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The question of normalizability of (super-C3)4 is reduced to the verification of two 
conjectures pertaining to the construction of the infinite volume limit in the presence 
of a UV cutoff ~. Assuming their validity it is shown that the image of the renormaliza- 
tion map covers a set at least as large as F,3+ for any r < **. 

1. Introduction 

In this paper I continue (and conclude) the investigation of a possible construc- 
tive approach to (super~3)4 which was begun in two previous publications [1,2]. 
There, it was shown that the regularized Euclidean action, 

S(t¢, A) = ½Z ; 4  dx [(()~A)2 + (O~B)2 + x12'(2)')"u0~(1) + F2 + G2] 

m-f4 1~o(2)~(1) 
+m dx[iF, cAK +iG~B,¢ + ~ , ¢  --K ] 

+ g ; d x t i F K ( A 2 ~  - B ~ )  + 2 iGKA K + °f f~)(A K - TSBK) ~ )  ] ,  
A 

(1.1) 

gives rise to well-defined Schwinger functions which are C ~ in the bare parameters 
(Z, m, g) E IR+ 3 and obey the obligatory subset of  Osterwalder-Schrader axioms 
[3] * as well as supersymmetry Ward identities up to surface-terms. 

The present approach to (super-Ca)4 is based on multiplicative renormalization 
and has been inspired by Schrader's work on ¢~ [4]. In that framework, the basic 
problem may be lucidly posed as follows: is it possible to keep the physical param- 

* The UV-cutoff function is chosen to be invariant with respect to spatial rotations and not to 
smear in the time direction. 
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eters fixed (in a reasonable set, at least) by readjusting (= renornralizing) the bare 
parameters of  a model as one takes the UV limit? For q544, the answer to this ques- 
tion seems to be in the negative as the two extremal cases of q54, the free (Gaussian) 
theory and the lsing model, are believed to coincide in that limit [4 6] and it is 
therefore pert inent to know whether or not  models with fermions exhibit  a similar 
behavior. 

Now, a glance at (1.1) shows that a straightforward transplantation of Schrader's 
ideas from ~b~ to (super-~b3)4 is barred by technical difficulties: for instance, there 
are no correlation inequalities in contradistinction to (super-~b3)2 [7] and the model 
reveals its nice features only after one has passed through some symmetry-breaking 
procedure. It is, however, remarkable that these complications are truly technical 
in the sense that they are not related to UV problem whereas the "hard par t" ,  i.e., 
the construction of  the UV limit appears to be less knot ty  than in conventional 
models. Due to these technical problems the chain of arguments given in this article 
has a gap which I try to bridge by making two conjectures one of which is just the 
statement that there exists a possibly ~¢-dependent subset of  the bare parameters for 
which the cluster expansion is feasible. The validity of  these two conjectures entails 
the result that the three normalization parameter defined in (3.1) can be fixed to 
any prescribed strictly positive value (theorem 2): here, supersymmetry is crucial 
because it allows us to express two of the three normalization parameters explicitly 
in terms of  the bare parameters m and g (proposit ion 3.1). The remaining parameter  
Yl is then fixed by appropriately selecting Z (proposit ion 3.2); the somewhat unusu- 
al definition o f y  1 implies a statement on the existence and regularity of the two- 
point  function. The derivation of  these results is the content of  sects. 2 and 3. 

In sect. 4, the problem is looked at from a different point  of  view: in (super@3)4, 
the square root of  the fermionic determinant  turns out to be a Jacobi determinant  
with respect to the scalar part of  the action in the Gaussian and ultralocal limits. 
This principle is also sufficient to reconstruct the model without  recourse to anti- 
commuting objects. Even though there are still many open ends and questions that 
need to be tied up, I feel that the results are sufficiently promising to justify further 
research on the subject. If supersymmetry has not yet  found a match in the real 
world of  elementary particles, it may at least provide us with a deeper understanding 
of  the mathematical  intricacies of  quantum field theory in four dimensions. 

2. Some preliminary results 

It has already been pointed out in [2] in order to avail oneself of the UV proper- 
ties of  (super-q>3)4 one must pass to the infinite volume limit A 7' IR 4 before the 
limit t¢ ~ oo is taken because only then can supersymmetry be exact *. Even though 

* This is not surprising as the commutator of two supersymmetry transformations is a transla- 
tion. 
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the construction of  that limit is commonly regarded as "easy" in presence of  a UV 
cutoff, there are some technical difficulties which, at present, I do not know how 
to overcome. Working with the cluster expansion [8] turns out to be rather akward 
not  only because of  the presence of  fermions [9] and the two-well potential  which 
necessitates an additional expansion in phase boundaries [ 10], but  also because loca- 
lization, on which the expansion hinges!, cannot be reconciled with supersymme- 
try, not even if 0u is replaced by some fancy kind of  Dirichlet derivative in the trans- 
formations. On the other hand, there is only scant hope that the limit K -~ oo may be 
performed if  supersymmetry is renounced. Therefore, some kind of  assumption has 
to be made if one wants to go beyond the regularization. 

