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We study collections of paths—i.e., unparametrized curves—on a manifold such that through every point
and every direction at that point there passes exactly one path. Among such path structures we
characterize, analytically and in terms of symmetries, those which consist of geodesics of a linear

connection. Examples of nongeodesic path structures are given, and some of the results are interpreted

physically.

An axiomatic approach to the spacetime structure of

general relativity can be based on the following concepts:

a four-dimensional manifold M, a Lorentzian conformal
structure  on M, and a projective structure ” on M
compatible with C.' The points of M are considered as
mathematical images of events in physical spacetime,
the conformal structure represents the causal structure
as indicated in particular by the propagation of light,
and the projective structure represents inertia which,
according to Einstein, is identical with gravity, and
which manifests itself particularly simply in free fall
motions of test particles.

Causal structures per se have been investigated in
detail by several authors.? Similar studies concerning
inertial structures which might lead to a deeper under-
standing of Einstein’s law of inertia seem to be lacking.

The world line of a freely falling neutral test particle
is uniquely determined by one of its event and its direc-
tion at that event. One is, therefore, led to consider
collections of paths—unparametrized curves (see
Sec. 1)—such that given a point p and a direction £ at p,
there is exactly one path going through p in the direction
£. The standard example of such a path structure con-
sists of the paths represented by geodesics of a linear
connection. The question thus arises: How can one
characterize, analytically and geometrically, the geo-
desic path structures among the general ones? One
would like particularly to have characterizations which
can be interpreted physically.

In this paper we shall give one convenient analytic
characterization of geodesic path structures (Theorem 1
in Sec. 3) and two geometrical ones (Theorems 2 and 3
in Sec. 4). According to Theorem 3, Einstein’s law of
inertia (using geodesics to represent free fall world
lines) is equivalent to the statement: The set of free fall
world lines is a path structure with the following
property (of “local isotropy”): The collection of all path
elements passing through an event p is invariant under
a group of local diffeomorphisms which acts transitively
on the set of all bases of the direction space (see Sec.
1) at p. (A path element is an equivalence class of paths
which have a second-order contact at p; intuitively it is
a second-order infinitesimal piece of a path.) So,
roughly speaking, the set of all free fall world lines has
the highest possible degree of local isotropy which a
path structure can possess.

In Secs. 1 and 2 we develop the appropriate concepts
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to deal with path structures. Sections 3 and 4 contain
the main results indicated above, and Sec. 5 gives some
examples of nongeodesic path structures.

1. DIRECTIONS AND PATHS

Let M be a connected, paracompact Hausdorff
manifold of class C* (k= 3) and dimension »n > 2. By T,M
we denote its tangent space at pc M, and by 74: TM —M
its tangent bundle. Every C* curve y: I~ M (ICIR) has a
(canonical) 1ift ¥T: I— TM, which we call a special curve
in TM. The veectors y"(s)e T,r,TM are the tangents to
yT. We call a vector X< T°M a special vector, if it can
be obtained as a tangent vector of a special curve in TM,

If 7x is the differential of 7, and Il; the bundle pro-
jection Il: T —~ TM, then special vectors are char-
acterized by mp«X =1II,X. A special C! vector field X:
TM — T*M is called a differential equation of second
order. Its integral curves are special curves in TM.?

In the sequel we shall specialize the concept of a
“curve in M by requiring: If ¥(s,) =¥(s,} and ¥{s;) =¥(s,},
then there exist open intervals Iy, I, and a smooth,
invertible map p:I; —~ I, such that p{s;)=s, and v,
={yop)ll,. (This excludes self-tangency.)

In many physical applications the parametrization of
a curve is arbitrary or not specified a priori. Therefore,
we need the concept of a path T as a “curve without
parameter” or, more rigorously, as an equivalence
class of curves with nowhere vanishing tangents which
differ only by a parameter transformation.? Each curve
y defines a path y. ¥ is a representative of T, y<TI', if
Z: T.

We call an equivalence class § of vectors X,Y,««+
€ T,M which are proportional, X =AY (A#0), a direction
and write £=X =Y =-+-_, The directions generated by
all vectors of T,M \{0} form the direction space DM
which is isomorphic to IP™!. A path I'=y has a (unique)
direction P(s) at each of its points ¥(s).

