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Propagation of high-frequency electromagnetic waves 
through a magnetized plasma in curved space-time. I 

BY R. A. BREUERA N D  J. EHLERS 

Max-Planck-Institut fur Astrophysik, Karl-Schwarxschild-Strasse 1, 
0-8046 Garching b. Munchen, RR.G. 

(Communicated by R. Penrose, RR.8. - Received 2 August 197.9-
Revised 25 September 1979) 

This is the first of two papers on the propagationof high-frequencyelectro- 
magnetic waves through a magnetized plasma in curved space-time. 
We first show that the nonlinear system of equations governing the plasma 
and the electromagnetic field in a given, external gravitational field has 
locally a unique solution for any initial data set obeying the appropriate 
constraints, and that this system is linearization stable a t  any of its solu- 
tions. Next we prove that  the linearized perturbations of a 'background' 
solution are characterized by a third-order (not strictly) hyperbolic, 
constraint-free system of three partial differential equations for three 
unknown functions of the four space-time coordinates. We generalize 
the algorithm for obtaining oscillatory asymptotic solutions of linear 
systems of partial differential equations of arbitrary order, depending 
polynomially on a small parameter such that i t  applies to the previously 
established perturbation equation when the latter is rewritten in terms 
of dimensionless variables and a small scale ratio. For hyperbolic systems 
we then state a sufficient condition in order that asymptotic solutions of 
finite order, constructed as usual by means of a Hamiltonian system of 
ordinary differential equations for the characteristic strips and a system 
of transport equations determining the propagation of the amplitudes 
along the rays, indeed approximate solutions of the system. The pro- 
cedure is a special case of a two-scale method, suitable for describing the 
propagation of locally approximately plane, monochromatic waves through 
a dispersive, inhomogeneous medium. I n  the second part we shall apply 
the general method to the perturbation equation referred to above. 

1. INTRODUCTIONA N D  A S T R O P H Y S I C A L  M O T I V A T I O N  

Since its discovery the X-ray source Cyg X - 1  has been the first and so far strongest 
candidate to be a binary system containing a black hole. Also, Cir X - 1  has been 
suggested to have a black hole as one of its binary components, and up to now this 
idea is compatible with all known data from Cir X-1.  The main reasons in support 
of a black hole in these systems are (i) the mass estimates derived from the mass 
funct'ion of the system together with plausible assumptions on the inclination of the 
system relative to the line of sight, and (ii) the fact that the X-ray intensity shows 
irregular variations on a millisecond timescale. The latter property strongly 
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suggests that the radiation is emitted within a compact region of less than 100 km in 
diameter, possibly during the final spiral motion of accreting matter towards the 
black hole which possibly has no magnetic field - as is expected from astrophysical 
black holes. They should neutralize quickly in case charge-separating mechanisms 
are active in their environments. 

These features are independent of the details of the actual accretion process: 
whether stellar wind from the super-giant companion drives the accretion (MeszBros 
1978), or whether an accretion disk forms as a result of mass transfer in a Roche lobe 
overflow, not to  mention the difficulties one encounters with detailed disk models 
(Stewart 1976a, b ;  Drury & Stewart 1978 ;Thorne & Price 1975 ;Shakura & Sunyaev 
1973;Lightmann & Eardley 1974; Shapiro et al. 1976; Livio & Shaviv 1977). How- 
ever, the indications for the existence of a black hole in Cyg X-l  are somewhat 
indirect and could in principle be questioned: neutron stars with unorthodox 
equations of state could have higher maximal masses and could thus replace the 
black hole; in addition a neutron star with aligned magnetic field or an unmagnetized 
neutron star would show no regular pulse structure in its X-rays. What one needs 
is more clear-cut, direct observational evidence in favour of a black hole in Cyg X-1. 

Such evidence might be provided by observation of the polarization of X-rays 
from sources involving neutron stars or black holes (Rees 1975). AS for neutron 
stars, X-ray polarimetry could reveal details of the beaming and accretion mech- 
anisms, and for black holes i t  would give evidence for the structure and the position 
angle of the accretion disk. 

The polarization properties of X-rays from Cyg X-1 seem to be sensitive to strong 
general relativistic effects. Satellite measurements claim an upper limit of 3 % linear 
polarization a t  2.6 keV in Cyg X-1 (Novick etal. 1977; Chanan et al. 1979). Theoreti- 
cally, their polarization properties have been first calculated in the Newtonian 
approximation (Angel 1969; Lightman & Shapiro 1976). I n  a relativistic calculation 
Stark & Connors (1977a, b) find that for rays from the surface of an accretion disk 
around Cyg X-I, travelling to the observer through vacuum, the direction of linear 
polarization may vary as a function of energy up to 100' owing to general relativistic 
effects. Equally, the degree of polarization differs from the Newtonian value. I n  
fact, for the X-ray energies of interest between 1 and 100 keV they predict about 
half the Newtonian value for the so-called 'one' temperature disk model. The 
variation of such effects with the energy of X-rays - though depending crucially 
on the particular disk model and assumptions about the emission mechanism -
should allow to differentiate observationally between a fast-rotating black hole or, 
alternatively, a slowly rotating black hole or a neutron star. According to Stark & 
Connors, for the latter the effect should be smaller by one order of magnitude. 

