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N ~> 3 supergravity theories with vanishing one-loop trace anomaly may be constructed fron three basic N = 3 mul- 
tiplets, one of which contains an antisymmetric tensor gauge field. As an example we construct the N = 4 theory and dis- 
cuss its relationship to ten-dimensional supergravity. 

1. N = 3 building blocks. In quantum supergravity the only one-loop counter-term that cannot be absorbed 
by a field redefinition is the Gauss -Bonne t  invariant, whose integral gives the Euler number of  the space- t ime  
manifold, X 

X = (32rr2) if d4xx/~*R;vooR~VOo. (1.1) 

Thus, in dimensional regularization where n = 4 + e is the dimension of  space- t ime ,  the one-loop counter-term 
may be written as 

~XS = -(1/e)  A x. (1.2) 

The contr ibut ion to the coefficient A may be calculated for each spin, and the results are tabulated in a paper of  
Christensen and Duff [ 1]. The conclusion is that  A vanishes for the N = 4 Yang-Mil ls  theory and the N = 3 su- 
pergravity, but  not  otherwise. However, Duff and van Nieuwenhuizen [2] have recently pointed out that these 
numbers depend not  only on the spin, but  also on the field representation. In particular, antisymmetric tensor 
gauge fields are inequivalent to scalars in that they contribute differently to A.  Siegel [3] has used this observa- 
tion to remark that the field representation of  the N = 8 model which is given naturally by dimensional reduction 
of eleven-dimensional supergravity [4] is just such that the coefficient A vanishes[ A is also the coefficient of  the 
one-loop correction to the trace of  the energy momentum tensor, and so the vanishing of  A is also referred to as 
the vanishing of  the trace anomaly. 

As it stands, it is something of  a mystery why the N = 3 and N = 8 supergravity theories should be singled out 
in this way. The purpose of  this article is to dispel this mystery by  showing that supergravity theories with N ~> 3 
may all be constructed (in principle) so as to have vanishing trace anomaly *~ . We start from multiplets o f N  = 3 
supersymmetry which can have, as highest spin, 2, 3/2, and 1. We choose the field representation to be 

i i 3(2) = (ea~; ~,  ,Ag ;X), 3(3/2) = (ffg;Aui', x ~ , A v , A ) ,  3(1) = (A;Xi ,x ;Ai ,Bi ) ,  (1.3) 

where the notat ion N(s) means a multiplet  of  N extended supersymmetry with maximum spin s. The index i runs 
over three values. Remarkably,  the spin and field content of  these multiplets is such that the corresponding la- 
grangian has vanishing trace anomaly, according to the results of  refs. [1,2].  This is the lowest value of  N for which 

, l  The general criterian for this to happen has been given in ref. [5 ]. 
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this is possible and so N = 3 supersymmetry is special in this respect. The supergravity theories for N = 4 to 8 
constructed from these basic N -- 3 multiplets will also have vanishing trace anomaly. The feature which makes 
this possible is the antisymmetric tensor gauge field Auv in 3(3/2) in place of the usual pseudoscalar. Therefore, 
we are led to conclude [5] that N = 4 supergravity should have one antisymmetric tensor, N = 5 two, N = 6 three 
and N = 8 (-= N = 7) five. (For the contribution to the A coefficient five antisymmetric tensors and 65 scalars 
are equivalent to seven antisymmetric tensors, 63 scalars and one Auv o field.) 

Rather than construct extended supergravity theories from N = 3 multiplets, let us first construct a similar set 
of basic N = 4 multiplets as follows: 

4(2) = 3(2) + 3(3/2), 4(3/2) = 3(3/2) + 3(1), 4(1) = 3(1). (1.4) 

The last of  these follows because the N = 3 Maxwell multiplet has the same field content as the N = 4 Maxwell 
multiplet. Using the notation (m, n, P)4 for a composite multiplet with m 4(2)'s, n 4(3/2)'s and p 4(1)'s, the mul- 
tiplets for N = 5, 6 and 8 supergravity can be written as 

5 (2 )=(1 ,  1, 0)4, 6 (2 )= (1 ,  2, 1)4, 7 ( 2 ) = 8 ( 2 ) = ( 1 ,  4, 6)4. (1.5) 

This pattern is familiar from the construction of  extended Maxwell theories from the basic fields. Here, the N = 
4 multiplets play the role of  the basic "fields" for the construction of  the remaining higher N theories. 

So far, this analysis is purely speculative. One must still show that these versions of  the N ~> 4 supergravities 
can actually be constructed. In the following we will construct the N = 4 theory. 