Definition 2.1: The set c/?~ c IR+ 3 consists of  all those (Z, m, g) @ IR+ 3 for which 
the infinite volume UV-cutoff Schwinger functions exist and obey clustering, i.e., 

[<XY>K - <X)K< Y)K [ <~ K X y  e-edist(x" Y) (2.1) 

for some constants K x y  < oo and e > 0 which may depend on K, Z, m, g in an arbi- 
trary fashion. It is obvious that the shape of  c ~  K is determined by the long-range 
properties of the model for • < oo rather than by short-distance singularities and 
may stay non-trivial even if the theory does not  exist in the limit K ~ oo since the 
constant K x y  is allowed to diverge as K -+ oo. 

The following conjecture is based on what experience with the cluster-expan- 
sion in various models has taught us [ 8 - 1 0 ] .  

Conjecture 1: For any Z o > 0 andg  o > 0, there exists m0(K, Z0, go) (possibly 
large) such that the set 0 < Z ~< Zo,  0 ~< g ~< go and m > m o (K, Z o, too) is con- 
tained in c ~  K. 

Remark: The conditions 0 "( Z ~< Z 0 and 0 ~< g ~< go are reasonable because the 
bare mass is (m2/Z) 1/2 and the height of  the potential  barrier is propor t ional  to 
m4/Zg 2 . The conjecture is likely to be verified as soon as one is able to handle the 
aforementioned technical problems. 

By definition, the infinite volume UV-cutoff Schwinger functions exist and obey 
all Osterwalder-Schrader axioms except invariance under "boosts"  if (Z, m, g) E c ~  K 
(cf. theorem 4 of [2]). Another obvious consequence is the following. 

Proposition 2.2: For (Z, m, g) E el?f K, the ordinary perturbat ion series is asymp- 
totic at g = 0. 

Proof: As in [11] by use of the cluster property.  
Theorem 1 : For (Z, m, g) E cllf~, supersymmetry Ward identities are satisfied 

without surface terms. 
Proof: From [2], eq. (3.17) we know * 

(SR)g, A = (R; 6S)~:,A (2.2) 

where 6S is supported on 0A and R has support in a fixed compact  region G c A c 

* <X,'Y) : = <XY) - <X) (Y). 
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IR 4. Because (Z, m, g)  E cl~K, there exists e = e(K, Z, m, g) > 0 such that 

I(R; 5S)K,AI ~< O(1) O(p 3) e -ep , 0 ,  (2.3) 
p---* oo 

where p: = dist(G, 0A) and O(1) depends on g, Z, m, g. The infinite volume super- 
symmetry Ward identities are, of  course, identical to those obtained from the rela- 
tivistic ones written down in [12] by analytic continuation to imaginary times. For 
instance, 

lim (f(x))~, A = 0 (2.4) 
A / . I R  4 

and ((.)K = (')K,IR 4) 

a ( A ( x ) A ( y ) ) ~  i 6 o ¢ ( A ( x ) F ( y ) )  K (2.5) ( ~  0(2)  (X) xI/(1) 0)))K = "~1~ Oy---~ -- ' 

etc. 
Proposi t ion 2.3: For (Z, m, g) @ c~K, 

lim (A(x))K, A = O. (2.6) 
A ,~IR 4 

Proof: Eq. (2.6) is not a consequence of  supersymmetry Ward identities alone (as 
has been incorrectly claimed in [12]). By theorem 5 of  [2], the lattice approxima- 
tion converges to the (K, A) cutoff  theory. Making use of  the identity (on the lattice) 

+oo ~) 

v f  d F ( a n ) ~  e -S  = 0 ,  (2.7) 

and taking the continuum limit, one arrives at the "equation of  motion" 

