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RESUME

Je me propose de montrer que I'emploi des transformations conformes
permet des simplifications considérables dans le calcul par ailleurs spuyent
compliqué et pénible du tenseur de Ricci correspondant a une métrique
donnée. Presque tous les cas connus de solutions exactes des équations du
champ peuvent étre traités par cette méthode qui donne bien des formules
utiles.

In this report we wuant to show how it is possible to construct
new static exterior solutions, stationary exterior solutions and s.ta-
tionary interior solutions of the field equations of general relativity
from static exterior solutions by applying certain conformal ‘fransfor-
mations to auxiliary metrics defined on three-dimensional mam.folds of
distinguished paths in space-time. All theorems we shall consider are
purely local. Perhaps the most interesting result is that the de’Fex"ml-
nation of all interior solutions in which incoherent matter moves rigidly
is equivalenet to the construction of all static exterior solu’flons an.d,
in fact, equivalent to the determination of all three dimensional Rie-
mannian spaces with positive definite metrics the contracted curvature
tensors of which admit a representation (6) *

: ; i ribed in
* Applications of the theorems developed in this reﬂ(i)é‘]t1 v\:/lillll l:;)p(::iis: soon in

a series of papers by P. JorpaN and his collaborators w P !
the «Ahharln)d ungeny der Akademie der Wissenschaften und dgroxl‘g;esl‘asto‘iflfio;l‘;
Mainz; there a systematic treatment of the known and of new rig

will be given.
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§ 1. — Auxiliary Formulae. Notation

The following considerations make use of two well-known formulae
which are given here for the convenience of the reader and in order to fix
the notation.

To a first fundamental form of the type

G=H—V(d2*—u)?, (1)
in which '

H = hydes'da* ()
is a quadratic differential form in the three variablés a'(3, j,...=1,2,3
here and throughout this paper),

u = w;do* a”

a linear differential form, and V a function (both u; and V also depend
on the #* only), belongs a Ricci-tensor with components. *

Rz = ‘7—1(‘7,§ + V2 u,u”;‘l),.; ,

R = V-1(Viulin),, (2)
R; = I); + V-1 V";, + 2v2 u[“'luu;” -——u,R‘o .
Here the metric operations on the right side — shifting of indices,

V-4 = h¥V ;; covariant differentiation, u;;; — refer to the metric (1’),
and P% denotes the Riccitensor of this metric. A derivation of (2) is
given in [1].
If two non-singular symmetric tensor flelds on an n-dimensional
manifold are related by
I = €Y g 3)
where U is a scalar, the corresponding Ricci-tensors satisfy
ERA=RL4+ (n—2) (U,*—U, U} 4+ B (T, +(n—2)U,.U").
— _ (4)
Here R% = g* Ry, and all metric operations on the right side refer to
@ - A proof of (4) is given in [2].

§ 2. — Reduction of static exterior fields to certain three-dimensional
Riemannian spaces

Exterior fields (sourcefree gravitational fields) are four dimen-
sional normal hyperbolic ** Riemannian spaces with vanishing Riceci-
tensor. A field or « space-time » is called stationary, if it admits a one
dimensional Lie-group of isometric correspondences with time-like tra-
jectories; it is called static, if the trajectories form a normal con-
gruence [1].

* Square brackets denote anti-symmetrization.
** We choose the signature ++4—.
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Let W be a static exterior field, G its first fundamental form, and

£ a Killing vector field generating the corresponding group. Then the
coordinates #*(\,p,..=1,2,3,0 here and in the following) can be
chosen such that

G = ¢~2U H— ¢?V(da°)?, g =23y (5)
with H as in (1’) and U = U(a'). H defines a positive-definite Rieman-
nian metric on the three-dimensional manifold 8 formed by the trajec-
tories of the group.

Applying first (1) and (2) to (5) (regarding ¢—2V H as the metric
of B), then using (3) and (4) (taking H as the new metric of 8) one can
prove the remarkable theorem that (5) satisfies Ry, — 0 if and only if

P¢+2U,¢U’k=0 (6)
is valid in (8, H); Py again denotes the contracted curvature tensor
of H [2]. Therefore the determination of all static exterior fields is
mathematically equivalent to the comstruction of those Riemannian
3-spaces the Ricci-tensors of which have the form (6).

Because of the contracted Bianchi-identity for Py

Ut =0. (M)
1 . .
By (5), (6) and (7) the scalar U = 7 log (— & &*) is seen to satisfy

in W with respect to G
Ura=0, EUL=0. (8)

§ 3. — A theorem of Buchdahl

As a simple application of the theorem stated in § 2 we describe
now a result found by BucepaHL in 1954 [3]. We reformulate his theorem
here because our proof is much simpler than the original one and because
it is similar to the statements of the following two sections.

