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The path integral for the gravity sector of supergravity, i.e., after integration over the spin-3/2 field, is formally shown 

to be governed by the linearized Einstein action in terms of redefined field variables. The exponential of the action now be- 

ing a product of gaussians, positivity of the action in euclidean signature is simply achieved by analytic continuation in those 

field components whose squares initially appear with the wrong sign. 

Path integral quantization of gravity encounters 
the problem that in euclidean signature, the Einstein 
action is not positive. Because of its nonlinearity, rath- 
er complicated prescriptions have been devised to 
make the integration well defined [l] . Since super- 
gravity has led to a number of other improvements 
over the Einstein theory, a natural question is whether 
the effective quantum-gravity sector defined by inte- 
grating out the spin-3/2 field there is governed by a 
more amenable action. We shall show that this is in- 
deed the case as a consequence of an a priori even 
more surprising result: formally, this action is that of 
the free Einstein field in first-order form, quadratic in 
a redefined set of variables. Although it still contains 
negative terms, these occur as squares of field variables 
and become positive through the usual analytic con- 
tinuation prescription for a gaussian integral with the 
wrong sign in the exponent. Our basic result is a conse- 
quence of supersymmetry, and we begin with a brief 
review of its antecedents. We will work in the 
euclidean signature throughout, which is, of course, 
perfectly compatible with supersymmetry [2] . 

Globally supersymmetric theories have the remark- 
able property [3] that their bosonic fields may be in- 
vertibly expanded in terms of free fields and that the 
Jacobi determinant of this transformation equals the 
MSS determinant [4] obtained upon integrating out 
the fermionic modes [5] in the over-all functional in- 
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tegral. More precisely, one may reexpress bosonic ex- 
pectation values of an operator in the interacting theo- 

ry by free field expectation values according to 

(F(A)), -SF(A) e-S(h;A)D(h;A) dA 

= s F(A(h;A’)) e-SO(A’)dA’ (1) 

= (F(A(h;A’)yo, 

where, as in ref. [3] whose notation we follow, (A, X) 
stand for all bosonic fields and coupling constants of 
the theory under consideration, S(A,A)[So(A)] for 
the full [free] bosonic action integral and D(h, A) for 
the MSS determinant. Formula (1) is based on the 

fact that the transformed fields obey 

So(A’(h;‘4)) = S&A) (2) 

and 

det[6A’(x;X,A)/&lb)] =D(h;A) (3) 

for any value of h. Of course, the theory is still non- 
trivial since the effects of the interaction now reside in 
the transformation and thereby in the complicated 
form of F(A@, A’)). This result is quite formal; it re- 
quires only that the vacuum functional 2 be h indepen- 
dent and that the original action be quadratic in the 
fermionic fields. As pointed out by Zumino [6], the 
first criterion is always met if the supersymmetry is 
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not spontaneously broken. 
The procedure outlined above is also applicable in 

the locally supersymmetric framework of supergravity 
[7,8] . Formally, the vacuum functional in supergrav- 
ity is constant because, at least for asymptotically flat 
spaces, the energy is the square of the spinor charge 
and the flat space (vacuum) energy vanishes [9]. (Clas- 
sical gravitational energy is also positive and vanishes 

at flat space, but we do not expect this to persist for 
quantum gravity. We also mention that supergravity 
with a cosmological term, although supersymmetric, 
would not have constant Z because the cosmological 
constant gets multiplicatively renormalized.) The re- 

quirement that the action be quadratic in the fermion 
is automatically satisfied for N = 1 in first-order for- 
malism [8], where the vierbein ePa and the connec- 
tion mPab are treated as independent fields. For high- 
er IV, it is not clear whether all quartic terms can al- 
ways be removed by appropriate variants of first-order 
form. 

