ~ b ~ t a ~ . ,  + h.c.) 

1 - v v, i 
- 2 V ~ ( x 6 7 8 V  V l~lv iaw +h.c.) 

l T r - i j k  Vu (fill 1 T r - 6 7 8  V, r ~ k  
I "X  ")/ Xi j l  c'° wk - -  2 V X  "~ X678  old ~k 

{_1 I.~vprrTi - -  rm ] 

+ terms quartic in the spinor fields. (2.1) 

In (2.1), and in the rest of this paper, we put the gravitational coupling constant 
equal to one. The Riemann curvature scalar is denoted by R ( V ,  to); V is the 
vierbein determinant, V = det V~,a. The self-dual and antiself-dual field strengths 
(with lower and upper indices, respectively) are defined by 

F*"" 1[ V,P va  1 - 1  ~vt~r ij ij , j - - ~ g  g + : v  ~ ) (o , ,A , , -aoA, , ) ,  

g - g v i i  1[ ixp vtr 1 - 1  v.vprr i] i] -=:~g g - : V  e ) (0oA,-OoAo) ,  (2.2) 

( F + m ' i i ) *  = F - , ~ i J .  

* T h e  n o t a t i o n  x 678 has  b e e n  c h o s e n  to  m a k e  the  r e l a t i o n  wi th  the  N = 8 t h e o r y  expl ic i t  (see a p p e n d i x ) .  
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They enter the lagrangian in a way which is not invariant under chiral U(5). The 
quantity S ij'kt which depends in a non-polynomial fashion on the scalar fields &i 
also lacks manifest U(5) invariance. It is symmetric in the antisymmetric index 
pairs (i]) and (kl) ,  and is defined by the condition 

aii giJ, kt~Skl,~, ii kl -- J = 8 m,, (2.3) 

where S is a U(5) covariant object. By an appropriate choice of field variables, 
can be taken equal to 

~i],kl 1 iiklmf~m. = - ~ e  (2.4) 

The remaining substitutions that we have used in (2.1) are manifestly U(5) covariant: 

+ i] ii 1 klmnp - 
0 t~v = C k l { - - ~ x / 2 1 r l e  XmnpOr.vx678 

1 7  X klm 1 --k [O tr] l -~qJa,, tr,~y X +~v/2~Ooy o',~y 4t~}, (2.5) 

E i] c k l  ii kl ,,, = 6 , . . ,  (2 .6 )  

EtTkl = e18~l + ti i] 2e28[k~b ~bt], (2.7) 

CiJkl = L 61Jkt_ 2 e2 6[~&i]&l] . (2.8) 
e l  e l  

We have introduced here the scalar functions el and e2, 

ex = (1 -I~b I=) - ' 2  , I~1 = -  &'&,,  (2.9) 

1 
ez = ~-~ (1 - (1 -1~1=)-1/2). (2.10) 

Observe that ez is regular at &~ = O. We also record the following useful relations: 

I~l=ez-- 1 - e l ,  (2.11) 

e~ + e2 + ele2 = 0 .  (2.12) 

The remaining quantities a ~ and ~ ,i are given by 

i i ] 
i = - - x / 2 e l ( 8  i --  e2& &i)a~,& , (2.13)  a #  

~ / V , ]  - -  i ~ z l  2 , - , i  2 i k - -  
--  2e2q~ O~,dp i + t ~ e l o  i -  e 2 &  &i)~b O.&k,  ( 2 . 1 4 )  

where ~ i  is antihermitian, i.e., ~ , i '  = - ~ , 1  / = _ ( ~  i ), .  In these equations we have 
kept the SO(8) duality phase ~7 to make the truncation from N = 8 supergravity 
more explicit. 

The results (2.1)-(2.14) were obtained by solving eqs. (4.3)-(4.6) and (4.14)- 
(4.18) of ref. [8] for the various non-polynomial functions that occur in the N = 8 
theory. These equations were based on the conjectured SU(8) invariance of the 
field equations, and they should also be valid for the submultiplet that underlies 
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the N = 5 truncation. More  precisely, repeating the analysis of ref. [8] for N = 5 
would yield the same equations, apart  f rom an appropriate  relabelling of indices. 
Therefore,  the N = 5 equations can be written down directly, and owing to the 
simple representat ion content of the N = 5 scalars, they can be solved explicitly. 

