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The gravitational field generated by a gas whose one-particle distribution function obeys the Liouville
equation is examined under the following assumptions: First, the distribution is locally isotropic in
momentum space with respect to some world-velocity field; second, if the particles have rest-mass zero,
the gas is irrotational. It is shown that the model is then either stationary or a Robertson-Walker model.
The time dependence of the radius in the Robertson-Walker models is given in terms of integrals

containing the distribution function.

1. INTRODUCTION

In galactic dynamics it is useful to relate the velocity
dependence of the stellar distribution function to the
spatial configuration of the galaxy and to the galaxy’s
gravitational field. In this paper we give some analo-
gous general-relativistic results for the very simple case
of a locally isotropic distribution function. We have
in mind applications to cosmology.

Einstein’s gravitational field equation

Gab =

— T (L.1)

relates the metric of space-time to the stress-energy-
momentum distribution of matter. It is necessary to
supplement (1.1) by assumptions about the structure
of matter. We must specify the dependence of T,, on
the basic matter (or field) variables, and state the
nongravitational equations of motion, constitutive
equations, etc., which these additional variables are
supposed to obey.

The model of matter used in this paper is that of
kinetic theory. We imagine space-time contains a
system of particles all having the same! proper mass
m (> 0). We think of the metric g,, in (1.1) as the
macroscopic gravitational potential generated col-
lectively by all the particles, and we assume that each
particle moves as a test particle in this average field
except during point collisions. Moreover, we restrict
ourselves to two cases: either collisions are completely
neglected—Case A; or there is collisional equilibrium
(detailed balancing)—Case B.

Let f(x, p) be the one-particle distribution function,
defined on the seven-dimensional manifold of pairs
(x, p), where x is a space-time point and p a tangent
vector at x with p? = —m?® [We use the signature
(+++—) for g,,.] The function f determines the

* Research supported by Aerospace Research Labs., OAR,
AF-33 (615) 1029.

1 The assumption of equal masses could easily be relaxed; it is
made here for simplicity and because of the special role played by a
rest-mass-zero gas.
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energy-momentum tensor via the equation
) =[  nnfepdr. (2
nula

here P,,(x) denotes the mass hyperboloid p? = —m?
in the tangent space of space-time at x, and dP,, is the
Lorentz-invariant measure on P,,(x).

Either Case A or B above implies that f satisfies the
Liouville condition?

SIx(s), p(s)] = const along each timelike (if m > 0)
or lightlike (if m = 0)
geodesic {x(s), p(s)}. (1.3)

The system of equations (1.1)-(1.3) is the general-
relativistic analog of the basic equations of stellar
dynamics; (1.1) corresponds to Poisson’s equation
and (1.3) corresponds to the collisionless Boltzmann
equation with gravitational forces.

Equations (1.1)-(1.3) are not independent; either
(1.1) or the pair (1.2) and (1.3) imply?

T, = 0. (1.4)

Real systems for which Case A above seems to be a
reasonable model are the system of galaxies now®
and the galaxies themselves, considered as systems
of stars.* Case B, with m = 0, may be applicable to the
early state of the universe in a big-bang model. In the
latter case, pertaining to epochs earlier than 103 years,
we may think of a mixture of photons, perhaps
neutrinos and even gravitons, and some electrons and
nucleons, with most of the energy due to rest-mass
zero or to ultrarelativistic particles. For photons the

2 G. E. Tauber and J. W. Weinberg, Phys. Rev. 122, 1342 (1961).

3 It is difficult to estimate reliably the relaxation time, but if one
uses the usual Newtonian formulas (cf., e.g., Ref. 4) with a cutoff
distance ~10'° light years, one obtains relaxation times which are
at least not short compared to the Hubble time.

4 8. Chandrasekhar, Principles of Stellar Dynamics (Dover Publ.
Inc., New York, 1960), especially Chap. 11, see also the article by
L. Woltjer in Lectures in Applied Mathematics, J. Ehlers, Ed. (Ameri-
can Mathematical Society, Providence, R.1., 1967), Vol. 9, especially
Appendix 1.
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collisional equilibrium could be catalyzed by the
clectrons via scattering and free-free transitions; the
average time a photon takes to Thomson-scatter at
t = 10* years, assuming a temperature T ~ 10" °K
and a mass density p &~ 107!% g/cm® (see Ref. 5), is of
order 102 years, and this average collision time
decreases rapidly if we consider still earlier epochs.

