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We complete the proof of a recently proposed new characterization of scalar supersymmetric 

theories and extend this result to “non-scalar” models such as supersymmetric gauge theories. The 

new characterization does not make use of anticommuting variables since supersymmetry can now 

be directly understood as a property of certain purely bosonic functional integration measures where 

all Eermionic variables have been “integrated out”. 

1. Introduction 

In a recent letter [ 11, we proposed to characterize scalar supersymmetric theories 

by the following statement: there exists a transformation of the bosonic fields which 

rotates the full (interacting) functional integration measure into a free measure and 

whose Jacobi determinant equals the Matthews-Salam-Seiler (MSS) determinant 

[2] of the theory. The unusual and novel feature of this approach is that it enables us 

to avoid the use of abstractly defined anticommuting objects, a tool which had been 

indispensable so far in formulating supersymmetric theories and exploring their 

properties. Apart from its intrinsic interest, this result deserves further attention and 

study for a variety of reasons; for example, one may hope for easier constructibility of 

supersymmetric models as compared to non-supersymmetric ones. The vanishing of 

the vacuum energy in supersymmetric theories is explained quite naturally if one 

turns around the argument to reconstruct supersymmetric models. Furthermore, it 

appears certainly worthwhile to try to do without quantities which are very con- 

venient algebraically (e.g., in superfield perturbation theory) but, so far, have defied 

analytic treatment (no positivity properties and the like, only formal definability of 

functional integrals over superfields, etc.). 

It is the aim of this paper to extend in several directions the results that have been 

obtained previously. First of all, we close a gap that has inadvertently occurred in the 

proof of the main theorem of ref. [ 11. We then proceed to prove global invertibility of 

the field transformation in some cases, verifying a conjecture made in ref. [l]. 

Thirdly, we generalize our result which, in ref. [l], had been derived for “scalar” 

supersymmetry only, to more sophisticated and physically more interesting super- 

symmetric models, such as supersymmetric gauge theories [3]. These had not been 

treated in ref. [l] because the additional gauge symmetry necessitates a gauge-fixing 
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procedure [4] which either explicitly violates supersymmetry [5] or, through addi- 

tional ghost multiplets, renders the theory considerably more complicated [6]. Even 

though, in the latter case, we expect our theorem to remain valid after a suitable 

reinterpretation, the statement loses much of its transparency and we will therefore 

disregard this possibility. We will rather rely on the non-supersymmetric gauge fixing 

procedure because the main ingredient of our proof, namely the vanishing of the 

vacuum energy in supersymmetric theories [7], fortunately remains unaffected by 

how we fix the gauge. The main theorem then carries over unchanged except that 

now the Jacobi determinant of the field transformation equals the product of the 

MSS determinant and the Faddeev-Popov determinant. The proof is cont.ained in 

sect. 3 of this paper where also an explicit example is treated in some detail. 

2. The proof of the main theorem completed 

We will adopt the same conventions (euclidean metric, etc.) and notations as in 

ref. [ 11. In particular, if 1,9 denotes the (Majorana) spinors of the model, we write the 

part of the action containing these as 

$jh4(A)+ = :@f(A ; A)$ 

where, as in ref. [l], A stands for the various coupling parameters and will be 

occasionally omitted; the bosonic fields are compactly denoted by A. We will make 

repeated use of the fact that the fermions can be “integrated out” [8], for instance 

s 
d$ exp [-i@vf(h; A)$] = det M(A; A)“*= (det M(A = 0; A))“* . D(A; A) . 

(2.2) 

D(A; A) is the MSS determinant in the notation of ref. [l]. At this point, it is 

inessential that the action is quadratic in the fermions since, for non-quadratic 

actions, Berezin’s integral [8] serves as well to eliminate the fermionic variables in 

which case, however, D (A ; A) is no longer the square root of a determinant but some 

less familiar function instead. For the bosonic part of the action we will simply write 

S(A) = S(A ; A); So(A) = S(0, A) represents the free action. 