The influence of any magnetic fields on the accretion disk has been ignored by 
Stark & Connors. Although one might expect a mostly chaotic magnetic field of the 
order of lo7G (MBszAros et al. 1977), i t  is quite unclear to what extent a magnetized 
corona of the disk could affect the polarization pattern of the X-rays. Theoretically, 
a formalism is required here to describe the propagation of electromagnetic waves in 
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a magnetized plasma embedded in a strong background gravitational field. To what 
extent plasma effects - dispersion, refraction and Faraday rotation -play a role for 
Cyg X-1 can be decided only after such a calculation is a t  hand and is compared with 
the data. 

Other astrophysical situations, where plasma effects in curved space-time may 
influence wave propagation, can occur in galactic nuclei when a massive black hole is 
present, and in pulsar magnetospheres of rotating neutron stars, but also in cos- 
mology. The cosmological microwave radiation can be affected due to intergalactic 
magnetic fields and when the interstellar gas is reionized a t  late cosmological times 
redshift x 8) (Anile & Breuer 1977). 

Generally, one cannot solve Maxwell's equations exactly for waves propagating 
in a relativistic medium. Instead one seeks a geometrical optics approximation, not 
only in the style of Hamilton's geometrical theory of rays and wave surfaces (Synge 
1960), but a refined version allowing also for frequencies, polarization states and the 
propagation of amplitudes along rays leading to a radiative transfer equation. The 
standard treatments using plane wave solutions to describe wave propagation in a 
homogeneous plasma in flat space-time (Ginzburg 1964; Stix 1962) are no longer 
applicable when inhomogeneities are present in the plasma or the underlying space- 
time is curved. Physically, the reason for this is that the plane wave ansatz loses its 
meaning. There are simply no plane waves in the more complicated situations 
mentioned. Mathematically, plane waves are Fourier components of the original 
field in x - t space. However, Fourier transformation is no longer possible: i t  pre- 
supposes that the quantities to be Fourier-analyzed are defined on a space which has 
an Abelian translation group. 

However, when the wavelengths are small in comparison with the scale of plasma 
inhomogeneities or, say, the Schwarzschild radius of the black hole, intuitively the 
plane wave formalism should still be valid locally. Thus the desired formalism has to 
satisfy two properties: locally i t  should resemble a Fourier transformation; globally, 
the long-range effects of inhomogeneities of the plasma and the gravitational fields 
have to show up in the propagation laws. So far, in our opinion, only several incom- 
plete attempts are known towards a systematic derivation of such a formalism in the 
framework of general relativity (Madore 1974; Bi6&k & Hadrava 1975; Anile & 
Pantano 1977,1979). It is our aim in this and the subsequent paper to provide such 
a rigorous treatment for a simple fluid model of the plasma which may be moving in 
an arbitrary manner in an inhomogeneous, non-stationary, strong gravitational 
field. The high-frequency approximation of electromagnetic waves in a transparent, 
isotropic, dispersion-free, moving medium in curved space-time has been treated 
by Ehlers (1967). The procedure developed in this paper is a special case of a two- 
scale method as given for fluid dynamics in flat space-time by Witham (1965 a, b). 

I n  the next section we list the basic assumptions and equations for the background 
upon which we will perform perturbation theory later on. An existence and unique- 
ness theorem is established for the background. I n  $ 3  we analyse the system of 
differential equations governing linearized perturbations on this background 
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resulting in a third-order evolution equation for the potential of the perturbations. 
In  § 4 we describe quite generally the formal scheme to obtain oscillatory asymptotic 
solutions of such evolution equations using a two-scale method. 

2. DYNAMICSO F  T H E  P L A S M A  

Consider a region of space-time (M,gab) occupied by a plasma. (For notation and 
conventions, see appendix A.) We idealize the plasma as a cold, i.e, pressure-free, 
two-component fluid and denote the number density and world velocity of the 
electrons by n and ua, respectively, and write J a  for the current density of the ions. 
Let m be the mass, e the charge of the electron and .Pubthe electromagnetic field. We 
neglect the difference between the microscopic and the macroscopic field and the 
velocity dispersion of the electrons and take as the equations governing the system: 

V[a4 c 1  = 0, 

VbFab= enua+Ja ,  

ubVbua = (elm)Fg ub, 

Va(nua)= 0, 

uaua = - 1. (2.5) 

(Itwould be preferable to absorb e in the definition of Fa,and use e2/m as the only 
constant appearing in equations (2.1-5). We stick to the usual notation, however.) 
Throughout this paper we treat the metric as a given external field. For simplicity 
we also consider the ion-current J a  as given; obeying the conservation law 

(In accordance with this assumption we shall in § 3, etc. disregard perturbations of 
J a  unlike those of enua. This is physically justified, for high-frequency perturbations, 
by the large inertia of the ions compared to that of the electrons.) Under these 
assumptions the equations (2.1-5) determine the dynamics of the electron fluid and 
of the electromagnetic field. 