Obviously with (H. U) also (H, — U) solves (6). This can be expressed
without reference to special coordinate :

If G is the fundamental form of a static exterior space-time W
whose time-like, hypersurface-normal Killing vector field is & then the
new fundamental form

G = 'V G 4 (e2V — ¢~ V) (g. d;)2, 9)
where
v = |E-E], .
defines again a static exterior field with the same Killing vector field E;
in fact (9) reduces to the transformation if one uses coordinates accor-
ding to (5).

For this theorem and the proof given here it is not essential that §

is timelike ; they remain valid if « time-like » is replaced by « space-like ».
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§ 4. — Special stationary exterior fields

If one sets up, by means of the formulae of § 1, the field equations
Rau = 0 for a metric of the type
G = a cos h(2U) H — (a cos h(2U)) ! (da*° — u)? (10)
a=const. >0, U=U(2"),
and H and u as in (1), (1”) resp. (in the way described in § 2 in con-
nection with (5)), one obtains again the relation (6) for H and U. Mo-
reover,

with

—anu Ul =uyn (11)
which is to be understood with respect to H. ns: denotes the usual totally
skew-symmetric tensor * with components 0, + h'/?; h = | B |-

The condition of integrability of (11) regarded as a system of diffe-
rential equations for the unknowns u, is (7); it is fulfilled therefore in
consequence of (6). The integration of (11) is a well-known elementary
procedure; it is the determination of a vector-potential for a given inte-
grable (Fyy,x) = 0) skew-symmetric tensor-field. If we combine this result
with § 2, we get the following theorem :

If (5) describes a static exterior space time, then (10) is the metric
of a stationary exterior space-time provided the u, satisfy (11). The field
given by (10) is in general non-static.

The translation of this theorem into generally covariant form reads :

If G is the fundamental form of a static exterior field W with

time-like hypersurface-normal Killing vector fleld E, then the equations
a Nxruy U"‘ &V = u[x, A) s k2% &1 = 1 (12)
(which refer to G) are integrable, (8) being the conditions of integra-

bility. If u is a solution of equ. (12),
G = a cos h(2U) (e2V G + (E - dz)?) — (a cos h(2U)) ' (u - dz)? (13)
is the metric of a stationary exterior field w.

We remark without proof, that the W’s that can be constructed
in this way out of W’s are characterised by the existence of a time-like

Killing vector field 'é which satisfies (with respect to G)

E” &I‘;p'ﬂ”] v EA Eu,v =0. (14)
If one chooses for G in (13) in particular the static axially symmetric
solution of Weyl (4), one obtains stationary axially symmetric fields

which, by complex transformations of coordinates, can be changed
gimilar to, but not equivalent to the Einstein-Rosen waves **.

* We omit the difference between tensors and pseudotensors, because our
fg::llldyeratlons are purely local; we may assume that we have oriented the manifold
hdd This application of the theorem has been described in my lecture given at
the coloque about the theory of relativity held at Brussels on 19. and 20. 6, 1959.
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§ 5. — Rigid motions of incoherent matter

The equation
— 1_ -
R).“——é-yva—}—puxuu:O (15)

describex o metric field (v interacting with incoherent matter which has

four-velocity # and proper density p *
(15) implies that the streamlines are geodesics, a fact which is used
tacitly throughout this section.

The scalar
6= u"; A (16)
represents the velocity of expansion, the vector
1
o* — ?iukuv UL Uy y (17)

measures the velocity of rotation [5], and the symmetric tensor **

o = i — 3-8 G -t ) (1)
with vanishing trace describes the velocity of shear [6]. We put

o= (o 0M)2 ¢= (%— Oap O )1/2 (19)

(17) can be transformed into

u[K, k] - -ﬁKMV m” u'; (20)
consequently we have
(o®u);, =0, o', =0. (21)
Therefore
QP Uy — U Y, = B0V (22)

These formulae can be used to derive the theorems of the vorticity-
theory (directly in the case of geodesic streamlines, with a slight
modification also in the more general case of isentropic motions of
ideal fluids) developed by Synee [5], Licanerowicz [1], M™ Foures [7]
and GopeL [8].

The equation
1 1
u}o,x+—2—02+2(az—-02)+?p:0 (23)

is a consequence of (15) as has been shown by RavcuanpHURI [9].

* The metric tensor is denoted g,‘ because we shall use a second metric g,
below. Nevertheless covariant differentiation; and index-shifting refer to G unless
otherwise stated.