It was proved in ref. [l] that for supersymmetric theories there exists a trans- 

formation A(x) + A’(x, A ; A) which “rotates away” the interaction in the functional 

measure which formally defines the Schwinger functions, that is 

e -S(A;A)D(A ; A) ,jA = e-So(A’(A~A)) dAt(A; A) . (2.3) 

This, as has been demonstrated in ref. [l], is a consequence of the vanishing of the 

vacuum energy in supersymmetric theories. From (2.3), we infer 

S(A; A) = So(A’)+K(A; A’), (2.4) 
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D(A; A) = eK(h’A’) det 
6A’(x, A ; A) 

aA 
(2.5) 

It was claimed in ref. [l] and will be proved now that, in addition to (2.4) and (2.5), 

supersymmetry also implies* 

K(A;A)= ; A”K,(A)=O (2.6) 
II=1 

at least in the sense of formal power series (which is all we are concerned with here). 

For the proof of eq. (2.6) we split the full supersymmetric action in two parts as 

follows: 

S(A, F, $) = S(A, F)+%WA)rC,, 

where, in two dimensions, 

(2.7) 

S(A, F) = [&,A)‘+ ;F2 + iFp(A)] dx , (2.8) 

and 

Map(x, Y; A) = {Y:J + &,p’(Ab))l% - y) . (2.9) 

F is an auxiliary field and p(A) an arbitrary polynomial in A. Even though (2.8), (2.9) 

are special to two space-time dimensions, there is no difficulty in generalizing to 

other cases, and all steps in the arguments below extend naturally to other super- 

symmetric models. All we need is that the action is quadratic in the fermions and the 

auxiliary fields. Our main input is the infinite set of identities (n E N) 

S(A, F, +)” exp [-S(A, F, qb)] dA dF d$ = 0, (2.10) 

valid for all values of the coupling parameters. These identities are generated from 

the supersymmetry relation 

exp [-(l+ a)S(A, F, I/J)] dA dF d$ = const (2.11) 

by differentiation with respect to CL Although, for a non-supersymmetric theory, the 

vacuum energy may always be made to vanish by adding a suitable function f(u) to 

the action, the identities (2.10) are only obtained if f’(a) = 0 and therefore f(a) = 0 

since f(0) = 0 which is only possible in supersymmetric theories (I am indebted to 

E. Seiler for raising this point.) Introducing a shifted field P(x) = F(x) + @(A(x)) and 

replacing F by fi in (2.8), we obtain 

S(A, F) = S(A)++ F(x)’ dx, (2.12) 

l For simplicity, we assume that there is only one coupling constant A. 
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S(A) = ; j- [@,A)* + p(A)*] dx . (2.13) 

Thus, (2.10) becomes 

0 = 1 dA dF d$( S(A) +; 1 P’ dx +$qM(A)$)n 

X exp [-S(A)-; Ii* dx -f&WAM] 

S(A)“-k exp [-S(A)] det M(A)“’ dA . (2.14) 

The crucial observation is now that the numerical coefficients ck do not depend on 

the various couplings* of the model as may be seen by making the substitution 

$’ = M(h ; A)“*$, d$’ = det M (A ; A)-“* dlj, (2.15) 

in the Berezin integral. Therefore, (2.14) is also fulfilled for the free theory 

j. (;)ck j- SOW-~ =P [-So(A)1 dA = 0. (2.16) 

In the functional integral (2.14), we now substitute A+ A’, so, by (2.3), the 

functional measure becomes a free measure. Eq. (2.4) tells us that (2.14) is 

equivalent to 

io Dk I (S,(A)+K(h; A))“-k exp[-So(A)I (2.17) 

(we have dropped the primes). From this identity, from (2.16) and from the fact that 

co # 0, we get 

(So(A) + K(h ; A))” e-S”(A) dA = So(A)” e-so(A) dA , (2.18) 

for all n by induction. Upon inserting the asymptotic expansion (2.6) into (2.18) the 

left-hand side becomes 

~(So(A)+~~~A"~~(A))"exp[-so(A)ldA. (2.19) 