In this paper we consider those solutions of Eqgs.
(1.1), (1.2), and (1.3) in which the distribution is
everywhere isotropic: There exists a timelike unit-
vector field u*(x) such that f(x, p) is, at any event x,
invariant with respect to all those restricted homo-
geneous Lorentz transformations in the tangent space
which leave u* unchanged. In physical terms, this
property means that there exists a preferred state of
motion at each event x in the universe, with respect to
which the peculiar motions of the particles near x are
isotropically distributed. Analytically this means that
S has the form f(x, p) = h(x, —u(x)* p). In Case B
this isotropy follows from the assumed collisional
equilibrium®; in Case A it is, of course, an independent
assumption.

We show that this assumption (and, in the case
m = 0, the additional assumption that either the
acceleration or the rotation of the mean flow vanishes)
leads, without any a priori assumptions about the
symmetry of space-time, to a Robertson-Walker
metric or to stationary space-times. In general-
relativistic cosmology (we now have in mind Case
A, m > 0) the cosmological principle and the Weyl
postulate (see, e.g., Ref. 7) can, therefore, both be
considered as consequences of the apparently weaker
postulate of an isotropic distribution of peculiar
velocities. The dependence of the scale factor a(t) of
the universe on the distribution function is given [Eq.
(4.7)]; this corresponds to the dependence of a(t) on
the “equation of state” in hydrodynamical models.

Our result and the method of proof are extensions
of the work of Tauber and Weinberg on general
relativistic gases (Ref. 2). These authors have deter-
mined the restrictions imposed on the metric and the
mean flow by the Liouville equation and the condition
of isotropy; they did not consider the further restric-
tions imposed by the Einstein field equation. Because
we want to point out the special role of rest-mass zero
gases, and also because we need a more detailed
description of the case of irrotational flows with
expansion than that given in the paper mentioned,
we shall rederive some of the relevant results.

5 R. H. Dicke, P. J. E. Peebles, P. G. Rolf, and D. T. Wilkinson,
Astrophys. J. 142, 414 (1965).

§ K. Bichteler, Z. Physik 182, 521 (1965).

7 H. Bondi, Cosmology (Cambridge University Press, Cambridge,
England, 1961).
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2. GEOMETRICAL AND KINEMATICAL
PRELIMINARIES

In this section we describe a few properties of
congruences of timelike curves in normal hyperbolic
Riemannian spaces. We use these properties in the
proof of our main theorem.

Let u* be the normalized tangent vector to a con-
gruence of timelike curves uu* = —1. The vector
u* may be interpreted physically as the local average
particle world velocity.

The quantities w,,, 0,,, #,, and 0, defined by

(2.1)

wgu’ = olu’ =0, (2.2)

Uy = Oy + Ogp — ol + 30(8a + ugtty),
— — a —
(O(all) - O‘[azb] =0,= 0’

are known, respectively, as the angular velocity (or
vorticity tensor), the shear velocity, the acceleration,
and the expansion velocity of the congruence (see,
e.g., Refs. 8 and 9).

We use the brackets ( )} and [ ] for symmetrization
and antisymmetrization, respectively, and use through-
out the dot to indicate covariant differentiation in the
u” direction, e.g., ti, = U, ,u°.

The definitions imply the following lemmas:

Lemma 1: A flow is irrotational, m,, = 0, if and
only if the streamlines are hypersurface-orthogonal,
i.e., if and only if there exists a scalar ¢ such that

tu, = —t, #0. (2.3)
Lemma 2: The property
(l][a - ‘:]sou[a),b] =0 (2.4)

is necessary and sufficient for the existence of a
metric g,, conformally related to g,, such that the
congruence is geodesic and expansion-free with respect
to g, if (2.4) holds, we may put

i, — 30u, = U,, &, =e2Vg,. (2.5)
The properties discussed in these two lemmas are

conformally invariant, that is, they are preserved

under transformations

7% = W—lua,

gab = W2gaba (26)

where W is an arbitrary positive scalar field. The
vanishing of shear, o, = 0, is likewise conformally
invariant.

