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Abstract:

In this thesis, we present several tests of the M(atrix)-Model conjecture that asserts that
the dynamics of M-Theory, the eleven-dimensional Ur-theory containing all known string
theories and also eleven-dimensional supergravity in specific limits, is given by a quantum
mechanical matrix model. In particular, scattering processes are analyzed both from the
M(atrix)-Model and from the supergravity perspective and the corresponding S-matrix
elements are compared. We find impressive agreement between these two theories as long
as only classical supergravity is considered. If one includes also quantum effects on the
supergravity side, the agreement does not persist. In addition to these calculations, the
question of the existence of classical solutions to the M(atrix)-Model equations of motion
with momentum transfer is addressed and answered negatively.

Zusammenfassung:

In dieser Arbeit stellen wir verschiedene Tests der (M)atrixtheorie-Vermutung vor. Die
(M)atrixtheorievermutung besagt, dass die Dynamik von M-Theorie, der Urtheorie, die
alle bekannten Stringtheorien und auch elfdimensionale Supergravitation als bestimmte
Grenzfalle enthalten soll, durch ein quantenmechanisches Matrixmodell gegeben ist. Ins-
besondere untersuchen wir Streuprozesse sowohl aus Sicht des Matrixmodells, als auch
aus Sicht der Supergravitation, und vergleichen die resultierenden S-Matrixelemente. Wir
finden beeindruckende Ubereinstimmung zwischen den beiden Theorien, solange wir uns
auf klassische Supergravitation beschranken. Sobald wir auch Quanteneffekte auf der Su-
pergravitationsseite einbeziehen, hat diese U'bereinstimmung keinen Bestand. Des weiteren
untersuchen wir die Frage, ob Losungen der klassischen Matrixmodell-Bewegungsgleichun-
gen mit Impulsiibertrag existieren, und finden eine negative Antwort.
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When the objects of an inquiry, in any department, have prin-
ciples, conditions, or elements, it is through acquaintance with these
that knowledge, that is to say scientific knowledge, is attained. For
we do not think that we know a thing until we are acquainted with its
primary conditions or first principles, and have carried our analysis as
far as its simplest elements. Plainly therefore in the science of Nature,
as in other branches of study, our first task will be to try to determine
what relates to its principles.

The natural way of doing this is to start from the things which
are more knowable and obvious to us and proceed towards those which
are clearer and more knowable by nature; for the same things are not
‘knowable relatively to us' and ‘knowable’ without qualification. So in
the present inquiry we must follow this method and advance from what
is more obscure by nature, but clearer to us, towards what is more clear
and more knowable by nature.

Aristotle, “Physics, Book I”
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2. Introduction

Progress in string theory did not come continously but in several waves. The first, spanning
roughly from 1968 to 1973, came after Veneziano’s discovery of his famous amplitudelVel.
It was the time when “dual resonance models”, as string theory was called during those
years, were supposed to be theories of the strong interactions. From today’s point of
view, the open string was an abstraction of the flux tube connecting the two quarks in
a meson. Dual resonance models became unpopular as it became clear that they always
contain a massless spin two particle that was not wanted from a phenomenological point of
view. Even more important, there was another much more successful description of strong
interactions: Quantum Chromodynamics.

A little later, it was recognized that the spin two particle can actually be identified
with the graviton, the particle associated with the metric tensor, the dynamical field
of general relativity. String theory turned into a candidate for a unification of gauge
and gravitational interactions. The second wave of popularity of string theory during
1984-1989 (the “first superstring revolution”) centered around the unification of gravity
with the Standard Model interactions. It brought with it the discovery of the Green-
Schwarz anomaly cancellation mechanism and the existence of chiral gauge theories in ten
dimensions, the heterotic string and Calabi-Yau compactifications. Unfortunately, there
seemed to be a proliferation of string vacua and direct contact with the four-dimensional
Standard Model physics could not be made.

Since 1995, there is a new wave of string theory activity going on, termed the second
superstring revolution. So far, its main discoveries are (non-perturbative) symmetries, so-
called dualities, that map different string theories onto each other, possibly in different
regimes (for example weak and strong coupling). It was realized that the five different
superstring theories might not at all be different but stem from a single ancestor, M-
Theory, an eleven-dimensional Ur-theory that can be seen to contain all string theories
in different limits. Furthermore, it became clear that strings are not the only dynamical
objects in string theories and M-Theory, at finite values of the string coupling constant,
there are many more objects of different dimensionalities.

In particular, there are again particles, the so-called D0-particles, whose dynamics
is given by supersymmetric quantum mechanics of matrix degrees of freedom. In a very
influential paper[BFSS], Banks, Fischler, Shenker, and Susskind conjectured that, in light-
cone coordinates, this matrix quantum mechanics in fact can describe the full dynamics of
M-Theory. In this thesis, we investigate this conjecture and test some of its predictions. In
particular, for low energy processes, M-Theory should be described by eleven-dimensional
supergravity. Here, we will use the M(atrix)-Model to calculate scattering amplitudes
in different kinematic setups and compare them to supergravity, both in the classical
limit and including quantum corrections and find both agreement and disagreement. The
disagreement we present here is the first based on an actual scattering calculation reported
in the string theory literature.
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This thesis is structured as follows: In the remainder of this introduction, we briefly
present the results from the second superstring revolution that will be needed later on. In
particular, we will introduce T-duality, D-branes and M-Theory. In the next chapter, we
cover the the M(atrix)-Model-conjecture put forward in [BFSS], point out the particluarities
of the model and some immediate consequences and mention the relation to supermem-
branes that was already known more than ten years ago.

The following chapter contains some details of how to set up scattering calculations
in the M(atrix)-Model, and how to relate them to supergravity. It covers two particle
processes that are described by one loop calculations in M(atrix)-Theory. In particular, it
contains a calculation of the D0 spin-spin interactions originally presented in [BHP],

In chapter five, the analysis is pushed one order further. There, we present results
about three-particle scattering. At the leading two-loop order corresponding to classical
supergravity, again we find full agreement. Then we go one order further and try to
match quantum corrections to supergravity with a M(atrix)-Model calculation. There we
find the disagreement mentioned above. This is the first disagreement between the two
theories reported on in the string theory literature that is based on an actual quantitative
calculation. It was first presented in [HPSW],

In the next chapter, we look at the M(atrix)-Model equations of motion from a
classical perspective. We present a no-go theorem for scattering solutions that use finite
dimensional matrices for processes in which momentum is transfered. We end with a
chapter containing conclusions.

2.1. T-Duality, D-Branes and M-Theory

In this section we are going to give a brief introduction to the notions that came aling
with the second superstring revolution. We do not intend to give here a self contained
introduction to string theory. Rather, we assume the reader has a basic understanding of
the subject as it can be obtained for example from the first chapter of [GSW]

From the classical perspective, string theory deals with maps of a two-dimensional
world-sheet ¥ to a target space (space-time) manifold M:

X: ¥ - M.

The action for such maps in the Polyakov formalism is

1
4ol

S =

/ 20 /=7 VPG (X) 0 X O XY
)

where G is a metric on M and v is an (auxiliary) metric on o whose equations of motion
turn it into the pull-back X*G. 1/4wa’ is the string tension that is used to translate areas
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of the string world sheet into energies. It turns out that for flat targets and with the
appropriate choice of gauge, the equation of motion for such maps X is a free one:

(Opau® — 01X = 0.

If we choose appropriate coordinates (7,0) on X, this is solved by the ansatz X (r,0) =
Xp(1+0)+ Xg(T — o) for arbitrary “left- and right moving” functions Xy, /.

Let us consider closed strings, that are strings for which ¥ has no boundary, a
little closer. We will also assume that topologically ¥ = R x S!. If one dimension of
the target is also a S' with radius R, say, then the quantum mechanical spectrum of the
string theory is organized by two quantum numbers: As always for compact directions,
the momentum that is conjugate to the compact dimension is quantized. Its quanta are
inversely proportional to the radius R. Let us call the momentum quantum number n.
This is like in ordinary field theories.

String theories enjoy an additional feature as compared to point particle theories:
In contrast to particles, strings can wind around the compact direction. If we parameterize
the St of ¥ by o € [0, 27], this means that

X(1,0) = X(7,27) 4+ 2rRw

with an integer “winding number” m. Since the string’s potential energy is given by its
length, such winding states have a potential energy proportional to wR. In total, the mass
squared of such a string is given by

5, n?  wiR? 2 -

where N and N are oscillator quantum numbers that will play no role here. Note, that
formally this is invariant under interchanging n and w if we simultaneously rescale R — %.
This means that using the physics of string theory, we cannot decide if the radius of
compactification is small or large as compared to the string scale

l, =Va!.

This relation between string theories compactified on circles of radii R and o'/R is
known as T-duality, where the “T” stands for target space. In terms left and right movers,
it can be shown that this transformation amounts to

XRD—>XR, XLI—>—XL. (21)

This is not only a symmetry of the spectrum but also of the conformal field theories
including operator product expansions of the world-volume fields.
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So far, we have only talked about the bosonic string. In order to describe also
fermionic fields, one should enlarge the field content of the world-volume field theory and
proceed to superstring theory.

There are two supersymmetric string theories with two independent supersymme-
tries. They are called type ITA and type IIB. Possibly after a gauge fixing (if one employs
the Green-Schwarz formalism as we do in most of this thesis), there are both a left- and
a right-moving space-time fermion. The difference between the two theories is that in IIA
the two different supersymmetry charges that come from the left- and right-moving fields
respectively carry opposite space-time chiralities whereas in type IIB, the two supersym-
metries are of the same chirality. As T-duality flips the sign of one half of the world sheet
fields only, it can be thought of as a space-time parity operation on the left-movers only.
Thus, it also interchanges type ITA and type IIB. This means, type IIA compactified on

a very small circle is nothing but type IIB compactified on a large circle. For details, see
[AdWLN]

Let us now consider open strings for which ¥ has a boundary. This means, we have
to find boundary conditions for the coordinate fields X and their superpartners. For a
long time, only Neumann boundary conditions

0, X|oxn =0

were considered physical since they prohibit momentum flowing of the edge of the string.
Note that any boundary condition relates left and right movers. It is now very natural
to ask what happens to open strings under T-duality. These Neumann boundary condi-
tions are not preserved under the mapping (2.1), but they turn into Dirichlet boundary
conditions

8. X |ox = 0. (2.2)

This means that in order to obtain a theory that is T self-dual we should consider Neumann
and Dirichlet boundary conditions on an equal footing. (2.2) means that in the target space
directions where it applies, the end of the open string is not free to move but is attached
to a point given by the initial conditions.

If one imposes Neumann boundary conditions in (p + 1) dimensions and Dirichlet
conditions in the remaining one, it is said that the spacetime contains Dp-branes or D-
branes for short. The end-points of the string move freely in the p+ 1 directions tangential
to the Dp-brane but cannot get off. In this respect, Dp-branes are topological defects like
domain walls in solid state physics.

Although not directly visible, after second quantization, one should imagine a D-
brane covered by open strings. One can scatter strings on on a D-brane by scattering it
on the open strings covering the D-branes. By virtue of this process, D-branes become dy-
namical by themselves and one can attribute oscillations of the open strings to oscillations
of the D-brane itself.
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Fig. 1: D2-branes with open strings stretching
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The massless modes of open strings have spin one, hence they are vector fields.
Therefore, the dynamics of the D-brane is also described in terms of these vector fields. In
[P1], the low energy effective action of a D-brane was found to be given by the Born-Infeld
action

Sp1 =T, / Pty \/det(Gu,, + o'F,, + B,,) + WZW-terms

where G is the pullback of the metric to the world volume of the D-brane, B is the pull-
back of the Kalb-Ramond form and F' is the field strength of the vector bosons contained
in the open string theory. 7, is the tension of the D-brane that we will determine shortly.

It is important to note that, in this low energy approximation where the string is
basically shrunk to its center of mass, the vector field only depends on the coordinates
tangential to the world volume of the D-brane since the open string it is a part of is glued
to the brane at its end-points and thus is the center of mass.

In the limit of large string tension, in Spy,only the lowest order term in F),,, survives.
Since this is the quadratic term, this Born-Infeld becomes just the ordinary Maxwell action.
This is obtained by dimensional reducing ten-dimensional Maxwell theory to the (p + 1)
dimensions of the brane’s world volume. The components of the gauge field tangential to
the world volume transform as vectors under the world volume Lorentz group whereas the
components that are normal are scalars from the D-brane world volume perspective.

If there are several D-branes, one introduces labels at the ends of the different open
strings determining to which D-brane this end is glued to (note that from this point of
view Chan-Patton labels are nothing but D9-branes!). One can imagine a process in which
end-points of two open strings that end on the same brane meet and join and then lift of
the brane. To make such a process possible, the two end-points of a string should transform
under conjugate representations of the group that permutes the D-branes.

This tells us that the most general group that accomplishes this is U (V) if we are
dealing with a collection of N Dp-branes. In this scenario, the low energy effective action
is promoted to a full U(N) Yang-Mills theory living on the world volume of the brane.

The mass (or, more appropriate: the tension) of an object is given by the coupling
to the graviton field just like the charge is given by the coupling to a gauge field. By
interchanging closed strings that contain gravitons as their massless modes between the
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open strings attached to different branes one can compute these couplings and therefore
the mass and possibly the charge (under gauge fields in the closed string spectrum) of the

D-branes. On dimensional grounds, we expect the tension to scale like o/ 5. As the
leading order process is given by a cylinder amplitude, we expect it to contain one inverse
power of the string coupling constant and we arrive at

1
Tp X p+1 ° (23)

ga' 2

In type II theories, besides the fields that are built from the bosonic X fields, the
dilaton, the Kalb-Ramond two-form and the metric, there are form fields, the so-called
Ramond-Ramond fields or RR-fields for short, arising from tensor products of two spinor
fields (in the Green-Schwarz formalism):

CBL---He — @L[‘m---uka

In type ITA, the space-time spinors ¢ 1,/r have opposite chiralities. Therefore, in type ITA,
there are forms of odd k whereas in type IIB, there are forms of even k. Fundamental strings
are not charged under these fields. Rather, one would expect objects of k-dimensional world
volume to couple to these fields via a minimal coupling

e

And in fact, just as D-branes have mass (i.e. couple to the metric) they are also charged
under these Ramond-Ramond k-form fields. More specifically, Dp-branes are charged
under the (p + 1)-form fields and also under forms of lower degree if the gauge fields on
the brane have non-vanishing flux. The coupling is the generalization of electric charge.
Furthermore, with the help of the Hodge operator, k-forms also couple magnetically to
D(7 — k)-branes.