-- Z ( F ( x  ))K,A = irn(A K . K (X ) ) K,A 

+ i g / h ~ ( x  - y ) ( A ~ ( v )  - B~(y))K, A d y ,  (2.8) 
A 

which in the limit A / "  IR 4 becomes 

m(AK(x) )K  + g ( A ~ ( x )  - B~(X))K = 0 ,  (2.9) 

by (2.4) and translation invariance. The Ward identity aU(AA)K = aU(BB)K tells us 
that 

m 
- - -  (A  ( x ) ) ~  = (A K ( x )  A K (Y) - BK ( x )  B ~  0'))K 

g 

= (A(x) )~  + ( A K ( x ) ; A K ( v ) )  K - (B K(x ) ;B~( y ) )  K . (2.10) 

If  we let Lvl ~ oo the last two terms on the right-hand side vanish separately by the 
cluster property and we are left with the equation - m ( A  )K = g(A)~ which possesses 
two solutions Gt )~ = 0 and (A) K = - m / g  (corresponding to the two minima of  the 
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potential). Clearly, the latter solution is not asymptotic to zero at g = 0 which, by 
proposition 2.2, proves the assertion. 

Remark: The result (2.6) is remarkable because it permits us to explicity com- 
pute the "spontaneous magnetization". In the "toms-version" without symmetry 
breaking, it is easy to see that * 

{Z ~'sym = -m/2g  (2.1 1) "Z, m,g 

The discontinuity (=spontaneous magnetization) is 

lira [(A )~,A sym -- (A)K,A] = m/2g=/= O. (2.12) 
AtIR 4 

I do not know of any other example (not even in statistical mechanics) where such 
an explicit computation is possible. Incidentally, (2.6) also agrees with the pertur- 
bative result [13,14]. 

The following identities are due to Iliopoulos and Zumino who gave a formal 
proof in [12], sect. 4. 

Proposition 2.4: For (Z, m, g) E c ~  

a-~ (A(x); F(v))~ - 2 g '  (A(x))K = ~ f  dy 1 (2.13) 

a im 
-~m(A(Xl ); F(x2))~ = -~f(A(xl ); F ( x 2 ) ;  FO')),~ d y .  (2.14) 

Analogous identities hold for higher expectation values; they may be derived from 
the following identity for the generating functional of  connected Schwinger func- 
tions 

~mW[J] =im f 6W[J] dx - t__(2g a J a ( x )  dx (2.15) 
2gJ iaJy(X) 

where JA, JF  .... lie in suitable test-function spaces. 
Proof: The proof  may be taken over from [ 12] if one makes rigorous the formal 

arguments given there. Starting from the identity ** 

_ _  + I xit(2) xit(1) 0 [ma4 ~ (iFK, n A~'n + iOK nBK n - ~K,n--K,n ] 
am anGA " " 

('F,l__u, m (A K m = (2ghK'a(O))-la4 hE5 r a4aA(an) [ga4 am ~EA " 2, - B2,m) 

+ 2iG, mAK mBt~ m + xIt~)m(aK, m 5 (1) 
, , , - -~  aK,m)~K.m)] , (2.16) 

* This corresponds to the fact that (~o) = 0 for a Goldstone potential V(9) = (~o 2 - C2) 2 if no 
"magnetic field" has been turned on. 

** h"~a(O) = a4~2n~-ffhK(an) --+ 1 asa ~ O. 



182 H. Nicolai / Constructive approach to (super-03)4 (III) 

on the periodic lattice, one easily arrives at an identity for the generating functional 
by repeating the arguments of  [ 12] on the lattice where all manipulations are now 
rigorous. Making use of  the convergence of the lattice approximation of  the (K, A) 
cutoff  theory, one finds for instance 

im 1 
= Tgf(A(x);  F(y))K, A dy 2g ~m(A (x ) ) ,~,h - _ _  

+ (S  m (AC))K,A(A(x))K,A - (S m (A c) A (x))K, a ,  (2.17) 

where 

Srn(AC): = f ( iF~A K + iGKB K + 1-q/(2)qtO)'~ dx (2.18) 2 t¢ K : " nO\A 

Now, if(Z, m, g) E "~t/~K, we can pass to the limit A : IR 4 where the last two terms 
on the right-hand side of  (2.17) may be discarded on account of  the cluster property. 
The derivation of (2.14) and (2.15)is  completely analogous. 

The identities will turn out to be useful for the investigation of the renormaliza- 
tion map in sect. 3. 

