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Summary. We report on a generalized JWBK-method for high-
frequency waves travelling through inhomogeneous, moving
Plasmas imbedded in arbitrary relativistic gravitational fields.
In particular, a generalization of the standard formula for Faraday
rotation is presented.

Key words: plasma physics — Faraday rotation

High energy astrophysics strongly suggests that there are many
sources where the interplay between electromagnetic fields, plasmas
and strong gravitational fields plays an important rdle. Most
prominently, this concerns accretion processes onto neutron stars,
black holes in X-ray binaries, quasars as well as certain phases of the
early universe.

We report here our results on the development of a formalism
describing the interaction of high-frequency electromagnetic waves
travelling in some arbitrary curved space-time, in which a plasma
is embedded. Our treatment is more systematic and complete
than the previous ones (Madore, 1974: Bicak and Hadrava, 1975;
Anile and Pantano, 1977, 1979).

In particular we present derivations from Maxwell’s equations
for assumptions used by Bicak and Hadrava (1975) to calculate the
rays. Also, we treat a magnetoactive plasma, i.e. an anisotropic
medium—in contrast to these authors. Motivated in part by the
papers of Anile and Pantano (1977, 1979) we, however, derive (also
unlike Bi¢ak and Hadrava) transport equations for the amplitudes
and use them to generalize the law of Faraday rotation.

Let (M, g,,,) be a space-time in some parts of which we imbed a
cold, pressure-free two-component plasma. The number density and
four-velocity of the electrons are denoted by n, u®, and J* stands
for the ion-current density. If e, m are the charge and the mass of the
electron and F,, is the electromagnetic fields, we consider the
usual background system of differential equations

ViFy =0, (1a)
V, F? = enu® + J°, (1b)
WV, ut = %F"bu", (1o)

Send offprint requests to: R. A. Breuer

* Supported in parts by the Deutsche Forschungsgemeinschaft
** Present address: Max-Planck-Institut fiir Plasmaphysik, D-8046
Garching, Federal Republic of Germany

V () =0,

a, _—
uu,=—1.
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Neglecting perturbations of g, and J% one obtains for small pertur-

bations ﬁab, #i, 4* of the background fields (F 4 n, u®) the perturbed
system of equations

ViFy =0, (a)
V,F® = e(fiu® +nit?), (2b)
u"Vbﬁ"+ﬁ”Vbu"=-en—l(F",,ﬁ"+ﬁ“bu"), @0)
V(i + nit¥) =0, (2d)
', =0. (2e)

If we eliminate 7i and #°, and introduce a potential 4, via F,, =
2V[aAb], A, u"=0, egs (2) reduce to the fundamental perturbation
equation (Breuer and Ehlers, 1980a)

{ heutV (VP — 8° Vo) + (w‘" +w, %+ 6% + Oh*

e -
+o E“u°> (VP = 0°V°) + Zh™u'V, + w2(0® — w“”)}Ab =0, (3)
where V, =V V, and

E'=Fu’, B,=hSh'F, h,= Gap T UMy

e

a __ __ a a__ __ 1 abed
oy =——B, o=-—;"uw,,
m
ez

2__ -7 a__ @ a ., .4C a
w," =1, Vo' = o + 0% — uuV u,
— % = a
0=0°=V.u.

Equations (3) contains the influence of the gravitational field as
well as that of the in general inhomogeneous, moving plasma and
the background electromagnetic field on the perturbation Fab, via
covariant derivatives, the matter terms and the a)L"" and E*—con-
tributions, respectively. In the following we outline an algorithm
for obtaining asymptotic solutions of eq. (3).

In Breuer and Ehlers (1980a) we have justified this algorithm
as an approximation method. In particular, we proved existence,

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1981A%26A....96..293B

FTI981ARA © . 796. ZZ93B0

294

uniqueness and linearization stability of solutions of the Cauchy
initial value problem for the background system and the perturbed
system, and indicated how error estimates may be found.

‘We now apply the method of 2 scales (Witham, 1965) to Eq. (3).
This equation has in particular solutions which are locally appro-
ximately plane and monochromatic on a scale A much smaller than a
second scale L (e.g. radius of a star, black hole or quasar), in which
the background variables vary. In order to approximate such
short-wave solutions by asymptotic series we introduce the ratio
¢ = A/L < 1. Then we define a dimensionless covariant derivative D,
and dimensionless functions of (at most) order unity, cg"", g"", 1(;2" via
D,=LV,, o Lo®, E°=

= Lo®, ¢*= LE°. @

The D -derivative of a function varying on the scale L has at most
the order of magnitude of the function itself. In term of these dimen-
sionless operators and functions Eq. (3) becomes

3 ac, d ac ac ac i a,c
{I:a (h uDd+(g +gh +w +m§u +

+ 82(/1@“;)]- [D?, — 8.D%,] + &Aoo, (*u'D, + §° — cgﬂb)},ab =o0.

)
The two-scale-ansatz for ,:ib is
A (x, 6) ~ Sy (f> A,(x) (6)
&0 n=0 \'!

with the gauge u“éa =0 for all n = 0. The parameter-dependent,

dimensionless operator in Eq. (5) together with the ansatz (6) allows
us to treat efficiently dispersive properties. The algorithm given
here generalizes previous ones to systems of higher than first order
and to operators which depend polynomially on a small parameter.