In what we have said so far, supersymmetry did not seem to play an important
role. But this is a misconception, as it supplies one important additional structure: In all
theories with extended supersymmetries, the algebra contains terms of the general form

{Q,Qt=P+7Z,

where we have denoted generic supercharges by (), the generator of translations by P and
we have included a central charge Z. All these objects carry additional indices that are
not important here. After sandwiching this relation between some state (¥| and |¥) and
using the positivity of {Q, QT}

(U|P + Z|¥) = (T{Q, Q}|¥) = 2|Q|¥)||* > 0,
we find, in the rest frame, the famous “BPS-condition” for the expectation values

M > |Z|.
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This means that the mass is always bounded from below by the charge of a state in
appropriate units. Even more important, if the bound is saturated — the state ¥ is a
“BPS-state” — the representation theory of the supersymmetry algebra changes, there
can be multiplet shortening: Multiplets of BPS-states have fewer components than generic
multiplets.

As this shortening is a property of the symmetry algebra it survives continuous
transformations of the theory like quantization or tuning of the coupling constant. If a
theory classically and at weak coupling contains states that saturate the BPS-bound it is
generally believed that also the quantum theory, even at strong coupling has these states
that satisfy the same extremality condition.

It was known for a long time that the low energy supergravity-theories of string
theory contain black-p-brane solutions, the higher dimensional generalizations of extremal
Reisner-Nordstrom solutions of four-dimensional Einstein-Maxwell theory, that are extre-
mally charged under the Ramond-Ramond fields. But as fundamental strings are not
charged under these fields, their stringy origin was unclear until Polchinski realized that
D-branes also saturate the BPS-bound for the Ramond-Ramond charges and are therefore
the much sought for microscopic realizations of these solutions. Specifically, the Dp-branes
are BPS in type ITA theory for even p whereas for odd p they are BPS in type IIB theory.

Like the extremal Reisner-Nordstrom solution, BPS-states often have a linearization
property: As they preserve some supersymmetry, some of the supercharges that square to
the Hamiltonian annihilate the state and therefore it is static. Furthermore, any super-
position of several copies of the same BPS state is static: Two extremal RN black hole
neither attract nor repel each other since the gravitational attraction is exactly canceled
by the electric repulsion. The same happens for D-branes: Parallel D-branes of the same
dimension neither attract nor repel since the forces mediated by the graviton, the dilaton
and the Ramond-Ramond field cancel. It is possible for them to form a marginally bound
state.

In type ITA theory, we expect for N DO-branes such a bound state to have the mass
of N single DO-particles. Using (2.3), we expect it to be proportional to

N
gVl

Hull, TownsendHT] and WittenlW] realized that this looks like the Kaluza-Klein spectrum
of an eleven-dimensional theory that is compactified on a circle of radius

m

R11 = g\/(?. (2'4)

They conjectured that at finite coupling, type ITA theory is in fact eleven-dimensional.
This additional dimension is not visible in perturbation theory since this is an expansion
around g = 0. The eleven-dimensional mother-theory was called M-Theory, also to reflect
its “mysterious” character.



L o e 2. Introduction

The assumption of M-Theory enables one to explain the origin of several features
of string theories. For example the type IIB theory that is related to ITA by T-duality
on another circle is known to have a SL(2,7) S-duality, that can interchange strong and
weak coupling and transforms fundamental and D1-strings into each other. This SL(2, 7Z)
symmetry is very natural from the M-perspective: The two circles on which one compac-
tifies M-Theory to reach type IIB form a torus that has a SL(2,7) modular group that
should leave the IIB physics invariant. In particular, since (2.4) relates the radius and the
coupling and the modular group acts on the radii of the two circles that make up a circle,
we find the modular SL(2,7Z) acting on the IIB coupling.

M-Theory should have the same 32 supersymmetries as the type ITA string since
compactification on circles preserves supersymmetry. It was known from the work of
Cremmer and JulialCJ] that there is only one supersymmetric, interacting low-energy theory
in eleven dimensions, namely supergravity with the bosonic Lagrangian given by

1 1
L= —mv—gR VY (Funpg)?
\/g 6M1-

12343

.M
11FM1M2M3M4FM5M6M7M8 C’]\/1'9]\/[101\/[11

(for a discussion, see chapter 4).

This eleven-dimensional supergravity gives rise via dimensional reduction to all the
maximally extended supergravities in lower dimensions and for some time many people
believed in its role in a fundamental theory mainly for aesthetical reasons. This hope was
shaken when it became clear that also this maximal supergravity is not renormalizable
and subject to quantum corrections. Different from the situation in ten dimensions where
string theories were at hand to serve as regulating theories that provide the appropriate
high energy degrees of freedom, this seemed not to apply directly to eleven-dimensional
supergravity. But with the advent of M-Theory, this attitude changed and it is generally
believed that eleven-dimensional supergravity is the low energy description of M-Theory.

The relation between the different Newton constants in Kaluza-Klein dimensional
reduction can be deduced from the fact that the gravitational action is always multiplied
by a factor of %52 and that in the course of the compactification the measure of integration
is changed as dPz — Rd(P~Vz. Therefore,

1 Rny

2 2
K11 Ko

Combining this with the well known relation of the ten-dimensional Newton constant to
the string theory parameters k19 = 1/g/2, enables us to express the eleven-dimensional

Planck length /4, = n?{g in terms of ten-dimensional parameters:

Ip :g%\/a’



2. INEroduction . ... ... ... 15

This, together with the relation (2.4) constitutes a useful dictionary to translate M-Theory
relations to ITA relations and vice versa. It is most often stated as

3 3
/_EP 2_R11

= = = —= 2.5

(0%

Note that in eleven uncompactified dimensions, there is only one constant, namely the
Planck length, and there are no coupling constants or dimensionless parameters that would
allow for a perturbative expansion. This is reflected by the fact that eleven-dimensional
supergravity does not have any scalar fields that could play a role like the dilaton in ten
dimensions. As bosonic fields there are only the metric gysn and a three-form “gravipho-
ton” potential Cpryp with field-strength Fpsnpg. In modern language: M-Theory has no
moduli.

The eleven-dimensional supersymmetry algebra reads

{Qa’ QB} - FgﬁP/” + FZ}B“2M3 Zl(»21)uzu3 + FZ}B.“!% ZI(JJE;)---IJ@

As above, we encounter central charges, namely a membrane charge Z(®) and a five-brane
charge Z(®). Tt is therefore expected that besides momentum modes ( “gravitational waves”)
that just carry momentum, there are fundamental membranes and five-branes in M-Theory
that couple electrically respectively magnetically to the graviphoton field. This expectation
is fostered by the existence of corresponding BPS solutions to the supergravity equations
of motion (see the review of M-Theory stressing the importance of these solutions[Tl).

These ingrediences also allow for an explanation of the objects in ITA string the-
ory: The fundamental string is nothing but the eleven-dimensional membrane that wraps
around the compact eleventh dimension. As we already found above, the momentum
modes in the compact dimension are via the Kaluza-Klein mechanism to be identified with
the DO-particles. The membrane does not have to wrap the compact direction. It can
also occur as a membrane in ten dimensions then being interpreted as the D2-brane. The
D4-brane arises from the M-Theoryfive-brane wrapping the compact direction whereas the
non-wrapping five-brane is known as the Neveu-Schwarz five-brane in ten dimensions.

The higher-dimensional D-branes couple magnetically to the Ramond-Ramond k-
form fields. Thus they are dual to the branes that we already found eleven-dimensional
explanations for. Indeed, the D6-brane comes as a Kaluza-Klein magnetic monopole that
is a Taub-NUT space in eleven dimensions. The D8-brane is difficult to handle since its
fields do not decay with radial distance just like the electric field of a charged plane in four
dimensions.

There are also relations of M-Theory to the other string theories, namely type I and
the heterotic strings. They are not needed in the following and are omitted therefore in
this short introduction.
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Fig. 2: The M-Theory phase diagram

The situation we find in M-Theory is best displayed in the phase diagram Hermann
Verlinde uses to draw.

There are two order parameters: A typical length scale of a physical situation and the
string coupling constant. Whenever the coupling is small we expect string perturbation
theory to be trustworthy. We have also drawn the different length scales appearing in the
dictionary relations (2.5). For length scales larger than the Planck length /p, space-time
can be treated classically and the idea of a space-time manifold is valid. Note, that string
theory has a slightly different fundamental length scale, namely £;. For processes at larger
distances, we expect classical supergravity to be a good description since higher curvature
corrections are suppressed by orders of /5. Whenever Rq; is small compared to typical
scales of the problem, the eleventh M-Theory-dimension is not resolved and the world
appears to be ten-dimensional. This can be seen to be always the case for perturbative
string theory above the Planck scale.

M(atrix)-Theory appears near the intersection point of all these length scales and
it is this thesis’ main theme to investigate the overlap with the other regimes and mainly
eleven-dimensional supergravity.

We should not end this introduction without pointing the reader to some more
literature that can be used as an introduction to the topics covered here. The classic
compendium of string theory before the second super-string revolution is the two volume
work [GSWI To us, [LT] has often been very useful. A well written introduction that
also covers some of the newer developments and is therefore complementary to the books
mentioned so far, are the two books by PolchinskilP2l. We have already mentioned the
review of M-Theory by Townsend that is based on an analysis of the eleven-dimensional
superalgebralTl. There are several reviews of M(atrix)-Theory. Let us only mention the
ones by Bigatti and Susskind[BSl, the one by Banks[Bal and especially the recent one by
Taylor with a strong focus on scattering theorylT2]. The lecture notes [NH] have a strong
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emphasis on the membrane aspect of the M(atrix)-Model.
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3. The Matrix Model of M-Theory

In fall 1996, Banks, Fischler, Shenker and Susskind came out with a seminal paper [BFSS],
that proposed to give a non-perturbative definition of M-Theory in terms of supersym-
metric quantum mechanics of su(N) matrices. This thesis is concerned with consistency
checks of this proposal, especially by relating it to supergravity which, by definition, is the
low-energy limit of M-Theory. In this chapter, we are going to introduce this model and
establish some basic notions.

3.1. The BFSS Conjecture

M (atrix)-Theory, as the authors of [BFSS] called their model, is introduced to be the infinite-
momentum frame description of M-Theory. The infinite-momentum frame is reached
by singling out one ”longitudinal” direction z!! and then boosting the whole system so
strongly that all longitudinal momenta appearing in a given physical situation are much
larger than any other energy scale in the system. If we assume the x!! direction to be
compact with a radius Ry the longitudinal momentum will be quantized as

N

P11 = -
Rqq

Uncompactified M-Theory is supposed to be recovered by taking Ri; and N to
infinity, keeping py; fixed. Since N has to be an integer and is conserved in time, we can
think of it as the number of “partons” contributing to the physical situation at hand. They
constitute finitely many particles that can only be exchanged but neither be created nor
annihilated. In this framework, the full machinery of quantum field theory appears to be
unnecessary and can be replaced by the much simpler notions of quantum mechanics.

If the boost is actually infinite, the relativistic dispersion relation
M? =2p,p_ — "

(we use vector notation for space-like directions perpendicular to the longitudinal one)
simplifies dramatically after interpreting py as the “light-cone energy”):

_RuM? | Rup?

E = =
P+ 2N IN

Up to a constant, we are left with a non-relativistic dispersion relation where N, the total
number of partons, plays the role of the mass. The theory is not longer Lorentz invariant
but we are left with Galilean invariance in the transverse directions. Thus, we should be
able to describe physics in the language of non-relativistic quantum mechanics.

Next, we can use the dictionary from the previous chapter that relates eleven-
dimensional objects of M-Theory compactified on a small circle to ten-dimensional objects
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of type IIA string theory: We have seen that the Kaluza-Klein modes in the compactified
direction carry RR-one-form charge and are therefore DO-particles. We can identify the
x'l-direction from above with the compact direction that relates M-Theory and IIA string
theory, and find that N has to be interpreted as the DO charge from a ten-dimensional
perspective.

It is therefore natural to assume that the partons from above are nothing but the
DO-particles when viewed from a ten-dimensional perspective. This is the conjecture put
forward in [BFSS]: M-Theory in the infinite momentum frame is given by the dynamics of
N DO-particles in the N — oo limit.

As we have explained in the previous chapter, the low-energy effective dynamics
of N Dp-branes is given by the supersymmetric U(N) gauge theory of the open strings
connecting the Dp-branes, dimensionally reduced to the (p+ 1)-dimensional world volume.
In the case of DO-particles, the world volume is only (0 4 1)-dimensional. Thus, all fields
only depend on time. Alternatively, we can say that all space derivatives 0; fori =1,...,9
vanish. In the field-strength (all fields are u(N) matrices)

Fu =0,A, —0,A, +[A,, A,
the only remaining derivatives are
Foi = —Fip = 04 A; + [Ao, Aj]
and in the space-space components, only the commutator survives:
Fij = [Ai, Aj]

It is common in the M(atrix)-Theory literature to rename the bosonic fields as X* = A;
and A = Ag. In these variables, the M(atrix)-Theory Lagrangian reads

L="Tr (-iFWFW + wpw)

= Tr (%Xle + i[Xi,Xj][Xi,Xj] — i+ 1/_)’Yi[Xi,@/J]> (3.1)

if we denote covariant derivatives by a dot as X = 9, X + [A, X?]. Note, that this really
is the Lagrangian and not the Lagrangian density, as all spatial dependence of the fields
is gone and we are left with a quantum mechanical rather than a field theoretic model.

It is possible to choose the Coulomb gauge A = 0 but only to the price of requiring
gauge invariance afterwards by imposing a Gaufl law constraint
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In most parts of our discussion, especially when doing quantum loop computations, we
will therefore not fix this gauge.

The model is invariant under supersymmetries given by two constant spinors ¢ and

7 as ) '
0X" = —=2ey"y
L 1 .
o = <2Xw’ +y-+ §[X’,X’]%'j> €+
SA = —2&p,

one acting linearly and one acting nonlinearly. This fits with the expectation from low-
energy M-Theory aka. supergravity which has 32 independent supersymmetries. As one
can see, the supersymmetry variation includes a gauge transformation and therefore the
supersymmetry algebra only closes on gauge invariant states.

The sixteen linearly realized supersymmetries can be grouped into eight fermionic
creation and eight annihilation operators as described for example in [dWHN], They span a
256-dimensional fermionic Fock space whose representation content under the transversal
SO(9) is

44 ¢ 84 ¢ 128.

Those are nothing but the representations of the graviton g, the graviphoton Ay np
and the Rarita-Schwinger gravitino Wy, unter the SO(9) little group that make up the
eleven-dimensional supergravity-multiplet.

Thus, if there is exactly one massless state in the M(atrix)-Model, the eight fermionic
creation operators build the states of eleven-dimensional supergravity on top of it. There-
fore, to possibly recover supergravity from the M(atrix)-Model it is essential that there
is exactly one massless state in the model that describes a marginal bound state of NV
DO-particles from the stringy perspective. Already in [@WLN] it was shown that the model
has a continuous spectrum for all energies £ > 0, but there the question of zero energy
states could not be resolved.