I n  the remainder of this section we consider some properties of the system of 
equations (2.1-5) and its solutions which form the basis for the perturbation theory 
to be developed in the following sections. 

In  order to discuss the local initial value problem for the system (2.1-5) we assume 
that 2 is a smooth, spacelike hypersurface in (M,gab), and we introduce a system of 
Gaussian normal coordinates (xu) = (xO,x" with respect to Z such that Z is given by 
xO = 0. With respect to this coordinate system, equations (2.1-4) give rise to the 
quasi-linear, first-order system 

4 0  FA,']= 0, (2.7) 

VbF" = enuA+J A ,  (2.8) 

ubVbua = (elm) F f  ub, (2.3) 
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of eleven evolution equations, and the semi-lineart system 

a [ ~ $ t v ~  = 

VbFob= enuO-I-JO,  

U, ua = - I 

of three constraints for the eleven unknowns (Fa,, ua, n). The constraints are pre- 
served by the evolution equations. One can freely specify 11 - 3= 8 initial data on 2 ,  
corresponding to two degrees of freedom per space-point of the electromagnetic 
field and equally many of the electron fluid, as is well known. 

Unfortunately, the nonlinear system (2.7, 8, 3, 4) of partial differential equations 
is not strictly hyperbolic and, as far as we are aware, it is also not equivalent to a 
symmetric-hyperbolic system. Therefore, the more familiar theorems do not 
guarantee existence, uniqueness and differentiable dependence on initial data of 
solutions to the Cauchy problem for this system. Nevertheless, due to results of 
Choquet-Bruhat (1958)the following theorem holds: 

THEOREM1. (I)Given a set of initial data (Fa,, ua, n)  of suflcient (Jinite) difleren- 
tiability satisfying the constraints (2.9, 10, 5) on a spacelike$ hypersurface 2 ,  there 
exists locally a unique solution of (2.7, 8, 3, 4), and therefore of (2.1-5), having these 
initial values. 

(11)The system (2.1-5) is linearization stable at any of its solutions. 

Proof. We first derive another system of differential equations from (2.1-4). Res- 
tricting attention to a simply connected domain of space-time we use (2.1) to repre- 
sent Pa,in terms of a potential 

= 2v[a Abl (2.11) 

obeying the Lorentz gauge condition 

I n  termsof the de Rham operator q for vector fields, OAa = VgAa-RtAb, (2.2) then 
gives 

OAa = -enua-J a .  (2.13) 

Differentiating (2.13) along the electron world lines, we obtain, as a consequence of 
the system (2.1-4), the system 

f A system of partial differential equations is said to be semilinear if the coefficients of the 
highest-order derivatives are independent of the unknown functions and their derivatives. 

$ 'Spacelike' is always to be interpreted in the sense of the geometry of (M,gab).  The 
systems of differential equations considered in this paper are all such that geometrically 
spacelike hypersurfaces are also spacelike for these systems, in the sense of the theory of 
partial differential equations. 
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This system of nine quasilinear equations for the nine unknowns (A,, ua, n) is, as 
recognized by Choquet-Bruhat (1958), a strictly hyperbolic, diagonal Leray system. 
I n  fact the operators appearing on the left-hand side of (2.14, 15, 16) form a com- 
patible set of strictly hyperbolic operators, and the derivatives of the unknowns 
occur such as to obey the conditions of Leray's theorem. (For a concise formulation 
of this theorem see, for example, Choquet-Bruhat et al. (1977), p. 441. I n  the nota- 
tion used there, the 'indices' of the unknowns and equations of the system here 
considered are as follows : 

Hence, according to Leray's theorem, the system (2.14,15, 16) has a unique solution 
for any system of sufficiently (finitely) differentiable initial data 

(Since the metric is given, these data are equivalent to initial values for the tensors 
A,, V, A,, V,, A, on Z, where V,, =V,V,.) Suppose (Aa, ua, n) solves (2.14, 15, 16). 
Then, if Ir',, is defined by (2.1 I), equations (2.1, 3, 4) are satisfied, and because of 
(2.14) and (2.16), the tensor fields (OAa+enua+ J a )  and uaua are covariantly 
constant on ua-world lines. Hence, if the initial values satisfy (2.5) and (2.13), then 
these equations hold in the whole domain of dependence of the data. Furthermore 
(2.6), (2.4), (2.13),andthe identity V, OAa = OV, Aaimply OV, Aa = 0. Therefore, 
if V, Aa and a, V, Aa vanish on 2, then the Lorentz condition (2.12) holds in the 
domain of dependence, and in that case (2.11) and (2.13) imply (2.2). We have 
shown that the system of constraints 

u,ua = - 1, (2.5) 

a0VaAa= 0 (2.18) 

is preserved under the system (2.14, 15, 16) of evolution equations; any set of initial data 
(2.17) which satisfies these constraints determines a unique solution of (2.14, 15, 16); 
such a solution determines, via (2.11) a solution of the original system (2.1-5). It is also 
clear from the preceding reasoning that any solution of (2.1-5) can be obtained in this 
way. 