Differentiating this expression with respect to A and setting A = 0, we obtain 

iI (k”) .,+,.;,,=, (So(A)“-kKJA) . . . L(A))o= 0. (2.20) 

* It is here that we need the action to be quadratic in (1, and I? 
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For every m E N, these identities impose infinitely many constraints on the function- 

als K,(A), . . . , K,(A). Taking into account that the polynomiality of p(A) entails 

that each K,(A) is also polynomial in the bosonic fields, we conclude that all K,(A) 
vanish identically which completes the proof of (2.6) and thus of the main theorem of 

ref. [l]. 

An interesting consequence of the equality of the MSS determinant and the Jacobi 

determinant of the transformation is that whenever we are able to show that 

det SA’(x, A; A) 
aA 

=D(A;A)>O (2.21) 

the transformation A + A’ is locally invertible everywhere. But then we can also 

prove that it has a global inverse because, by supersymmetry, 

I exp [-S(A; A)]D(A; A) dA = const . (2.22) 

Taking the limit A + 0 and assuming continuity at A = 0, we find that the winding 

number of the transformation equals one which, together with local invertibility, 

implies global invertibility. Since for Majorana spinors D(A ; A) is the square root of 

a determinant, (2.21) is usually more difficult to verify than for Dirac spinors where 

D(A ; A)’ would be the relevant quantity; so, for example, the inequality D(A ; A)2 Z 
0, first established in the third paper of ref. [2], is insufficient for (2.21). In the 

two-dimensional case, we find, employing the methods of ref. [9], that (2.21) is 

satisfied if p’(A) > 0 in agreement with the conjecture made in ref. [l]; but p’(A) > 0 
(for all A) is also the condition that ensures continuity at A = 0 in (2.22). In four 

dimensions, the simplest model [lo] already contains both Yukawa and pseudo- 

Yukawa interactions and it is not known whether (2.21) is true or not. Let us also 

briefly comment on what happens when p’(A) (or the corresponding Jacobi deter- 

minant in more complicated cases) is not strictly positive. Then, the potential has at 

least two minima and translation invariance and thus supersymmetry must be broken 

explicitly to lift the degeneracy and pick a physical vacuum for the theory [ 111. If we 

turn on the interaction in a compact volume A c Rd only, the transformation itself 

becomes A-dependent and our main theorem has to be modified because the vacuum 

energy no longer vanishes [7]. Although the transformation is not necessarily locally 

invertible everywhere, it is a continuous deformation of the identity and, therefore, 

its winding number is one. If the limit A P Rd exists, the winding number stays at that 

value which would be impossible if the symmetry had not been broken explicitly. 

Thus, a discontinuity similar to the one that occurs in systems with spontaneous 

magnetization will arise. 

3. Supersymmetric gauge theories 

Up to this point, we have not dealt with supersymmetric gauge theories for the 

reasons already explained in sect. 1. However, as pointed out there, the salient 
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feature of supersymmetric theories, namely the vanishing of the vacuum energy, 

survives the gauge-fixing procedure (which merely amounts to factorizing out the 

group volume), and so, it comes as no surprise that mutatis mutandis the theorem of 

ref. [l] extends to this case. 

Theorem. Supersymmetric gauge theories are characterized by the existence of a 

transformation T of the bosonic fields Ai (where now, the index may be internal, 

vectorial or both) 

T:Ai(X)+Aj(X;A) (3.1) 

with the following properties: 

(i) T is invertible in the sense of formal power series; 

(ii) S(A) = &(A’(A)), where S denotes the full bosonic part of the action 

including gauge-fixing terms and So its quadratic part; 

(iii) the Jacobi determinant of the transformation equals the product of the MSS 

determinant and the Faddeev-Popov determinant. 