8 J. L. Synge, Relativity: The General Theory (North-Holland
Publ. Co., Amsterdam, 1960).

% J. Ehlers, Akad. Wiss. Lit. (Mainz) Abhandl. Math.-Nat. KI.
11, 793 (1961).
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By combining the preceding lemmas we obtain
further:

Lemma 3: The curves of a congruence are the orbits
of a one-dimensional (local) group of conformal
mappings of space-time into itself if and only if the
congruence is shearfree and satisfies (2.4); if these
conditions are satisfied and U is defined by (2.5),
& = eUu® generates the group. If, in addition, § = 0,
the mappings are isometries.

We shall now prove:

Lemma 4: If a congruence satisfies w,, = 0, = 0
and (2.4), then the metric is conformally decom-
posable; that is, there exist coordinates (x%) = (x°, 1),
v =1, 2, 3, such that

DEF

G = Lo dx® dxb = e2U{dg2 —_ dtz}’
do® = y,,(x") dx* dx*, u®=eUsl. (2.7)

In fact, if w,, = 0,, = 0 and (2.4) holds, we find from
Lemma 2 that, with respect to g,,, @g = Gup = #, =
6 = 0, i° is then covariant-constant with respect to
& by Eq. (2.1), and consequently &,, is locally the
direct product of a 3-space and a line (see Ref. 10,
p. 286), so that g,, can be written as in Eq. (2.7).

Finally, we shall establish two properties of Ricci
proper congruences defined by

2.8)

From the contracted Ricci identity u® . = 3R’
and Eq. (2.1), we compute

R,y = 0.

U'R oy = §0 4, + terms containing wg, Or 0gy.

Hence:

Lemma 5: If a Ricci proper congruence satisfies
g = 0, = 0, then its expansion velocity 0 is constant
on each hypersurface orthogonal to the streamlines, so
that

8 =0()
with ¢ as in Eq. (2.3).

(2.9)

If we specialize further by combining Lemmas 4
and 5 taking into account that, for the case (2.7),
0 = 3e"U(9U/01), we get:

Lemma 6: If an irrotational, shearfree Ricci proper
congruence satisfies Eq. (2.4), then coordinates exist
such that (2.7) holds with

eV = X() + Y(x"). (2.10)

10 3, A. Schouten, Ricci Calculus (Springer-Verlag, Berlin, 1954).
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3. ISOTROPIC SOLUTIONS OF LIQUVILLE’S
EQUATION!

We now proceed to analyze Liouville’s equation
(1.3), ignoring the field equation (1.1) for the moment.
We have to find g,,(x), u,(x), and A(x, E) such that,
for a given mass m > 0, the distribution function

S(x, p) = hix, —u(x) - p]

is constant on each geodesic {x"(s), p*(s)} with p® =
dx*[ds, p* = gup°p’ = —m?. Here E is an auxiliary
real variable (£ > m) to be interpreted as the energy
of a particle with respect to that local frame (with time
axis u®) with respect to which f'is isotropic in momen-
tum space.

Since h(x, E) > 0 and A(x, E)— 0 as E— o on
physical grounds, we know that A" = 0h/0F # 0 for
some open £ interval. For E in this interval let us put
h(x, E) = F and, for the solution with respect to E,
write E = g(x, F). Then Liouville’s equation is
equivalent to the statement that

dE d
;S— == d—; (u,p®) = _ua;bpapb =pg. (3.1

on each geodesic, where we define g, = dg/0x* with
F fixed. If we split the 4-momentum in the form

P = Eu® + (E? — m*)ie?,

a J—
ue® =0, ee® =1,

3.2)
and insert Eqs. (3.2) and (2.1) into Eq. (3.1), we obtain

. 0 ; a
g8 +3 (8" —m’) +(g" ~ mA¥(git, + g,)e
+ (g — mYo et = 0.
This equation has to hold identically in the seven
independent variables x?, F, e*; e* may be considered
as a point on a Euclidean, two-dimensional unit
sphere. Hence, since spherical harmonics of different
degrees are linearly independent,
—28
gz —m?
(3.3)