Note that the initial data set (2.17) contains 17 functions. Since there are seven 
constraints, ten functions can be chosen arbitrarily. However, the Lorentz-gauge is 
preserved under the restricted gauge transformations A,+ A, +8, A with [7A = 0, 
and such a gauge function A is determined by the initial data A and a. A on Z. This 
reduces the number of physically essential initial data from ten to eight, in accord- 
ance with the previous counting. 

To complete the proof of statement (I)of the theorem, we suppose that (Ir",,, ua, n) 
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are initial data on 2which obey the constraints (2.9, 10, 5). Then, by (2.9), there 
exist on Z1 functions A, such that FAp= 2BrAApl; these Ah are determined up to 
changes A,+ A,  + aAA. Choose A, arbitrarily on 2, and define the initial data 
3, A, and a, A, by a, A, = Fa,+ ahA, and V, Aa = 0, respectively. This provides, on 
2,A, and a, A, or, equivalently, A, and V, A,, and by construction these data 
satisfy (2.11) and (2.12). Next, compute the initial values aooAa from (2.13). This 
then fixes V,, A, on 2. A straight-forward calculation shows that the constraint 
(2.lo), combined with the 0-component of (2.13), implies a,(V, Aa) = 0. Conse-
quently initial data of the original system (2.7, 8, 3, 4) satisfying the corresponding 
constraints (2.9, 10, 5) determine uniquely up to 2 gauge-initial data ( A and A,), an 
initial data set (2.17) obeying the constraints (2.5, 12, 13, 18). The solution belonging 
to these data then furnishes a solution of (2.1-5) with the prescribed initial values 
(Fa,, ua, n). Uniqueness follows from the uniqueness of the Cauchy-problem for 
(2.14-16) combined with the fact, established above, that the initial data (2.17) are 
determined by those of the original system exactly up to 'initial gauge transfor- 
mations '. 

To prove statement (11)of the theorem we first verify that the system (2.5, 12, 13, 
18) of constraints is linearization stable. In  fact, let (Aa, ua, n)  satisfy those con- 
straints, and let (Aa, Qa, &) obey the linearized constraints 

u , ~ ~  (2.19)= 0, 

ao(vaAa)= o. 
Define a 1-parameter family (3,Ua, n), of fields on Z by putting 

and requiring UaUa = - 1 and continuity of Ua in s near s = 0. Then this family 
'passes through' the unperturbed solution for s = 0 in the 'direction' (A,, &a, a), 
and a simple calculation shows that the fields za,Ua, n satisfy the constraints 
(2.5, 12,13, 18) in a (finite) neighbourhood of e = 0. The linearization stability of the 
full system (2.14, 15, 16, 5, 12, 13, 18) can now be established by showing that the 
solution of the evolution equations is a Frechet-differentiable functional of the 
initial data (see, for example, Pischer & Marsden 1972).Linearization-stability of 
the full system is therefore inherited from that of the system of constraints. Finally, 
linearization stability of the original system (2.1-5) follows from that of the modified 
system, since both the initial data sets and the solutions are in ('physical') one-to- 
one, differentiable correspondence. Q.E.D. 

Remark. Equation (2.4) or, equivalently, (2. 16), restricted to aua-world line, shows 
that the sign of n cannot change on a world line. Thus if the initial value of n is 
positive -as it must be because of its physical interpretation - then n will be positive 
in the domain of dependence, as desired. 
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T17e end this section by introducing some quantities associated with a solution of 
(2.1-5) which mill be needed later. 

The local kinematics of the electron fluid are described, as usual, by the rate of 
rotation (vorticity) wab( = -uba), the rate of deformation @ab(= Bba), and the world 
acceleration ubVb ua, obtained from the decomposition 

vbU~ = W; +e; -Ub U ~ V ,' 1 ~ ~ .  

We put 
6: = 6:= Vaua 

for the mean expansion rate. 
TITe also need the tensor 

hg : 

which projects orthogonally onto the (tangent) rest space of the electron fluid. We 
define the electric field 

Ea: = lil; ub, (2.25) 
the magnetic field 

Bab: = h: ht $F,,, (2.26) 

the Larmor angular velocities? 

the Larmor (or cyclotron) frequency 

wL: = (wL a uLa)i, 

and the plasma frequency 

w,: = (ne2/m)B. 

The tensors wab, Bab, ubVb ua, hub, Ea, Bab, wLab, wLa are all orthogonal to ua with 
respect to all indices; this will be used frequently in the remainder of the paper. 

3. DYNAMICS SMALL O F  T H E  E L E C T R O M A G N E T I CO F  P E R T U R B A T I O N S  

F I E L D  A N D  T H E  P L A S M A  

I n  the remainder of this paper we study the propagation of high-frequency, low- 
amplitude waves through a plasma. We assume the fields (Pub,ua, n) to consist of a 
slowly varying background t a ,6 )and,a rapidly oscillating wave (pub, aa,h).We 
neglect the reaction of the gravitational field gab to the wave and treat the latter as an 
infinitesimal perturbation of the background field, i.e. we compute the equations 
governing (pub,aa, f i )  by varying equations (2.1-5), leaving gab and thus Va un-
changed. It does not matter for our purposes whether the background fields are test 
fields or solutions of the coupled Einstein-Maxwell equations. 

