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1. INTRODUCTION

We all know about the 1mnortance of anticommuting variables in
the context of supersymmetry They play an essential role in the
formulation of supersymmetric theories and they greatly facilitate
complex calculations, for example in perturbation theory. Nonethe-
less, as mathematical objects, they are not always as convenient and
wieldy as ordinary numbers. For instance, they do not have any posi-
tivity properties, and we do not know how to attribute an intrinsic
meaning to a functional integral over superfields bevond perturbation
theory (of course, Gaussian integrals can always be defined) without
going back to the component fields. Thus, their main advantage lies
in algebraic applications such as proving divergence cancellations,
whereas they appear to be unsuitable for analytical applications
such as proving correlation inequalities for theories containing
fermions in interaction with bosons.

It is therefore of interest that there does exist a characteri-
zation of supersymmetric theories directly in terms of the functional
measure by means of which expectation values of a supersymmetric
theory are defined®. This result, which enables us to reconstruct
supersymmetrlc models without recourse to antlcommutlng variables,
is essentially a consequence of the fact that 1n supersymmetric
theories the vacuum energy vanishes identically®. 1In the absence of
. interactions, this just means that the bosonic and fermionic degrees

of freedom add up to zero (fermions being counted as negative), a
basic pr1nc1p1e known to all those working in supersymmetry. This
counting rule is sufficient to determine the supermultiplets, but
not to deduce the possible non-trivial supersymmetric interactions.



Our theorem may be viewed as a generalization of this rule to en-—
compass the interacting case as well.

Let us suppose that the multiplet contains some bosonic fields
Ai —— where the index i may be either vectorial, internal, or both —-
and some Majorana spinors Y;; auxiliary fields are assumed to have
been eliminated. The number of space-time dimensions is arbitrary,
but the multiplets will, of course, depend on the dimension. A
Euclidean metric is assumed throughcut the rest of this paper. We
will furthermore make repeated use of the fact that the fermions
may be "integrated out"". If

1— _11-=
ST(ap = ifl‘biu(x)Mia’jB(x,y,)\;Ak)lijjB(y) dx dy (1.1)

denctes the fermionic part of the action, which we henceforth assume

to be quadratic in the fermions, we have, for instance®,

1 1
fdw exp [—%@M(A)U}J = det M(}h3;A) = [det M(2=0;4) ] /?-D(A;A) ,  (1.2)

since the fermions are Majorana () = WTC). D(A;A) is the Matthews-—
Salam-Seiler (MSS) determinant® of the model. We can now state our
main theorem.

Theorem: Supersymmetric theories are characterized by the existence
of a generally non-linear and non-local transformation TA of the
bosonic fields

. o> At .
TA : Ai(x) Ai(x,l,A) (1.3)

with the following properties
i) Ty is invertible in the sense of formal power series.

1i) s(A;A) = SO(A'(K;A)), where S denotes the full bosonic part of
the action and §, its free part.

1i1i) The Jacobi determinant of the transformation Ty equals the MSS
determinant in the case of "scalar" supersymmetry and the pro-—
duct of the MSS determinant and the Faddeev—-Popov determinant
in the presence of an additional gauge symmetry.

*X (or g) stands for the various coupling parameters.




We will not give the details of the proof in this talk, but rather
concentrate on some explicit examples which illustrate and, we hope,
clarify the content of the theorem,

2. SOME "SCALAR" SUPERSYMMETRIC EXAMPLES

As a prelude, let us begin with an extremely simplified example
in zero space-time dimensions, where no non-local (kinetic) couplings
exist and where the functional integral becomes an ordinary integral.
In a nutshell, this example neatly displays all the relevant fea-
tures. For a "multiplet" A, F real, ¥,, ¥, anticommuting, consider
the "Lagrangian"

—t

£ =257 + iFp(a) - 2o’ (W9 P (2.1)

[

B H)

where p(A) is a globally invertible but otherwise arbitrary ¢! func-
tion. This "Lagrangian" is invariant under the supersymmetry trans-
formations