In [W], Witten gave an argument for the existence of exactly this one bound state
using string dualities. In [88], Sethi and Stern worked out the Witten index tr(—1)#fermions
for the N = 2 case and found it to be one strengthening the believe in the existence of
a unique ground state. Also [PR], [Y] [Sm] [KNS] [FH] [HS] [MNS] and [KS] were concerned
with the difficult problem of identifying the unique ground state.

In all what we have said so far, we thought of IV as being a special kind of regulator.
Finite N physics was meant as an approximation and the full eleven-dimensional theory
should only be recovered in the limit N — oco. Especially, d = 11 Lorentz invariance is
only expected in this limit as a boost in the z'! direction changes N. But in spring 1997,
Susskind put forward “Another Conjecture about M(atrix)-Theory”[Sul: He proposed that
the finite N M(atrix)-Model is an exact description of M-Theory compactified on a light-
like circle with N units of momentum in the compact direction. This second conjecture
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was mainly based upon the observation that most consequences of the first conjecture
presented above work equally well for finite N and that already the finite N gauge theory
has a number of duality symmetries one believes are essential for a model to describe
M-Theory.

One should be aware that a compactification on a light-like circle is at least on
the verge of being unphysical: It nearly violates causality. Furthermore, the notion of the
radius Ry; of the light-like circle is not invariant under Lorentz transformations. Therefore,
it should finally drop out of any expressions for observable quantities.

SeiberglSeil and SenlSe] presented a “derivation” of Susskind’s finite N conjecture
using the relations (2.5) along the following lines: Compactification on a light-like circle
means we are going to identify coordinates as

()~ ()= ()

In a first step, we are tilt the circle by a small amount R, to make it space-like:

()= ()= (")

In step two, we boost the system with rapidity
R11

to obtain the “standard” compactification on the space-like circle

211 211 R,

()= ()6
with small radius Rs. By definition, M-Theory compactified on a small circle is type ITA
string theory with p_ = N/Rs DO-particles. During the boost, the light-cone energy p.

was rescaled by a factor Rg/R. In a third step, we can undo this rescaling by passing to a
“second” M-Theory with rescaled Planck length E by demanding that

b=

R1q R,
612, ~ P+ 2_2

is fixed. Now, we can use the dictionary (2.5) to find the string theory:

~/_l72_£ V
s T R3/2

which goes to zero as we take Rs to zero in the end to undo the tilt. This means that
we can ignore higher curvature corrections to the string effective action. The exited string
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states become infinitely massive and decouple. Thus, the effective description of the strings
stretching between the DO-particles is really given by a gauge theory and not by a Born-
Infeld theory or any other kind of higher derivative theory. Furthermore, we find

- RYAR3A
s 3/2
0/

which also vanishes in the R — 0 limit. This means that the closed strings and therefore
gravity decouples in this limit. We are left with a pure gauge theory.

Any transverse scales R are not affected by the boost. Thus we should have

R _ Ry
v 0
which implies
Ry,  RyR'RY*
by 032

This means that from the st;i\n/gy perspective, the transverse distances between the DO-
particles vanish and in the light-like limit R; — 0 the DO-particles coincide. Therefore,
we find the gauge group U(N) to be unbroken, as the distances between the particles are
proportional to Higgs expectation values.

This concludes the argument that M-Theory compactified on a light-like circle is
given by ten-dimensional supersymmetric U(N) gauge theory dimensionally reduced to
the world-line of N coinciding particles.

3.2. DO-Particles As Particles

Let us inspect the M(atrix)-Model-Lagrangian (3.1) a bit closer. For a moment, let us set
the fermionic fields to 0. We see that it has the well known structure of kinetic energy
minus potential energy

| . 1 o
Lyoson =T =V, T:§TI'XZXZ, V:—ETI‘[XZ,XJ]z

We would like to guess low energy solutions to the equations of motion. As we have used
the natural unit system ¢ = h = k = 1, low energy corresponds to £ < 1. This implies
that especially the potential energies very small and vanishes in the limit £ = 0. This
equivalent to

V=0 Vij:[X,X]=0
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and we can — as in quantum mechanics — diagonalize all the matrices X* simultaneously:
Ai(t)
Xit) =
A (t)
Plugging this ansatz into (3.1), we find a free equation of motion for the eigenvalues:
AL=0 = A(t)=0bL 4 it

with some constants of integration b’ and v:. An important observation of [BFSS] was that
one can regroup the eigenvalues into vectors

Xo= (AL 09

and interpret them as the coordinates of N particles (namely the D0 branes) at time ¢. At

the classical level, we just have free, straight line motions with impact parameters ga and
velocities v,.

The center of mass motion is encoded in the traces of the matrices:

i 1 i
>\Cm = N rPI'X
If we decompose the gauge group as U(N) = SU(N) x U(1) in terms of the determinant
and decompose the matrices as . B .
X'=X"o X

we see that, even without the diagonal ansatz, the center of mass motion does not con-
tribute to the commutators and therefore decouples. This is as we would have expected it
for a system of particles without external fields. From now on, we are going to ignore this
trivial center of mass motion and take all matrices to be from su(N), i.e. to be traceless.

If we did not know about the ten- or eleven-dimensional origin of this model we
could use this manifold of low energy solutions (coordinatized by the eigenvalues of the
matrices) to define the physical space-time of this configuration space. This a posteriori
construction of space-time can be viewed from a more general perspective: The idea is
to start with some auxiliary space-time of any dimension (here: the real line) and study
some field theory on this space. Find the moduli space of vacuum configurations and
interpret it as the configuration space of particles (or maybe other objects) moving in the
true, physical spacetime. If the field theory one started with is originating from a D-brane
construction, the term “D-geometry” has been coined by Douglas for spaces obtained in
this way.

Generically, the space of classical vacua will be very different from the space of
vacua of the full quantum theory that even might be completely out of reach. But for
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supersymmetric models, the situation is often better and some properties of the classical
moduli space will be preserved in the process of quantization.

The off-diagonal matrix entries will be shown in the next chapter to be massive with
a mass proportional to the separation of the particles. They should be interpreted as the
degrees of freedom of the strings stretching between the different DO-particles. They can
be ignored for large separations (as compared to the string scale) as they will be frozen in
their ground states. But for situations in which some DO0-particles get close to each other
the off-diagonal degrees of freedom become light and start interacting.

The diagonal matrices of generic low energy configurations commute as do usual
coordinates. But in the close limit situations with off-diagonal matrix entries turned on,
this is no longer the case. This non-commutativity at short distances is believed to be a
generic feature of quantum space-times.

3.3. T-Duality In The M(atrix)-Model

As we have explained in the introduction, T-duality is a symmetry of string theories that
relates compactifications on large circles to compactifications on large circles. If a space-
time with a D-brane is T-dualized the open string boundary conditions get exchanged and
the Dp-brane is turned into a D(p + 1)- or a D(p — 1)-brane.

This T-duality should also be visible from the M(atrix)-Model-perspective and we
will present here the approach by Taylor[Tll. The idea is the compactification of one direc-
tion, z! say, on a circle of radius R is indistinguishable from an uncompactified situation
in which each DO-particle has an infinite series of “mirror particles” at positions that differ
by 27 RZé:

Fig. 3: Mirror particles and fundamental regions

Including all mirror particles, we have an infinite number of D0-particles and there-
fore have to deal with infinite matrices. But those matrices have a very simple structure:
If there are N particles in one fundamental region, we can take them to consist of N x N
blocks. On the block diagonal, the entries describe interactions within one fundamental
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region, one block right of the diagonal, the blocks describe interactions across one bound-
ary of the fundamental region and so on. As the N DO-particles are in the same positions
in the non-compact directions, the matrices for ¢ > 0 are of the form

X(1) Xi:(2)
Xi=|--- X¥(=1) X*0) X*(1)
Xi(=2) Xi(-1) X'

with X*(k) € u(IN) and the argument indicating the offset from the block diagonal. The
positions for ¢ = 1 differ by 27 R in the compact direction. Therefore, we find there

X1(0) Xl:(l) Xl.(2)
-1) X'Y0)+27R X1(1)
— + 47 R

2)  X'(-1)  XY0)

... 1-
xXl—1... Xl(
Xl(

We can use a more compact notation if we introduce the shift matrix

1
1
U= 1
1
1
(extended to infinite size) and the clock matrix
0
T = 2R
AT R

Then, the infinite matrices can be written as
X'=Y Xn)oU"+§'1T.
n

The effect of multiplying by U is to shift n — n + 1. Alternatively, we can employ an
inverse Fourier transform to write

Xi(a) = ZXi(n)ei"” +011eT.
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Then U, interpreted as an operator, can be written as e** whereas multiplication by T can
be represented by 2m’Ra%. We find a new operator

. . !

X'(o,t) = X' (o) + 2miR6"™ ——.
do

We find again a gauge theory with finite dimensional gauge group u(N) but now in two

dimensions ¢ and 0. X" is the covariant derivative in the new o direction and the remaining

X" for i =2,...,9 are scalar fields in the adjoint representation of the gauge group.

This is nothing but the (1+1)-dimensional gauge theory that is the low energy effec-
tive action describing N coincident D1-branes. Therefore, we have just given a description
of T-duality in the M(atrix)-Model language: It is possible to trade an “infinity” in the
rank of the matrices for a new spacetime dimension.

3.4. The M(atrix)-Model and Supermembranes

The context of M-Theory and the M(atrix)-Theory conjecture were not the first time the
M(atrix)-Model was discussed. It was first introduced in [CH] [F] and [BRR] ag an example
of a quantum mechanical system with A/ = 16 extended supersymmetry and also in the
context of supermembranesBST][Ho][dWHN] ~ Ag we have already mentioned in the intro-
duction, membranes are fundamental degrees of freedom in M-Theory. Here, we will only
sketch why they are described by the same M(atrix)-Model as the membrane interpretation
does not play a major role in this thesis except for a short remark in chapter 6. For a
much longer review of the connection between supermembranes and M-Theory, see [NH],

The Nambu-Goto action of the supermembrane is obtained by measuring the world
volume and a Wess-Zumino-Witten term using the supervielbein

E;* = 0; X% 4+ 0T*0,0.

Here, we assumed the supermembrane to be embedded in an eleven-dimensional super-
space. The action reads

L=—v/—g(X,0) - " (%aixu(ajx" + 01" 0;0) + éeruaie 9F”8j9> OT .., 0x0

It was discovered in [He] that this action becomes polynomial when written in light-cone
gauge
0; X T = b;0.

Namely, the Hamiltonian density reads

132
H="19_

€0, X 9T~ T;0,0, (3.2)
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where 7 and s run over the remaining two world indices and ¢ is a nine-dimensional transver-
sal index. The metric density is given by

g =det(9,X - 0,X) = (€0, X'0,X7)2.

Another important observation was, that this, since it gives “the density of area” is invari-
ant under a residual symmetry of the membrane diffeomorphism invariance. Namely, it is
invariant under the action of area preserving diffeomorphisms (APDs). Those are locally
generated by vector fields that are curls of functions (“the potentials”)

€ =0,

The APDs form a Lie-group, therefore their generators form a Lie-algebra with the bracket
being given by the usual commutator of vector fields. This Lie-bracket can be translated
into a bracket of functions by identification of the functions with the potential of the
generator of an APD, vis.

{A,B}(0) := €0, A(0)0sB(0)
We can use this bracket to rewrite (3.2) as

1

H:m

(132 + X7, XJ}Z) — T T { X, 0).

But this is nothing but the one-dimensional super Yang-Mills theory where the gauge
group is given by the infinite-dimensional group of APDs. It is convenient to decompose
functions of the membrane into a complete orthonormal set of functions as

Xi(o)=>_ XiyYa(o).
A
In terms of those, the structure constants of the Lie algebra can be obtained by

fas® = /d20 {Ya,YB}Ye.

It is a deep result that these structure constants for all possible membrane topologies can
be obtained as a N — oo limit of SU(NN) structure constants in a special basis[BMS]:

i fa(SU(N)) = fa®(APD)

We will indicate how this limiting procedure works only for the simplest case of toroidal
membranes. In this case, we can decompose the functions in terms of their Fourier modes

as 1
Ym(&) = eim'g

Vi
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The APD structure constants follow from
(Y, Y} = —4n?(m x @) Y 452- (3.3)
On the other hand, we can use 't Hooft’s clock and shift matrices
1 0 1
.1
w 1 0
that generate SU(N) if w is an N*® root of unity e27**/N. They commute up to a phase

factor
UV =wVU

and the commutator of any SU(IN) matrices can be written in terms of
miy/me prRiy/ne] — (,,M2Nn1 _ ,,Min2\Jrmi+n1y me+ne
[umyvm: umv™] = (w w YU V

If we now take N to infinity keeping m and 7 fixed, this approaches

2mik
lim (U™ V™2, gmyne] = 2

(i x Uy e,
N—o0 N

Obviously, this is just (3.3), the algebra of APDs on a torus.

This is just the toroidal case of the general fact that the action of supermembranes
in eleven dimensions is the limit N — oo of SU(N) super-Yang-Mills quantum mechanics
on the real line.

In the early days of supermembranes, it was thought that membranes in eleven
dimensions could be treated just like strings in ten but [dWLN] showed that the spectrum is
continuous. Therefore, there is no clear separation of particle masses in integer multiples of
the membrane tension 1//,. Nowadays, this continuous spectrum is viewed as an advantage
as the membrane action we presented above is not the action of just one membrane but
of several ones, the membrane theory is automatically a second quantized theory: Since
the potential energy is given by the area of the membrane, additional infinitesimal tubes
do not cost any energy. Thus, one can use such tubes to connect separate membranes
without changing the physical situation but turn several membranes into one that is again
described by the above action.

In the M(atrix)-Model-language, such a configuration can be described by block
diagonal matrices. Each block describing one membrane. They interact in terms of the
off-block-diagonal entries.

The reverse process can also be imagined: One membrane pinches off and “decays”
into two parts that are only joined by an infinitesimal tube. Therefore, it is not sensible to
treat only single membranes, one always has to take into account multi-membrane states.
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4. The M(atrix)-Model at One-Loop Order

In this chapter we will present the basic setting of M(atrix)-Model scattering calculations.
We will study in some detail the calculation that first hinted towards the possibility of
studying processes in gravity from a gauge theory perspective. Then we proceed to cal-
culate polarization dependant effects in order to demonstrate that we are really testing
supergravity and not just some field theory in eleven dimensions. In the course of this
study, we will present different methods to obtain these results, each suited best for its
specific purpose. Especially, supergravity calculations can be quite lengthy if approached
too naively, but we will present more elegant ways to extract results in special cases.