3. The renormalization map 

In sect. 2 the cluster property has been shown to imply exact supersymmetry 
Ward identities in the infinite volume limit. As is well-known from perturbation 
theory, it is only at this stage that the spectacular UV properties of  (super-Ca)4 
come into play and something can be said about the limit K -+ ~.  For this reason, 
the correctness of  conjecture 1 and a second conjecture to be stated below will be 
assumed throughout this section. To fix the theory, I introduce three normaliza- 
tion parameters (as usual (Z, m, g) E c//~ K ; s > 0) * : 

y l (s; Z, m, g, K): = mf 4 eSlXtl(B(x) B(O))z,m,g,~ldx , 

y2 (Z ,  m, g, K): = i mf 4 (F(x )A(O))z ,m ,g ,~  dx , 

y a ( Z ,  m, g, •): = mf 4 ( F ( x )  F(y)A(O)>z,m,g,K dxdy  . (3.1) 

* Fo r  A = IR 4 (bu t  n o t  for  A ~ IR4),  all  t a d p o l e s  vanish  i den t i ca l l y  b y  (2.4),  (2.6) ,  so the re  is no  
n e e d  to  d i s t ingu i sh  b e t w e e n  th is  de f in i t i on  and  the  one  invo lv ing  c o n n e c t e d  e x p e c t a t i o n  
values.  
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The expectation values occuring on the right-hand side are understood to be the 
infinite-volume expectation values. The definition o f y  1 is clearly inspired by 
Schrader's use of  an "indicator function ~' [4] and the modulus is chosen so there is 
no need to rely on a putative correlation inequality (BB) >~ O. Y3 could be equiva- 
lently defined through any one of the expectation values (FGB), (GGA), (F~(2)q/O)) 
or (G,I,(2)Ts~ (1)) since these are related to each other by Ward identities: the same 
holds true f o r y  2. One might also normalize one-particle irreducible expectation 
values but to do so one needs invertibility of  the (interacting) propagator; if that is 
taken for granted *, Y3 may be replaced by (A~(2)~(1)) 1PI, for instance. For any 
K < o% (3.1) defines a continuous map R(K) from c ~ ,  the unrenormalized (bare)  
parameters into the set of  renormalized (physical) parameters y 1, Y2, Y3. Finding 
out about what the set image R(•) looks like in the limit K -> oo constitutes the basic 
task of renormalization theory. The investigation o fR(K) in  the case of (super-~b3)4 
is tremendously simplified by the explicit computability of  y2 and Y3 in terms of 
the bare parameters. 

Proposition 3.1 : If  (Z, m, g) @ c/~K, 

y2(Z, m, g, K) = 1/m , (3.2) 

y3(Z, m, g, K) = 2g/m 3 . (3.3) 

Proof: Use (2.6), (2.13) and (2.14)! 
From the explicit expressions (3.2) and (3.3) we see that Y2 and Y3 may be 

analytically continued in m away from the set m > mo(K, Zo, go) into the complex 
m-plane with a singularity at m = O. From (2.15), it follows that any connected 
Schwinger function can be represented as 

( . . . )m2 ,g  = 
o o  

= ~ 1 ( i ( m 2 ~ - g m ~ ) . ) n f  
n=O ~.T ( " ' ; F ( Y l ) ;  "";F(Yn))m~ 'g dyl "'" dyn (3.4) 

(the dots stand for at least two fields). As may be verified by checking the combina- 
torial growth of  the integrand which is just n!, this series has a non-vanishing radius 
of  convergence which also proves analyticity in m. 

Conjecture 2: The radius of  convergence of the series (3.4) is the same for all 
non-constant Schwinger functions. 

The point is, of course, not that there is an identity like (3.4) (it has an equiva- 
lent in other m'odels, too) but that if this conjecture holds true, eq. (3.2), that is 
supersymmetry, tells us what the radius of  convergence is! Note that in that case, 
supersymmetry Ward identities and the relations (3.2) and (3.3) are preserved via 
analytic continuation. Moreover, if the conjecture is correct, the infinite volume 
UV-cutoff Schwinger functions exist for all (Z, m, g) G IR3+ by means of the fol- 
lowing scaling relation for the v-point Schwinger function 

Sv(Z, m, g) = tv/2Sv(tZ, tm, t3/2g) , (3.5) 

~' By the Ward identities, invertibility can actually be proved in a neighborhood o f p  2 = 0. 
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which is immediately deduced from the form (1.1) of the action. Eq. (3 .5)may also 
serve to analytically continue Su in Z (by analyticity in m and g). Hence, the Schwin- 
ger functions are analytic in the bare parameters in some complex neighborhood of  
IR a. Assuming the correctness of conjecture 2, one can clarify the behavior of  Y1. 
As m and g are uniquely determined by (3.2) and (3.3) and K is kept fixed for the 
moment, only Z can vary. 

