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A POSSIBLE CONSTRUCTIVE APPROACH TO (SUPER-~3)4 
(I). Euclidean formulation of  the model 
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A Euclideanized version of the (super@3)4 model (Wess-Zumino model) is given 
which may serve as the starting point for a constructive investigation of this model. 

1. Introduct ion 

Since the time when it was introduced by Wess and Zumino [1], supersym- 
merry has increasingly at tracted the at tention of  quantum field theorists. One of  
the main reasons for this continual interest is the spectacular cancellation of  diver- 
gences that as a rule takes place in supersymmetric theories, e.g. supergravity. 
Already the simplest non-trivial example,  the Wess-Zumino model [2], exhibits 
the characteristic cancellations between boson and fermion loops: it is the least 
divergent four-dimensional field theory model known up to now. Therefore, it is 
of  interest to know the chances for this model to exist and to find out why pre- 
cisely and in which way supersymmetry "softens" the UV singularities of  a func- 
tional measure. 

As a first step towards such a rigorous investigation it is shown in this paper how 
to systematically Euclideanize supersymmetric models. As is well-known, the Euclid- 
eanization is an indispensable prerequisite, since functional integrals can be given a 
mathematical ly precise meaning in Euclidean field theory only [3 5]. For  models 
containing fermions, a Euclideanization is not completely straightforward because 
the Fermi degrees of  freedom have to be doubled and hermiticity of  the action has 
to be abandoned in favor of  Osterwalder-Schrader positivity [ 6 - 8 ] .  This is appa- 
rently a technical, but not  a fundamental,  difficulty. As supersymmetry is gener- 
ated by fermionic operators one must expect to run into similar (technical) compli- 
cations. Also, since supersymmetric models usually contain Majorana spinors it is 
obviously necessary to define what one means by Euclidean Majorana spinors if 
one wants to Euclideanize supersymmetry.  This will be done in sect. 2 of  this paper. 
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Euclidean supersymmetric models have been considered before [9] ; there, hermi- 
ticity was retained at the price of giving up the explicit connection between relati- 
vistic and Euclidean field theory. In this paper, the opposite point of view is 
adopted: it is proposed to give up hermiticity instead. Then, by construction the 
Euclidean supersymmetric model generates expectation values (Schwinger functions) 
which are the analytic continuations of the Green functions of the corresponding 
relativistic supersymmetric model. Thus, one has a complete correspondence 
between supersymmetry at real and at imaginary times. Euclidean T-matrices are 
denoted by "}u' They are chosen as follows 

(0 
:yu = 0 u :=(1 io k) {,~u,,~v} =2Buy. (1.1) 

6#+ ' , , 

The 7 s matrix is defined by 7 s := i7o'~172"~3. It is diagonal and antihermitean. 

2. Euclidean Majorana fields 

Euclidean Majorana spinors have been defined in ref. [8]. Here, another defini- 
tion is proposed which will better suit the applications I have in, mind and which is 
rather closely modeled after the definition of Euclidean Dirac spinors as given in 
ref. [7]. The relevant equation is eq. (3.13) of that paper *: 

4 1 e - ipx  
xP(')(x) = ~ '/~1 i ~  {D+ (p' J) V~O°) + B( -p ,  j) [71"(/7)} d 4 ; ,  

4 (2.1) 
1 ~ f e -ipx 

,q/(2) (x) = ~ /.__~ d p 2 ~  { B+ (t°, ]) (f~ (P) + D(-p ,  j) V~ (p)) d4p,  

where x,p E lR4,px = Y'~=o xiPi (Euclidean metric) and U, U, V, (7_ the Euclidean 
analogs of the relativistic u(p), v(p) - are defined in eq. (3.10) of ref. [7]. q,(1), 
qA2) are the Euclidean counterparts of the Dirac spinor ~ and its adjoint ~ (how- 
ever, q,(2) 4= qA1)+~,o). They satisfy 

= ff  (x) 

{ qt(i)(x), x~t~i) (y)} = 0 .  (2.2) 

Here t}, ~ are relativistic free fields at imaginary times: 

}~(Xo, "x) = ~c~(ixo, X) := e-X°/-t° ff,~(O, .g) e x°H° . (2.3) 

* The notation used in this section is defined in ref. [7]. 
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Observe that the Euclidean fields anticommute as they should do. Non-vanishing 
anticommutators such as {q/l) ,  qXl)+} play no r61e and are irrelevant since the 
"physical" part of  Euclidean Fock space (which is mapped onto relativistic Fock 
space) is spanned completely by the vectors obtained upon applying products of 
,i,(1), xp(2) to the Euclidean vacuum state g2 ¢. 