4.1. The Born-Oppenheimer Effective Potential

In this section, we are going to study leading order quantum corrections to the classical
solutions of the M(atrix)-Model eequations of motion. In the simple free particles solution
we have presented in the last chapter, all off-diagonal matrix degrees of freedom were turned
off and did not contribute. In a quantum theory, the Heisenberg uncertainty principle
does not allow such a turning off of degrees of freedom. We have to expect quantum
fluctuations. Those fluctuations, on the other hand, will influence the dynamics of the
diagonal matrix elements. This influence can be summarized by an effective potential on
those “classical” degrees of freedom. After that we will compare the force described by
this effective potential to the gravitational force between gravitons in eleven-dimensional
supergravity. We will study in detail the leading order polarization independent potential
and the static spin-spin interaction. The agreement we will find fits well into the connection
between the M(atrix)-Model and supergravity via the conjectured M-Theory.

This approximation procedure should be compared to the Born-Oppenheimer ap-
proximation used in calculations of molecular physics: There, one first fixes the positions
of the nuclei and employs a quantum mechanical calculation to find the energy spectra of
the electrons in the electric field of the nuclei. Then, one interprets the ground state energy
of the electrons, viewed as a function of the positions of the nuclei, as an effective potential
for the nuclei and solves for their classical trajectories in that potential. In both scenarios,
there is a separation into slow degrees of freedom that can be treated classically and fast,
fluctuating degrees of freedom that can be integrated out and via their interaction with
the slow degrees of freedom leave an effective potential as their sole effect.

To get an idea of what we are going to expect, let us perturb a diagonal matrix by
some small off-diagonal quantity p at position (a,b):



B 4. The M(atriz)-Model at One-Loop Order

Plugging this ansatz into the bosonic part of the M(atrix)-Model-Lagrangian we find the

terms containing p to be
1. 1, =
L, = —fift— =||Xo — Ao || fipe.
p = i = 5 lAe = Aol

But this is nothing but a harmonic oscillator with frequency w = [|Xp — X4||. We can
assume w to be constant for the fast oscillations of p that are on the timescale of 1/w
which is very short for macroscopic separations ||\, — Ay|| of the particles described by the
diagonal matrix elements. The quantization of this harmonic oscillator is basic textbook
knowledge and we find the energy spectrum to be evenly spaced with level-spacing w. For
macroscopic separations, the oscillator will be frozen into its ground state of energy w/2.
Thus we are led to an effective potential for the diagonal matrix elements of the form

- 1 - -
Ver (o) = 5 1% = Kal

This potential fits well into the interpretation of the particles being D0O-branes with strings
stretching between them: The string between particle a and b has a length w and therefore,
according to the stringy version of Hook’s law, a potential energy proportional to its length.
We are led to identify the off-diagonal degree of freedom p at position (a,b) with the string
degrees of freedom stretching between D0-branes a and b.

On the other hand, this potential seems to be disastrous for the asymptotic DO0-
particle interpretation (remember that from the M-perspective the DO-branes are gravitons
with momentum in the compact M direction): The potential increases for large separations
and is therefore confining. There are no scattering states anymore, all states are bound!
But here, as so often, supersymmetry comes for a rescue: There are not only fluctuations
on the bosonic off-diagonal fields, also the fermionic matrices fluctuate and their effect is
to turn the harmonic oscillator into a supersymmetric harmonic oscillator

L= g~ 1%y = Rall P2+ £ (00— 09) — 2]15, — X, 00.
2 2 2

This supersymmetric extension is known to have the same energy level-spacing, but as
the fermions contribute with opposite sign, it has vanishing zero point energy. Therefore,
in the full supersymmetric model, the vacuum fluctuations do not contribute to a static
potential that would correspond to a force between the DO-particles rendering the classical
state unstable. This is in agreement with the BPS no-static-force property that we expect
from the stringy picture of the situation.

To compute the full, velocity dependent effective action to leading order quantita-
tively we will have to perform a more careful calculation. This is what we will do next.
We will give a detailed presentation also to introduce some tools that we will need later
on, namely the background field method and the heat-kernel.
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4.2. The Leading Polarization Independent Effective Potential

The calculation we are going to describe here was first done by Douglas, Kabat, Pouliot
and Shenker[PKPS] in the boundary state formalism of string theory, but we are going to
give a description that is more intrinsic to the M(atrix)-Model and follows the lines of [BBI.

The determination of quantum fluctuations around a classical solution is most easily
done in the background field formalism. There, one splits the dynamical fields into some
classical part and the fluctuating quantum part as ® = f + ¢ and then expands the action
in the quantum field:

£16() + 360 5o [f]6(x) + O(&)

(y)o®(x)

The first term does not depend on ¢ and therefore only contributes a constant to the
action that can be discarded further on. The second term vanishes if f obeys the classical
equations of motion 6S/0® = 0. The third term is the background dependent kinetic term
¢O¢ for the quantum field that determines the propagator % For a one-loop calculation,
this is all one needs, as in a loop of the quantum field all vertices have exactly two quantum
legs while all the other legs are external; vertices with more quantum legs would occur only
at intersections of loops in higher loop diagrams. The external legs are represented by the
background.

P

Fig. 4: One loop in the background field formalism

The one-loop effective action is given by
m_ 1
r' = 3 Trlog O

and can be conveniently calculated using an auxiliary function (it can be shown that this
is really a function and not a distribution) called the heat-kernel h(z,y, o)Sehl. Tt depends
on two space-time points and an additional positive variable and is defined by the partial
differential equation

0
Ogzh = —%h
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together with the boundary condition lim,_,o h(z,y,0) = §(z,y). Note that symbolically
we can write the heat-kernel as

h(z,y,0) = e 79(x,y).

First, we express the propagator in terms of h:

1 (o.@)
G(x,y) = 5 :/0 do h(a:,y,cr)

Indeed, acting with O on G(z,y) and using the defining PDE, we obtain an integral over
a total derivative with only the boundary at ¢ = 0 contributing the desired delta function.

Next, we ask how the effective action changes under variations of the operator O.
For example we could vary a parameter of the background:

1
or® = 55 Trlog O

1 1
= %Tr/ do 60 e~ §(z,y)

:——Tr/ —5ha:y, o)

After integrating over the variation, we end up with an expression for the effective action
in terms of the heat-kernel:

0= [ b

Here, the trace is understood as a functional trace not only over possible color indices (in
general, the heat-kernel carries two indices that run over all contributing fields; we will
suppress these indices here) but also includes setting y to = and integrating over space-time.

In most applications of the heat-kernel, one has to use approximations of h as a
power series in ¢, but in the case at hand this will not be necessary as for the operator O
that appears in the M(atrix)-Model, the heat-kernel is known exactly.

The planar one-loop gauge theory vacuum bubble in ’t Hooft ribbon notation has
two boundaries so it represents two particle scattering as we will see later on. Let us
therefore anticipate that the one-loop calculation can be done with N = 2 without loss of

generality.

Fig. 5: One loop ribbon diagram
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Following [BBI, we perform the background quantum splitting for the M(atrix)-Mo-
del and use the free particle solution to the equations of motion as the background field.

The background is
i

with 7 = b+ ot. By a shift of ¢ we can assume the impact parameter b to be orthogonal to
the velocity ¥. The quantum fields are denoted by Y and can be decomposed with respect
to a Pauli matrix basis of su(2):

Y =Y,0,

Plugging this into the bosonic Lagrangian, we find for the quantum fields
ol avwvi  Loiige ovvi Luiney
LY—2Y1(3t T )Y1+2Y2(3t r )Y2+2Y38tY3

_a3d_ cbd piyvjvivy L abe _cdev iy Ivyiyd
MBIV - et ey VY.

In the previous chapter, we have gauged away the only remaining gauge field A = A
that renders the time derivative covariant. This gauge is accompanied by the Gauss law
as a constraint. Therefore it is not very convenient. The background field method offers
a possibility to fix a gauge for the quantum fields while maintaining manifest background
gauge invariance. This is done by imposing the condition that the divergence of the gauge
field with respect to the background vanishes:

DFA, =0"A, +[B* A, =0

In our case this just amounts to adding a term (9;A + [Y*, B%])? to the Lagrangian. Fur-
thermore, we have to use covariant time derivatives 0; + [B, ] for all the fields. We find
the terms in the bosonic Lagrangian containing the gauge field to be

1 1 1 ) )
LA - 5141(8152 — 7'2)141 + 5142(8,52 — T2)A2 + 51438?143 + 260'1)3’0114ayvbZ

— €a3d€bchzAaAbYCz _ §6ab66cdeAaY'bzAchz + EabcatY;AbAzc.

The last term in the first line is bilinear in the gauge field and the component of Y that
is parallel to ¢. These fields therefore mix and we have to diagonalize the corresponding

mass matrix )
r —2v Y|
() (1)

The eigenvalues are easily found to be r? +2v. Thus we find the bosonic mass spectrum to

consist of ten massless bosons (Az and the nine components of Y3), sixteen bosons of mass

m? = r? (the components of 171 /2 that are perpendicular to ¢) and two plus two bosons of

mass m? = r? & 2v (the appropriate linear combinations of A;/5 and ¥j1/2).
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By varying the gauge fixing term with respect to a gauge transformation, we find
the Lagrangian for the Fadeev-Popov ghosts:

LC = C_’l(—é?tz + 7'2)01 + Oz(—at + 7"2)02 + 6_138,5203
+ Gabcatc_vachc . 6a3decdez'C_vaCbY'ci

The ghost fields are complex; in terms of real fields, we have again four fields with m? = 2

and two massless ghost fields.

Writing ¢4 = (¢1 £ itp2)/V/2, the component Lagrangian for the fermions reads

Ly = 040 = BYb + a0ty

1

1 . .
+ ﬁ¢+(Y1 —iY¥2)3 + ﬁlbs(Yl +iY2)—

1

\/5(141 + 1 A) 31—

— Y3 +iAzp .

In order to find the effective action for the fermions, we employ the “doubling trick” that
amounts to noting that for an operator D (in our case D = 9y — B) we have

log PP =log D + log P! = 21og P

as long as there are no subtleties due to fermionic zero modes in chiral models. For our
calculation, this yields

PP = (9, = B)(=0; — B) = =0F — [0, Bl + BB = =0} —f +1°
Again, we could diagonalize the mass matrix but we can also note that for each spatial
v-matrix, half of the eigenvalues have to be 1 and the other ones have to be —1 since "
is traceless and squares to the unit matrix. So half of the sixteen components of both 4
have m? = r2 — v and the other ones have m? = r2 4 v. The sixteen components of 13 are

massless.

Collecting the masses of all fields and taking care of the anti-commutativity of
fermions and ghosts with a negative sign and a factor of % for the fermions to compensate
for the doubling trick, we find the following table:

# real components m? weight factor

16 r? 1

2 r? — 2 1

2 r? 4+ 20 1

10 0 1

4 r? -1

2 0 -1

16 r?—wv —-1/2

16 r? + v —-1/2

16 0 —-1/2
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In total, the various massless fields cancel each other in the effective action, which is what
one should expect in a supersymmetric theory. All the remaining fields are massive. Thus
we do not expect any infrared problems in the calculation. As “space-time” is only one-
dimensional, there are no ultraviolet problems, either, and the whole calculation of the
one-loop effective action is finite. One might wonder how, in this setting, field theoretic
divergencies could occur at all, since the system is quantum mechanical and has only a
finite number of degrees of freedom. But this reasoning is not correct as by calculating
scattering amplitudes we are asking a field theoretical question and thus we would have to
face divergences in a generic system.

All the background dependent kinetic terms we have found contain, besides the time
derivative, only terms constant with or quadratic in time. Therefore it sufficient to know
that the heat-kernel of a field of mass vt, say,

e—a(—8t2+112t2)

is given by the propagator of a harmonic oscillator

6—iT(P2+112Q2)

if we identify o with i7, d; with ¢P and ¢t with @ (note that the canonical commutation
relations are fulfilled after this identification!). The exact propagator of the harmonic
oscillator is well known (see for example [Fey]) and we find the heat-kernel for a field of
mass vt to be

v

h(t,t' =,/
(t,,0) 27 sinh(20v)

exp (—vt? coth(ov) — vt3 tanh(ov)) (4.1)
where we introduced ¢4 = (¢ & ')/2. If there is a constant term of the form b2 in the
expression for m?2, it contributes a factor of

exp(—ab?)

to the heat-kernel since it commutes with d; and therefore no Campbell-Baker-Hausdorft-
like formulas have to be applied. Putting everything together and taking the trace over all
the fields we find

1 [ *d
M — -5 / dt/ 29 o=ov? (12 + 4 cosh(o2v) — 16 cosh(owv)) h(t,t, o)
—o00 0 o

1 [ o 1
=—— / dt/ doy| — oPe o vt + O(v°)
2/« Jo o

_ /_Oodt (-%i’—j) + 0@, (4.2)

oo

Thus we have found an effective potential proportional to the fourth power of the relative
velocity. Naively, on dimensional grounds, one might have expected also terms proportional
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to 7 or to v?/r3 (odd powers of v have to be absent since they change sign under time
reversal). Those terms of lower order in the velocity are absent due to the high amount of
supersymmetry. The first one is just the static force we found above in the purely bosonic
reasoning while the second is typically present in situations that preserve only one quarter
of supersymmetry from the ten-dimensional perspective, like a D4-D0 bound state, and
not half of the supersymmetry as in the purely D0 scenario we consider here[PKPS],

4.3. Newton’s Law and Coulomb’s Law in the Light-Cone Frame

If the strongest M(atrix)-Theory conjecture is true and the finite N M(atrix)-Model is a
description of M-Theory, the effective action we have worked out above should correspond
to some potential in eleven-dimensional supergravity which by definition is the low-energy
limit of M-Theory. Instead of performing a full supergravity calculation at this point (that
we would have to redo in a later chapter where we will study three-particle scattering), we
will consider a related scenario in simple electrodynamics that is much simpler to analyze
but bears the same features as the gravitational calculation.

- +
X X

Fig. 6: A particle moving in light-cone coordinates

Let us consider a massless charged particle that travels at the speed of light in 2!

direction in d-dimensional space-time, i.e. its world-line coincides with the 27 = (z%+z')/2
direction. It produces a current

jJoxjo(zT)o(xy)e—

where we have denoted the light-cone coordinates by z* and the d — 2 transversal coordi-
nates collectively by z, . Here e_ is the one-form dual to a%“' To find the electro-magnetic
field of the particle we solve Maxwell’s equation

jh=0A" = (—20_04 + A L) A",

The first term vanishes since the situation is invariant under translations in the z+ direc-
tion. We find the only non-vanishing component of the potential to be

1

A_(z) x 6(3:_)W,

(4.3)
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where ||z [|° is understood as log||z ||. We find that all components of the field strength
except for F;_ and F_; vanish.