The action of N = 5 supergravity is invariant under local supersymmetry  transfor- 
mations characterized by parameters  e i. Combining the results of ref. [8] with the 

previous determination of the non-polynomial  functions leads to the fol lowing 
t ransformation rules 

a v a  _i ~ = e  y 0~ i+h .c . ,  

a47~ = 2e//5~. + -* ' 1 - - -  '" ~ .,  + ~/2e,y~or • F - k l C ' l k l  ~ " • • , 

ij ,~iS.kl ,,,k~e . . . . . .  , + 2x/2e, ,~, , )  + h.c. 8 A , = ~ o  - o  O )125 k l l ,  E ~/~,](rnnp 

(2.15) 
"" i j k l m -  ~ - - ~ [ i i  - k ]  . p - r s  . . , 

~ u k  = 8 e l ' } /  at. m -- .5C rs8 or + • 

t~)~  6 7 8 - t* i 
= --r/eiT a ,  + • • , ,  

x/2  i e2 j'~ 1 -k  lmnx 
~(~i = - - - - ( ~ i  "l"--(~i(~ (IrlSjX678-l-gaEiklmn~" )(. ) .  ] el  ~ e l  

We have given the variations of the spinors only modulo terms that are quadratic 
in the Fermi  fields. In (2.15). we have also introduced the U(5) covariant field 
strength 

F+t.vii = sii'kl (F+txvkl-{- O +lzukl) • (2.16) 

ii Note that apart  f rom the variations of the vector fields A ~,, the transformation rules 
(2.15) are manifestly U(5) covariant. 

An alternative approach to obtain N = 5 supergravity is by consistent truncation 
of the complete N = 8 theory as it was constructed by Cremmer  and Julia [7]. For 
N = 5, their formulation is invariant under local U(5) and rigid SU(5, 1). An 

important  aspect is that the scalars are then described as the coset space 
SU(5, 1)/U(5). The N = 5 theory presented in this section would then be obtained 
upon a suitable U(5) gauge choice. Indeed our results are entirely consistent with 
these ideas, and the scalars ~b ~ can be viewed as corresponding to a particular 
parametrizat ion of the coset space, SU(5, 1)/U(5). Namely, one finds the following 
coset representative [14] in terms of (~i(1(~[ 2~- 1): 

"¢~AB = t[~iJ _e2qbiqbi]elcbi el~b']el -J ' (A, B = 1, . .  . ,  6) .  (2.17) 

Hence ,g is an element  of SU(5, 1), decomposed into blocks according to its compact  
SU(5) subgroup. The Killing metric of SU(5, 1) is r/AB = diag(+ + + + + - ) ,  and we 

have 

~7 -~ = r /X'r / ,  det ~7 = 1. (2.18) 



B. de Wit, H. Nicolai / Extended supergravity 103 

To show the compatibility of (2.17) with our  results it suffices to calculate Z-~0 .Z  
which takes values in the Lie algebra of SU(5, 1). A straightforward computation 
yields 

1 ~  i l~i ~ k  
~ff. I~j--6 J I~k -~x/2ai,] (2.19) 

The elements of the maximal compact subalgebra U(5), which are entirely given 
in terms of ~ f j ,  will play the role of the gauge fields of U(5). This is indeed 
consistent with the way in which ~ .j occurs in the lagrangian and transformation 
rules. Hence,  it is natural to introduce U(5) covariant derivatives which allow us 
to re-express the non-diagonal blocks in (2.19) as 

( ~ , y .  Z-~)An= _ 1 ~ [ 0  

with 

( ~ , ~  )A B =-- al~.,~ AB -- ~ Ac~pCB , 

~1~ i 
: t --6o]~'alz k l O k  ] . 

|2  U,J !~:ica~ k ~.AB 
0 3~'~'Jtx k 

(2.21) 

The invariant lagrangian for the scalars is then proportional to 

~scalar - -Tr  ( ~ , , ~ , 2 ;  -1) = - T r  ( ~ 2 ;  • , a~- - l )  2 , (2.22) 

which, by eq. (2.20), is identical to the corresponding term in eq. (2.1). These 
observations complete our discussion of extended supergravity with rigid SO(5). 