There will be several ghosts coming from the vari- 
ous local invariances of the theory. The fermionic 
ghosts, due to general coordinate invariance and local 
SO(4) invariance, contribute to the fermionic deter- 
minant just as in the case of supersymmetric Yang- 
Mills theories [3] . In addition, local supersymmetry 
requires bosonic ghosts which would, in general, con- 
tribute to the bosonic part of the action. To avoid this 
we choose a flat space gauge-fixing term proportional 
to 

%f - (6ac11L~~a)Ybab(6CVy,~v). (4) 

The associated bosonic ghosts decouple from the phys- 
ical sector of the theory and hence may be discarded. 
This is purely a matter of convenience as the path inte- 
gral is gauge-invariant. 

Having satisfied its assumptions, we can now take 
over the results of ref. [3] : there exists a non-linear 
and non-local transformation of the bosonic fields * ’ 

e 
w -+ ela (e, a), uCtab + Wlab (e, a), (9 

such that the functional measure of the full theory is 
mapped into a free measure (we set K = 1) 

*r Throughout this paper we expand about a flat-space back- 
ground. However, it is conceivable that the results also ex- 

tend to curved backgrounds. 

26 

exp (s R(e, w) d4x D(e, w) de do 

= exp 
U 

I?,(e’(e, w), w’(e, 0)) d4x (6) 

X de’(e, w) dw’(e, w). 

Here, a denotes the sum of the usual scalar curvature 
density R and its associated gauge-fixing term f 2 ; ko, 
R, and f. represent the corresponding quantities of 
the free massless spin-2 theory; we have neglected the 
gravitational boundary term. Note that in pure quan- 
tum gravity the ferm.ionic spin-3/2 determinant, which 
is essential for the cancellation of the Jacobi determi- 
nant of the field transformation, is absent. The action 
then acquires an extra part proportional to the loga- 
rithm of this determinant and is no longer gaussian. 
Thus, although the transformation still exists, the con- 
siderations below are not applicable there. 

This linearization is perhaps less surprising in view 
of the fundamental result of Morse theory [lo] which 
states that any function can be written as a quadratic 
form in some open neighbourhood of each extremum 
if det f" # 0. The transformation leading to the qua- 
dratic form is not unique; the remarkable property of 
supersymmetric theories is that, for them, there exists 
one such reparametrization whose Jacobi determinant 
cancels the MSS determinant. 

At this point, it would be convenient to integrate 
out the connection o’ in order to reach the usual sec- 
ond-order form of the free action in terms of e’. How- 

ever, this cannot be done in general since even the ex- 
pectation value of functions of ega alone will involve 
both e’ and w’. This is the price of having to use the 
first-order form, and is traceable to the presence of 
torsion in supergravity. Nevertheless, the action 
JRO(e’, w’) is still quadratic which is sufficient for our 
purpose. From its definition it can be written as 

JRo(ef, w’) d4x =J(GllvativPn - WaGa) d4x 

(7) 

+ [-h s h 
@P,P &L/J 

++h h 
a&P 0101311 

+ f 2(h)] d4x. 

Here, W E w’ - o’(e’), WCC = WaaP and f 2(h) is equal 
to, and therefore cancelled by, the usual harmonic 
gauge choice 
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and we have used the fact that, in second-order form, 
only the symmetric field h,, E e,, + eVti propagates. 
There are negative terms of two types. The first are 
those in the non-propagating W part and would in any 
case also be present if we could freely carry out the W 

integration. Defining 2wi, z WPVc + WVP,,, it is clear 
that -w: is the negative term there. The second nega- 

tive term comes from the (i3Ph,,)2 trace mode, corre- 
sponding to the conformal one in Einstein gravity, 

which cannot be removed by any gauge choice. 
We observe that the various terms in the action can 