Next, we shoot a second test particle through this electro-magnetic field to find the
force that is acting on it. We assume the test particle to be massless, too, thus it also
travels at the speed of light. We denote the components of its velocity in the transversal
directions by v, and find its d-dimensional velocity to be

u=(1,y/T=7,0. ) (4.4)

in (2%, 21, ..., 2%1) coordinates. The acceleration the test particle feels due to the electro-
magnetic field is given by

du’ - -

o= u, F* = u FT°.

But

, 1—+/1—v% §(z7)zt 2 , 1
uy F7" =u"F_; vl o )a x U¢5(x_)317 +0(v%)
2 leof|4=8 4

Thus, to the leading order, we have found a potential

2
vl

V x 5(;::_)7”3”_”0!_4

that is proportional to the square of the transversal velocity, different from what
one might have expected from applying Coulomb’s law naively. Especially, if the velocity
of the two particles is parallel, there is no force at all and the configuration is stable! One
could proceed adding charged particles flying in that direction and still have a solution to
the equations of motion. Thus we have found a superimposable solution to the, in general,
nonlinear system of coupled equations of motion and field equations. The physical reason
for this linearization is that, in the case of particles traveling at the speed of light, the
static Coulomb force and the velocity dependent Lorentz force cancel.

In fact, one can express this cancellation in more elaborate terms: In a supersym-
metrized version of electro-dynamics, this field configuration, with all additional fermion
fields consistently set to zero, is a BPS configuration that preserves half of the supersym-
metry. The linearization is just the familiar superposition of BPS configurations that is
also well known from extremal Reissner-Nordstrom black holes. Another property of the
potential is the fact that the distance dependence is by two powers weaker than the 1/2%2
dependence of the usual Coulomb law.

Because of the special form of the field-strength F;_, there is no way to contract
more than two field strength tensors with at most two free indices even with the help of an
¢ tensor since there is no tensor with two upper (—)-indices. Therefore, any corrections to
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this solution in higher derivative-versions of electro-dynamics vanishes and we can conclude
that we have found an exact solution even for higher derivative-corrected theories, that for
example might arise as effective theories from quantization of this theory.

For gravity, there is a solution to the Einstein equations that corresponds to (4.3).
It describes a “massless black hole” that is boosted to the speed of light and is known as
pp-wave or as Aichelburg-Sex] metric [AS],

6 —
ds® = dsg, + h—_dz~dx™ =, drtdz” + a#dl‘_dlﬁ,
L

with arbitrary a. This solution, dimensionally reduced from eleven to ten dimensions on
a light-like circle, yields the solution of ten-dimensional supergravity that is believed to be
the macroscopic description of a DO-particle.

A massless test particle with the same d-velocity u as above feels a gravitational

force that can be read off from the geodesic equation
du’
dr

=T, uu”.
The Christophel symbols for the Aichelburg-Sexl are easily calculated
. 1 . 1 .
L = 59“(gux,u + v~ Guwn = —50"9w)

Again, there is only one non-zero combination of indices, namely ' _ and the acceleration
becomes

du’ i 0(x) 4 ai §(xz7) 6
xu u O —— x v '——" + O
ir N Teugas oD

To leading order, we again find a velocity dependent potential

vl
174 4.5
* Tzall (4:5)

if we evaluate the expression for eleven-dimensional supergravity. In contrast to the poten-
tial in the Maxwell theory scaling with v2, in gravity, we have found a potential that goes
like (v2)2. This is a manifestation of a phenomenon that is well known in string theory:
Scattering amplitudes (we have calculated an effective potential but this is closely related
to a scattering amplitude by the LSZ-formula) in gravity are often expressible as squares
of gauge theory scattering amplitudes due to the fact that the former are described by
closed strings with two independent sets of oscillator modes whereas the latter ones are
obtained from open strings with just one independent set of modes[GSWI.

If we are interested in higher orders in v, we should be careful to note that in the
Aichelburg-Sex] background (4.4) is no longer light-like but we have to take into account
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corrections. Therefore, in that case, it is more convenient to follow the approach of [BBPT],
Here, we normalize u by setting u™ = 1. This corresponds to parameterizing the world-line
by 7 = T as it is usual in light-cone frame calculations. Then, the condition for u being
null is

2u” +v3 +h__u"u” =0.

_ \/1—h__vi—1

vo= ho_

This can be solved for

Now, we should note that the M(atrix)-Model assumes constant p_, not . Therefore we
should consider the Legendre transform of L with respect to u~. As the Lagrangian of a

massless particle is zero, we find (we set p_ = 1 as we consider the field of one DO0-particle)
L'=L—-p_u~
2 1 ot 1 o208

v 8
7 T gpt T g O (4.6)

It was one of the original supporting arguments for the M(atrix)-Theory conjecture
in [BFSS] that not only the form of the potentials (4.2) and (4.6) matches but also their
numerical coefficient —15/16 (it turns out o = % is really the correct normalization for
the Aichelburg-Sex] metric in order for the solution, when reduced to ten dimensions,
carries one unit of DO charge). This was taken as strong evidence for the conjecture
that eleven-dimensional M-Theory is well described by the quantum mechanics of the
supersymmetric matrix model. It is the main purpose of this thesis to investigate whether

this correspondence persists in further, more detailed comparisons of scattering processes.

4.4. Spin-Spin Interaction in M (atrix)-Theory

As it should have become clear in the preceeding section, the calculation of the leading
order force on the test-particle in the Aichelburg-Sexl metric did not involve any properties
of the test particle. The force we found is universal and independent of the kind of particle
and of possible orientations and polarizations. To support the assumption that the particles
described by the diagonal degrees of freedom of the matrices should be identified with the
particles of the graviton multiplet of eleven-dimensional supergravity, we need to test
properties specific to gravitons like the spin being s = 2 and resulting polarization states.
Therefore, in this section, our aim is to calculate the part of the potential that is maximally
dependent on the polarization of the scattering particles. In analogy to atomic physics, we
interpret it as the spin-spin interaction. The presentation here will closely follow the one
given in [BHP],

As it is known since the early days of the supermembranel[dWHN] the 128 4 128-
dimensional graviton multiplet of maximal supergravity arises in the M(atrix)-Model by
acting on some ground state wave function with the eight fermionic creation operators
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built out of the fermionic matrices. Thus, the different states of graviton polarization are
accessible in terms of expectations involving the fermionic fields.

We are going to look for these spin dependent interactions in the terms in the
effective potential that are related by a supersymmetry transformation to the v*/r” term we
calculated before. But instead of applying the possibly one-loop modified supersymmetry
transformations on this term, we are going to calculate the effective action directly, again
with the help of the background field formalism.

Power-counting tells us that we can expect to find each factor of v possibly being
replaced by 12 /r. The maximally spin dependant term will therefore be of order 8 /r!!.
Because of the supersymmetry cancellations we encountered for the purely bosonic term,
there should not be any static terms with less than eight fermions. This will indeed be the
result we will derive in this section.

Before we start with the actual calculation, let us state some y-matrix identities.
We use a representation of the SO(9) Clifford algebra by real, symmetric matrices[GSW].
From this it follows that products of two or three y-matrices are anti-symmetric in the
spinor indices whereas products of zero, one, four, and five are symmetric. Thus, we have
for an anti-commuting spinor 6

00 = 0 07'0 = 0
0770 = 0440 97’7%/’“0 = 97“’“9
Oyl = 51k §ik il 1 gilgnydk 1 §ikQil _ §ilgaik | gRLY~id

In SO(9) there is one Fierz identity that is a remnant of SO(8) triality: Any anti-symmetric
matrix in spinor indices can be decomposed as

005 = %eyijeﬁﬁ + %97“’“972;
This can be used to derive a couple of identities that we will need later on. We list them
here without much further ado[BHP]:
0770070 = 0 (4.7)
0y v 0077 ¥4 = 207 700~y7T%0 — 50y #00F+ 0 + 0~ 00T #05
— 0y 0047%0 — rF 0y T 00T ¥0 (4.8)
01y 007 #4700 v 00~ % 10 = 1209+ 00~ 0077007 10 — 4(0F~' 007 40)?  (4.9)
07" 00y ¥y 007 ¢4 0040 = 207" 004700+ 00~ 0
— TOFY 00~ 00~7% 00~ %0 (4.10)
07 7 00~ R 007 ¢4 00~ v 0 = 1041004700~ 0o~ 0
— 127209400~ 00~7% 00~ 0
+ 22(097'00~'10)? (4.11)
07" 0047 ¥y 00751 007 10 = 207" 004700+ 00~ 0
— 80Fv 0077 00~ k09~ o (4.12)
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If we adhered strictly to the background field formalism we should consider fermionic
background fields being turned on in order to find fermionic terms in the effective action.
But those would result in boson-fermion mixing terms arising from the Yukawa interaction.
One would have to diagonalize a mass matrix with fermionic entries. In order to circumvent
such difficulties, we decide to treat only the bosonic part of the background with the help
of the background field formalism and to calculate diagrams with external fermion lines.

Because we are only interested in the static term, we can set v = 0. This removes
all explicit time dependence of the background Lagrangian and we can therefore easily cal-
culate diagrams in momentum representation rather than in position space representation
to where one has to resort so as to treat non-constant backgrounds.

As we will see, there will only be off-diagonal fields running in the loop because the
background fields are all diagonal and because there can be only one diagonal field at the
cubic vertices. Therefore, it is convenient to parameterize the matrices as follows:

5 (v ) ams(s )

e i 0 VI
T2 \V2y b

In terms of these components, the relevant parts of the Lagrangian read:

Ly = =Y*(0? +r*)Y"* + (interactions)

Lp = B(0? +r?)B + (interactions)

1 - _ _ _ _

L, = Ev,b(i&g — )Y + Y0+ 0Y 1y — By — BOy + (interactions)

The ghosts can be ignored as they do not couple to the fermions directly. We can directly

read off the Feynman rules. We denote the gauge field by a dashed line, the scalars by a
wavy line, and the fermions by a solid line. The propagators are

i

ViVIN — i AN =
<YY> J ! w2 — 12 + jc

_ —1

BB e == - - = -
< > w2 — 12+ ge
. _ R
<¢awﬂ>_f’ - a_wz—rz—i—ie
The vertices for the Yukawa interactions are
= 75,508 , = —ifq
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We first consider diagrams with two external fermions. There can either be a gauge field
or a scalar running in the loop. The diagram with the gauge field is easily found to vanish
because of the anti-symmetry of the y-matrices:

ﬂ /wdw i

— 72 + je)?

The diagram with a scalar particle is zero, too:

Both of the above diagrams are traversed by only one fermion. We will call any
series of fermion traversals connected by Y fields a chain. A chain is ended by the gauge
field or it connects back to itself (in case the loop does not contain any gauge fields). As
an example, there are four % diagrams shown in Fig. 7. The first contains three chains
with only a single fermion traversion each (one link chains). The last two contain three
link chains.

Fig. 7: The 6% diagrams

Here, we prove that any diagram containing a chain with an odd number of links
is zero. First, consider a closed chain with n links. Before doing the w integral, it will
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contain a factor
07" (w + 1)7007" (w + )70 - 07" (w + )70

Each fermion bilinear is anti-symmetric in its SO(9) indices. Since there is an odd number
of factors, swapping the indices on all of them produces an overall minus sign.

=07 (w + 1)y 007" (w + f)y20 - 07" (w + )70
The factors can be reordered,
=07 (w + £y 007" (w + )y 10+ 07" (w + F) 70

to reproduce after a relabeling of the contracted indices the negative of the original ex-
pression. This implies that this term is zero. Chains ended by gauge fields contribute a
factor

Ofy" 007" (w + #)v"™20 - - - 07" 2 (w + )y 10070

which vanish for a similar reason. Therefore, any diagram containing a chain with
an odd number of links is zero. All diagrams that have an odd number of pairs of external
fermion lines must contain a chain with an odd number of links. For a diagram to give a
non-vanishing contribution, the number of external € lines must be a multiple of four. Via
supersymmetry, this corresponds to our earlier finding that bosonic diagrams with an odd
number of factors of v have to vanish by time-reversal symmetry.

After what we have said so far, the #* term could be non-vanishing. But it also can
seen to be zero as follows: First, one diagram is zero because it contains odd chains:

The cancellation of the remaining two diagrams needs two of the identities we listed above,
namely (4.7) and (4.8):

_ /°° dw 0(w + )" 007" (w + §)0

oo 2T (w2 — 72 + i)t

N WAL

oo 2m (W? — 12 +de)t’
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and, including a factor of % for the twofold symmetry of the diagram:

_1 /°° dw 0y (w + )7 00v7 (w + )70

2/ . or (w2 —r2 +ie)*

L[ e e

o 2m (w2 — 12 +4e)*

The vanishing of this term is again related, via supersymmetry, to the vanishing of a purely
bosonic term, namely v2/r®.

The 68 term should give the first non-zero contribution since it corresponds to the
v*/r7 term we calculated above. Again, there are three diagrams that vanish due to odd
chains:




To calculate the remaining diagrams, we will need the following numerical integrals:

> dw 1 e=0 429
/_Oo 21 (w2 —r2 +ie)® 4096 15
> dw w? es0 331
/_Oo 27 (w2 — 712 +i€)® 4096 13
> dw wl es0 90
/_oo 21 (w2 —r2+ie)® 4096711

The first diagram contains two chains of length two. Again, we include a symmetry factor
of 2 for over-counting the rotational symmetry of the diagram:

1 / > dw (077'00+'79)?

2 J_o 21 (w? — 12 +i€)8

429¢

= m(eﬁiwﬁ’iw)z

To simplify the two final diagrams, we employ identities (4.9), (4.10), (4.11), and (4.12).
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With these, we obtain

_ / > dw 07007 (w + #)77 007 (w + #)v 00~ 0
N oo 2T (w? —r2 +ie)8

99; i
= ~Toomr —————= 0700~ 0077001 0

n 429q
819215

and finally, including a compensation for the fourfold symmetry

(0F~'00~"10)?

1 / * dw 0y (w + )V 004 (w + )7 007" (w + )70y (w + )0
4 o (w2 —r2 4 i€)8

15i
= 0700y 007 166+

2312

©1024r13
47192

819215

— _0fv' 00~ 00Tk 00~ o
(077" 00~"70)>

Summing up all the above diagrams, we find the effective potential at order 68 /71

15 iinp g P PN TS
V(r,0) = ~ @ <297 700~7%00~* 00~'10 — ﬁe;w 00~ 700700~ 10
43
—4(97‘7’997’7‘9)2>
5

— 0D~ 0090
43008(@7 7@)
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There may be terms of higher order in #. Since 6 only has sixteen components, the only two
terms that could remain would be proportional to 012/r!7 or §16 /723, These are related to

the higher order terms ;’Ti and ;’Tss which we also suppressed above. It is remarkable that
the contributions from the diagrams conspire to give exactly the coefficient that one gets
from acting on 1/r7 with four gradients.