To keep the notation at a reasonably simple level and to have something definite in 

mind, we will give the proof only in the simplest non-trivial case [3]; the generaliza- 

tion to, say, supersymmetric gauge multiplets in interaction with matter multiplets is 

straightforward. In a euclidean space-time, the relevant lagrangian reads [3]* 

~==F~,(A)‘+~~=~jlCIO+~DnDa. (3.2) 

Of course, 

F;,(A)=a,A:-a,A;+gf”bcA;A: (3.3) 

and 

(3.4) 

(3.2) is invariant (up to a total derivative) with respect to the supersymmetry 

transformations [3] 

6A; = -&$I~, SD” = &@$a, 

S$” = (&&F$ - y5D”)e. 
(3.5) 

We now fix the gauge by adding a term &(f”(A)*) to the lagrangian (3.2) [4]. The 

function 

fa(x, A; A)=$a,A;(x)+hh”(x; A) 
a 

(3.6) 

l The euclideanization procedure of ref. [12] applies equally well to supersymmetric gauge theories 
which accounts for the perhaps unusual factors in (3.5). We also remind the reader that in euclidean 

field theory, complex conjugation for the fermions is replaced by “Osterwalder-Schrader con- 

jugation” J, + t91/K’ = %?ey’$. It is an involutive map and, as such, has all the required properties. 
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may also contain non-linear pieces which we absorb into h”(x; A). In analogy with 

(2.7), the action is decomposed into a bosonic and a fermionic part 

S(g,A;A,cCr)=S(g,A;A)+~rlrM(g;A)~, (3.7) 

where 

Sk,A;A)=+/ F;“(g; A)2 dx +; 
I 

f”(A ; A)’ dx 

= &(g; A)+ $(A; A) (3.8) 

(we dropped the auxiliary fields) and 

M$(x, y, g; A) = {6”‘y:,d’ + gfabcy$Ab“(x)}S(x - y) . (3.9) 

The MSS determinant D(g; A) is defined as before: 

det M(g; A)l” = det M(0; A)“2D(g; A). (3.10) 

To compensate for the explicit breaking of gauge invariance, the functional measure 

must be weighted with the Faddeev-Popov determinant [4]* 

Ar(g, A ; A) = det 
Vfa(x, A ; A) ~ det sf 

8Wb(Y) 60 * 
(3.11) 

Hence, the functional measure is 

exp [-%I, A ; -4lDk AbUg, A; 4 dA, (3.12) 

and, by invoking the arguments of ref. [l], we conclude that there exists a trans- 

formation 

Tg,h : A;(x) + &.3x, g, A ; A) (3.13) 

which reduces (3.12) to a gaussian measure, viz., 

(3.12) = exp [-S(O,O; A’(g, A; A))] dA’(g, A; A). (3.14) 

It remains to be shown that 

det ~A:(x, g, A ; A) 
~XY) 

= Ng; AMrk, A; A) . (3.15) 

For this purpose, we re-express the Faddeev-Popov determinant as a functional 

integral over the ghost fields c”(x), E”(x) [4] and consider the function 

xdA d$ dc dc. (3.16) 

l w is a gauge transformation parameter. Note also, that we do not explicitly distinguish between 
A,(g, A; A) and A,(g, A; A)A;‘(O, 0; A). 
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By supersymmetry, H(& g, A) is independent of g; moreover, the vacuum energy 

does not depend on the choice of the gauge parameter A. Therefore, H(& g, A) is 

actually only a function of 5 alone: 

H(5, g, A) = H(& 0,O) . 

Differentiating n times with respect to 5, we obtain the identities 

(3.17) 

5 (S(g,A;A)+I~~(g;A)~+~~(g,A;A)c)’ 

x exp -[S(g, A ; A) +~@4(g; A)+ + c?z (g, A ; ~)c]) dA d$ dc dc 

I( 

n 
= S(0, 0; A) +&j&4(0; A)+ + 2: (0,O; A)c 

> 

X exp (-[S(O,O;A)+&&f(O;A)+c~(O,O;A)])dAd+dcdC, (3.18) 

which constitute the analogue of the identities (2.14). Substituting 

$‘= M(g; A)“2$, c’=-$g,A;A)c, E’= F, (3.19) 

and setting 

S(g, A; A) = S(O,O; A’)+K(g, A; A’), (3.20) 

we now repeat the arguments of sect. 2 to show that K(g, A; A’) vanishes indeed. 

