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It is shown that scalar and possibly other supersymmetric theories are characterized by the existence of a transformation
of the Bose fields with the property that the image of the full bosonic action is the free action and the Jacobi-determinant
of the transformation equals the Matthews—Salam—Seiler determinant of the model. Some possible implications of this re-
sult are discussed.

It is well known that every formulation of supersymmetry so far has employed the concepts of anticommuting
numbers (Grassman algebras) and graded Lie algebras in an essential way (for a general review as well as compre-
hensive references, see ref. [1]). In this note, we want to point out another feature peculiar to supersymmetric
models which in itself may serve as a new characterization of supersymmetry that altogether avoids these concepts.
In addition, we hope that this property will not only shed more light on some of the unresolved mysteries of super-
symmetry but also eventually facilitate the non-perturbative construction of supersymmetric models. Although we
will only be concerned with ordinary “scalar” supersymmetric theories, i.e., spin-0 and spin-1/2 multiplets, we be-
lieve that the general principle expounded below retains its validity under more general circumstances since the
arguments are sufficiently general so as to be extendable to more sophisticated examples.

Let us suppose that the multiplet contains some scalar (or pseudoscalar) fields 4; and some Majorana spinors
¥;; auxiliary fields, if originally present, are assumed to have been eliminated. The number of dimensions is arbi-
trary, but the multiplet structure will, of course, depend on the dimension. Expectation values are defined via a
functional integral; to define it properly, a euclidean metric is assumed (in addition to some regularization to be
specified). In ref. [2], the euclideanization prescription for relativistic scalar supersymmetric models has been given.

The main result of this investigation may then be stated as follows.

Theorem: “Scalar” supersymmetric models are characterized by the existence of a generally non-linear and non-
local transformation T, *1 of the Bose fields 4;

T,: Ax) > Aj(x, X 4), M

with the following properties:

(i) T, is invertible at least in the sense of formal power series.

(i) S(A; A) = So(A'(A; A)), where S denotes the full boson action and Sy, its free part.

(iii) The Jacobi determinant of the transformation T, equals the Matthews—Salam—Seiler (MSS) determinant
[3] obtained upon integrating out the fermions (a la Berezin [4] ; if the spinors are self-conjugate, i.e., Majorana
spinors, the MSS determinant is actually the square-root of a deterniinant).

The rest of this paper is devoted to a proof of this theorem and to a discussion of its possible consequences and
applications; an explicit example will be given at the end of this paper. Before proceeding to the proof, let us clar-
ify the significance of the theorem in the simplest case where there is only one scalar field A. If D(\; A) denotes

*1 A stands for one or more coupling parameters.
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the MSS determinant, expectation values of scalar fields are formally the moments of the functional measure

du,(4) = exp[-S(\; A)] D(A; 4) dA /fexp[—S(?\;A)] D(\; A)dA. 2)
The theorem implies, that for supersymmetric theories there exists a transformation 7, such that

duny (T 4) = dutg(4) = exp[-Sy()] d4 | [exp[-S,(4)) d4 3

and the moments of the evidently non-gaussian measure du, have been reexpressed in terms of transforms of mo-
ments of a gaussian, i.e., free measure! A little thinking shows that this does, of course, not mean that supersym-
metric models are trivial since the interactions now reside in the (complicated) transformation T, . As a further
consequence, we infer from the theorem that the vacuum energy has to vanish to all orders in A, so it is obvious
that, for theories with non-vanishing vacuum energy, no transformation with properties (i), (ii), (iil) can exist. Con-
versely, Zumino has established that for supersymmetric theories, the vacuum energy vanishes identically in A [5]
— if supersymmetry is not exact as it is the case when the interaction is turned on in a finite volume only this is
only true up to residual terms such as surface terms which (hopefully) disappear as the symmetry breaking is re-
moved. We will now demonstrate that the vanishing of the vacuum energy is also sufficient to ensure the existence
of the transformation T, . In accordance with the constructivists’ jargon [6], we will call the measure (3) the free
measure of covariance C where C(x) is the inverse of the differential operator appearing in the quadratic action
8y(A); usually, C=(-A + m2)=1 but the case of higher derivative regulators as in ref. [7] is also included. The
measure du(A) lives on R” in the case of a lattice regularization or on a distribution space which we may take to
be $'(R9) (Minlos’ theorem, see, e.g., ref. [6]) whatever the case may be. In order to keep the notation as simple
as possible, the appropriate regularization will not be specified in the lemma below; furthermore, it will be proven
only for the case of one scalar field, the generalization to more complicated cases being immediate.