In order to make contact with supergravity, we take the Fourier transform in the
nine transversal directions:
wh (g Jik gk
252 q? ’

V(g,0) =

where we have inserted in the relative angular momentum J% = %97“ 6 of the DO-
particles(Kl.

4.5. Spin-Spin Interaction in Gravity and String Theory

To make contact with the gravity interpretation of the process, we follow [Hl. There, it
is found that the calculation of the polarization dependent terms of the effective action in
gravity is most easily performed using string theory to keep track of the various kinematic
indices. We will use coordinates that that are explicitly covariant under the SO(9) of the
transversal coordinates.

The process we consider is the scattering of two Ramond-Ramond particles in nine-
dimensional type II theory. The calculation will be performed in the Green-Schwarz for-
malism. Amplitudes of gravity arise from scattering closed strings. Since we try to match
four factors of J describing graviton polarizations we are interested in a closed string four-
point function. As we already mentioned above, those can be constructed by multiplying
open string amplitudes for the left and right moving modes, concretely

A = RGPPSO PP K pop (/2K K piopr (k/2)C (s, t,u),

where the (, are polarization tensors of the external particles, C(s,t,u) is a function of
the Mandelstam variables that, in our case of small relative velocities v and vanishing
momentum transfer ¢, reduces to 7/8¢? and the K’s are kinematical factors of open string
four point functions.

As we are going to scatter Ramond-Ramond fields that are made up of tensor

products of left- and right-moving spinors, the relevant open string process is the scattering
of four gauginos. In that case, the kinematic factor can be found in [GSW] (7.4.48) to be

1 1
K(’U,l, U2, Us, U4) = —ES’L_LQFMU3’I,_L1FHU4 + §t’L_I,1F“U2’L_L4FuU3.
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Here, the u, are the wave functions of the external fermions. In our case of eikonal
scattering we can ignore the term proportional to t = ¢?. For the SO(9, 1) T-matrices,

following Hl, we use
o_.({ 0 1 m_ (0 ™
F ”(-1 0) F _<7m 0

i v o _.[{1 0
v=i(nn) =i )

where SO(8) matrices from [GSW] were used. The external wave functions have to be
on-shell which is equivalent to saying they have to obey the Dirac equation

I'p,u(p) = 0.
This can be achieved by writing the sixteen component spinor u as the transpose of

two eight component spinors ()\L/ R 0) and in the rest frame, where p has only components
in the 0 and 9 direction, by further requiring

—i’yg)\L/R — :|:>\R/L.

with SO(9) matrices

L/R

We can conclude that in the rest frame
L
A = /M2 (%) AR:\/M/2<£%>.

Now we boost the incoming spinors to velocity v and the outgoing spinors to w. For
incoming particle I we find

=y ( U5,
—(V-7/2)¢;
with similar expressions for outgoing particles and right moving spinors. Defining the
center of mass frame momentum k = M (7 + @) and momentum transfer § = M (7 — @),
one finally arrives at

8—4M2 E2 5 i i ]_ i Ti
KL(uf,ué,ug,uf) -8 (§ + 1_6ki‘1j(J1JL + szL) - 1_6‘1jq’€J1JLJZIZ> .

Thus, one finds the closed string amplitude to be

2 2
Ay = —% (752 + §kiCIj(Jf] +J5') - 1quka”§'“>
q 2 2
where we have introduced J;j = f}r'yij £r/4. Obviously, the first term squared is just the
bosonic v*/r7 potential while the last term squared matches the spin-spin interaction we
have calculated above by means of the M(atrix)-Model. The other terms are various spin-
orbit interactions most of which have also been calculated from the matrix perspective
using different methods. The leading spin-orbit term was first found in [l by calculating
a loop with two external fermions using the background propagator (4.1), whereas [McA]
calculates the v2¢*/r? term using perturbative heat-kernel methods. Up to date, there is
no direct perturbative calculation of the six fermion term in the M(atrix)-Model, although
its form and coefficient have been found using supersymmetry.
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4.6. Understanding the Correspondence

In the previous section, we found a strong connection between the M(atrix)-Model and
eleven-dimensional supergravity. More specifically, we found we could calculate the leading
order tree-level (corresponding to classical supergravity) scattering amplitudes also using
the M(atrix)-Model at one loop-order.

If we look at this process from a stringy point of view, the process is described by
the following diagram:

As a tree level gravity amplitude, it can be viewed as the exchange diagram of a closed
string. As a gauge theory diagram, it can be viewed as a one loop diagram of open strings.
From the latter point of view, the diagram is more conveniently drawn as the annulus

diagram

In the gauge theory language, this can be viewed as a Feynman diagram using 't Hooft’s
ribbon notation where gauge fields are represented by ribbons with the closed lines indi-
cating the contraction of matrix indices.

This world-sheet duality already makes the correspondence less mysterious. As it
was already noted in [PKPS] in this specific process, world-sheet duality is even stronger
then in the generic case, since in the explicit calculation of the diagram one finds that
only the world-sheet zero modes representing the massless fields of supergravity and gauge
theory contribute to the amplitudes; all the higher excitations decouple. In [MSS] it was
argued that this renders the amplitude scale independent. In fact, just looking at the
topology of the string diagram is too naive because one should expect the open string
description to be appropriate for DO-particles that are very close such that the stretching
open strings are shorter than the string length

Fig. 8: The open string regime
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On the other hand, the closed string description is more appropriate when the DO0-
particles are separated by distances larger than the string length.

Fig. 9: The closed string regime

Even if world-sheet duality is not a proof of equality of open and closed string am-
plitudes in the low energy effective limit that is considered here (gauge theory and gravity
respectively) where one only considers the zero modes, it can be a very useful tool to
determine which amplitudes have a chance to be related to each other. For example, in
the diagram above, we see that two, the number of D0-particles and therefore the number
of boundaries in the closed string picture is the number of index loops in the open string
description. In particular, we immediately recognize that one-loop diagrams in M(atrix)-
Theory are relevant for two particle scattering. Indeed, one finds that if one calculates
one-loop diagrams for M(atrix)-Theory with N > 2 one finds again the same terms we
calculated above describing the mutual interactions of all pairs of particles whereas gen-
uine three particle interactions are visible only at the two loop level. The three particle
interactions will be the topic of the next chapter.

But before we move on to the investigation of higher order interactions, let us discuss
the most convincing reason for the agreement we found in this chapter: supersymmetry.
After the at first surprising connection between the matrix model and supergravity was
found, it was stressed that both theories have an extremely large amount of supersymmetry
that severely constrains possible interactions. This was pointed out especially after Becker
and Becker found in [BB] that the two particle interaction is not modified at the two loop
level although power-counting allows v* terms that are sub-leading in 1/r.

Indeed, Paban, Sethi, and Stern showed in [PS51] that the complete fermion structure
at the one-loop level can be derived from the v*/r7 term using supersymmetry alone.
Later, in [HKS] all terms in the effective action together with possible one-loop corrections
to the supercharges that are known only on-shell were derived. Nicolai and Plefka showed
recently[NP1l that the one-loop effective action of the M(atrix)-Model can be written in the
form

Lot = o5 ( 5150990 ) r.0)

= 4~ 550499, 0)
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up to total derivatives and an arbitrary function g, if one takes v and 6 to be constant
in time. Any Lagrangian of this form is invariant under the original supersymmetry vari-
ations. If one further requires the action to be regular at v = 0, the constant term in
a Taylor expansion of g around v? = 0 is absent, whereas the linear term is the action
of a super-particle and the quadratic term is the one-loop effective action of which we
calculated the bosonic and maximal spin dependent term above. This should be viewed
as a non-renormalization theorem for the two particle interaction that is crucial for the
connection with supergravity not to be destroyed by higher loop corrections that modify
the 1/r” dependence of the v* term. Anticipating a result form the next section, we note
already at this place that in [PSS2] a further non-renormalization theorem for two particle
interactions at the order v® in velocity, relevant at the two loop order, was proven.

However, it is important to note that these non-renormalization theorems are valid
completely within the M(atrix)-Model and do not use directly the supersymmetry of the
eleven-dimensional supergravity. Moreover, the direct connection between the supersym-
metries is not known and also, as we saw, the loop expansion in both theories are different:
Above we could compare a gauge theory loop diagram to a tree level diagram in gravity.
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5. Two Loops and Three Particles

In this chapter, we go one order further. This will enable us to study processes with three
particle interactions. First, we will again compare M (atrix)-Model amplitudes to classical
supergravity. But we will argue that at the two loop level, quantum corrections to super-
gravity should be visible. We will investigate whether these corrections are reproduced by
the M(atrix)-Model and find a negative answer!

5.1. Power-Counting — The Rules of the Game

Before we go into the details of higher loop matrix calculations, we will have a closer look
at the power-counting in this model in order to derive some simple rules that allow us to
anticipate what kind of terms can be expected from detailed M(atrix)-Model calculations.

To start with, let us once more look at the v*/r” term to introduce the kinds of tricks
we are going to play here. Let us pretend we calculate the diagram without the help of
the background field formalism but with external legs and in momentum representation.
We expect one-loop diagrams with four external v lines to contribute. As there are no
background fields, the only bosonic vertices are four-point interactions coming from the
[X?, X7]? term in the Lagrangian, the natural diagram to consider is the one of " fish” type.

1
o’
oX ®X
1 1
% o’
oX oX
1
o’

Fig. 10: The fish diagram contributing to v*/r”

There is one momentum w running in the loop. The two bosonic propagators in
the loop each contribute a factor of % Ordinary external bosonic lines would contribute
factors of X rather than v. As we are interested in terms in the effective action involving
v’s, one has to get a time derivative acting on the external line. This can be obtained in
the integral expression for the diagram by partial integration. The effect is that the vertex
has to be integrated in ¢t which is expressed as a multiplication by % in the momentum
representation. Therefore, there will be four extra factors of % for the four external lines.
In conclusion, the diagram will be proportional to

1 1
4
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This integral is infrared divergent. But we have not taken into account that there is a
natural scale in the problem, namely the impact parameter b that can serve as a cut-off.
It is therefore natural to evaluate the integral as

4 [T 1 vt vt
v dw—5=7=7
b w b r

where we substituted r for b by assuming the Lagrangian to be local in time. This inter-
pretation of b or r as an IR cut-off can be justified from our more carful treatment in the
previous chapter. There, the particles running in the loop had masses at the order of r.
This example shows that with this crude reasoning we can predict possible terms in the
effective action. We will proceed by transforming this diagram by inserting further vertices
and propagators to yield any possible M(atrix)-Theory diagram and read off the scaling
with » and v as above. First, we can insert further vertices with two external v lines:

\ \'

—

1
NNANNNN/ ®?
1
o’

el
el

We have split one propagator into two thereby getting another factor of w—12 and added two
new v lines each of which yield another factor of ﬁ because of the partial integration at
the vertex. In total, we have picked up a factor of

1}2

vy
leaving the number of loops untouched. Note in passing, that there can never be an odd
number of v’s in purely bosonic terms as there are only four-point vertices (with an even
number of “ports”) and internal lines connect two ports. Therefore, there also have to be
an even number of external lines connecting to the remaining ports. This agrees with the
expectation of time reversal symmetry of the model.

The second kind of surgery we can do to a diagram is to insert a loop in a propagator:

1
0%

el §

elr
el
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This also splits the original line into two, yielding a factor of % The loop itself consists of

another propagator supplying % and also a new momentum integration f dw which can

be counted as multiplying by w. Altogether, the additional loop contributes

r3
This reasoning is too crude to differentiate between the different loop momenta. For
amplitudes with more than two particles involved, there are more than just one distance
scale b. One should expect a sum of different terms but the power-counting rules we derive
here are not capable of resolving those.

The next modification of a diagram we are going to look at is the replacement of a
bosonic loop by a fermionic loop. As the Yukawa interactions are only three-point vertices
the bosonic four-point vertices have to be “resolved”:

—
1 1 1 1 1
) > o ® ®

Thereby the number of propagators that form the loop doubles. But as a fermionic prop-
agator contributes only % the overall scaling of the diagram is not affected.

Finally, we want to insert external fermions. Just like factors of v in purely bosonic
diagrams, they always come in pairs. Thus we look at the insertion of a pair of fermions
into a bosonic propagator as there are no vertices with more than two fermion lines:

0 0
NNNNNN /\/\J—[/\/\
1
5 sk

(O] —

We have one new bosonic and one new fermionic propagator. In total, we get a factor
92
T_S.
These operations allow us to obtain every diagram that is consistent with the Feynman

rules of the M(atrix)-Model up to “topological” transformations that do not change the
scaling. We can conclude that the effective action has to be of the form

1}2I92F

r= >, > DI s T T

L=#loops I=#vw2insertions F=#062insertions
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Consequently, if we ignore fermionic external lines for a moment, the effective action or-
ganizes itself as a table:

I =2
v? v° v®
+611r_7 +012r11 +Cl3r15+' e (51)
4 6 8
v v v
+C21 510 +C22 17 HC23 s+ 0 # loops

'U4 1)6 ’US
+C31,m3+C32 7 HC33 .m0 0

Comparing with the expansion of classical supergravity (4.6) in terms of v2 /7", we see that
those terms match the terms on the diagonal. Terms to left of the diagonal have to vanish.
Otherwise, for large separations — the regime of gravity — those would dominate the
behavior of gravity at a given order of v. Indeed, the result co; = 0 of [BB] was celebrated
as strong support for the M(atrix)-Model conjecture. In [PSS1] it was shown that in fact
all coefficients ¢,; for n > 1 have to vanish by supersymmetry. A bit later, [BBPT] found

o 225
Co2 = 64

which agrees with the expectation (4.6) from supergravity. Again, in [PSS2]] Paban, Sethi,
and Stern were able to deduce from supersymmetry that c,o vanishes for n > 2. Up to
today, there are no results for terms below the diagonal c,,, for m > 3 corresponding
to more than six powers of relative velocity. Further non-renormalization theorems are
not expected, there are even indications of infrared problems[PEG] at higher loop orders.
Therefore it would be very interesting to see whether M(atrix)-Theory agrees with the

gravity prediction of
16875

1024

Unfortunately, to derive this number from M(atrix)-Theory one would have to calculate
about one hundred diagrams even in the background field formalism. The calculation
of these three-loop amplitudes involves complicated Schwinger parameter integrals that
probably cannot be calculated analytically but only numerically. This makes it plausible
that the task of determining c33 is only possible with massive computer use.