On a finite lattice, Yl is given by 

y l ( Z ,  m , g ,  s ; K , A , a , 5  r) 

= a 4 ~ e slanl I(B(an) B(O))z,. . .  I • 
n e f f  

(3.6) 

Proposi t ion 3.2: For fixed m, g, s, K, a and5 r 

lim y l ( Z  . . . .  ) = 0 ,  (3.7) 
z ~ 0  

l i m  y l ( z  . . . .  ) = co .  ( 3 . 8 )  
Z - - + ~  

Proof:  (i) As Z -+ 0, the kinetic term approaches zero and the model becomes 
"ultralocal". The factor multiplying the potential is Z -1 and, thus, one gets a Dirac 
measure * in that limit which is modified by the square root of the Fredholm deter- 
minant. Up to a normalization factor, it is ** 

dUz:o  = Idet(mhK ,K(an - am) + 2gh,,.~(an - am)  .~fi~K,A(am))[ 2 

X I-I [5(mAK,K(an ) +ga 4 ~ hK(an - a m ) ( A ~ ( a m ) - B 2 K ( a m ) ) )  
n E T  a m E A  

X f ( m B ~ , K ( a n  ) + 2ga 4 ~ h~(an - a m ) A ~ ( a m ) B x ( a m ) )  
amEA 

× dA(an)  dB(an)] . (3.9) 

By lemma 2.1 of  [2], "hK,a(k) > 0 and therefore the matrix hK(an - am)  has an 

* 6(~) = lira 1 e _ ~ l Z .  
z--~ox/-~ 

** CK,A (an): = (|Ar(an) 
+ LBK(an) 

( 0 ,  otherwise. 

ff an E A , 
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inverse. The measure (3.9) may then be written in an equivalent localized form 

d/~z=o = I-I rdA(an) dB(an)lm + 2g ~ , A  (an)l 2 
n ~ 7  

X 6 (mA K (an) + g(A 2,A(an ) -- B2,A (an))) 

X 6(mB K (an) + 2gA K,A(an) BK,A(an)) ] . (3.10) 

Now, by a well-known formula *, 

dUz=o = 1-I dA(an) dB(an) I-I 6(AK(an))6(B~(an)) 
nE~7 an~a~T\A 

× I-~ 6(B~(an))[6(AK(an))+6(AK(an)+m/g)] ,  (3.11) 
a n E A  

and, consequently, on the support of  the measure d/az= b we always have BK(an ) = 0 
which implies B(an) = 0 for all n ET. Note that the Jacobi determinant just cancels 
the square root of  the Fredholm determinant which also happens to be the case in 
the free theory and seems to be a characteristic feature of supersymmetric theories. 
Hence, 

lira (B(an)B(O))z .... = O, (3.12) 
Z ~ O  

and (3.7) ensues. 
(ii) For Z ~ 0% the kinetic term dominates and the model becomes free. Using 

the estimate y 1 (s) >t- y 1 (0) and, for large Z, 

(BB)Ik=0 ~ Z / m  2 ~ e ~ ,  asZ ~ , ,o ,  (3.13) 

one proves (3.8). On the continuum, of  course, Y l (s)may already diverge for finite 
Z if the correlations do not decay rapidly enough. 

Remark: The simple reason why I have chosen (BB) rather than GtA ) to define 
Y t is that, for IAI < '~ limz--,o(AA)z,...  ~ O, because the Ward identity (AA)  = 
(BB) can only be fulfilled in the infinite-volume limit. 

From propositions 3.1 and 3.2, the arbitrariness of  our choice of  the finite lattice, 
the convergence of  the lattice approximation and the continuous dependence of  the 
normalization parameters on the bare parameters for K < o% the following theorem 
is immediate. 

Theorem 2: If  the two conjectures hold true, the bare parameters Z, m, g may be 

* I f f  : IR n ~ IR n is locally invertible at its zeros x v 

8(f(x)) = ~ Idet f'(xu)l-16(x - xv) . 
v 



186 H. Nicolai / Constructive approach to. (super-~3) 4 (III) 

chosen such that the normalization parameters y 1, Y2 and y 3 take any prescribed 
strictly positive value for any K < oo. 