As an example, we take f”(x; A) = d,AE(x), so the purely bosonic part of the 

action becomes* 

; 1 F;“(A)’ dx +; 1 @,A;)’ dx =; 1 A;(-6,,S”bA)A: dx +0(g). (3.21) 

The Faddeev-Popov determinant for this choice of gauge assumes the form 

(det 6”‘A) det {S”‘S(x - y) -ggfabcapC(x - y)AL(y)} . (3.22) 

C(x) = -A-*(x) denotes the usual propagator. After some calculation, we obtain for 

the product of the MSS determinant and the Faddeev-Popov determinant 

exp ng* 
[ 5 

dx dy&,C(x - y)A”,(y)&C(y -x)-4:(x) 

-W(x - ~)A:(yhC(y -x)AZ(x) 

+&‘3x - y)A%‘k’vCb - xM;(x))+ Wg3)1, 

*A, the laplacian, should not be confused with A‘, the Faddeev-Popov determinant. 

(3.23) 
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where we made use of the relation fabcfn’bc = nS”“’ and omitted a trivial factor 

det S”‘A. The field transformation we are looking for is found to be 

A:“(x, g; A) = A;(x) + gfabc 1 dyd,Cb - yM;(yMi(y) 

+ig2fabcfbde J dy dz&,C(x - y)A:(y) 

x {+C(y - z)A;(z)Ai(z) +&C(y - z)A,d(z)A:(z) 

+a,C(y-z)A,d(z)A;(z))+O(g3). (3.24) 

It satisfies both 

; J A;(x, g; A)(-S,,S”bA)A:b(x, g; A) dx 

= i J F;,(g; A)2 dx +; J (d,A;)2 dx + O(g3) , (3.25) 

and 

det SA%, g; A) 
&(Y) 

= (3.23)+0(g3). (3.26) 

We note that in contradistinction to the “scalar” supersymmetric case the problem of 

making (3.24) mathematically acceptable for distribution valued A:(x) has not yet 

been solved: there exists up to date no non-perturbative regularization prescription 

which respects both supersymmetry and gauge invariance. 

4. Outlook 

In this paper, the new characterization of supersymmetry proposed in ref. [l] has 

been extended to a large class of supersymmetric theories. However, there remain 

some problems which have not been tackled in this paper and it may be useful to 

conclude with a few pertinent remarks. We have not considered locally supersym- 

metric theories or models with quartic fermion couplings for quite obvious reasons: 

even in ordinary supergravity [13], the vanishing of the vacuum energy in pertur- 

bation theory has not been checked explicitly* although it would be rather astonish- 

ing if the calculation yielded a non-zero result. As for quartic fermion couplings, 

some modification of our theorem will be unavoidable since the proof given in the 

preceding sections heavily depended on the fact that the action was at most quadratic 

in the fermions. 

l At least to the author’s knowledge. However, for an interesting discussion of induced cosmological 

constants in extended supergravity theories and their possible finiteness in perturbation theory, the 

reader may consult ref. [15]. 
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Another question of interest concerns the possible relation between the field 

transformation constructed in ref. [l] and the perturbative solution of the Yang- 

Feldman equations (see, e.g., ref. [14]). So far, we have not been able to establish any 

such relationship, but it would be clearly advantageous if one could understand the 

transformation in terms of an integral equation. This would provide us not only with 

some hints as to the convergence properties of the perturbation series by means of 

which the transformation has been defined in ref. [l] but also with a possible clue to 

the non-perturbative construction of supersymmetry theories. 

I wish to express my gratitude to W. Nahm, E. Seiler and B. Zumino for their 

constructive criticism and various helpful comments. 
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