The Euclidean Majorana-spinor is obtained from (2.1) by identifying "particles" 
(created by D +) and "antiparticles" (created by B+). It is given explicitly by * 

1 ~ ,  f dp  e -ipx 
- -  2 2 (B+ (P'/)V~(P) + B( -p ,  j) e~o l){~(p) } 

• (2)(x) := e ~ # ~ l ) ( x )  (4: t°(1)+-° !) ** (2.4) x~  7t3~ 

where e is the charge-conjugation matrix e '~  u C -1 = . ~ u z  (it is the same as for 
relativistic 7u). Then 

4 
;.~')(x), %')~y)} = i E ( e -'px e-'"Y 

(2n) 4 i,,=, ~ &  ~m ~ x/-q-2 + m 2 

x [{B+(p,/), B(-q, l)} v~(p)e~o#~o(q) 

+ (8(-p,/), B+(q, O} eao¢~Cp) V~(q)]dap d4q 

4 ,.e_ip(x_y ) 
= (2/1") 41  ~j=  p2+ m 2 [e~.vg(~)~/(-p)+ eaoV~(-p)f~/~)]d"p 

4 _ 1_ ~ e -ip(x-y) 
(2704/=1 p2 + m  2 [C~#( - - /~+m)ao  + (~ao / (~+m)0# ]  d+P,  (2.5) 

where eq. (3.12b) of  [7] has been used. This expression vanishes because of the 
symmetry ofj~ C and the antisymmetry of ~.  Thus, 

(~(i)(x) ,  ,Ill) (v)} = 0 ,  i , / =  1 , 2 .  (2.6) 

A1SO~ 

~'I4') (x)'I'~ ~) 0,)) = e~p ~,i4')(x) ,I,~'~ 0,)) 

1 ['e - ip(x-y) 
- (2rr)4 e # o d ~ + ~  ear(i~ + rn)or d4p 

_ 1 f e  - ip(x-y)  
(27r)4J  p2 + m  2 ( - / f i + m ) a ~  daP , (2.7) 

* From now on, ,I,(i) always stands for a Majorana spinor. 
** The degrees of freedom are still doubled as/" = 1, ..., 4. 
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which is the relativistic propagator at imaginary times [7]. 
The unitary involution O [7] is defined as follows: 

O ~  6 = f2 6 , 

o B  + q,, / )  o - ~ = c / , fp )  B+ ( Op, t) , 

where p = (Po, fi) and Op := ( - P o ,  iO); the matrix Cil(15) is 

(2.8) 

1 (0  - i / ~ J )  
C(13) = ~1 i~6 0 (=-- eq. (4.3) of ref. [7 ] ) .  

For the fields ~(1) and if,(2) this implies 

oq,(1) (x) O-  1 = _q,(1)+ (Ox) ~7 ° = q'(2)+ (Ox) 1 '0 , 

OXI -t(2) (X){~-- 1 = ~I/(1)+ (L,qX) 70 . 

For a Yukawa interaction AqA2)q A1) it follows that 

O [A (x),V~) (x) ,I,~' ) (x ) ]O - ' 

(1)+ O (2)+ 0 = A(Ox)q ,p  (Ox)1"o~q% (Ox)1"o~ 

= [A(Ox),I ,~2)(Ox).~O(Ox)] + 

Similarly, 

(2.9) 

(2.10) 

(2.11) 

(~[B(x)XII(2)(X)1"Sxlt(1)(X)]{~) - 1  = [B(Ox)x l t (2 ) (19x )vSx l t (1 ) ( tgx ) ]  + , ( 2 . 1 2 )  

for antihermitean 7 s. 
Having constructed explicitly the Majorana spinor q/(1) and the unitary involu- 

tion O one can take over the analysis of ref. [7] completely. In particular, there 
exists an operator W mapping (positive-time) Euclidean Fock space vectors X, Y 
into relativistic Fock space vectors WX, WY such that 

(WX, WY)cI~ = (®X, Y)6 , (2.13) 

where oR(6)  means that the scalar product has to be taken in relativistic (Euclidean) 
Fock space. As in ref. [7], physical positivity of  a suitably regularized Yukawa- 
interaction is guaranteed by (2.11) and (2.12). The Feynman-Kac formula may also 
be proven as in ref. [7]. 

In the literature, one may sometimes find the statement that there are no 
Euclidean Majorana spinors [10]. This is only true as long as one requires the 
Euclidean fields to have the same hermiticity properties as the relativistic fields. 
In this section Euclidean Majorana spinors are by definition those operators in 
Euclidean Fock space which generate the analytic continuation of relativistic expec- 
tation values but, of course, the relation ~ = ~b+l '° is lost. 
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3. Euclidean (super-~3)4 model 

Euclidean supersymmetry transformations are obtained from relativistic ones by 
replacing all real time-coordinates by imaginary ones and all Majorana spinors 4, c~, 
~, 8, ... by Euclidean Majorana spinors qA1), a(1), ..., or qA2) = CqAl), a(2) = ~c~(1), .. 
Then all algebraic identities such as f a  = 8~ that are needed for supersymmetry are 
preserved (note that the invariance of a supersymmetric Lagrangian can be shown 
without ever considering the complex conjugate). Also, in order to avoid expressions 
like f+_~xe ax2 dx (which is meaningless for Re a > 0) I replace all real auxiliary fields 
F, G by purely imaginary ones iF, iG; the necessary alterations are included in the 
transformations below. At first sight, this looks like a somewhat arbitrary procedure, 
but it is not: replacing F, G by fF ,  fG ,  0 4= ~ E C one may quite easily verify that 
expectation values not containing auxiliary fields are cons tant  with respect to ~" 
(otherwise polynomials in ~'). Thus, going from ~" = i where everything is "well 
defined" to ~" = 1 really amounts to nothing else but the analytic continuation of  an 
elementary function! 