The collection of all DM over M forms another fiber
bundle DM with projection 7, and compact fibers D, M.
For every curve y in M with ¥+ 0 there exists a canonical
lift ¥ into DM, defined by

2:I—~DM:s—')'/(s).
We call such curves special curves in DM,

Equivalent curves ¥~y (i.e., curves which represent
the same path I) have equivalent lifts, _'}_/’“L'J.. Therefore,
a path I'=y in M generates a unique path ¥ in DM which
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we denote by T (the lift of T to DM), As before a path
in DM 1is said to be special, if it is the lift of a path in
M.

DM is a C*! manifold, so we can construct the bundles
TDM and DDM =D?M with the respective projections
and ;. Besides I, there is another natural map from
DM to DM which is analogous to Tr«: T°M —TM, It is
obtained as follows. Define

R :TM—DM: X~ X =,
Ry:TDM—~D'M: g~ =%,

and consider the diagram

oM “* M 2 DM
Ry, -
DM

Since any two elements &, &, R;'=, Z< DM, have the
same image under R,ompx, there exists a map 7

=R, emy* >R} as indicated. In close analogy to the defini-
tion of special vectors in T°M we define: = € DM is a
special direction, if

5(2) =1(2).

Special paths in DM have everywhere special directions
directions. Moreover, every special direction field of
class C!,

Z:DM—~ D*M: £— =,

determines unigque maximal special integral paths in
DM and in the original manifold M.

2. PATH STRUCTURES

Definition: A path stvucture (PS) P on M is a set of
paths in M such that for every point p € M and every
direction §{,& D M there exists exactly one maximal
path T'c / which contains p and has the direction £, at
p.

The definition implies that through every point £ € DM
runs exactly one lifted path T of a path T'e /. Moreover,
due to the restriction imposed on “curves in M, ” T has
no self intersections whence we have the following
lemma,

Lemma: A path structure ” on M defines a special
direction field (section of D’M),
Z:DM—D°M: £~ =,,
such that for every path T'c  and every point ¢ on r
T,=Z,.
This lemma enables us to define the differentiability

class of a PS.

Definition: A path structure ) is of class C® if the
corresponding section = is of class C°. We always de-
mand s =1,

Any special C!-direction field over DM determines
special maximal integral paths in DM whose projections
to M satisfy the definitions given above which proves the
following lemma,

Lemma: A special direction field of class C*%, s =1,
defines a C*-path structure on M.
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According to the preceding lemmas there is a one-to-
one correspondence between smooth PS’s and special
direction fields. For the local analytical investigation of
PS’s special direction fields play a role analogous to
that of second order differential equations for systems
of curves,

For the futher analysis of PS’s we describe direction
fields in local coordinates of D*M introduced as follows.
Choose any local coordinate system (x%) for UCM and
use standard coordinates (x°, y®) in TU such that a
vector X € TU is given by

0
X=ya5;71 M

In T?U we also define standard coordinates (x°, y°, u°,
w?) by
0 0 3
— a— b -
X=u 8x°+w a—y;c T°U,
Special vector fields over TU are characterized in these

coordinates by ¥”=u°, so that the most general special
vector field is given by

3 . d
Y ¢ d
X =yt ot 95

with smooth functions f°.

In DU we introduce coordinates (x°, t%) 8=1,...,n-1,
based on (x%, y%), by £8:=y%/y" (for y"#0), If y"=0 we
use equation £:=y%/4 (B=1,...,b=1, b+1,...,n)
with °#0. 77(U) is covered by these n coordinate
neighborhoods. Unless more than one of these patches is
necessary we use the nth one with (¢, £)=(x%, &%),

This procedure can be repeated to obtain coordinates
in DU, In TDU there are standard coordinates (x°, £,
#°, n°) such that

E:u“%, + n"gags e TDU,
To get coordinates in D?U the 2n — 1 quantities (u®, %)
can be divided by one of its nonzero members. However,
it Ze D is a special direction (and only those are of
interest to us), then it turns out that there exists always
one nonzero component of the (¥*). For special directions
only # coordinate patches are required, defined by
yB e n&

U
’ v b=1,...,n.
)

o, 88, 5,09 = (3, 3

b=n will be omitted as before,

Furthermore, a special direction field is character-
ized by £ =pu® whence such a field is completely de-
scribed by n - 1 functions of 2n - 1 variables

v'=g"(x°, £°),

Note that prescribing the functions g” in one coordinate
patch of D®M (the nth one in this case) determines all
the other v3(x°, &),