To appreciate the impact of  this theorem, it is instructive to compare it with the 
corresponding result in q~4 [4] : whereas in 04, the image of  the renormalization map 
is bounded by two extremal surfaces which eventually collapse into one in the limit 
a -+ 0, something strikingly different happens in (super-4~3)4, for, by the theorem, the 
image of  the renormalization map covers a set at least as large as (IR+) 3 for any 
K < oo! Moreover, the bare mass and coupling constant are uniquely  determined by 
Y2 and Y3 while, for Z = ZOO, uniqueness cannot be ascertained due to the lack of  
monotonicity estimates. Also, the above theorem yields no information as to the 
actual behavior of  Z; it would l~e interesting to see whether Z(K) ~ (log K) --1 as 
predicted by perturbation theory. 

As in [4], the two-point function (BB)  and, by the Ward identity, ( A A )  may be 
estimated by the normalization parameter. Defining (p E IR 4) 

,~(~(p):  = ! 4  e - ipx (B(x )B(O))~  dx ,  (3.14) 

and using the elementary inequality Ix[ n <<. n! e Ixl, one readily obtains the estimates 

7S(~)(p) - -  y l ( s ) ,  (3.15) 
~PUl "'" ~Pun <~ sn 

which show that the functions S ~ ( p )  = S(K)A (p) are analytic in a strip [Im Pl < s at 
least. Keepingyl(s  ) fixed while letting • -+ o~ we get the same result for the two- 
point functions with cutoffs removed. Unfortunately, I do not know how to extend 
this argument to higher expectation values. If  one could establish similar estimates 
for these, non-triviality of the model follows from 

lira y3(Z(t~), m, g, K) = 2g/m 3 4 = 0 , 
K --+ oo 

or, in terms of  one-particle irreducible functions, 

lira ( A ~ ( 2 ) f f ' ( l ) )  IpI  = 2 g ~  0 .  
K--.~ oo 

4. O u t l o o k  

The above treatment still suffers from several limitations and shortcomings, the 
most conspicuous one of  which is that I had to rely on two conjectures in order to 
reach the final result which critically depends on the existence of the infinite-volume 
limit of  UV-cutoff Schwinger functions and the cluster-property. Tire reader will 
have noticed the importance of this property for supersymmetry: without clustering, 



11. Nicolai / Constructive approach to {super-O3} 4 (III) 187 

there are long-range interactions, the surface terms cannot be dropped and some kind 
of anomalous behavior is to be reckoned with, see also [ 15]. 

There is, however, another intriguing aspect of supersymmetry which has already 
been alluded to and which I would like to emphasize: the fermionic determinant in 
(super-q53)4 appears to play the role of a functional Jacobi determinant at least in 
the limiting cases g -+ 0 (Gaussian, non-local but linear) and Z -* 0 (local but non- 
linear) which might ultimately explain why supersymmetric models are so well- 
behaved in the UV region. Conversely, I have checked that the requirement that the 
fermionic determinant act as a Jacobi determinant in these two limiting cases uni- 
quely reproduces the known supersymmetric models containing scalar multiplets. 
To illustrate this idea, I have concocted a "zero-dimensional" example which neatly 
displays the relevant features. For a "multiplet" A, F real, ~Ol, if2 anticommuting, 
I define supertransformations as follows 

6A = ~ e ~ ,  ~ ~ = i~aF, 6F = 0 ,  

= (4.1) ~'a anticommuting, ca# 1 0 

(the underlying superalgebra is (Qa, Q¢ ) = 0). An invariant "action" is 

. ~ = 1  2 ~F + iFp(A) - ½p'(A) ~ea#~O , (4.2) 

where, for convenience, p (A) is a globally invertible but otherwise arbitrary C 1 func- 
tion. "Vacuum expectation values" are given by 

~ I R  (A ) e-'e( A'F,¢ a) dAdFdffldff 2 I 

Integrating out F, ffl and if2 (a la Berezin), I find 

(4.3) 

1 +oo 

(R(A)) = ~ _ f  R(A ) e-[P(A)]2/2p'(A ) dA 

+oo 

The "Ward identity" ( ~ka if/3) = -ieoc(FA ) is nothing but 

f 3-~ (A e-[P(A)12/Z)dA = 0 !  (4.5) 

The above example suggests that it may be possible to formulate supersymmetry 
without the need to introduce anticommuting objects, thus making it digestible even 
to people who do not like to work with such abstract entities. As far as constructive 
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field theory is concerned the problem of constructing non-trivial supersymmetric 
models might be reduced to the study of non-linear and non-local transformations 
in distribution spaces. It remains to be seen whether such an entirely different 
approach is indeed more viable than the conventional one. 

I would like to express my gratitude to Professor .1. Wess for suggesting the prob- 
lem and his kind guidance during this work. 
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