For a multiplet of  two real scalars A,  B, two auxiliary fields F, G and a Majorana 
spinor ~I '(1) Euclidean supersymmetry transformations are defined as follows ( c f  
ref. [1]): 

6A = 0~(2)xI j(1), 6 F  = ia(2)~/UBUqA 1), 

6B= a(2)TSqA1) ' 8G = ia(2)75}.uOuqA1) ' 

6 q  j(1) = OU(A - ')'SB)'):Uo~(1) - i ( F  + 7SG)o~ (1) . ( 3 .1 )  

Note that in contrast to the relativistic case these transformations are no longer 
unitary; this point will be discussed in a little more detail in sect. 4. 

As in the relativistic case one constructs a "Lagrangian" 

12 = ½Z[(OuA ) 2 + (OuB) 2 + 'tI/(2)'}'glOU~IJ(1) "l- F 2 + G z] 

+ m [ i F A  + iGB + ½qA2)'It(l)] 

+ g[ iF(A 2 - B 2) + 2 iGAB + qA2)(A - 75B)q Al)] , (3.2) 

which is invariant up to total derivatives. In terms of physical fields (i.e. after the 
elimination of  auxiliary fields) (3.2) reads 

m 2 m 2 
.2 = { Z ( 3 u A )  2 + - - A :  + ½Z(~uB) 2 + - - B :  

2Z 2Z 

mg + 1 Z,S.,(z)~u~)u~I,(l) + ½mqA2)~I,O) + _ _  A ( A  2 + B  2) 
Z 

g2 
+ - -  (A 2 + B 2 )  2 +gxI/(2)(A - 7 S B ) q A D  . 

2Z 
(3.3) 
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(3.3) tells us that (super-q53)4 is really a combination ofP(A, B)4 and Y4. 
The n-point Schwinger-functions are formally given by (~ = A, B, q,(i), F, G) 

H ~, i(Xi)) 
i = 1  

H 

f i~= l ~i(Xi) e-  f ~ (z , dz 

f e  ye(z) dz 

I-[ dA(x) dB(x)dqA1)(x)dF(x) dG(x) 
x ~ l R  4 

~I dA(x) dB(x) dqJ(1)(x)dF(x)dG(x) 
x~IR 4 

(3.4) 

(A rigorous definition with appropriate cutoffs will be given in a forthcoming paper 
[11] .) Observe that using (3.4) one may derive (3.3) from (3.2) by integrating over 

F and G. Expanding (3.4) with respect to the coupling-constant g one obtains the 
usual perturbation series which has the same cancellation of  divergences as its rela- 
tivistic counterpart [2]. 

4. Discussion 

It has already been pointed out that Euclidean supersymmetry transformations 
are no longer unitary under the usual complex conjugation. This causes no trouble 
since one can regard them merely as a formal device to derive Ward-identities which, 
in a sense, form the real content of  a symmetry. In the super-C) 3 model, of  course, 
these turn out to be the analytic continuations of  relativistic Ward-identities to 
imaginary times; up to factors of i whenever auxiliary fields appear in the expecta- 
tion values (these factors drop out when auxiliary fields are eliminated). 

"Hermiticity" of the transformations may be restored if one generalizes the con- 
cept of complex conjugation on the Grassmann-algebra ~ = (I? * ~0 such that on ¢ 
it acts as the usual complex conjugation whereas on ~0 it is an involutive map. In 
this way one explicitly sees why scalar fields need not be doubled (this is also a 
consequence of analytic continuation). In addition, using this generalized complex 
conjugation, superfields may be introduced to simplify perturbative calculations 
just as in the relativistic case. The group-theoretic structure can be extracted from 
the commutator of  two supersymmetry transformations which is 

'9 0/(2 ) "L"U 0~( 1 ) ~/'t (4.1) 
[ ~ 1 , ~ 2 1  . . . - -  2 - -  I . . . .  

From (3.1), (3.2) the classical conserved spinor charges may be computed in terms 
of the fields but in Euclidean Fock space these do not represent the algebra (4.1) 
since Euclidean fields always commute or anticommute. 

Finally, it is to be expected that all of the results of this paper may be extended 
to more complicated supersymmetric models such as supersymmetric gauge theories. 
Although, at present, for such theories there is no regularization which is valid 
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beyond  per turba t ion  theory,  the Eucl ideanizat ion procedure adopted in this paper 
allows the cons t ruc t ion  of  the Euclidean counterpar t  o f  any given relativistic super- 
s y m m e t r i c m o d e l  such that ,  for instance,  physical posit ivity [6] is satisfied at least 
formally or on the level o f  per turba t ion  theory.  

The author  is grateful to Professor Wess for some helpful suggestions, and to 
Professor Schrader for some clarifying discussions on Euclidean field theory.  

Note added in proof 

A Euclideanized version of  the superfield formalism of  [12] can be used to 
derive some further results on higher orders of  per turba t ion  theory [13]. 
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