3. N = 5 supergravity with local S O ( N )  

The extension of the rigid SO(5) invariance of N = 5 supergravity to a local 
gauge group follows the same pattern as the treatment for lower N's .  Namely, one 
first makes the derivatives and the field strengths covariant with respect to local 
SO(5) using the vector fields A~ as SO(5) gauge fields. That  is, we perform the 
substitutions 

• j,k a~,Tjr..j. --> ~,~Tjl...j, ' --a~,Ti~...j, --gA~ikTkj2...j, -- . . . .  gA~ Tjl...jn_Ik, (3.1) 

on all SO(5) tensors Tj~...j,, and 

F.~ q = 2at~,A~l 'i --> F.~ ° = 2at.A~l 'i - 2gAr.ikA~ kj (3.2) 

All fields, except A~, have been assigned to SU(5) representations, but since we 
gauge only the SO(5) subgroup, the SU(5) invariance of the field equations will be 
violated for finite gauge coupling constant g. 
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When establishing the supersymmetry  invariance of the modified action, the 
commuta tor  of two covariant derivatives leads to a new g-dependent  variation 
through the Ricci identity 

[~ , ,  ~ ]  = - g F ~ .  (3.3) 

To cancel the effect of (3.3), one must introduce new terms in the lagrangian and 

transformation rules, in complete analogy with lower N calculations [2, 4, 5]. These 
terms in turn give rise to new variations which no longer contain the field strengths, 
and the requirement  of supersymmetry  then leads to a unique determination of all 

extra terms. Since a large number  of independent  variations must cancel in this 
way, it is by no means clear that the result of such a calculation is internally 
consistent. But for N = 5, this approach turns out to be successful. We have 
determined all modifications to lagrangian and transformation rules, and established 
the invariance of the action for all variations, except those involving quartic spinorial 

terms. Let  us now summarize our results. 
We parametr ize the g-dependent  modifications in the following way: 

- ii t~g~b i~ = - ~ g e j % , A 1 ,  ( 3 . 4 )  

6g,~ qk = - - 2 g ~ l A 2 t  iik , (3.5) 

6 ~  673 = -2grlgiA4i ,  (3.6) 

. ~ g  : , ~ ( 1 ) + , ~ ( 2 ) , + , ~ ( 3 ) + , ~ ( 4 )  , (3.7) 

with 

- 1  (1) V .o97~ =g212+4e~ 1 4 4 - ~ e  ~ (14,1 - ( 4 , , ) = ( ~ ; ) ~ ) ] ,  ( 3 . 8 )  
-1  (2) ii -- ~ v  V .o~g =~/2gAl¢,io" $~j+h.c . ,  (3.9) 

--1 (3) 1 ~ ]kiWi ~ j_ i - - t~  678 
V . ~ g  =~g t" ] t2 i  W ~ ' Y  X j k l T g ' r l A 4 ~ O i T ~ X  + h . c . ,  (3.10) 

- 1 (4) ~ ijk,lmn - i j k l m ~  ~ m - __ 
V . ~ g  = gl -13  X i j k X l m n  +grlAse cptcp X i i k X 6 7 8 - l - h . c .  (3.11) 

Here  we have used the definitions 1~12=--~'~, and (~bi)2-dpiCbl. Notice that the 
lagrangian does not contain terms quadratic i n  )(678. The quantities A1_5 depend 

on the scalar fields ~b i and are given by 

A~ ii 1 2 2 i = ex6 +~e2(l~l ~ ~j + I~1%,~ i - 2(4',,)24"4/), (3.12) 

. . . .  i ikmn t ̀ . i n t .  ~ 2 ~ i i k  - -  i n  A2t"k=ele'lkt"dpm--exe2e u,,,u, ~t+'~elOlmnCP,nO , (3.13) 

m ~ k ,  lmn 1 ~ iikpq lmnrs t 
= ~ff '~V/-,e e e p q r s t A 4 ,  (3.14) 