Lemma: Let duy(A) be the free measure of covariance C and F(A; 4) a functional of 4 with an asymptotic ex-
pansion in A and vanishing identically for X = 0. If moreover

[ exp[~F(; A)] dug(4) = 1, (4)

for all A 2 0, there exists a generally non-linear and non-local transformation of the boson fields A(x) - A'(x,\; 4),
invertible at least in the sense of formal power series such that

dpg(A(h; AY) exp[-F(\; AR 4))] = duo(A'). )
Proof. We expand

FO; 4) = 23 NF(4) + 0" ) (6)

and show by induction on n that the terms F,, can be transformed away order by order. For n = 0, there is nothing
to prove since the transformation is the identity. Now, assume that all terms up to some order n — 1 = 0 have been
eliminated by successive transformations. Thus, we have
exp[—F(; A)] dug(4)
N(n) )

= exp[—?\" Z_“,O f dx; . dx ROy, x YA (x)) . A (x ) — 0(>\n+1)] dpyd) (=1),

for some 4'(x) = A'(x, \; A). Note that, without loss of generality, the coefficient functions R,(;’) are assumed to
be totally symmetric in their arguments; some of them may be identically zero. From eq. (4), the symmetry of
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R,(,”), and from the fact that the expansion in A is asymptotic, it follows that

N(n)
0= V‘;{) Jaugdy fax,..dx, RO, .x,) 4G A'x,)
W 2 ®*
v)!
= = fdxl,..dxzvalz”)(xl,...,x2v)C(x1 ~x,) . Clxy, 4 “xzu)'
v= V.

There is no restriction on R,(;’ ) with » odd. We now define

A", N A= A'G) + A [ dx, O - x,) RO,
N(n) ©)
+\" Z>2 fdxl dx Clx — xl)Rfl")(x1 s X, ) A' (X)) o A'(x ).
V=

Hence,

1 ! — 13 1 ” - ”
> Jax dx, A )01y —x)A'(x)) =5 fdxdx, 4" )C TGy - x,)4"(xy)
Q) ‘ (10)
N D [y A RO x4 ) + OO
v
and the unwanted terms are cancelled with the exception of Rf,o). However, we get a new O(A"") contribution from
the Jacobi determinant of the transformation
det 84'(x, \; A")/8A"(y) = exp Tr log 8A4'(x, X; A")/64"(»)
N(n) 1m

= exp [_x" };2 -1 [dx;..dx,CO; — x) RO, ... x )A"(x;) . A"(x,) — O(AZ”)] .

Observe that the first O(\?) term in eq. (9) drops out upon differentiation and that we have again used the symme-
try of Rff ). Setting

A", ;4 =A"(x) +2\" fdxldxzdx3C(x —x,)C0ey — x3)R§l3)(x1,x2, x3)
N (12)
0 VZ=‘,4 @ — 1) [dx,..dx,C(x —x,)CGx, —x )Ry x,) Ay A ()

and repeating the procedure described before, one easily verifies that all unwanted terms are cancelled up to

% [R,(f’) + [dx dx,Cx, —xZ)Rflz)(xl,xz)}, (13)

but that new ones arise from the Jacobi-determinant. Continuing in this manner and collecting the uncancelled
terms, we arrive after a finite number of steps at the following expression

(V2]
@v)!
exp[——?\n VZ=)O - fdxl...dxzvalz”)(xl,...,xZV)C(xl—x2)...C(x2V_1—xzu)—OO\Z")J, (14)

*2 [N(n)/2] denotes the smallest integer < N(n)/2.
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which is exp O(A27) on account of eq. (8). Together with eq. (7) this implies that the remaining terms are exp
O(N"*1); since the transformation is always the identity in zeroth order in A, it can be inverted in the sense of for-
mal series. This concludes the proof of the lemma.

The theorem now follows from the fact already mentioned, namely that in supersymmetric theories, the vacuum
energy is identically zero in A and upon using the formula (det)}/2 = exp %Tr log for the MSS determinant to de-
fine the functional F(\; 4).

What we find most remarkable about the result is that it allows us to reformulate the problem of defining the re-
normalized measure (2) in terms of the transformation 7, . For instance, if some UV regularized version of eq. (2)
with UV cut-off « has been realized on, say,d '(R9), then T, = T, (k) is 2 non-linear and non-local map of the dis-
tribution space into itself. Is it possible, then, to “renormalize” the map T, (k) as x tends to infinity and is the limit
still well-defined on & '(R9) such that the products (T L4)( 7). fi €S (RY) are d gy measurable? Another inter-
esting question is whether the maps T, (k) are injective; we conjecture that they are in case of a one-well scalar field
potential and that special precautions have to be taken in presence of more than one absolute minimum — for an il-
lustrative example, see below. As the inductive construction in the proof of the foregoing lemma is only order by
order there also remains the important question of whether the series representation for T, is actually convergent,
Borel summable [8] or only asymptotic.