3. GEODESIC PATH STRUCTURES

The most important PS’s are given by the geodesics
of a linear connection I" on M. (Such connections always
exist since M is paracompact.) In local coordinates the
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geodesics are given as the solutions of the equations
%% = — [3.x%%°, (1)

These geodesics define a path structure r and a
corresponding direction field Zr. In terms of the
coordinates defined above =, is given by

. 5B X % P e5

S = (x", 53, Ey,’l}o)z (xa’ -Fs—’.c—" s ——(32753-—-
or, using (1) and putting £": =1,

v® =250 £°£ " (3)

Thus ©® is a polynomial in §* of maximal degree 3.
Clearly a projective change of the connection or a change
of its torsion does not affect the functions v°; = is
determined by the projective PS implied by T,

Equation (3) shows further that v® does not contain all
monomials of degree 3 (except for »=2) and that the
coefficients of the other terms are not independent for
different indices 5. Trying to construct a direction field
given by v®'s which are polynomials, but cannot be writ-
ten in the form (3), one finds that there exists a dis-
continuity in at least one of the other coordinate patches.
Thus such a direction field is not even C°, We illustrate
this by a simple

Example: n=2: Consider both coordinate patches,
(x%, £}, 08) = (x*, £,0) and («*, &],0]) = (%, £,7).
Take
v=¢8, p>3.
From (2) we get £=£"1 and
T :_Es-p
which is not continuous for £=0.

Similarly it can be shown for # > 2 that if a C! path
structure is given by polynomials v°(£*), then these
polynomials can be written in the form (3). Because of
the 1-1 correspondence between polynomials (3) and
geodesic PS’s we can reformulate this result as our
first characterization of geodesic path structures:

Theorvem 1: For a given special direction field = of
class C! there exists a linear connection I' whose geo-
desics generate the PS of =, if and only if the coordin-
ates v® of = are polynomials in £2. These polynomials
are necessarily of the form (3), and T is determined by
= up to torsion and projective changes,

4. SYMMETRIES OF PATH STRUCTURES

According to a famous theorem of Helmholtz (1868)
Riemannian spaces can be characterized among the more
general metric spaces as being infinitesimally isolvo-
pic.”® Since this is an intuitively appealing characteriza-
tion (expressing free mobility of small rigid bodies) the
purpose of this section is to characterize geodesic path
structures in a similar way in terms of symmetries. In
this section we shall show how this can be done.

We first define (finite) symmetries of PS’s. Let ¢:
M —~ M be a diffeomorphism of class C*, ¢ induces a

mapping of the paths I'c / onto a set of paths I'’, which
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again form a PS, P°, Let us reformulate this operation
in terms of special direction fields. The differential of

b,

Op: TM—~TM,
induces a diffeomorphism

b,=0,: DM—~DM via ¢,(t)=(¢,X)
for X € £, In the same way the differential

(¢,),: TDM —~ TDM

induces the mapping
Byt = (s i D'M —~ D*M,
for which the following is true:

Lemma: A diffeomorphism ¢: M —~ M of class C¥,
k=23, induces diffeomorphisms

&,:DM—~DM and &,,: D'M—~D'M
such that for every special direction field Z: DM — D*M
E%=9,,° 5]
is again a special direction field,
If = corresponds to 7, then =® corresponds to /2°,

Definition: ¢ is called a symmetry of the path struc-
ture P if 7® =/ or, equivalently, if the corresponding
direction field = is invariant under ¢,

Z or ‘b**Efz.E@*;. (4)

A local symmetyry of P is a local diffeomorphism ¢:
U— V of M which maps the restrictions of /-paths to
U into restrictions of P-paths to V.

In order to consider isotropy of path structures, we
denote by /7, the subset of  whose members pass
through p, and formulate the following definition.

Definition: A P-votalion about p is a local diffeomor-
phism ¢: U— V of M with fixed point p which maps the
restrictions of elements of 7, to U into restrictions of
elements of 7, to V.

The set of all symmetries of a path structure is a
group G(P), whereas the local symmetries of / and the
P-rotations (for some point p) form pseudogroups, PS’s
determined by projectively flat linear connections have
symmetry groups (or pseudogroups) acting transitively
not only on DM but even on the set of projective bases

of D,M.