** Round brackets denote symmetrization.
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We propose now to study those solutions of (15) in which matter
moves without changing its form (locally); that means we postulate
6 — 0 and ¢ = 0 or, equivalenty by (16) and (18),

Uu;v) =0. (24)

Rigid motions have been treated by several authors [10], [11], [12],
[13]; but rigorous solutions of (15), (24) have been given only by
van Stockum [10] in 1937. We shall specify below how van Stockum’s
results are contained in our general theorem.

RAYNER studies instead of (15), (24) the equation

- 1
R u* = - P ut (25)

together with 6 =0, ¢ = 0 and does not put any restrictions on the

tensions inside matter. As (25) follows from (15) our considerations are,

as far as only (25) is concerned, similar to those of RayneEr; but as

we have the additional condition u*u¥.» =0 even in this part of the

treatment we get some more specific results, namely (26), (27), (29).
With (24) RaYCHANDHURI’S equation (23) simplifies to

p=40%* (26)
1

(We use — see (15) — natural relativistic units, namely c =1, f = Y
T

In cgs-units (26) reads w? = 2x fp with f as Newton’s constant of gravi-
tation.) _
By (20), (24), and (22) we have
oFuYy=urer,, =0, (27)
thus in a rigid, geodesic motion the four-velocity is parallel propagated
along the vorticity-lines, and the vorticity-vector is parallel propagated
along the streamlines.

By (24) and the Ricci-identity we have u(*#l,, =§t u*, therefore,
by (25), (3% + u” ua) u*sw),, — 0 which, by (20), can be reformulated as
upou =0. (28)

Contraction with % gives w(u v = (#x Oy, 7y + % ©[2, 4;) ¥* Which equals,
because of (27), u* wr(;u uy; and, by wux 0* = 0, equals ©* ur(;» u; Which
vanishes because of (20) and (24) :

o,y =0. (29)

(21) and (29) show that in a rigidly moving fluid without pressure o is
a harmonic vector field ; therefore a scalar U exists with

O&=U,, Uv,=0. (30)

Because of (20) and (24)
;;)xkuv Uru = Uk, o (31)

* (26) shows that p > 0 need not be postulated; it follows from (15), (24).
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because of (26)
p=4U,,Uv~. (32)

It is easy to show that, conversely, (31) and (32) imply (24) and (25);
80 we may state : The system of equatlons (25), (24) is equivalent to the
system (31), (32).

We wish now to consider the compléte system (15), (24). Suppose we
are given a solution (gas, ua p); then we can determine U by (30) so
that (31), (32) hold. We take an arbitrary scalar ¢ satisfying

wir=1 (33)
and construct the quadratic differential form
G = ¢ 20(G 4+ (u-dz)?) — U diz. (34)

We assert that G is normal-hyperbolic and that the corresponding
Ricci-tensor Ry, vanishes; this statement is the main result of this sec-
tion.

To prove this statement we introduce « comoving coordinates » with

ur = 6)6 , =2z°, (35)
which is possible because of (33). Then
G = H— (d2° —u)?, (36)
and by (34)
G = ¢~ 2" H — ¢2V(da®)?, 37

with H and u as in (1’), (1”). U is independent of x° because of (30), (35)
and u* oy = 0. (31) and (32) reduce to the equations

— Nk U‘k = U451y P = 4 h¢k U“ U'k (38)
with respect to the metri¢ H.

— 1
If we now work out the space-components Rf + - P 3% =0 of (15)

-

for the metric (36), using the last line of (2) and taking into account (38)
aswellas R, = 0 (which follows from (15) and (35)) we find that Hand U
satisfy (6). But this means that (37) is an exterior metric according
to § 2. Moreover (35) and (37) show that G is static and that w is a

Killing vector also with respect to G.
With help of (33) and (34) we get :

S=guurt=—eVty), V= — P uH 0, (39)
(notice that by definition ua = g u*) therefore (34) can be solved for G:
G = €2V G + (Ex dot)2 — (ua dac)2. (40)

It is also easy, by using the coordinates with (35), to reformulate (31)
in four-dimensional form with respect to G :

Ny UH 4Y = t(x,0). (41)
Again we can obtain a conserve. We can start with a static exterior

field with metric G and Killing-field w= (u*), solve (41) simultaneously
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with #*ux = — 1 to obtain u,, construct G by (40), and calculate p by
(832). Then (25) is satisfied becaumse of (41) and (32), and the space-
components of (15) with respect to a coordinate system with (35) are
fulfilled in consequence of Ry, = 0.