As an application of our result, we will now deduce the most general supersymmetric lagrangian with one scalar
field 4 and one Majorana spinor  in two dimensions [9] by requiring the MSS determinant to be a Jacobi deter-
minant in two limiting cases *3; the derivation will be formal but it can be easily made rigorous (on a lattice, for
instance). We start with a free lagrangian for 4

L£=32(0,4) +(m*22)4% (2>0). (15)
From this lagrangian, we get formally (normalization factors have been inserted accordingly for convenience)

S i%"_zlex;) [- 17 [dx A (-A + m2/Zz)A(x)] = det(—Z2A + m2)~112, (16)

This is cancelled if we add to the lagrangian the free lagrangian of a two-component Majorana spinor ¥
L>L+3UZP+my (Y =oT), (17

because [4]
Il _I112 dy_(x) exp [_ % [ax Geoyza +m) \l/(x)] = det(Z + m)/2 = det(-22A + m2)12. (18)

By the same argument we would have found the multiplet in four dimensions: a four-component Majorana-spinor
¥ and two scalar fields 4 and B refs [5,11]. To reconstruct the interaction, we replace (15) by the ansatz
L=32(3,4) +3(1/D)V(A), V(A)=m?4>+.., V(A4)>0 (19)
and the fermionic part of the lagrangian by
Lp=3Zy3y +38(A)Vy, g@=m+... (20)

In the limit Z ~ 0, the kinetic terms may be dropped, and we have

1 B - =YL 544 0) =
Jim = e [(22)VA)] = 86/TT) = 2 [ 84~ A®), - VA =0, @1)
Moreover [4]

*3 Gee also ref. [10], sections 3 and 4.
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ST g 00 exp(~ farsear@9) = T stacon. o

Defining p(A4) = V(A)l/ 2 our requirement yields
Ip'(A) =g(A4) 20, p(A)=c+mA+A42 + ... (23)

It should be clear from this derivation that in order to stay out of trouble we must demand p'(4) > 0 (or < 0) for
all 4; the local but non-linear map A = p(A4) can only be inverted if the potential has just one absolute minimum
at V=0 *4, The full lagrangian is now given by

L=32(3,4) +3(1/Z)(p(A)* +5ZTPY + 30" (AT Y. 24)
It is equivalent to
L=3Z[(3,4) + 53y + F?] +iFp(4)+ 50 (A, (25)

on account of the formula

[ i =@ —iEp )] =7z expl= 32, 26)

where we have introduced an auxiliary field F. Note the reappearance of the factor Z—1/2 which had already been
anticipated in eq. (16). The simplest example is now obtained with p(4) = mA + AA43, where both m and A are
positive, so p'(4) > 0. In this case, the transformation T ) up to third order reads as follows

A'(x,\; A) = A(x) + mA fC(x —x)A%(x)) dx; -§>\222faMC(x —x)4%x))2 Cx, —x,)43(x,) dx, dx,

27)
+503mz2 3 O — x ) A%(x, ) Clx; —x,)A%(x,)8,0x, —x3)4%(x3) dx, dx,dxy + ONY),
where
_rd%
cx) = [ ek kX [(Z2%2 + m?), (28)

is the usual propagator. By use of the Leibniz product rule and partial integration, the reader may check that for-
mally

37 Jax A N A(Z28 4 m)a'Ge )= [ax 320,400+ mAE) A3 @P] +00%)
(29)
and

{det [6(x — p) + 3NZ3 + m)~L(x — Y)A2(N] /2 = det 84'(x, \; A)/6A(P) + OQ?). (30)

A lattice regularization of supersymmetry appropriate for the derivation of egs. (29) and (30) from eq. (27) has
been outlined in ref. [12].

Finally, we would like to comment on possible generalizations of our result to more complicated supersymmet-
ric models. From the superalgebra relation (in relativistic space—time)

{QQM,Q_,;N}=25MN0”Q‘;PM, (D)

4 Actually, in two dimensions, it may occur that V(A4) has no zeros at all (spontaneous breaking of supersymmetry) but, as our
argument is formal anyway, we will not worry about such additional complications.
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it follows by a well-known argument [7] that the hamiltonian H (or a suitably regularized version thereof)) always
obeys the inequality H > 0. If supersymmetry is not spontaneously broken, the ground state 2, satisfies HQ =0
and the vacuum energy is zero indeed, so we expect our arguments to apply. If, however, supersymmetry is sponta-
neously broken, the hamiltonian is bounded below by a strictly positive constant, and, in fact, naively using the
formula (21), we would find that the vacuum energy turns out to be infinite. Evidently, this case requires a more
careful examination.

I would like to thank Professor B. Zumino for a useful conversation
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