The last two of these equations can be replaced by
the single relation

WD

0, =0, u,+ (logg), = au,,

2

i, — 36u, = —(log g) , — —3’"?3 . (3.4

Differentiating this equation with respect to F and
inserting the resulting expression for u, into Eq. (3.4),

we obtain _
U, — fls"aua = —%(log gg'),a = U,a’ (35)

11 For this whole section, compare Ref. 2, Sec. 111
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where g’ = 0g/0F and U(x) is defined by Eq. (3.5) up
to an additive constant,

According to Lemma 3 of Sec. 2, the congruence
associated with an isotropic distribution is conformal
(Tauber and Weinberg, 1962).

The function g(x, F) is related to U(x) by dU =
—3d(log gg’), d referring to the variables x® only with
F treated as a parameter. Integrating gives

el(g? — m?) = I(F) — k(x) (3.6)

with some functions / and k. But from (3.3) and (3.5)
_0—(g8 = m?)
3 2Ag2—my) ]

consequently, differentiation of Eq. (3.6) in the u°
direction gives

k=0; (3.7

thus k is constant on each streamline.
Combining Eqs. (3.4) and (3.5), we get a further
condition:

m20

3 e = m*Uu, = —g*(U +log g),. (3.8)

To summarize: Characterizing properties of an
isotropic solution of Liouville’s equation are Egs.
(3.6), (3.7), (3.8), and the conformal character of the
congruence generated by .

According to Eq. (3.8). two possibilities exist:

A. mf = 0: In this case (3.8) requires that g%V is
a function of F only; then the distribution function
has the form

S(x, p) = j(&,(x)pY), 3.9

where &% = eUu® generates a conformal group and j
is some function. If 6 = 0, which is necessarily so if
m # 0, the group is an isometry group.

It is well known that Eq. (3.9) gives first integrals
for the equations of geodesics; the remarkable fact is
that these are the only ones of the form A(x*, —u,(x)x?).

The case 6 = 0 is not of interest in cosmology, and
we shall not consider it in detail.

B. m0 # 0: In this case, Eq. (3.8) and Lemma 1 of
Sec. 2 show that the congruence must be irrotational;
consequently, Lemma 4 applies. Moreover, Eqs. (2.3)
and (3.8) show that the preferred time variable # must
be related to g and U by

ig?d(U + log g) = m2U dt.

Hence, ¢*Ug? must depend functionally on ¢ and F;
this fact, together with Eqs. (3.6) and (3.7), restricts the
functional relation to the form

e2Ug? = I(F) — q(t) (3.10)
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with some functions /, g. The distribution function is
therefore

J(x, p) = j([EPP + (1)) @G.11)

Using the preferred coordinates of Eq. (2.7), we have,
then, the result

G = k(x ) - Q(t) [da_2 - dt2],

m2

(3.12)

169 =i(LFI0 B 4 40)), 613
E being the energy of p® with respect to u*.

When mf $ 0, the irrotationality of the flow
follows, as we have seen, from the Liouville equation
and the isotropy condition. w,, might be different
from zero if mf = 0, at least so long as no field
equations are imposed. It is, however, of interest to
note that, if the flow is geodesic and has expansion,
u,=0%0, Eq. (3.5 and Lemma 1 show that
Wy, = 0. For m = 0 and 6 # 0, we therefore have the
subcases A;:u, = w,, =0 and A,:i, # 0. In the
former, Lemma 4 applies again, and the metric can be
written in the form (2.7).

4. SOLUTIONS OF THE FIELD EQUATION
FOR ISOTROPIC DISTRIBUTIONS

We now ask which restrictions are imposed on the
solutions {g,,, f} of Liouville’s equation by the field
equation (1.1) with the source (1.2). The isotropy of
S with respect to u* implies that

Tab — (:“ +p)uaub +Pgab, (401)

where the mean energy density 4 and pressure p can be
expressed in terms of f (see below). From (4.1) and
(1.1) it is obvious that #° is an eigenvector of the Ricci
tensor, i.e., Eq. (2.8) holds. In Case B of the preceding
section and also in Case A, if either 4, = 0 or w,, = 0
is assumed, we can apply Lemma 6 of Sec. 1; we then
obtain the metric