2. N -- 4 supergravity with vanishing trace anomaly. There are two versions of  the N = 4 supergravity theory. 
One has an off-shell 0(4)  and an on-shell SU(4) global symmetry [6], while the other has a global off-shell SU(4) 
symmetry [7]. Both versions contain a scalar field 0 and a pseudoscalar field B, but only in the latter version 
does B appear in the lagrangian only through 0uB. Our strategy ,2 will be to construct a version o f N  = 4 super- 
gravity with one antisymmetric tensor gauge field by making a duality transformation on B. This is only possible 
i fB appears only through 0uB and so our starting point is the lagrangian of  ref. [7]. Duality transformations are 
standard (for example, see ref. [4] ), but  we will repeat the description of  the steps involved in order to make it 
clear how it is that supersymmetry is preserved at each step of the process. 

Wherever we see 0uB in the lagrangian or transformation rules we will write ~ L u and then we will add to the 
lagrangian the term 

L (2.1) e'~vP°~vO# o = "~constraint' 

i.e., the field Mg v imposes the constraint that OpL a - OoL p = 0 which implies (in topologically trivial space-t ime) 
that ½Lg = boB. (The factor of  ½ is for later convenience of normalization.) The new field Lu is taken to trans- 
form exactly as 20uB did previously. It follows from this, that the original lagrangian is invariant up to terms 
containing the factor OuL v - OvL ~. This is so because 0/3 must vanish when L~ = 20~B. Therefore, those con- 
tributions to 0 ~  that do not cancel among themselves can be cancelled by a variation ofM~v in.~constraint. The 
variation o fLu  in .C constraint gives no further contribution to 0.~because it transforms as a total derivative. We 
now have an intermediate form of the theory in which Lu and M~v are independent fields. We pass to the final 
form by eliminating L~ by means of  its algebraic equation of  motion. The final transformation rules are obtained 
by substituting the result for L~ into the intermediate rules. The points we wish to emphasize are that there is no 
need to guess the final transformation laws and that supersymmetry is manifestly preserved by the duality trans- 
formation. 

By starting from the lagrangian of  ref. [7] and following the above procedure we are led to the following new 
lagrangian [also in (1.5) formalism] : 

,2 This idea is originally due to E. Cremmer. See also ref. [5]. 
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"~ = - - (4K2)-1VR - 21e/dP'°a'~JY/d i 75tv~" Dot~o i+½iVxij~xi+½vguvOu(pOvdp 

-- -~ Vexp (-4K40 { [~vMoo - K(A v "aoc , + B v "Bpo)] euvPa} 2 - ¼ Vexp (-2KqS)(Auv'AUV + B ' B  uv) 

- [OvMpo - K(Av 'Aoa + By-Boo)] Vexp ( -  2K~b) 

X elavP°[-(i/x/~) - i  v .t i - i  i • ' - " " __ i l e l  d @ l]lot l ~t ~ ~ ,T l g g l, j. , X 757 7 ~  v -- X 757~t X 

1 - -  i uv P / + (K/2X/~) V e x p ( - K 4 0  - i ~tv - ~i~ Vexp ( - K ~ ) ~  ° C i/ou'y X [~u (C + 6u~')i/~v j -  i t~ u 75(C u +'CUt')i/~t,/] 

- i v ~  i 1K2 
- (K Iv :Y)v% 7 ~/ × ~ ¢  - ~ v[(2i')'5")'v"/ut,~,i)(~ui"/5 x:)  - (2t ') '~"Yu¢vi)(fuixJ)] 

-- 2 K 2 V ] - ( i / 2 x / ~ ) x i 7 5 7 v T u f t ,  i } Xt757u X' - -~ euv°a-fviTo ffoi] 2. (2.2) 

• . • n 2 The conventions are those of  Cremmer et al. [7] .  The index t runs over 1 to 4 ; A  . = (A..,;  n = 1, , 3) is the field 
strength o f A  u. and CUU 6 = ~ni/Anuu + ~ni/Bnuui3' 5 where a and pare  the matri~es defiTaed in ref. [7] .  The trans- 
format ion rules are 

64 = ( l l x / ~ ) e i x  i, 6 V a = --1Ke" -i,y a t~pi, 

6A u = (1/V'~) exp (K6)[~iolii~u i + (i/v"2)TiotijTuXJ], 

6 B  = (itx/"Y~) exp (K~D)['~i[lii')' 5 6 u i + ( ilxl~)gi~ij 3'S Tu Xi] , 

- i  i 1 • -i i i 6 k / v  = [x/2e o~vX - ~le  (3'**~ - 7~b u )] exp(2K~b) 