SA = COLEOLBUJB R 6% = icaF , O6F =20

(2.2)
z  anticommutin g = (0 _l]
o 8 aB 10
"Vacuum expectation values' are given by
[ R BTV aa ar v, ay, (2.3)

Integrating out ¥ (the "auxiliary field") and ¥,, ¥,, we find

L
(R(A)) = —= R(a)e

- 2
Vep@ T ray g 2.4)

where p’(A) is the MSS determinant. Indeed, the transformation

A A" = p(A) reduces (2.4) to a Gaussian integral and has Jacobi
determinant p’(A)! Moreover, we can derive "super Ward identities"
without using Z's, so, for instance, the identity {(y {,) = —ig_,{(FA)
X . a’B ol

1s nothing but

7)% [Ae"”z p(A)2] da = 0, (2.5)

and all other "Ward identities' can be obtained in a similar fashion.
Conversely, if we had postulated the existence of a transformation
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which reduces the measure to a Gaussian, we would have been imme-
diately led to (2.1).

In two space-time dimensions, the minimal supermultiplet con-
tains a scalar A and a two-component Majorana spinor wu 7.  The most
general invariant action is’

S(A,P) = %lfdx[(guA)Z + p(A)z} .

. %Idx %[YEBBU + SQBp'(A):IwB (2.6)

and, for definiteness, we will take p(A) = mA + AA® which m, A > O.
From (2.6), we may now compute the MSS determinant®

1
/.
[det {YEBBU + éaB(m+3AA2(x))}6(x—y)] ‘=

= det (-A+m?) exp [Bm;\c(o)f A2(x) dx + 0(l25] , (2.7)

-1
where C(x) = (-A+m?) (x) is the usual propagator. The transforma-
tion of A that we are looking for reads up to first order

Al (x,h34) = A(x) + mk'/.C(x—y)A3 (y) dy + 0(3%) - (2.8)

(it has been written out up to third order in Ref. 2). It is not
difficult to verify that indeed

SAT (x,h3A)

5509 = MSS determinant + 0{(}?) (2.9)

det

and

.%.[dx[(auA’)z + mzA’ZJ = %-Idx[(BUA)2 + m?A% + ZmKAh] + 0002 .
(2.10)

Had we chosen, say, a Yukawa coupling constant other than that pres-—
cribed by supersymmetry, either (2.9) or (2.10) would cease to hold.
For A - 0, (2.8) becomes the identity transformation, whereas in the
ultralocal limit we obtain mA’ = mA + AA%, and the map is invertible
only if m, A > 0 (or both < 0). The question of global invertibilicy

*Remember, it is the determinant of a matrix with space-time ipdices
(= x,y) and spinor indices (= «,B).



of the transformation is thus related to the question of vacuum
degeneracy, since the condition m, A > 0 just ensures that the sca-
lar field potential has only one absolute minimum.

Let us mow turn to the case of four dimensions. Here, the
minimal multiplet consists of one scalar A, one pseudoscalar B, and
one four—component Majorana spinor® Y  and the simplest non-trivial
action is given by® @

S(A,B,}) = %l[dx[(auA)z + (BUB)Z + m® (A%+B%) +
+ 2mgA(A%Z+B*) + gz(A2+BZ)2] +
1 = r. 4 .U ~ 5 |
+ 2.[dx wa[YGBB + éaB(m+2gA) ZgYaBB]wB . (2.11)
As before, we calculate the MSS determinant from this action

_ 1,
[det {ygea“ + GuB[m+2gA(X)] - ZgY;BB(X)}S(X“Y)] =

= det (-A+m?) exp [4mgC(O)jrA(x) dx + O(gz)] (2.12)

and, as before, we verify that the transformation

A’ (x,g;4,B) = A(x) + ngfC(X-y)(Az(y)—Bz(y)) dy + 0(g?)