Before establishing a converse of the last assertion we
introduce a weakened, infinitesimal analog of the concept
of a /2 -rotation, guided by the analogous Helmbholtz
theorem, For this purpose we observe that if p is a
fixed point of a local diffeomorphism ¢ of M, then &,
maps D,M onto itself projectively and &, maps n;
(D,M) into itself, so that it is meaningful to restrict the
second Eq. (4) to D,M. Accordingly, we formulate the
following definition.

Definition: An approximate P-symmetry ® (APS) at p
is the restriction to 1'[};1 (D,M) of a local diffeomorphism
$,, of D'M, induced by a local diffeomorphism ¢ of M
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which leaves p unchanged and satisfies the following
condition:

E€DM =&, Ei=Eg. (%)

An APS at p, say ¥, uniquely determines a projective
isomorphism T DM — DpM since ¥ maps fibres into
fibres. The set of all A/S’s at p is a Lie group G, (P,
and the set of the associated maps ¥ is a Lie subgroup
6P(/J) of the full projective group PG(D,M) of D,M. In
fact, the map sending ¥ into ¥ is a homomorphism,

G,(P) = Go(P). (6)

The differentials ¢,, of all local diffeomorphisms
which induce A/S ’s at p form a subgroup L,(P) of the
full linear group LG(T M) of T ,M. Under the standard
homomorphism h: LG(T ,M)—~ PG(D,M) we have

L,(P) = G,(P). (1)

We shall denote the center of LG(T M), which is also the
kernel of z, as Z,.

By a dilation at p we shall mean a local diffeomor-
phism ¢ of M with fixed point p such that ¢,,€Z,,
Gup* id.

Let ¢ be a local diffeomorphism leaving p fixed. Take
local coordinates in M such that x%(p) =0. ¢ is then
given by functions ¢°(x®), and the expression for @,
involves only

a?lx

a a
2 __ a __ .
Po= 3%t and Py = Ix"0x°

The direction field = of a path structure is given by
the functions v*(x?, £). If ¥ is an APS at p induced by
¢, then ¥ is completely determined by the numbers

g: g(o) and \P:c:¢gc(0)’
and condition (5) is expressed (in one chart) by

8,5
g,
T GRS L) ®
b
where we have written v*(£%) instead of v%(0, £%). ¢ is a
dilatation at p iff ¥&=£5¢ with f#0,1.

Suppose #— ¥(f) is a one-parameter subgroup of G,(p).
With respect to local coordinates we can represent it
by smooth functions ¥§(¢), ¥5.(¢) satisfying ¥3(0) = 55,
¥3,(0) =0, Taking derivatives at { =0 we obtain param-
eters ¢% =¥2'(0), Y5, =¥5.(0) describing an element of the
Lie algebra of G,(/). Applying this to Eq. (8) we obtain
the infinitesimal version of the invariance condition,

via g (BN EMER + P (e ) (48 + girer )
LA (9)

We now return to the discussion of path structures.
A geodesic path structure /. admits at each point p a
group G’(Pr) of approximate symmetries whose image
G,(Pp) [according to (6)] is the full group PG(D,M); also
L,(Pr):LG(TpM). In particular . admits everywhere
approximate symmetries induced by dilatations, We
shall now prove two theorems showing that the existence

of some approximate symmetrices suffices, in turn,
to characterize path structures as geodesic ones.

Theovem 2: A C' path structure 2 is geodesic if and
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only if it admits at each point an approximate symmetry
which is induced by a dilatation.

Proof: The necessity has been pointed out already. So,
assume that ¢ is a dilatation at p which induces an
approximate P-symmetry. We then have, in local coor-
dinates, Eq. (8) with ¥$=62, f# 0,1. Consequently ¢*
is a polynomial in ¢, Since this holds at any point p, it
follows from Theorem 1 that / is geodesic.

This theorem can be understood intuitively: For /> 0,
a dilatation “stretches” or “compresses” M radially
away from or towards p. A path mapped into itself under
this operation must be “infinitesimally straight.” A
similar idea applies if /< 0. The characterization of
geodesic path structures given in Theorem 2 is closely
related to Weyl’s elementary method to introduce a
linear connection via locally geodesic coordinates.’

Theorem 3: A C“ path structure P is geodesic if and
only if it admits, at each point p< M, a group GP(P) of
approximate symmetries which induces a transitive
action in the set of projective bases of D,M.