A i4 _e2c~i 2 i = -ele2(~bj) ~b , (3.15) 

1 2 A5 = - ~ x / 2 e l .  (3.16) 

Observe that our notation is such that the functions A~_5 are t reated as if they 
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were SU(5) covariant,  although their explicit expressions are only covariant with 

respect to SO(5). 
We now briefly compare  our results with those of gauged SO(4) supergravity 

which also contains the cases of N ~< 3. In this truncation, we have (i,/', k, l = 
1 . . . . .  4) 

~ 5  "~" ~ , ~ 1  . . . . .  (~4 = 0  , el = (1 - Id'[2) -1/2 , 
(3.17) 

"" A i l k ,  Iron - -  A'I '  = e18  ii , A 2 t  ilk = e l e  iiktdp, ,-13 -- O, 

and also 

,t//5 : X 678 ----- X i]5 = 0 • (3.18) 

Because all non-trivial tensorial structures disappear for N~<4 this leads to a 

considerable simplification in the formulas (3.8)-(3.11). In particular, we note that 
rigid U(1) invariance in A2 is restored in the N = 4 truncation. Eqs. (3.17) are in 
agreement  with the results of ref. [5]. 

4. Conclusions 

In this paper  we have demonst ra ted  that N = 5 supergravity with local SO(5) 

exists. The exciting implication of this result is that there is now at least one example 
to which the considerations of ref. [12] apply: the cosmological constant and thus 
the gauge coupling constant are only finitely renormalized at one loop in this theory. 
The construction of gauged N = 5 supergravity lends credibility to the results of 
ref. [12] which would have otherwise consisted of vacuous statements.  Our  results 
also show that there is no borderline which qualitatively separates the cases N ~< 4 
and N > 4 .  

In view of our construction, one might wonder  whether  extended supergravity 
theories with local SO(N)  also exist for N = 6, 7, 8. There  is no group theoretic 
argument  against such a construction since the corresponding graded de Sitter 
algebras are known to exist [15]. We have, in fact, a t tempted  to gauge SO(8) in 
the maximally extended N = 8 theory. So far, however,  our  results are incomplete 
being based on the partial construction of ref. 16], and we have therefore relegated 
them to an appendix. For  a full construction, a knowledge of the complete N = 8 
theory in its manifestly SO(8) invariant form is an obvious prerequisite. 

There  also remain a few alternative possibilities to be explored. For instance one 
may at tempt  to gauge a subgroup of SO(N).  That  this idea is not as outlandish as 
it may seem at first glance is evident from the existence of the gauged N = 4 theory 
in the version with local SU(2)× SU(2) where one has two independent  coupling 
constants [4]. However ,  the case of N = 4 is special not only in that the covering 
group of SO(4) is SU(2)× SU(2) but also in that, surprisingly, there is no rigid 
graded de Sitter algebra for SU(2)× SU(2) [16]. For N = 8, another  possibility is 
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to try to gauge the SO(7) symmetry in that version of the N = 8 theory that is 
obtained by direct dimensional reduction f rom l 1-dimensional supergravity [17]*. 

However ,  in this formulation some spinless degrees of f reedom are represented by 
antisymmetric tensors. Therefore  the problem of minimal coupling inconsistencies 
seems hard to avoid in this case. 

At  any rate, further studies are clearly necessary, and we believe that more 
structure remains to be unravelled for N ~> 6. The intriguing quantum propert ies 
of N i> 5 models should be regarded as yet another  indication that supergravity 
offers a promising approach to the construction of a consistent quantum theory of 
gravitation. 

Appendix 

A N  A T T E M P T  A T  G A U G I N G  SO(8) 

The extension of the rigid SO(8) invariance of N = 8 supergravity to a local 
SO(8) invariance is completely analogous to the procedure outlined in sect. 3. We 
here simply collect our lowest order results; for the pure N = 8 lagrangian and 
transformation rules, we refer the reader  to ref. [6] on which our calculations are 
based. We also reinsert appropriate  powers of x to make  more  explicit which 
order of ~ we are dealing with. 