To simplify the notation we shall henceforth write flab, ... instead of Fa,,. . .for the 

t This quantity is the gyration angular velocity of the perturbed electron motion; see 
(3.7) below. Our convention is q+,,,, = + 1 in an  oriented orthonormal frame. 

uaubi-8; = 
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background fields; then equations (2.1-6) as well as the definitions (2.22-29) refer to  
the background. 

Varying (2.1-5) we obtain as the equations governing the perturbations: 

ubVb4ia+.tibVbua = (elm)(F: .tib+@ub), (3.3) 

Theorem 1 of the preceding section implies the following 

COROLLARY.(I)The system (3.1-5) has unique solutions corresponding to initial 
data which satisfy the linearized constraints. 

A 

(11)If (Fa,, ...) and (Fab,...) obey equations (2.1-6) and (3.1-5), 
respectively, then (F,, . . .) approximates a solution of the full system (2.1-6) 
provided s is suficiently small. 

For the linear system (3.1-5) the decomposition into evolution equations and con- 
straints can be carried out, in contrast to the situation for the full equations (2.1-5), 
in an intrinsic, physically and mathematically preferred way since uaV, is apreferred 
time-derivative. 

The purpose of this section is to reduce the rather complex system (3.1-5) to a 
simpler one which is better suited for calculations, in particular for the treatment 
of high-frequency waves. We shall eliminate redundant equations and unknowns 
and, in particular, get rid of constraints. 

Equation (3.4) is implied by (3.2) and can therefore be omitted from the system. 
Next, we insert (2.22) into (3.3) and use (3.5) to get 

ubVbt2a + (w; +0;) .tib = (elm)(F;.tib+@gub). (3.6) 

The equation obtained by transvecting this equation with ua is implied by (2.3) and 
(3.5)whence (3.6), or rather (3.2), can be replaced by its 'spatial part ' ,  

Moreover, by (3.5), (3.2) is equivalent to the pair 
A 

efi = -uaVb Fab, 

en.tia = h , " ~ ,p b c  

which can be used to eliminate the electron variables (.tia,h)from the system of 
perturbation equations altogether. (This presupposes n + 0.In  vacuum this elimi- 
nation procedure is not possible.) Note that if .ti, is computed from (3.9) i t  auto- 
matically obeys the constraint (3.5) whence the latter can also be omitted from the 
set of essential perturbation equations. Inserting (3.9) into (3.7)  gives the second- 
order equation 
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The pair (3. I ,  10) of equations for Pa,is equivalent to the system (3.1-5) modulo the 
background equations (2.1-5); i.e. any solution of (3.1-5) satisfies (3.1, 10); and if 
Pa,obeys (3.1, 10) and /iia,fi are defined by (3.8, 9), then (3.1-5) holds. 

The reduced system (3. I ,  10) consists of seven partial differential equations for the 
six components of the Faraday tensor pab. Only six of these equations are evolution 
equations; the space-part of (3.1) is a constraint. To get rid of this constraint and to 
reduce further the number of equations and unknowns we introduce a potential 
A, for Pa,, 

and impose on i t  the Landau gauge condition 

which can be done without loss of generality. The remaining gauge freedom, 
Aa-+A^,+VaA, is restricted by the condition uaVaA = 0 which says that A is 
constant on the unperturbed electron world lines. The gauge-freedom associated 
with (3.12) is, therefore, less than that associated with the Lorentz gauge. Landau 
gauge initial data are determined, for a given field Pab,up to only one arbitrary 
function on the initial hypersurface. 

If (3.11) is inserted into (2.10) and the gauge condition (3.12) is used to simplify 
some terms, the equation 

+ (elm) EauC) (V; -Sb,V:) +ug habudV, +ug(Oab-uab))Ab = 0 (3.13) 
emerges. 

I n  order to satisfy the gauge condition (3.12) identically and to specify (3.13) as a 
system of differential equations completely we choose, once and for all, an ortho- 
normal tetrad field (E($)where E(;) = uais the backgroundelectronvelocity. Denote 
the dual basis field as (E(i,), and write A, = A^(,) E&). Thisexpressionis to beinserted 
into (3.13) and the three real functions A(,) of the space-time coordinates are to be 
considered as the (unconstrained) unknown functions. Although we shall not,in the 
following, use such a tetrad explicitly, we always assume such a representation and 
take the operator Dt  in (3.13) to be a map from a space of fields obeying (3.12) into 
another such space. 

The linear, third-order, 3 x 3-system of partial differential equations (3.13) is 
hyperbolic, but not strictly hyperbolic; i t  has multiple characteristics. I n  spite of 
this we can prove on the basis of $1 

THEOREM2. Given a set 

A(a), a0  A(aba00 Ah) 
(or, equivalently, 

A,, Vb A,, Vcb a,, 



Wave propagation in plasmas in curved space-time. I 399 

of initial data on a spacelike hypersurface 2 ,  there exists locally a unique solution of 
(3.13)having these initial data. 