Our approximation is based on taking the limit ¢ — 0 by keeping
A fixed and letting L— co. We consider Aw,® and Aw), as bounded,
e-independent coefficients in (6). In this version of the 2-scale-
method one keeps a specified wavelength-range and improves the
approximation by increasing the scale of inhomogeneity. Unlike
the usual geometrical optics approximation, which ‘prefers’ only the
highest derivatives of (5), (no dispersion), here the influence of
matter on the wave is taken into account already in the lowest
approximation.

In lowest order in ¢, Eq. (5) yields the homogeneous linear
polarization condition

L4, = [ + i) (Ph* — k) + 0wlh®] 4,=0 (7)
where
L=S,=k,+ou,P =k -0’ 0=—1u"

Let R” be an arbitrary, smooth slowly varying solution of Eq. (7). We
denote the physical solution by A“ = a,R*?; the complex scalar q,, is
to be determined below.

From (7) we obtain the dispersion relation det [g,“b(x, D]=0,
which is formally identical to that obtained for cold homogeneous
plasmas in flat space-time. Thus, we recover—under generalized
conditions —the standard results of plasmas physics in flat
space-time. If #(x, I) is a real factor of det [ L*"], then the rays and
phase velocities can be obtained from the canonical equations
e ] oH

oLt A, ®

a

and the constraint #(x,])=0. For the high-frequency branches

of the dispersion relation we obtain the ray vectors

X w 2 1/21 2
X4 oc a)Lw3{ + l"[cosz,ot + (2—:)) sin ot:l 2(;5) w, " cos a},
©

where « = < (B,k). To complete the construction of 42, a, has yet
to be determined by the next-order-equation (in ¢) in (5), symbolically
written as

ab 4 ab §
P4, + [*4,=0. (10)
If N, is a left nullvector of [, N, [’ =0, then N, [**4, =0 is the

transport equation for a,. It is of the form
(T°D, + f)a, =0, (11)

where f is a known function. We have shown (Breuer and Ehlers,
1980a) that the transport vector T* is tangent to the ray given by (8)
and (9). Thus, the linear, homogeneous Eq. (11) determines the
amplitude a, along each ray via initial conditions. The lowest order
amplitude e/*a,R? can then then be expected to be an approxi-
mation of (5) w1th an error of order e.

In the case of a stationary gravitational field filled w1th a
stationary background plasma the rays can be characterized by a
Fermat principle (Pham Mau Quam, 1962; Synge, 1964). If this
principle is applied, e.g., to the deflection of radar waves by the
combined influence of the Sun’s corona and gravitational field, one
recognizes that the total effective index of refraction is the product
of that due to the plasma and that due to the gravitational field.
The latter is given, in lowest weakfield approximation, by

n_..=1—2(Newtonian potential).

grav

If there is no magnetic field, B = 0, then the rays are the timelike
geodesics associated with the conformal metric w? 29 corresponding
to the eiconal equation w, “2g®8,,S, ,+1=0.

The polarization condltlon in thls case reduces to the transver-
sality condition k* A 4,= 0, i.e. the mode is degenerate, and T* o .
Then eq. (10) becomes

w2 .
{p",,[lcvc +iV ]+ —L!;—é)ab} =0, (12)

where p®, projects onto the plane orthogonal to the spatial propaga-
tion direction k= A%, and clo"b =p® w°p%, is the transverse part
of the plasma vorticity. The first term in (12) is the well-known
vacuum part of the transport equation, while the second term intro-
duces a rotation of the wave vector due to the vorticity of the plasma.

The transport according to Eq. (12) preserves the helicity and
eccentricity of the polarization ellipse along each ray; the axes
of the polarization ellipse rotate along a ray relative to “quasiparal-
lelly” displaced directions at a rate determined by the vorticity of the
electron fluid. (A vector Z° is said to be quasi-parallelly displaced
along a curve x%(4), if p?, x°V,Z? =0.)

The Hilbert-norm of the amplitude, | 4 a| = [A A"]“ 2, changes
according to the conservation law

v (4] =0 (13)

which can be interpreted as the constancy of photon number (Breuer
and Ehlers, 1980b).

In a magnetized plasma, B+ 0, the rays can be computed
—to good approximation—as in the case B=0. Also, the con-
servation law (13) remains valid. There are two non-degenerate
modes, however, called the ordinary and extraordinary waves,
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which are practically circularly polarized near places where the

magnetic field intersects the rays orthogonally, and where their

polarization states vary rapidly with the angle « =< (B, r). The

phase of these two waves changes differently along the rays. There-

fore, if a wave enters a magnetized region of a plasma, the wave

being linearly polarized, it leaves that region again linearly polarized.
However, due to the different phase speeds of its circularly

polarized components in the intervening region and possibly

because of the rotation of the electron fluid, the direction of polariza-

tion will have changed relative to quasiparallelly transported

axes. The angle of rotation is given by

» 2

s0= (%) o —o e (14

ray Y

Here o, and w, are the component of w, and o, (the vorticity of

the plasma) in the ray direction, and ¢ denotes electron proper time.
This law generalizes the standard Faraday rotation formula in

several respects:

a) it specifies the influence of the gravitational field and the plasma,

both through the geometry of the rays and the quasi-parallel trans-

port;

b) it includes the (usually small) additional rotation induced by the

fluid’s vorticity; and

¢) it incorporates relativistic Doppler- and gravitational frequency

changes.

For more details concerning the methods and results reported here
see Breuer and Ehlers (1980b).
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