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ABSTRACT

We complete the proof of a recently proposed new
characterization of scalar supersymmetric theories and

extend the result tc "non-scalar' models.
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In a recent letterl), we proposed to characterize scalar supersymmetric
theories by the following sfatement: there exists a transformation of the bosonic
fields which rotates the full (interacting) functional integration measure into
a free measure and whose Jacobi determinant equals the Matthews-Salam—Seiler (MSS)

2)

determinant”’ of the theory. The unusual and novel feature of this approach is
that it enables us to aveid the use of abstractly defined anticommuting objects,
a tool which had been indispensable so far in formulating supersymmetric theories
and exploring their properties. Apart from its intrinsic interest, this result
deserves further attention and study for a variety of reasons; for example, one
may hope for easier constructibility of supersymmetric models as compared to
non-supersymmetric ones., The vanishing of the vacuum energy in supersymmetric
theories is explained quite naturally if one turms around the argument to recon-
struct supersymmetric models. Furthermore, it appears certainly worth while to
try to do without quantities which are very convenient algebraically (e.g., in
superfield perturbation theory) but, so far, have defied analytic treatment (no
positivity properties and the like, only formal defimability of functional inte-

grals over superfields, etc.).

In the major part of this communication, we complete the.prodf of the main
theorem of Ref. 1) and thereby close a gap that has been left ‘in that proof.
We then apply our result to prove global invertibility of the field transforma-
tion in some cases, verifying a conjecture made in Ref. 1). Ifina¥ly;.ﬁelindicate
briefly how to generalize the result which, in Ref. 1), was_a;hoﬁﬁﬁedifdr "scalar"
supersymmetry only, to more sophisticated models., Our geneféliiaﬁibﬁ”will, however,
not yet comprise supersymmetric gauge theories: the gauge.ftxing procedure3)
either explicitly violates supersymmetrya) or, through additional ghost multiplets,

. . 5 . . N :
renders the theory considerably more complicated ). In view of its importance,

the discussion of this case is deferred to a future publicatiﬁq'

We will, in the sequel, adopt the same conventions (Euclideanimetric, etc.)
and notation as in Ref. 1). In particular, if y denotes the (Majorana) spinors

of the model, we write the part of the action containing these as

LFMAIY = 15 MGAIY =

~ . (1)
= £ 1500 Mug (x4, %5 A) By g0 axdly
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where, as in Ref. 1), XA stands for the various coupling parameters and will

be occasionally omitted; the bosonic fields are compactly denoted by A. We
6)
"

will make repeated use of the fact that the fermions can be "integrated out s

for instance

qu: exp[-épr(%;AB?.p] = det M(?\;A)”" =

2 (2)
= (aLeJ: M(J&=0;A)> - DAA)

B(X3A) 1is the MSS determinant in the notation of Ref. 1). At this point, it is
inessential that the action is quadratic in the fermioms since, for non-quadratic

6)

actions, Berezin's integral ’ serves as well to eliminate the fermionic variables
in which case, however, D(A3;A) is no longer the square root of a determinant
but some less familiar fumction instead. For the bosonic part of the action we

will'simply write S{A) = S(Aj;A); SU(A) = §(0,A) represents the free action.

It was proved in Ref. 1) that for supersymmetric theories there exists a
transformation A(x) - A"(x,)\3;A) which "rotates away" the interaction in the

functional measure which formally defines the Schwinger functions, that is

~ S{2;A) —-S,,(A’(A;M)d

e DOGAYIA = ¢ ADGAY @

This, as has been demonstrated in Ref. 1), is a consequence of the vanishing of

the vacuum energy in supersymmetric theories., From (3), we infer

S(n:AY= Sg(A) + KA (&)

DX A) = e MM et SA LA A)
87\(:5)

(5)

It was claimed in Ref. 1) and will be proved now that, in addition to (4) and (5),

supersymmetry also implies
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K(n;A) = 2 A"K, (A= O *) (6)
nwei

at least in the sense of formal power series (which is all we are concerned with

here).

For the proof of Eq. (6), we split the full supersymmetric actiom in two

parts as follows
S(A,F,yp) = S(A,F) + é—EM(A)Zp )

where, in two dimensions,
S(A,F) = S [é(BPA)Q'-l- -.'.EFZ + L F ?(A)] dx (8)

F is an auxiliary field and p(A) an arbitrary polynomial in A. Even though
(8) is special to two space time dimensions, there is no difficulty in genera-
lizing (8) to other cases, and all steps in the arguments below extend naturally
to other supersymmetric models. All we need is that the action is quadratic in
the fermions and the auxiliary fields. Our main input is the infinite set of

identities . {n& W)

- 3(A,F, )]
o S( P

gS(A,F,w)"' dAdFdy = O ©

valid for all values of the coupling parameters. These identities follow from

supersymmetry, and one may convince oneself that they only hold for supersymmetric

*% ~ .
models ). Introducing a shifted field F(x) = F(x) + ip(A(x)) and replacing

F by F in (8), we obtain

*)

**)

For simplicity, we assume that there is only ome coupling constant A.