Proof. From initial data (3.15) one can find uniquely, on 2,values for paband 
V, pab,by restricting (3.1 I)  and its derivative to 2 .  These data provide via (3.8) and 
(3.9), values for iSia and h on 2.By construction, the functions pub,&a,h thus obtained 
form an initial data set for the system (3.1-5) which obeys the appropriate con- 
straints. The corresponding solution of (3.1-5) (which exists according to the 
corollary at  the beginning of this section) can be represented in the form (3.11) with 
(3.12), the potential dathen satisfies (3.13). If one exploits the initial-gauge trans- 
formations permitted by (3.12) by taking covariant derivatives of uaVa A = 0 and 
restricting the results to Z, one verifies that one can always gauge-transform A ,̂ 
such that, on Z, it takes those initial values (3.15) with which we began the proof. 
This finishes the existence-proof. 

To prove uniqueness it is sufficient, because of the linearity of (3.13), to show that 
a solution with vanishing initial data (3.15) vanishes everywhere. Let, therefore, 
A ,̂ be a solution with initial zero data. It determines a solution of (3.1-5) with zero 
initial data, hence, because of the uniqueness of that system, Pab= 2vIaAb1= 0 
everywhere. Hence 8, = Va A, with uaVa A = 0. The vanishing of the functions 
(3.15)on Z then implies Al, = const., which in turn implies A = const. and there- 
fore da= 0. Q.E.D. 

The point of the preceding argument was to establish existence and uniqueness 
of a non-strictly hyperbolic system with multiple characteristics by relating it 
to a Leray-system. 

Note that the set (3.14) consists of nine functions. Since the initial gauge trans- 
formations allowed by (3.12) are determined by a single function, we have again 
eight physically essential functions, as it should be. 

We have now established (3.13) as the basic equation governing the perturbations of 
the original system (2.1-5). This equation contains the influence of the gravitational 
field as well as that of the (in general inhomogeneous, moving) plasma and the back- 
ground electromagnetic fields on the 'wave' Pab,via the covariant derivatives, the 
various matter terms, and the uLab- and Ea-contributions, respectively. Our plasma- 
model does not exclude charge-separations, so there may be 'electrostatic' fields. 

Since the operator Dab in (3.13) is linear and its coefficients are real-valued, we may 
determine its physical (real) solutions as real parts of complex-valued solutions, as 
usual. 
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4. 	OSCILLATORYASYMPTOTIC S O L U T I O N S  AS A P P R O X I M A T I O N S  T O  

H I G H - F R E Q U E N C Y  S O L U T I O N S  O F  L I N E A R ,  H Y P E R B O L I C  S Y S T E M S  

Exact solutions of complicated equations such as (3.13) are rarely available. 
However, approximate high-frequency solutions may be constructed by means of 
W.K.B.-methods. Before doing this for (3.13) we review one such method for a 
general class of equations, for two reasons. First, we need an algorithm for obtaining 
oscillatory asymptotic solutions of linear systems of partial differential equations of 
higher than first order, the operator of which depends polynomially on a small 
parameter. Such an equation will be obtained in part I1from (3.13) by introducing 
dimensionless variables, in order to be able to treat efficiently dispersive properties. 
The published presentations? of such formalisms of which we are aware are not 
sufficiently general to cover equations such as (3.13). It appears therefore to be of 
some interest to outline the generalized version in spite of its straightforward nature. 

Secondly, we wish to consider briefly the question of justifying this algorithm as 
an approximation method. This is necessary since (3.13) is neither strictly hyper- 
bolic nor, as far as we know, equivalent to a symmetric-hyperbolic system, so that 
standard results about error estimates do not apply. We are not able to provide a 
general justification, but we state a sufficient condition under which this gap could 
be closed. 

Let 

be a linear differential operator depending on a real parameter e, in which Ai 
denotes an (m x m) matrix the elements of which are forms of degree r in the partial 
differential operators a, = a/axa (a = 1, ...,n)with smooth, real coefficients depend- 
ing on x E Rn. D(e) maps Rm-valued functions on Rn into functions of the same kind. 
Thus 

D(e). U(e) = 0 	 (4.2) 

is a parameter-dependent linear, homogeneous partial differential equation of order 
p for an m-vector U on Rn. (In the subsequent paper (3.13) will be transformed 
locally into such an equation with p = 3, m = 3, n = 4.) For convenience we study 
complex-valued solutions of (4.2), taking real parts a t  the end. 