[X(H) + YOI 2 do? — di?]. (4.2)

In Case B, comparison of this expression with Eq.
(3.12) shows that the conformal factor can depend
only on ¢ or on x*, but not on both variables. Since
0 # 0, we conclude that k = const, ¥ = const; hence,
without loss of generality, ¥ = 0in (4.2). The resulting
metric satisfies the field equation with (4.1) only if it is
a Robertson-Walker metric (see Ref. 12, p. 107)

@(t) do* — dr* 4.3)

(t is a new time coordinate), where do® has constant
curvature € = 4+1,0. From (3.13) the distribution

12 P. Jordan, Schwerkraft und Weltall (Vieweg and Sohn, Braun-
schweig, Germany, 1955).
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function is then of the form

f(x,p) = 4%7 g(a¥ (D), 4.4)

where
P? = (gup + utt)pp’

is the squared 3-momentum of a particle relative to
the preferred local frame defined by u®, and g is some
positive function of a real variable.

From (1.2) and (4.4), introducing x = a |p|, we get

p= [ x4 ),
[}
p=ta? f x'g(:P)aPm® + xz)’% dx. (4.5
)]

These relations imply, as is well known,? energy
conservation, (ua®) 4+ p(a®) = 0, and therefore the
only remaining field equation is

3a*(@® + ¢€) =J x*g(xA(ma® + x*) dx. (4.6)
0
Since all these nniverses have, according to Ray-
chaudhuri’s theorem, a singular state ¢ = 0 which we
may take as the ¢ origin, the time development of a
generalized Friedmann model is determined by the
function g, the distribution, through

Y a2 o0 1 —"E
t = i;_’f [—3eu +f x2g(x*)(m®u + xz)?'dx:l du.
0 0
(4.7)

Equations (4.3), (4.4), (4.5), and (4.7) determine
completely the model universe in Case B.

We now return to Case A and restrict attention to
the subcase 0 # 0 so that m = 0. Since, in this case,
T, = 0from (1.2), in Eq. (4.1) we have

p = iu. (4.8)
Independently of kinetic theory, it follows that, for an
energy-momentum tensor (4.1) together with (4.8), the
conservation law 7. = 0 is equivalent to the relation

i, — 30u, = —i(log 1), (4.9)

which implies the conservation law s + juf = 0.
Its geometrical meaning is described in Lemma 2 of
Sec. 2. (The quantity whose density is uf is conserved
during the motion. For thermal radiation, this
conserved quantity is the entropy.)

Combining (4.9) with the arguments which led to
the metric (4.2) [cf. Eqs. (2.5) and (2.10)], we see that
in the case m = 0 the source quantity g is related to
the conformal factor by

po= X1 + YOI (4.10)

EHLERS, GEREN, AND SACHS

Now we use the “4,4 component” of the field equation
(1.1):

Gatu® = —p,

where the left-hand side can easily be computed from
(4.2) by means of the equations for conformal
transformations,’® and the right-hand side is given by
Eq. (4.10). We obtain

dx B 4 D, 2
6(:17) — XX+ V) — RX +Y)
—4AY(X + Y) + 6DY = 0. (4.11)

Here R is the Ricci scalar of do?, A is the Laplace
operator of do?, and DY = y*Y,Y ,. Since 0 % 0
implies dX/dt # 0, we can introduce ¢’ = X(¢) as a
new time variable and write (dX/dr)? = F(t'). Then
(4.11) becomes

6F(t) =2(t'+ Y)*+ R(t' + Y)
+4AY(t' + Y)+ 6DY.

This equation holds identically in ¢" and x*; the left-
hand side is independent of x*; therefore, the right-
hand side (in particular, the coefficient 8Y of ¢'3)
is independent of x¥; then Y = const. We absorb Y
into X() so that ¥ = 0. The further analysis is identi-
cal with the one in Case A, following Eq. (4.3), with
the specialization m = 0 in Eqs. (4.5) to (4.7). Then
the models are precisely the Tolman models.
We have proven the following:

Theorem 1: The most general solution of the Ein-
stein—Liouville equations (1.1), (1.2), and (1.3) with an
isotropic distribution function for particles with
nonvanishing mass is either stationary or a generalized
Friedmann model {(4.3), (4.4), (4.7)}; for particles
with vanishing mass, the solution is either stationary,
or a Tolman model, or nonstationary with u, 5
0 # o,

If one looks at the proof, one recognizes that a
result can also be formulated which is independent
of kinetic-theory assumptions.