We have found the following g-dependent  new variations (i, j , . . .  = 1 . . . . .  8) 

- ~  e j y , ~  t ,  (A. 1) 
x 

8g,~ iik= - 2  g ~:tA2tiJk, (A.2) 
X 

with** 

Fur thermore  

ij 4 5  
A ~ i = e18 + - ~  x3 dp'kmnqbmnpqdffqk' + O ( x 4 ) ,  

%/2 ijkl 3 ilk rspq A2/jk = - - - ~  e l~  - gxan~cbl,~¢~ + O(x2).  

(A.3) 

(A.4) 

(A.5) 

* This suggestion is due to E. Cremmer  (P. Townsend,  private communication).  Note that the  covering 
group of SO(7) is the spin 7 group which has an eight-dimensional  fundamenta l  representat ion to 
which the supersymmetry  generators  and the gravitino fields are assigned. 

** Using the identit iesin the appendix of ref. [8], one can show that the real part of the cubic term in (A.3) is 
proportional to 8 o . 
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where 

with 

2 

V - X ~ L f g m = g ( 2 + 4 e 2 ) + O ( x  °) 

-1  (2) V ~ g  =~/2 g -i ,~ j -Alli~O,or ~ +h . c . ,  
x 

- 1  (3) 1 A i T ~  jkl 
V ~,~g = 6gldtEiklq/i  ~/t~X + h . c .  , 

-- 1 (4) ~ ijk,lmn - 
V ~ g  = g / ' t 3  Xijk)(.lmn + h.c. ,  

(A.6) 

(A.7) 

-(A.8) 

(A.9) 

1 pclr stu 1 -- 
A 3iik, lmn ~" ~8  i ik ~ Iron (~.1 pqst~ru --  ~x/2 xq~ pq,~Cb stuo 

+ 3x/2xdppq,odpstr~) + O(x2 ) .  (A.10) 

The function el here corresponds to the one that has been introduced in (2.9): 

e 1 - (1 - 9~x 2~t) ijklf~iikl) - 1 /2 .  (A. 11) 

As for our notation, t he  comments  after eq. (3.16) are also valid here. Observe 

also that the scalar field potential  may be represented as the sum of two terms 
proport ional  to A 1 rrA ~ i ikt and A E i k l A 2 i  , respectively, as in the case N = 5. 

We have now established the invariance of the action with respect to the above 
modifications for the following terms; ggd/F,~ terms through order x 2, ggxF,~ and 

2 -  g~/,~,~b terms through order  x, g~x~,¢b a n d  g2~O terms through order x °, and g eg 
terms through order  x -1 

The N =  5 truncation is obtained as follows [6, 7]: we keep V,a;  ~O~; A~;  X iik, 
678 m 

X and ¢~i678 ~ --N/2n~bi as well as d~iikt = --x/2e~jkt,,dp (i, j . . . .  = 1 . . . . .  5). There  
is a direct correspondence between AI_3(N = 8) and A~_3(N = 5), whereas the 
functions A 4 , 5 ( N  = 5)  originate f rom the N = 8 results for A2 and A 3 ,  respectively. 
In this way, each te rm in (3.4)-(3.11) has its direct counterpart  in eqs. (A. 1)-(A.9), 

and we have verified up to the available orders in x that there is complete 
agreement .  Hence,  we have a powerful  check on our N = 8 calculations. 

We also note the amusing fact that the N = 5 truncations of the second and third 

terms in (A.10) vanish in the XqkXiik and )(678X678 sectors; they only contribute in 
the )(i/k)(678 sector which is again in agreement  with the results of sect. 3. Further-  
more,  the cubic terms in (A.3) vanish for N = 5. 

It is clear that we have some evidence that a gauging of SO(8) in the N = 8 
theory is possible although an obstruction could arise in higher orders of x. 
However ,  our  complete N = 5 results impose the non-trivial constraint that such 
an inconsistency must vanish at least in the N = 5 truncation. 
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