We want to obtain asymptotic solutions of (4.2) of the form 

U(X,4 = e(ilds(z)V(,, ,) ,e(i14 S(z) 5 (e/i)"V,(x) (4.3)
€-+O n=O 

where the eiconal S is a C-valued function and the amplitudes 8,V ,are Cm-valued 
on Rn. 

t For this section compare, for example, Courant & Hilbert (1962); Duistennaat (1974) 
Lax (1957); the treatment given here is a straightforward generalization of those given in 
these references. 
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We first describe an algorithm for determining S and the V,. We write d: = 

(a,, . . . ,a,) for the gradient operator a d  put 

1: = dS. (4.4) 
By means of the operator identity 

e(-i/4 S de(i/4S = d + (i/,c) 1 t 4 5 )  

the equation D(e('/dSV) = 0 is transformed into L. V = 0 where the coefficients of 
L(c) = e(-ilc)s D(s) e('lc)S contain the wave covector 1. Applicationof (4.5) to (4.1) gives 

P 

L(s) = C €fLj, (4.6)

j = O  

when Lj is a differential operator of order j.Lo, the principal matrix of D(c), is 
obtained by substituting a, in Zf?=, Ab by il, = ia, S.Thus Lo is an (m x m)numerical 
matrix, with complex elements even if D(s) has real coefficients, depending on x and, 
polynomially, on the 1,. The substitution rule (4.5) also shows that 

where L;is obtained by substituting a, in CEOAt1 by il, This L1 is a linear first- 
order differential operator, the principal part of which is determined by Lo. 

Inserting (4.3) into (4.2) and using (4.5) one obtains formally the asymptotic 
equation 

P (0 

T,C siLj. C (s/i)nK 0 for s+O. (4.8) 
j = O  n=O 

In  zeroth order this equation requires 
Lo.&= 0, 

which in turn demands 
det Lo = 0 

to be solvable nontrivially. 

Det Lo, the principal polynomial of D(s), is a polynomial of degree mp in the I,, with 
coefficients depending on x. Henceforth we shall assume this polynomial to have real 
coeflicients although Lo may be complex. (This will indeed turn out to be the case for 
the transformed version of (3.13), and it holds also for other equations of mathe- 
matical physics.) The dispersion relation (4.10) then defines an (in general many- 
branched) principal variety in [W2", to be considered here as the cotangent bundle of 
[Wn. I ts branches may intersect or coalesce. 

Equation (4.10) imposes on S a first-order partial differential equation of degree 
mp, the eiconal equation. 

Suppose H(x, 1) is a real factor of the principal polynomial corresponding to one or 
several branches of the principal variety. Then one can construct, according to 
Monge-Hamilton-Jacobi, the real solutions of the (reduced) eiconal equation 

H (x, dS) = 0 (4.11) 
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from the characteristic strips of (4.11) in R2" which obey the canonical equations 

and the constraint 
H(x, 1) = 0. 

This constraint restricts the initial values and is preserved by (4.12). The projections 
of these strips into Rn are the rays; the values of 1 on a ray determine the infinitesimal 
pieces of the phase-hypersurfaces S = const at  the points of the ray. 

The dispersion relation (3.13) and the canonical equations (4.12) imply, a t  least if 
aH/al+ 0 on a ray, that the ray-velocity with respect to any observer equals the 
phase velocity. 

The restriction of aH/al to a solution Sof the eiconal equation (4.1 1) is a vector 
field T on Rn which is called the transport vector associated with 8 ,  for reasons to be 
explained below. 

On a branch of the principal variety where the principal matrix has constant rank 
r < m there exist smooth basis fields of (rn-r)  linearly independent left null vectors 
and right null vectors of Lo. Here we restrict attention to a nondegenerate branch, 
r = m- 1, and write 

N.Lo = 0, Lo.R = 0 (4.14) 

for a left- and a right-null vector, respectively. R represents the polarization state 
of the branch or 'mode' considered, compare (4.16) below. 

By varying (4.14) a t  a fixed point x with respect to 1 one obtains 

Lo.dR + (aLo/ala).R dl, = 0, 

N . (aLo/aza).R dla = 0. 

If the branch belongs to the factor H of det Lo, then the last equation holds when- 
ever (aH/al, = 0; hence if on that branch aH/al+ 0 then 

where A is some scalar. If Sis a corresponding solution of the eiconal equation and 
(4.15)is restricted to the section of [W2% = T * R n  determined by 8 ,  the right-hand side 
becomes AT, T being the transport vector defined above. 

We now return to the evaluation of (4.8). Suppose we have found a system of rays 
and a real eiconal Sby integrating Hamilton's equations (4.12), belonging to a non- 
degenerate branch, and assume we have computed N and R so that (4.14, 15) hold. 
Then the amplitude condition (4.9) requires 

with an as yet unrestricted complex scalar amplitude v,. This is all the information 
obtained in the first step. It suffices to determine all coefficients of the operator (4.6). 
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In  first order in s, (4.8) demands 

Using (4.14,16,7, 15), recalling the definition of T and assuming h =/= 0, we get from 
the last equation the transport equation 

Taa, v, +fv, = 0, (4.18) 

wheref is known from the first step. (Both T aandf depend on the choice of N and R 
in a neighbourhood of the ray considered. In  applications one chooses R such that it 
represents unit amplitude or unit intensity so that v, measures the magnitude of the 
wave.) This linear, homogeneous equation determines the amplitude v, along each 
ray via initial conditions and, by (4.16), the leading contribution V, to the amplitude 
V. The initial conditions for v, determine the projile of the wave. If the initial value 
of v, has compact support, V,will be non-zero only in a spatially compact ray bundle; 
this case corresponds to a pulse-wave. 