C33 =

5.2. Three-Graviton Scattering at Leading Order

The investigation of scattering processes of more than two particles allows for much more
sophisticated tests of the M(atrix)-Theory conjecture than the two-particle case because
the kinematics is much richer: There are not only two parameters, the impact parameter b
and the relative velocity v, but there are already nine of them for three-particle processes:
From two vectors of relative velocities and two vector impact parameters one can form ten
invariants under the SO(9) rotational group, namely there are the four magnitudes plus
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six relative scalar products. One of them can be removed with the help of time translation
invariance or the energy conservation constraint (this is the generalization of the fact that

we could assume 7 and b to be orthogonal in the two-particle case).

This allows for more terms with different tensor structures in the effective action
at a given order of perturbation theory; each of them would have to come out with the
correct, coeflicients.

As the string theory tree level diagram for three DO-particles can be transformed
into a two loop gauge theory ribbon diagram, we expect the M(atrix)-Model to contain
the three particle interactions at its two-loop level.

Fig. 11: Three-particle scattering as a string diagram

Fig. 12: The M(atrix)-Model three-particle diagram

When, in fall 1998, Dine and Rajaraman[PR] looked into this problem, the disagree-
ment they found came as a shock to the community. Their argument roughly went along
the following lines: They studied a three-graviton interaction in a limit where the separa-
tion r between two particles (say particle one and two) is much smaller than the distance R
to the third. They argued that in supergravity, the leading order process is the interchange
of one graviton between particle one and two and one between two and three.

From applying Newton’s force law in light cone-coordinates twice, one expects this
process to be proportional to

(111 - Uz)z(vz - U3)2(U3 - Ul)z_

R7y7

The M(atrix)-Theory side of the argument can be understood with the power-
counting rules we derived above: As there are two distance scales there will be two loops
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Fig. 13: The supergravity process studied in [DR]

each being regulated by cutting off momenta like [ dw and [ dQ. Four external lines
(two incoming and two outgoing) should be attached to the large R loop. They have to
produce relative velocities between largely separated particles. Thus, the generic diagram

looks like
V V

X R9,5

\'% \'%

Obviously, this is the wrong dependence on the two distance scales. The rest of the
paper went a long way to carefully calculate the gravity amplitude both from supergravity
Feynman rules and from string theory to make sure the coefficient does not vanish.

As it became clear a few months later, the argument given above contains a flaw.
The error is that beyond the one-loop level the background does not only modify the
propagators but also the vertices as some of the fields at a vertex might be external.
Especially, using the background field formalism, the M(atrix)-Model also contains effective
bosonic three point vertices that allow for diagrams of the “setting sun” type:

This diagram is symmetric with respect to w and 2 and it is therefore not obvious that it
cannot, contain terms of the needed form

1)6

T7R7'

In an impressive calculation, Okawa and Yoneya showed that, to leading order, the M(a-
trix)-Model and supergravity indeed give exactly the same amplitude for three graviton
processes at leading order.
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\%
Fig. 14: The setting sun diagram

In their two papers [0Y1][0Y2] the scattering amplitude on the supergravity side
was derived much in the same source-probe approach that we used in the previous chapter
where to work out the correction to the action of a particle in some ambient space-time that
is generated by the source particle. This approach becomes more and more complicated
for higher order calculations of more than two particle processes since there is no exact
solution for more than one source particle. One has to resort to a perturbative solution
in terms of Newton’s constant x. The book-keeping of the orders of x that are required
at the different stages of the calculation and the possibility of recoil effects makes such an
approach not straightforward and difficult to extend to even more complicated situations
like the ones we are going to consider later in this chapter.

Instead, as in HPSW] we treat perturbative supergravity as a field theory and apply
the formalism of Feynman diagram perturbation theory. This approach has the advantage
to be straightforward, very clear-cut, and easily extendable, in particular, it is well suited
to be put on a computer for an computer algebra system like FORM to simplify.

Our normalization of the bosonic part of the Cremmer-Julia-supergravity is

1 1
L= —m\/—_gR - g\/__g(FMNPQ)2
\/?) 6M1-

12343

.M
11FM1M2M3M4FM5M6M7M8 C’]\/1'9]\/[101\/[11

where Fyynpg = 40 Cnpq), 9 = det gun, and capital latin indices from the middle of
the alphabet run from 0 to 10. & is Newton’s constant in eleven dimensions. As usual
in perturbative (quantum) gravity, we consider small fluctuations hpsn around the flat
background metric nasn, i.e. gun = nun + khyun. The harmonic gauge OnhN ar —
10mhN ny = 0 (indices are raised and lowered with the flat metric) being covariant is
convenient for our purposes. The propagator of the metric fluctuations turns out to be

i/2 2
m(nMPnNQ +NmMQNINP — _77MN77PQ)-

(hagis (k) epg(—F)) = - -
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We want to study three-graviton scattering at tree level. As there are no terms in the
supergravity action that are quadratic in the gravitons and linear in one of the other fields
(graviphoton or gravitini, cf. Fig. 13), the only contribution comes from the pure gravity
sector, i.e., the Einstein-Hilbert term.

In particular, we shall need the two and three graviton vertices arising from its
expansion. These are quite lengthy expressions that have been calculated in [Sa].

We consider now the elastic scattering process 1 +2 + 3 — 1" + 2’ + 3’ of three
gravitons into three gravitons and concentrate only on helicity preserving terms, i.e. terms
in the amplitude proportional to

(h1 - hY)(ha - hy)(hs - hy), (5.2)

h; being the external transversal graviton polarization tensors and (h; - h;) = hI"™h.™".
The eleven-dimensional momenta are conveniently parameterized in a light-cone frame
M = (+,—,m) as

1 Qi) 2 q; 1 q; )2 qi
n= () g) i (e ) e g) oy

where p? = pi?> = 0 and i = 1,2, 3, using a boldface vector notation for the transver-
sal SO(9) indices m. Note, that we are considering only processes with zero compactified
g— momentum transfer between incoming particles 7 and outgoing ones i’ as compactified
momentum transfer is a non-perturbative process in our M(atrix)-Theory background.
This will be discussed in more detail in the next chapter where we will investigate momen-
tum transferring solutions. For the time being, let us restrict our attention only to those
kinematical setups that do not change the p_ components of the individual particles.

Conservation of transversal momentum and energy implies
i +q:+a3=0 vi:qi+ve-da+vsg-qz=0 (5.4)

Moreover, we will study the amplitude in an eikonal limit. To be precise this means we
keep only terms with at least a double t-pole (1/(g3¢3) and permutations). Terms in which
this minimal pole structure is canceled represent contact interactions and cannot reliably
computed in the eikonal M(atrix)-Theory framework we present here. Up to permutations,
there are three types of diagrams: The V-type diagram with a four-point vertex as in
Fig. 13, the Y-type or cartwheel diagram

and the rescattering diagram:

The tedious but straightforward evaluation of these graphs was performed with the
help of the computer algebra system FORMIV]. There are three diagrams of V-type yielding
G +a3+d3 5 o o

Ay = 2W012U23031 +0(v°q?),
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PP
P R
h—= > P
Fig. 15: Y-type diagram
R > P,
R > o)
R = R

Fig. 16: Rescattering diagram

where we suppress terms higher order in v; and lower order in q;. Similarly, there is only
one Y-type graph that can be written as follows:

1 _
Ay = — 555 (67 + @3 + 63)viyvisv3 — T?) + O(v°q~?),
414543
where we defined
T = 33 Qe - Via + V3, Q3 - Va3 + V35 Q1 - Vay. (5.5)

Note that, using (5.4), T is odd under permutations of the particle labels 1,2, and 3. In
particular, it is invariant under cyclic permutations. Finally, we have contributions of the
six re-scattering graphs:

1

q?q3q3

2, 2, 2.2 2 2
(a1 + @3 + q3)vi9v33v3;

2,2 2 2,2 2 \ 2
ViU 1 VioU
_ <Q1 12 31>T+— <‘J1 12 31) + cyclic
q2 - Vi2 8\ gz Vi
where “cyclic” indicates the two cyclic permutations over the labels 1, 2, and 3. Sum-

ming up these three diagrams, one obtains the final result for the eikonal three-graviton
scattering amplitude (throughout this chapter, we discard overall coefficients of complete

amplitudes):
2
T2 4 <Q%U%2U32,1> T+ 1 <Q%U%2U§1> + cyclic
q2:vio 8 g2 Vi2

Ay =

+O0(v°q™?),

AEH = 555 +0(°¢7%) (5.6

419543
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In the above discussion, we have deliberately omitted the N-dependence because we have
complete control on the M(atrix)-Theory side for N; = 1 only. Anyway they can easily
be reintroduced with the net result that (5.6) takes an overall factor Ny N;N3, where N;
is the p_ momentum of the graviton ¢ and where we normalize each external leg with a

factor of 1/y/N;.

It should be noted, for example by inspection of the supergravity Feynman diagrams
that we have really tested non-linear properties of supergravity and not only the linearized
free theory of the spin 2 particle. It is well known that that General Relativity is the
minimal Lorentz invariant interacting theory with at most two derivatives in the action
that contains an interacting spin two particle, i.e. reduces to linearized gravity upon
linearization. Furthermore, the supergravity of [CJ] is the only possible supersymmetric
extension of General Relativity in eleven dimensions.

Thus, if one were able to prove quantum Lorentz invariance of the M(atrix)-Model in
the large IV limit, the verification of the non-linear structures that are probed by the three
particle processes we consider in this chapter would determine that the M(atrix)-Model
really yields supergravity and not a different though similar theory in the low energy limit.

5.3. Three Gravitons in M(atrix)-Theory

In this section, we will present the M(atrix)-Theory side of the calculation above. Our
presentation extends the one in [0Y1], To simplify calculations, it was assumed there that
all relative impact parameters b;; = b; — b; are perpendicular to the relative velocities
v;;. As we explained above, this is imposes no restriction in the case of two particles
but substantially restricts the number of SO(9) tensor invariants for the three particle
case. To have access to many more independent terms and therefore perform a much more
fine grained analysis, we will here close this gap and treat the most general three particle
kinematics.

For this slightly more general setup a mild generalization for the heat-kernel
(=07 +rij()2)A 1, 0) = —0,A(t, 1, 0)

is needed. Here we wrote r;;(t) = b;; + tv;;. The appropriate heat-kernel is

Yij 2 42 9
A= \/27r sinhZ(J2av,-j) exp [ — v;;t2 coth(ow;;) — ory;(ty)

B (M)z L (tanh(ov;;) — ovij)

Uij Uij

where we have again used t1 = (¢t =¢')/2. Note that ¢4 appears only thru r;;(t;) as we
would have expected for a local effective Lagrangian.
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Fig. 17: Dumbbell ribbon diagram

Fig. 18: Setting sun ribbon diagram
There are three different two loop topologies: The dumbbell
the setting sun

and the figure eight.

Fig. 19: Figure eight ribbon diagram

The resulting effective actions are denoted by 'y, I'y and T'y respectively (actually,
any terms from the setting sun diagram that can be written as a total d/do; derivative
of a polynomial times three propagators are included in I'yy rather than T'y, see [0Y1] for
details). Because we do not perform a Legendre transformation, we have to include all
possible diagrams. As disconnected diagrams contribute only to disconnected diagrams
on the supergravity side, they can be left out of this analysis. But connected one-particle
reducible graphs have to be included and correspond to supergravity rescattering processes

that were described in [0Y2],

The Okawa-Yoneya result may be stated (somewhat implicitly) as the effective ac-

tion
FZ loop — 1—‘o—o + FV + 1—‘Y-

The contribution of the dumbbell graphs is

1
Lo = =5 3 [ dtadta@2 Y (1)) A0 — 12)(08, Y77 (12),

with the one loop expectation value

@Y () = 323 / do [rg';(t) sinh (“2’”
~ Jo
J

)

pMm . .
+ L cosh (UU”) sinh® (U;”> Ot

V54 2

(5.7)

(5.8)

A(o,0,1;5(t)) (5.9)
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and Aty — to) = [;° doA(0,t,0) is the propagator for a free massless scalar field in one
dimension. Furthermore

ry =-128%" / oodt /0 doydoy sinh® (“1;’“) sinh? (%)

ijk ©
X [M cosh (%> cosh (sz]k> — sinh (%> sinh (mﬂ
VijVjk 2 2 2 2
X A(O’l,O,I‘ij(t))A(O'z,O,I‘jk(t)) (510)

along with

Ty =—)_ / dtdt_ / doydoados
0

X PY(O-lv0-270-37rij(t)7rjk(t)7rki(t)vvijavjk7vki7t—)
X A(cr1,t_,rij(t+))A(02,t_,rjk(t+))A(03,t_,rki(tJr)). (511)

The Okawa-Yoneya computation of the function Py is a very impressive technical
achievement and the result is a quadratic polynomial in the variables r;;(¢4) and t_ (the
result itself is given by equation (3.47) of [0Y1] along with three pages of the appendices of
that work). Its correctness (at least to leading order in v;;) is well tested by comparison
with supergravity.

A remark on the IV dependence of the two-loop effective action I's_joep is in order.
The planar two-loop graphs trace over three independent U(N) indices i, j, k as they all
have three boundary components in the ’t Hooft’s ribbon notation we have been using
above. Thus they give rise to three body interactions as we had expected from the world
sheet duality argument given above. For backgrounds consisting of three blocks propor-
tional to unit matrices of size N; (i = 1,2,3 with Y, N; = N) the sums >_,., reduce to

N1N5N3 ijkzl and I'a_ip0p scales homogeneously like N 3 to all orders in v;5, precisely
like the corresponding supergravity term (5.6).

But as we have seen in the first section of the last chapter, having blocks of multi-
ples of unit N; x N; matrices can be interpreted as N; coinciding particles with possible
massless strings stretching in between. The restriction to diagonal matrices therefore not
only excludes degrees of freedom with large masses but also massless ones. We would be
throwing away light degrees of freedom by hand, and proceeding like this is not physical.
Rather, one should insert the ground state wave function for the U(N;) M(atrix)-Model,
which is unfortunately not available. Therefore, to get around these difficulties we will
take our result seriously only for N; = 1.

Up to now, we have simply restated the results of [0Y1. In what follows, we will
compare these results with the tree level supergravity S-matrix and in doing so show how
to relax the restriction {b - v} = 0. Thereafter, the same techniques will be employed to
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compare the M(atrix)-Theory prediction for the next to leading order in v;; with one-loop
supergravity.