Theorem 2: The only solution of the Einstein field
equation (1.1) with a “perfect-radiation” source

T = §(4u“u" + g¥)

13 |, P. Eisenhart, Riemannian Geometry (Princeton University
Press, Princeton, N.J., 1956); P. Jordan, J. Ehlers, and W. Kundt,
Akad. Wiss. Lit. (Mainz) Abhandl. Math.-Nat. K1. No. 2, 23 (1960).

14 Whether the last case actually admits solutions is not known
at present. Some perturbation calculations suggest this case is
empty. Of course stationary solutions are known: see O. Klein, Arkiv
Mat. Astr. Fys. 34A, Paper 19 (1947).
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in shearfree, irrotational motion is the Tolman
universe.

We also note the following:

Corollary: The gravitational field generated by a
spherically symmetric “perfect-radiation” source in
shearfree motion is either static or the Tolman uni-
verse.

In fact, a timelike vector field #*, invariant under the
group O, (acting on spacelike spheres), isautomatically
hypersurface-orthogonal; the gas is then irrotational,
and the corollary follows from Theorem 2.

We end this section with a few additional remarks:

(1) Equation (4.5) can be considered as a parameter
representation of an “equation of state” u = ¢(p)
determined by the distribution g. If m =0, u = 3p
for all g’s.

(2) The original Friedmann universes, i.e., the
dust models (p = 0), are contained in {(4.3), (4.4),
(4.7)} as the limiting case in which

2
=4———M6£C—), pua® = M = const;

(")
they are the only models without any random particle
motions.

(3) For t -0, and hence a — 0, all the models
(except the dust model) behave, according to Egs.
(4.5) and (4.7), asymptotically like a Tolman
radiation universe; if a model expands indefinitely, it
behaves for # - co and a — co asymptotically like a
dust model; more precisely, one has u~ a3 and
plp~a?.

(4) A Planck distribution

is rigorously compatible with (4.4) if m =0 and
T~a; an equilibrium distribution for m > 0,
however, is incompatible with an isotropically ex-
panding universe.®
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According to Eq. (3.13), the general solution of
Liouville’s equation in a Robertson-Walker universe
has the form f(x, p) = j(a®(t)p?); hence if at = 1, we
have, say, a (relativistic) Boltzmann distribution

{2 213
¢ exp (__Ii‘_) = exp (._(,_n__i__p_)_.) ,
kT, kT,

then we obtain later

f(x, p) = cexp (k:é{mz N [ag(%}zpz}%),

which is not an exact equilibrium distribution. For
(a(t)/a(ty))*p* K m? we have, however, approximately

f(x, p) ~ ¢ exp (p*12mkT),
with
T = Ty(a(ty)/a(t))?,

which is a (nonrelativistic) Boltzmann distribution
with a temperature T ~ a2 (compare Ref. 5).

5. DISCUSSION

Unfortunately, the result presented cannot be
taken to mean that the universe in its earliest stages
was necessarily a Friedmann model with detailed
balance established by rapid collisions of a gas whose
particles have zero or negligible rest mass. There are
various difficulties. First, nothing is known as yet
about the case where a rest-mass zero gas rotates, not
even if time-dependent detailed-balance rotational
solutions exist. Second, it is known that in a Friedmann
model there are particle horizons.!® For example,
with the parameters mentioned in the Introduction a
given particle has had time at ¢ = 10® years to com-
municate with only about 10 solar masses of matter.
There must be particle horizons in more general
models as well; we can hardly suppose that portions of
the gas which have not had time to communicate have
been able to establish detailed balance. More generally,
our equilibrium considerations do not indicate how
quickly detailed balance is established, if at all.

5 W. Rindler, Monthly Notices Roy. Astron. Soc. 116, 662, 1956.
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