The identities (9) are generated from the supersymmetry relation

Sexp‘_-ﬁ-ﬁ»tx)S(AaF; ?-P)] dAdFdy = 1

by differentiation with respect to a. Although, for a non-supersymmetric
theory, the vacuum energy may always be made to vanish by adding a suitable
function f£(a) to the action, the identities (9) are only obtained if
£'(0) = 0 and therefore £{(0) = ¢ since £(0) = 0 which is only possible
in supersymmetric theories. I am indebted to E. Seiler for having raised
this point.
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SCA,F) = Sa) + & (Footdx (10
with

Sy = 4 (1 eeAY + p(AY ] dx a1

Thus, Eq. (9) becomes

n
0 = {dAdEdy (S(A) +‘3§E=o\x+‘3‘qu(A)zp)-

c exp | SCAY + L {Brax + .'E?{;M(A)qi} =
(12}

T

=2 (:) Ck gS(Mn_k e S gt M(AYZ dA

k=0

The crucial observation is now that the numerical coefficients €L do not
*)

depend on the various couplings of the model as may be seen by making the

substitution
i , A2 . dw’= ch
pl = M(AAY g 3 dy = det M(X;A) “dep (13)
in the Berezin integral. Therefore, (12) .is also fulfilled for the free theory

In the functional integral (12), we now substitute A -~ A', so, by (3} the funec-

tional measure becomes a free measure. Equation {4) tells us that (12) is equi-

valent to

> (% g ) . = Se(AS = (15)
Z (W) ex {(sam+koua) e dA = O
*)

It is here that we need the action to be quadratic in ¢ and F¥.
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(we have dropped the primes). From this identity, from (14) and from the fact

that <y # 0, we get

n
g(Sb(A) £ KOGAY) e S Pya = &Qo(m“e's“md/\ 16)

for all n by induction. Upon inserting the asymptotic expansion (6) into (16),

the left-hand side becomes

.
=S (A
e o (A dA (17)

[+ o)

L (sotay + = K,
u=1

Differentiating this expression with respect to A and setting A = 0, we

cbtain

Z(3) T (SR MK ) =0 g

k=4 U1+.--+Uk=m

For every m €N, these identities impose infinitely many constraints on the
functionals K1(A)’ cen Km(A). Taking into account that the polynomiality

of p(A) entails that each Kn(A) is also polynomial in the bosonic fields, we
conclude that all Kn(A) vanish identically which completes the proof of (6)

and thus of the main theorem of Ref. 1).

An interesting consequence of the equality of the MSS determinant and the
Jacobi determinant of the transformation is that whenever we are able to show

that

SACLMAY _ y(a AY> O (19)
SAlY)

the transformation A + A' is locally invertible everywhere. But then we can

also prove that it has a global inverse because, by supersymmetry,

(20)

& e_s(m;A\$(13A3dA = const.
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Taking the limit X + 0 and assuming continuity at X = 0, we find that the
"winding number" of the trasnsformation equals cne which, together with local
invertibility, implies global invertibility. Since for Majorana spinors, D()3A)

1s the square root of a determinant, (19) is usually more difficult to verify

than for Dirac spinors where D(X34)? would be.the relevant quantity; so, for
example, the inequality D(};A)® > 0, first established in the third paper of

Ref, 2), is insufficient for (19). In the two-dimensional case, we find, employing
the methods of Ref. 7}, that (19) is satisfied if p'(A) > 0 in agreement with®

the conjecture made in Ref. 1); but p'(A) > 0 (for all A) is also the con-
dition that ensures continuity at X = 0 in (20). In four dimensioms, the simplest

8)

model ™ already contains both Yukawa and pseudo-Yukawa interactioms and it is not

known whether (19) is true or not.

Chiefly for reasons of conceptual clarity and notational simplicity the
scope of the present investigation has been confined to scalar supersymmetric
theories until now. No great effort is required, however, to drop that restric-
tion if the model under consideration has zero vacuum energy, satisfies identities
which correspond to (9) and is quadratic in the fermion fields. Formally, of
course, the first two requirements are met in every supersymmetric theory, but,
as was already emphasized in Ref. 1), scme care must be exercised when using
purely formal arguments. Attaching vectorial and internal indices to all the
fields, we discover that we can carry over our proof virtually unchanged. As a
technical remark, we mention that it is sometimes advantageous and more convenient
not to assume the coefficient functions Rév)(x) introduced in Ref., 1) to be
totally symmetric in their arguments. The only change is that, in Eqs (7) to (14)

of Ref. 1), we have to write out all contractions.
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