be written as squares of independent irreducible parts 
(e.g., the traceless zPV and h,,) of the variables. Thus, 
the present theory, although inequivalent to pure grav- 
ity, also has a negative action problem. However, it is 
easy to provide a mathematically acceptable solution 
in this case. The analyticity properties of the gaussian 
suggest that one simply rotates the integration contour 
and makes the redefinitions h,, -+ i/z,,, etc., as advo- 
cated by the Cambridge school [l] In this way, the 
exponent of the action becomes negative while all ex- 
pectation values remain real, any odd powers vanish- 
ing upon integration. Also, since the rotations are car- 
ried out on irreducible (with respect to the flat back- 
ground metric) parts of the field, they will not spoil 
covariance. We mention in this context that even in 
euclideanized globally supersymmetric models, the 
auxiliary fields enter with the wrong sign and must be 
dealt with in a similar fashion [2] , being akin in this 
respect to the “auxiliary” 0 fields. 

In view of the formal nature of the above considera- 
tions, we now exhibit a transformation which linear- 

izes the Einstein action to cubic order. For simplicity, 
we proceed in second-order metric form and use the 
linearized gauge-fixing term (8) with no cubic contribu- 
tion. Then, it is to be shown that starting from the 
free gauge-fixed action 

@o(hl) d4x = s”;,(-A)@;, - +FPyh’) d4.x, (9) 

there exists a transformation hlv = k,, t H,,(k) such 
that its insertion in (9) yields the gauge-fixed Einstein 
action through cubic order. It suffices to know that 
the cubic terms can all be schematically written in the 
form 2 I (kpv ~ ~6p,k)[ak*ak]p,dx. Since 

s i,(k’(k)) d4x =Jio(k) d4x 

(10) 

+ 211$,(k)(-A)(kPV - +Fpvk) d4x + 0(h4), 

it follows that HPV equals S C(X - y)[ ah -ah] ,+,of) dy 
where C is the inverse of -A, i.e., the usual propagator. 
This defines the desired transformation. Its Jacobi de- 
terminant to O(k) has the generic form (dropping 

space-time indices) 

det(Fk’/Fk) = exp [tr log(bk’/dk)] 

= i + JC(X -~)aPk~)(a/ax~)6(Y -x)d4x d4y 

+ O(k 2). (11) 

The integral vanishes because a,C(O) = 0 in any reason- 
able regularization scheme. The MSS determinant for 
our special gauge choice (4) becomes (S E $C) 

[ ( 
det hPV6(x -y) t iP’CIPJd4z S(x - z) 

l/2 

x [YSQ,,(Z)ap + Y&f-y&&N V-Y) 11 
and it, too, equals unity to first order ink. We are ful- 
ly aware of the fact that this agreement to lowest order 
does not provide a very strong check on our theorem. 
However, the algorithm given in (3) in principle allows 
the construction of the transformation to all orders. 

While our procedure is clearly valid to arbitrary K 

and loop order [since these enter only through 

F(e(e’, 0’)) and not in the free action], it is highly 
formal and as such open to mathematical objections. 
The most important is perhaps that we really know 
nothing about the behaviour of the transformation 
which turns the interacting measure into a free mea- 
sure. However, at least in the global case, there is some 
reason to believe that this transformation is well be- 
haved in the sense that the transformed fields do not 
increase exponentially as functions of the non-trans- 
formed fields. For, if in eq. (2) we scale the field A’ 
by a factor I, the left-hand side grows as t2 which, by 
eq. (2), dictates the scaling behaviour of A(tA’). If the 
highest power of A in S(A) is p, then we must have 

A(tA’)= O(t2jP) as t + 00 for fixed A’, (13) 

27 
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which suggests that products of A (X, A’) are integrable 

with respect to the gaussian measure dpo(A’). A simi- 

lar argument may be given in the first-order formula- 

tion of gravity. In spite of the frailty of such argu- 

ments, we view our result as a further indication that 
the difficulties of quantizing gravity may be overcome 
in the wider framework of supergravity. 

We thank B. Zumino for insisting on further clarifi- 
cation of an earlier version. 
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