Now our proof of the equivalence of (15), (24) to the equations
{(Ruw=0, Ea,y=0, Enk,=0, & & <0} isaccomplished; the
transformation (g, ta, p) —> (gau, 5r) is given by (34) where U and ¢ are
determined by (30) resp. (83), and (g, &) — (gn, p) is given by
2V = —E, EM (41), (40), and (32).

Van Stockum’s general solution is obtained from our theorem by
specialising G to Weyl’s axially symmetric static vacnum metric (4);
van Stockum’s special solution with a rotating fluid cylinder corres-
ponds to that Weyl-solution the « potential » } log |g.| of which is
independent of Weyl’s « canonical » radial coordinate.

Finally I mention that solutions of (15), (24) with constant density
do not exist [15] and that, because of Bochner’s lemma [16] and (7),
solutions in which the space-time manifold W is (globally) a topological
product of the real line R and a three-dimensional compact orientable
manifold S such that the points of 8 correspond to the streamlines also
do not exist.

The most interesting questions in the further investigation of these
solutions are : Are there everywhere regular, complete solutions of (15),
(24) with a finite total mass ? Is it possible to connect smoothly such
matter fields with exterior solutions in other cases than the one that
has been treated by van 8rtockua ?
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Remarque faite aprés la conférence du Docteur Ehlers
(Royaumont, 1959)

C. B. RAYNER

Je voudrais indiquer briévement quelques-uns des résultats que j’ai
obtenus dans la théorie du mouvement rigide en relativité générale,
puisque je les crois étre pertinents au sujet traité par le Docteur EHLERS.

Le mouvement rigide, au sens de Born, a été étudié par lui, par
HERrGLOTZ, ROSEN, SALTZMANN et d’autres. Rosen a été le premier 2
donner les équations :

Gag+ Ba=0; dap=Vpha+ %els; *a =AY Vy he (1)
auxquelles doivent satisfaire le vecteur unitaire A%, (A\¥ Ay = —1), tan-
gent aux lignes d’univers du mouvement rigide. On peut considérer le
mouvement rigide en relativité générale en identifiant A® avec le vecteur
propre orienté dans le temps du tenseur d’Einstein Gag. On a :

GaB = — TUB = — P)\a lﬂ —_ SaB, (2)
ol p est la densité propre, et Sag le tenseur de pression. On peut élimi-
ner Sas de (2) en multipliant par AB :

F=GEM—pat=0; p=—GCuI" 3)
8i on peut satisfaire A (1), (3) avec un systéme (gas,\y), les tensions
internes qui résultent du mouvement sont données par (2).

Jai étudié (V) le systéme (1), (3) et montré que lorsque (1) est satis-
faite, le vecteur f¢ défini par (3) peut se présenter sous la forme :

f* == Vs 0% 4 098 x5 — 20A%; 26 = oPY opy. 4)
TU'ne conséquence de (4) est que :
Vaf“+*af“E—7\uaaP:—3)\“aa°'- (5)

Si 6% == nBYd A5 D5 Ay (P8 Gtant le tenseur élément de volume) est le
vecteur moment-angulaire, on montre aisément que :

0B = — (1/2) 7oBY8 %, 85, & = (1/4) gap 0% 6P. (6)
Ainsi, par (5), 1a densité propre et la grandeur du vecteur moment-z}n‘gu-
laire sont constantes le long des lignes d’univers d’un mouvement rigide.

(1) C. R. Acad. Sc., t. 248 (1959) 929.
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On voit que (1) se réduit aux équations de Killing si »a est un
gradient. (Si xa = v~! Ja v, tA* est le vecteur de Killing). J’ai obtenu @
une solution générale du systéme f* =0, Vy & + Vs & = 0. Me servant
de celle-ci, j’ai montré ¢! que le probléme de la résolution des équations
extérieures d’Einstein Rqeg = 0 dans le cas stationnaire est réductible &

celui de trouver un tenseur défini-positif 54, 4,j=1,2,3) et deux sca-
laires a, 8 pour satisfaire au probléme en trois dimensions :

Ry+(1/2) 0y =0;  oy=a"2(dad;a+ 2:B;B). (M
Ici Ry; est le tenseur de Ricci déterminé par gy. Il est intéressant de

remarquer que la forme différentielle oy dzt do' = a—2(da® 4 d@?) est la
métrique d'un espace V: 4 courbure constante négative.

(2) C. R. Acad. Sc., t. 248 (1959) 1725,
(83) Dans trois notes qui paraitront bientdt dans les Comptes Rendus.
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