Proof: Again, the necessity has been established
already. Let, then, G, (P)induce a transitive actioninthe
set of bases of D M. Then 5,(P):PG(DPM). Relation
(7) then shows that the corresponding group LP(P) satis-
fies L,(P)/L,(P)N z,= PG(D M) whence dimL ()= n® - 1.
Introducing again local coordinates we infer that the
functions ¢ describing P satisfy a system of equations
(9) not only for one system of parameters (y¢, y2,), but
for a whole family of such systems containing »° - 1
linearly independent matrices 73 [which represent ele-
ments of the Lie algebra of L,(/)]. Since / is analytic
the functions " (&) can be represented by power series.
If these are inserted into (9) there results an infinite
system of linear homogeneous equations in the unknowns
%, the coefficients of which contain the expansion co-
efficients of 7 of degrees 4, 5, etc. (The lower degree
terms appear in equations involving also the ¥, these
equations need not be considered. ) The fact that this
system admits »® — 1 linearly independent solutions (ye)
implies that all the expansion coefficients of ¢* of degree
larger than 3 vanish, hence ¢ is a polynomial, so that
Theorem 1 gives the desired result. We give the
laborious proof of the last part of this argument only
for the case n=2. In this case v =37« ¢ and (9) leads to

a0+ D+ o, [2 =Dy + @ - D]+ a,,(4 ~D¥3=0.

for 1> 4. The coefficient matrix A of this linear homo-
geneous system for y=(y?, 9}, ¢, yi) reads

—
F5r15 -2a, 3a, 0

6a, —-3a, 4a; -a,
Ta, —4a, Say -20a.
A= Baa —3(‘!5

-5a, 6o,

o]

Since the space of solutions is at least three-dimensional,
every two-dimensional subdeterminant of A vanishes.
This implies A=0, i.e., ¢ is a polynomial. For 5> 2
the argument is similar,

If n=4 and M is interpreted as spacetime, we obtain
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the physical interpretation of Theorem 3 given in the
Introduction.

We conjecture that Theorem 3 can be generalized to
P3’s of lower differentiability class, even to class C?,
by exploiting (9) or (8) more effectively,

5. NONGEODESIC PATH STRUCTURES

Although nongeodesic path structures have lower sym-
metry than geodesic path structures, they are not
altogether physically uninteresting. To show the exist-
ence of such structures, consider the example in two
dimensions given by

~ g5 o 1-7%5
L’(‘E)Zl—_—)_—g’z and v(E)=1+%2

which is clearly analytic. Parametrized curves repre-
senting the paths can be obtained as solutions of the
differential equations

=392+, F=5/#E+97, (,$)#(0,0).
(The corresponding spray on TR’ is of class C', but not

C®,) Another example, although only of class C', which
is easily integrable, is

w(&) =72, p(E=-7"%

Integral curves through (0, 0) are given by
y=Z[x+0)* -0, 20

plus the two coordinate axes.

To obtain an important physical example we slightly
generalize the concept of a path structure.

Let E be an open submanifold of DM such that 7,(E)
=M. An E path stvuclure P, with domain E is a set of
paths in M such that (a) through each point p e M and
each direction &, E, = EN 7;/(p) there passes exactly
one path of the set, and (b) the lift of each path of /7,
into DM is contained in E. An E path structure will be
called geodesic if there exists a connection T on M such
that each path of /9E can be represented by a geodesic
of T.

Examples of E path structures are collections of paths
which are timelike with respect to a Lorentzian confor-
mal structure of M. In this case E is the set of timelike
directions in DM.

We shall now consider a “timelike”, nongeodesic path
structure of physical importance. Let (R*, n_,} be the
flat Minkowskian spacetime of special relativity, taken
as time orjented, and let F , (= - F, } be a 2-form field
on IR? interpreted as an electromagnetic field. Then the
world lines of particles with specific charge 1 (say) are
determined by
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By, n, =1, >0, (10)
where
Fe, =n*°F,.

Introducing direction coordinates ¢* = y2/#* (¢ =1,2,3)
as in Sec. 1 we see that timelike directions obey

(8P + (&2 + (7P < 1,

and that the direction field corresponding to (10) is given
by®

p(6) = (F%, - Fo e = Fleoe)[1 = (61 - (82 - (£°°)' /2,
Theorem 1 implies that the spacetime paths of charged
particles with a fixed specific charge form a nongeo-

desic, timelike path structure. This examples can easily
be generalized to an arbitrary Lorentzian manifold.
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