(2.13)

B (x,834,8) = BG) + 2mg [ CGeoy)AMB(G) dy + 0(g”)

has all the desired properties up to first order in g. The novel
feature is that now, in the ultralocal limit, we get

mA! = wA + g(A?-B?) , mB' = mB + 2gAB , (2.14)

. so, although being locally invertible almost everywhere, the trans-
formation is no longer globally invertible. 1In gemeral, if there
are at least two scalar fields, the winding number of the transfor-
mation equals the number of absolute minima of the potential. As a
technical remark, we mention that, in quantum field theory, the
bosonic fields are distributions in general and therefore the trans-
formations (2.8) and (2.13) are not really well defined as they
stand. However, it is not difficult to find a supersymmetry-—
preserving UV cut-off which remedies this defect.



3. SUPERSYMMETRIC GAUGE THEORIES

Supersymmetric gauge theories® are physically more interesting.
Because of the additional gauge invariance, a gauge—fixin% procedure
is needed® which either explicitly violates supersymmetry '’ or,
through additional ghost multiplets, renders the theory considerably
more complicated!!. We will disregard the second possibility, since
the statement loses much of its transparency in that case. In a
Euclidean space-time, the model is given by the Lagrangian®

where, obviously,
sz(A) - BUAs - avAi + gfabcAzAs (3.2)
and
¢¢a - Yuauwa + gfabcAEYUwc (3.3)

It is by now standard folklore that (3.1} is invariant {(up to a
total divergence) with respect to the transformations

6a7 = <y u% . DT = Ev . 807 = (o F, - vDME L (3.4)

We now fix a gauge by adding a term 1/2(3 AM7? to the Lagrangian'?,

so the purely bosonic part of the action Bebomes (dropping auxiliary
fields)

102 02 ax s Lo a®7 ay -
4.[FUV(A) dx + 2.[(8UAU) dx =

_ Ll fa, ab,,,b
=5 Au( éuvé A)Av dx + 0(g) . (3.5)

It is only for convenience that we have set the conventional gauge
parameter a = 1, for we could have even chosen a non-linear gauge—
fixing term without altering our final result. To compensate for
the explicit breaking of gauge invariance, the functional measure
has to be weighted with the Faddeev-Popov determinant® which, in our
case, reads

(det 83%4) - det {6“5()(—3;) - gfabcauc(w-y)A:j(y)} , (3.6)



where, now, C(x) = -A"1(x)}. The MSS determinant is obtained from
ac.u U abc_ W, bu 2
[det 8 YGBB + gf YuBA (X)}@(x—y)] . (3.7)

After a slightly more tedious calculation, we get for the product of
the two determinants

exp [nng dx dy {% Buc(x—y)Ai(y) BvC(y—x)Ai(x) “_
- 8 CGemy)AT (13 Clm)AJ() +

+ BUC(x-y)Aj(y)BvC(y—X)Ai(x)} + O(ga)] R (3.8)

! 1
abc_a’be aa . ..
where we made use of £ f = nd and omitted a trivial factor

(det §4¢A)? (it is not entirely trivial, because it is exactly the
factor needed for the elementary counting rule cited in the Intro-
duction, as the reader may easily check!). The required field trans-
formation is found to be

12, .,y L AR abc —oyaP oy At g” .abc bde
Ar%0e,g30) = 300 + g [y 3, Chen AT (AT () + ST

J[dy dz {BvC(x-y)A;(y)3vC(Y—Z)Aﬂ(z)A§(Z) -
- avC(x-ﬂy)A;(y)BAC(y—z)AS(z)AS(z) +
+ BvC(x—y)Ai(y)BUC(y—z)Ai(z)AS(z)} (3.9)

up to and including second order in g. It satisfies both

88" (x,g3A)
det “‘U—%‘“‘*_ = (3.8) + 0(g®) (3.10)
84 (y)

and

1 rd ab b _ l'/‘ a 2 lf a.2 3
ZIAU (6,807 ax = 7 [E2 ) ax + 5 [ AN dx v 0%, 31D



The general proof to all orders in g in the case of supersymmetric
gauge theories will be given in a forthcoming nublication!®. We
note that, in contradistinction to the "scalar" supersymmetric case,
the problem of making (3.9) mathematically acceptable for distribu~
tion—-valued Aﬁ(x) has not been solved: there exists up to date no
non-perturbative regularization prescription which respects both
supersymmetry and gauge invariance.
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