Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Propagation of High-Frequency Electromagnetic Waves Through a Magnetized Plasma in Curved Spaces-Time. II. Application of the Asymptotic Approximation

MPG-Autoren

Breuer,  R. A.
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Ehlers,  Jürgen
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

333212.pdf
(Verlagsversion), 676KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Breuer, R. A., & Ehlers, J. (1981). Propagation of High-Frequency Electromagnetic Waves Through a Magnetized Plasma in Curved Spaces-Time. II. Application of the Asymptotic Approximation. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 374(1756), 65-86.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-5E7C-A
Zusammenfassung
This is the second of two papers on the propagation of high-frequency electromagnetic waves through an inhomogeneous, non-stationary plasma in curved space-time. By applying the general two-scale W.K.B. method developed in part I to the basic wave equation, derived also in that paper, we here obtain the dispersion relation, the rays, the polarization states and the transport laws for the amplitudes of these waves. In an unmagnetized plasma the transport preserves the helicity and the eccentricity of the polarization state along each ray; the axes of the polarization ellipse rotate along a ray, relative to quasiparallely displaced directions, at a rate determined by the vorticity of the electron fluid; and the norm of the amplitude changes according to a conservation law which can be interpreted as the constancy of the number of quasiphotons. In a magnetized plasma the polarization state changes differently for ordinary and extraordinary waves, according to the angle between the wavenormal and the background magnetic field, and under specified approximation conditions the direction of polarization of linearly polarized waves undergoes a generalized Faraday rotation.