Once V,has thus been determined, (4.17) is solvable for F since N .  (iL,.V,) = 0. If 
R1 denotes one particular solution of 

L,.R,+iL,.V, = 0, 
the general solution of (4.17) is 

T(= R1+vlR (v,s@). 

After the second step one therefore knows e(il"s V,everywhere, and one knows the 
form e(il"s([vo- isv,] R- isR,) of U in (4.3) to first order, but not yet the value of v,. 

If the coefficients of D(s) and the initial values of X,v,, v,, .. . are C m  or if one takes 
derivatives in a distributional sense, this procedure can be continued indefinitely. 
The higher-order amplitudes v,, v,, .. . are determined by initial values and inhomo- 
geneous transport equations of the form 

They all propagate along the rays. This justifies the name transport vector of T .  
After (n + 1)steps one knows 

. " , ,  

as well as the form of Ucn), but not v,. 
Note that it is the set (A&', A&'-,,...,A:) of the principal parts of the terms of the 

original operator D in (4.1) which determines the dispersion relation, the eiconal 
equation and the ray-congruences along which the amplitude are transported. The 
lower-order parts of D determine the coefficients f, f,.,gj of the transport equations. 

According to the construction of the series (4.3) one has 

where the order-symbol is to be understood uniformly in any compact part of Rn in 
which U(n) has been determined, i.e. U(n) is an asymptotic solution of order n of (4.2). 
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The last statement does not imply that U(n) actually approximates a solution of 
(4.2). So far, we did not assume hyperbolicity of (4.2); all we needed was that the 
principal variety det Lo = 0 contains some n-dimensional submanifolds. Let us now 
assume, however, that (4.2) is hyperbolic in the (most general) sense that i t  has a 
unique and sufficiently differentiable solution for any set of initial data depending 
smoothly on the data, a property which we did establish for (3.13) in theorem 2. 
Then, given a spacelike hypersurface 2 ,  the restrictions of 

to 2define a one-parameter family of initial data for (4.2). Let U(&) be the family of 
(exact) solutions of (4.2) belonging to these initial data, and let 

be the deviation of U from Ucn), the 'error'. Then, by (4.2) and (4.22) 

Also, by construction, E(%)(E)has zero initial data on 2.Therefore, an estimate of an 
absolute magnitude (i.e. a suitable norm or seminorm on the space of W's) of the 
solution W(F)of the inhomogeneous equation 

with zero initial data on 2 in terms of the magnitude of the source Q(s) gives an 
estimate of the error Ecn)(s). If, as the form of (4.1) and simple examples suggest, 
(4.25) implies 

] W(e)]< e-p-]&(6)1-xO.const, (4.26) 

where xO is the 'time distance' from the initial hypersurface xO = 0, then (4.24) 
implies for a compact domain 

E y e )  = 0(cn+l-P). (4.27) 
Moreover, then 

( U-U(n-p)l = ( U -U(n)+O(&n+l-p) = 1.1 O(&n+l-~ (4.28) 

That is, if the operator D(s) is such that (4.25) implies (4.26), then 

I n  particular, under this assumption the lowest order approximation, U(O) = 

e(ilc)svoR = e(i16)sq, with vo obeying (4.18), is an approximate solution to (4.2) with 
an error of order 6 .  
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We assume a simply connected background space-time (M,g,,(xC)) with a Lorent- 
zian metric gab; signature ( - + + +); Latin indices range from 0 to 3. Units are 
chosen such that c = 1.Then we use the following notation: 

covariant derivative with respect to xu; 
second covariant derivative Vab: = VaVb 
small parameter (< 1)of the order of the ratio between 
the wavelength of the perturbation and a macroscopic 
scale of the gravitational field; 
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x'y = gab xayb inner product of two vectors xu and ya; 

qabcd volume element, with q0123 = + 1in an oriented ortho- 
normal frame. 

On the gravitational background we assume to have a plasma, not influencing the 
metric, described by the following quantities: 
12, Ua, number density and four-velocity of electrons; 
J a  ion current density; 
e, m (negative) electron charge, electron mass; 
w$ = e2n/m square of plasma frequency; 
D, = uai), derivation along ua; 
Vb ua = 8; +o; -Vu(ua) ub decomposition of electron velocity gradient; 

0; deformation velocity; 
8: = 8; = v a u a  expansion rate; 

4 angular velocity (vorticity); 
h; uaub+ 8; = projector on to three-space orthogonal to ua; 
Fab unperturbed electromagnetic field; 

Ea = Fabub unperturbed electric field; 

Bab= h: ht ed unperturbedmagneticfield; = +qabcdB e d ,  B = (Ba Ba)); 

wLab = - (elm) Bg Larmor angular velocity; 

w, = - (elm)B Larmor frequency ; 

pub,  ua,n perturbations of F,, ua, n. 
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