+ {(K/V~) exp (Kq~) [(~ia g ~u j + (i lx/~)~iaqTu x i ) . A v  + (iei~ijT5 t~uJ - (llx/ '2)~illi /YSTuxi) 'Bt,] - (It ~ u)}, 

2 i = (i/,,/'2) ~i [~4, + ½ i3' s exp (2u~)L ] 3 '~ ½ exp (-g~)  (TC'~no~) i - (3/2x/~)K (~i~'s ×i)xiz's' 

(STY# i = K -1  e-iDu . . . .  - ~i exp ( 2 ~ ) U ' y  s L - (i/2x/~) exp (-g~b) (~C°~)i3,uo ~ 

(~ I2x/2)[(U'), 5 x j ) ~u i - (~ui ' rsx i )7 i] "Is + (~fxl-y)eiikt [(gk ~ f )  ~ _ (fi:')'S Cu i) x~"rs ] 

+ I it~ [(X/T5 T'° X j) ei'y s + (xiTP X f) ~i _ (~iTsTO xi)U,r5 ] ,r~,To. (2.3) 

f"u is the following supercovariant quant i ty :  

£u = e~vp~ [~ k l c  _ ~(A "A o + B v'Bp~,)] exp (~ 4t~¢) 

+ [3K xi ') '5Tuxi+ 2x/~ iK a "~i'v.5~at'glb~-ui + ½ig eUVOoffv,To Ca, ] exp ( -2940 .  (2.4) 

The ant isymmetric  tensor field Muu appears only through the following quant i ty  

G" = e uv°° [OvMoo - t~(A v 'aoo  + g v'Bo~r)] , (2.5) 

which is not  only invariant with respect to O3/uv = 0u~ v - 3v~u, but  also with respect to the transformations 

6A u = 0uk, 6Bu = OuP' 6Muu = ~(Au'Ot, k + Bu'OuP) - (It ~ u), (2.6) 

which generalize the usual gauge transformations of  A u and B u. The transformations (2.6)  consti tute an invari- 
ance o f  the action that ensures that the non-physical degrees of  freedom in A u and B u decouple. The unusual 
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form of  this symmetry will mean that the ghosts required for the quantization of Muv will mix with those required 
for Au and B~. One can check that the symmetry of  (2.6) commutes with supersymmetry and that it also appears 
in the commutator  of  two supersymmetry transformations. 

3. Comments. It is interesting to note that just as the N = 8 supergravity can be obtained by dimensional reduc- 
tion from eleven-dimensional supergravity, so can the N = 4 supergravity theory,  coupled to N = 4 matter,  be ob- 

tained by dimensional reduction of  ten-dimensional supergravity [8,9].  The field content  of  the N = 4 theory ob- 
tained in this way would have one antisymmetric tensor replacing the pseudoscalar and is therefore expected to 
be equivalent to the theory constructed in this paper. It is remarkable that in both cases dimensional reduction 
automatically gives the field content with vanishing trace anomaly,  this is surely more than a coincidence! No 
analogous statement holds for the N = 5, and 6 supergravities, but  we do expect that the N = 5, 6 and 8 theories 
with 2, 3 and 5 antisymmetric tensors, respectively, can be constructed by duality transformations and trunca- 
tions of  the usual N = 8 theory.  This is because, while not all scalars can be replaced by  antisymmetric tensors, 
all antisymmetric tensors can be converted into scalars. In the N = 8 theory as obtained from eleven dimensions 
we start with seven antisymmetric tensors and so we need only trade in some of them for scalars. To avoid a mis- 
understanding, perhaps we should make it clear here that  duality transformations provide a means of  obtaining one 
supersymmetric theory from another inequivalent one. I f  the two theories related by this transformation were 
completely equivalent, then there would be no point  in performing the transformation. 

The N = 4 supergravity with one antisymmetric tensor also has a natural interpretation in superspace. Instead 
of the usual on-shell N = 4 field strength chiral superfield V in which both scalar and pseudoscalar fields appear 
as the first component  [10],  one can consider a real on-shell N = 4 superfield in which only the scalar appears in 
the first component .  The antisymmetric tensor appears through its field strength later in the 0 expansion [ 11 ] .  

Finally, the message of  this paper is that N = 3 supersymmetry is special. This is the lowest value of  N for which 
all supersymmetric theories can be constructed so as to have vanishing one-loop trace anomaly. 

We are grateful to Paul Howe for many discussions of our work and for explaining his own to us. We also thank 
Ali Chamseddine for discussions on the relationship o f N  = 4 supergravity to ten-dimensional supergravity. 
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