Let us begin with the most difficult contribution I'y- as in (5.11). One might suspect,
that since the integrand depends on three proper time parameters o1, o2, and o3, the result
ought to correspond to the triple pole structure of the Y-type diagrams in supergravity,
and indeed this naive suspicion will be borne out in the following. As we have done the
supergravity calculation in momentum space, we will perform a Fourier transform to the
M(atrix)-Model effective action. The LSZ-formula tells us that the leading-order spin-
independent term in the three-particle S-matrix is given by

§373 = / d°b1dbad®by ¢! D1z bataaba) Py (5.12)
Note that we have dropped contributions corresponding to disconnected processes, so

I's_100p 10 longer appears in the exponent. The transverse kinematics described by (5.12)
involve initial and final momenta

G
Pi=V; 5

q.
pi=vit

in accord with our parameterization (5.3) of the kinematics in the supergravity process.
Note that at this stage v; is not a velocity anymore but rather the average momentum of
the ith particle, v; = (p; + p})/2. Since I's_jo0p depends on relative quantities only, the
integral over the average impact parameter (by + b + bs)/3 yields the usual momentum
conserving 5(9)(q1 + g2 + q3) which we drop from now on. Concentrating on the I'y
contribution we then have

Sy 7% =— /dgbl?,dgbzs exp(iqy - b1z + iqa - ba3) /dt+dt— /0 d’o

X Py (03,145 (t4.), vij 1)
X A(O’l, t_, I‘12(t+))A(O’2, t_, I‘23(t+))A(0'3, t_, I‘31(t+)). (513)

The leading contribution to three-body scattering should depend on the sixth power of
the velocities vis, Va3, and v3; as we expect agreement with the supergravity amplitude.
However, if one examines the polynomial Py, its leading behavior is quadratic in velocities
and the heat-kernels A are velocity independent to leading order. In order to see explicitly
how the cancellations of terms quadratic and quartic in velocities occur, two observations
are needed. Firstly, examining the ¢_ dependence of the exponent in (5.13) arising from
the three heat-kernels

—t% (v2, coth(o1v,2) + v33 coth(oav,3) + v3, coth(osv,y)) =: —t2 P,

one sees that under the Gaussian ¢_ integral, all terms odd in ¢_ can be discarded by
symmetric integration. As

ie_Ptz — —2pt_e P
ot _
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we find after a partial integration

/oo dt_tz_ne_PtE _ /°° dt_itz_nqie_m{ _ /OO dt_btz_n_ze—mi
2P ot_ oo 2P

—00 —00

and by induction

o0 2 oo -1 2
/ di_ t2re— Pt :/ g Gn— DU _pe
o (2P)"

—00

Next, observe that acting on the three heat-kernels with d/dt, brings down a factor

. t
Q g (M tanh(o‘lvlz)
V12

. + : t
+ L%(Jr) tanh(oav23) + w tanh(03v31)) .
Va3 V31

The second observation is that every occurrence of the factor (o1r12-vi2) in Py is actually
part of a factor ) and can be completed as such. Therefore, writing @ as d/dt, acting
on the A’s and subsequently integrating by parts removes all dependence on rjs, ras
and rz;. Coupled with the first observation, one in fact finds that miraculously all terms
proportional to squares and the fourth order of velocity cancel. We stress that no restriction
involving inner products of velocities and impact parameters needs to be imposed for this
cancellation to take place.

It is now advantageous to interchange the dt, and d°b integrals and thereafter shift
the integration variable byz +— rq3(f1) along with bag +— raz(f1) so that the ¢, integral
may be performed thus yielding an energy conserving delta function

513/_)3 = —(2m)0(q1 - Vi3 + d2 - Va3)

00 00
X /d9r13d9r23 exp(iql ‘I3 + iQQ . I'23) / dt_ / d30'
—00 0

X Py (0i,155,Vij)A(o1,t=,r12) A(02,t_, ra3)A(os, t_,Tr31),

where the tilde over Py indicates that we have performed the manipulations indicated in
the two observations above.

So far, we have managed to rewrite the I'y contribution to the M(atrix)-Theory S-
matrix as (suppressing from now on the energy preserving delta function (27)d(qy - vi3 +

q2 * Va3))

o0
. . 1
S373 = — / d°r13d°ra3 exp(iqy - r13 + iq2 '1‘23)/0 d30\/47r—P

X (Py + f’{?rm + r’™ N{;nn’f'n)A(O'l, 0, I‘12)A(0’2, 0, I‘23)A(0’3, 0, 1‘31). (514)
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Note that we have performed the integral over ¢ as explained above. Furthermore, Py, ]5{}2
and Py*" are functions of the o; and v;; only (ij = (12,23, 31)) and their leading behavior
goes with the sixth power of velocity. Also, their coupling to r;; has been schematized.

We proceed by interchanging the Fourier integrals over ri3 and rs3 with those over
proper time parameters o;. If, for the moment, we content ourselves with the leading order
in velocities, the r dependence of the exponent of (5.14) reads

O'1+0'3 —01 )
)

exp(idi - T3 +id2 - ro3 — 74 OaBTE), OZ( —01 o1+ 09

where the index A = (13,23). The matrix O has determinant p = o109+ 0203+ 0301, and
the Gaussian integral may be performed after we have rewritten the exponent in diagonal
form,

1qq + 2011'23)2
2(0’1 + 0'3)

exp [— (01 + 03) <r13 -

. 2 —
i((o1+0s)az +o1a1)\~  9404pas
2p 4
yielding a factor p° after the appropriate shifts in the integration variables. Remarkably,
we find that all terms not proportional to inner products of momentum transfers q; and
velocities v;; cancel among themselves, and to leading order in velocities we are left with

78 [ 1 1
S§373 = Z/0 d%E exp <—4—p(Q%02 +q305 + Q§01)> T?

where T coincides with the quantity defined in (5.5). Finally, doing the d3c integral yields

our result )

Sy = 3279

. (5.15)
43433
Although we postpone the orchestration of the two-loop leading-velocity M(atrix)-Theory
result to the end of this section, we remark already that (5.15) has precisely the correct
form to match with tree-level supergravity graphs of the Y-type in the triple pole sector.

Compared to the I'y contribution, the computation of the S-matrix elements arising
from the I'y terms are very straight forward. By inspection, the leading contribution from
Ty as given in (5.10) is seen to be sixth order in velocity. Hence, interchanging dt, and d°b
integrals as above and performing the Fourier transforms and proper time ¢; integrations
afterwards, we find

2,2
VisV3{ V12 - V
S§% = —64r® L2312 50 4 cyelic, (5.16)
4293
where delta functions over energy and momentum have been suppressed. We emphasize
that this result mixes with terms arising from dumbbell graphs I',_, which we will consider
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next. Thus a comparison to supergravity is not possible until we consider the sum of all
M(atrix)-Theory Feynman diagrams, which has been the source of some confusion in the
literature [PR][DEG],

The final M(atrix)-Theory contribution to the leading order 3 — 3 S-matrix is
given by the dumbbell diagrams. In [0Y2]) it has been shown that these graphs can be
given the interpretation of recoil corrections to a source probe approximation as we have
presented it in section 3.3. In Feynman diagram language there is, of course, no artificial
distinction between recoil and non-recoil terms (physically since one finds that 'y and
[, contributions mix, this is certainly the case).

In order to extract the S-matrix contribution from I',, as given in (5.8) and (5.9)
we begin by rewriting the massless propagator for a scalar field in one dimension as

dw e—iw(tl —tg)

Aty —ty) = | — ———
(t = t2) 2 w? + e

The explicit time derivatives appearing in the truncated tadpoles in (5.9) may be con-

verted into w’s upon integration by parts. Then, in the same fashion as explained above,

interchanging d°b and time integrals and shifting b +— r(t), then performing the resulting

Fourier transforms and proper time integrals, we find

S(._)",_—O)?, = ’/’I'7 Z /dtldtg / dw exp (—iq]' " Vij t1 — iw(t1 — tz) — qu * Vi tg)
i#j#k
1 Uz'zjvl%i

w? + i€ qf-q,%

(qjvizj —dwv;j) - (Qrvi, — dwvy;).

Note that we have kept only the leading order velocity dependence and discarded those
terms in the sum over U(N) indices 4, j, and k for which the inner matrix index loop
running around each end of the dumbbell takes the same value since one may convince
oneself that these terms can only lead to disconnected processes. Now, the integral over
t_ = (t2 —t1)/2 yields 0(2w + q; - Vjr — dg - Vii) and the t4 = (t1 +t2)/2 integral yields
the usual energy conserving delta function which we suppress as before. The integral over
w is then trivial and gives the final result

2 ,.2 2 ,.2 4 4 2
VioUq1V -V ViU V1oV
Sy3% = 4an® (16 e +cyclic>. (5.17)
7543 7539392 - vi2  ¢5395(Q2 - vi2)

Observe in particular that here the first term and its permutations exactly cancel the
contribution from S33 in (5.16). Clearly then, one sees that from a physical point of view
the split into recoil and non-recoil terms is an artefact of one’s approximation scheme. In
a Feynman graph approach, where one simply computes all terms contributing to a given
order in velocity, there is no need to make such a distinction as long as one also computes
all Feynman diagrams on the M(atrix)-Model side.
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In summary, the sum S$73 + S373 + S373 of all terms from equations (5.15),
(5.16), and (5.17) reproduces the tree level supergravity result (5.6). No restriction upon
impact parameters or velocities has been imposed in this comparison, and the present result
represents the completion of the leading order spin-independent three-graviton scattering

problem whose tortuous history may be followed in the sequence of articles [DR], [FFI] [TvR]
and [0Y1],

5.4. Quantum Corrections to Gravity

In all calculations we have described so far, we have compared quantum loop calculations
on the M(atrix)-Model or gauge theory side with tree level calculations on the supergravity
side. As h is the loop counting parameter, tree level amplitudes come with hY and are
therefore classical. This means that, up to now, we have dealt with classical supergravity.
But the ultimate goal is the quantization of gravity and therefore it is a pressing need
to obtain results beyond tree level. It is well known that eleven-dimensional gravity is
non-renormalizable and, even for supergravity, divergencies leading to new terms in the
Lagrangian are expected already at one loop level (this is different from supergravity in
four dimensions where the first possible counter-term is a three loop term[GGRS]).

Since supergravity is supposed to arise as an effective theory only in the low energy
limit the non-renormalizability is not a true problem as it is expected that in the end
M-Theory will take care of the high energy degrees of freedom that seem to cause the
divergencies. This is the same situation as in ten dimensions where string theory can be
viewed as a regulator for supergravity. For the time being, it is most convenient to think
of the divergencies as being regulated by a cut-off Az in d dimensions. It is natural to take

A11 X fz()ll) X \/Jgs%

where have used the M-Theory-string theory dictionary (2.5) of chapter 2. Following [RT],
we can assume a L-loop term in the gravity effective action to be of the form

S(L) 2(L 1) ZA 10gA11 /dlll' /_ng

where we have used R™ to indicate all scalars built out of the curvature and its covariant
derivatives of mass dimension 2m. On dimensional grounds, one finds

n+2m=9(L—1)+11.

It has been shown in [FT] that m > 3 at the one loop order. This can also be seen as follows:
M-Theory is to be the strong coupling version of type IIA string theory. Therefore we can
expect the terms to scale like g? for large coupling. If we express A;; in string theory units
as above, we see that p = n/3. In order for p to be an integer, n has to be a multiple of
three. Thus we find

m=1 (mod3),
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i.e. we have terms R, R*, R”,.... The R* term comes with n = 3 and thus can obviously
arise only at one-loop level in string theory. If it came from higher genus diagrams, the
higher power of gs would suppress it at large gs which corresponds to uncompactified M-
Theory. Our first approach to this term will therefore be a one-loop calculation in ITA
string theorylGSW],

This calculation is most easily performed in the Green-Schwarz light-cone formalism
where the superstring action is given by

1 . ) ;o
Sie. = =5 / P20 (T 9. X1 92 X1 — L §°p29,5%)
T

where S* is a two component world sheet Majorana spinor and p® are two-dimensional
Dirac matrices. The modes of the fermions obey

{Sa 782} = 5ab5m+n,

m

which implies that the zero modes form a Clifford algebra and can be represented (using

triality) by
a 0 ’y'?('z
% (7“ 0 )

ai
with the SO(8) Dirac matrices we have used before, now acting as v* : 8. — 8,. We
represent elements from 8. by |a) and elements of 8y by [i).

From the S¢ we can form

S
Ry = 172%5358

that act as angular momentum generators as
Ry k) = 6% |j) — 6°15)

and
1

Ry |6) = 573D
We will choose our coordinate system in such a way that there is no momentum in the
light-cone direction for all four particles. The graviton vertex operator is then given by a
product of left- and right-moving bosonic vertex operators which are known from type I
string theory:

U
Vi(Ck) = (X" = 35775kt

The integral that we have to perform to in order to calculate the one-loop amplitude
involves a super trace over the fermionic zero mode space 8 @ 8.:

str(A) = (i|Ali) — (a|Ala) (5.18)
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After some algebra, one finds that traces of fewer than four powers of Ry vanish and that
the first non-vanishing term is

tiakimnpa — tr(RY RE R REY).
After some more algebra, this is found to be given by the following lengthy expression:

1
5€

. % ((52](;5_]! . 5il5jk)(5mp5nq . 5mq5np)

tijklmnpq _ 17klmnpq

+ (5km5ln . 5kn5lm)(5pi(5qj . 5qj5qi)

+ (5im5jn . 5in6jm)(5kp5lq . 6kq6lp)>
1 ) . . . . .
+ 5 <5zk5lm5np5qz + 5]m5nk5lp5qz + 5]m5np5qk5lz
+ 45 terms obtained by antisymmetrizing on each pair of indices).

These four powers of Ry have to be supplied by vertex operators. Since a bosonic vertex
operator supplies at most one Ry we need at least four external states. As this argument
applies in both the left and the right moving sector we will have at least four external
gravitons (a graviton is built from a left moving boson times a right moving boson). There
are no one-loop contributions with less than four gravitons. This is consistent with our
argument above that we do not expect any R? or R® terms.

ger q.w

ger q.w
Fig. 20: The loop diagram that yields R*

The zero mode part of the S fields in (5.18) in the factor in front of the exponential
is needed to give a non-vanishing contribution in the supertrace as we just explained.
Therefore, for four gravitons, the prefactors are used up completely, and up to kinetic
factor

K — til"'is tjl...js C(l)

?1]1

1 1 4 4 4
kD KD ¢ B Y (5.19)

irJ7
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(we have indicated the polarization of particle a by ¢(*) and its momentum by k(*)) we
are left with a simple

<l,e—ik(1>-X_ L _aox 1 _gox 1 .ok -X >

A PR PR PN

The contribution to the propagators from the non-zero modes of the S’s is

T (H 11 w”s“nsfi) = [I o = 7w

a=1n=1

because each fermion level can either be empty or occupied. This exactly cancels the

bosonic contribution .
Tr (H 11 w"“in“%> = fw)™.

i=1n=1

Like in the bosonic string calculation the integral over the world sheet moduli is unity
to leading order in o/[GSBIIST] and the total amplitude is given by the kinematical factor
K up to a number. K contains two factors of momentum for each graviton. In position
representation, the momenta act as derivatives on the graviton fields and turn them into
Riemann tensors. Therefore the covariantization of the amplitude is given by

A= t“""stjl...stgllfj x R‘Z’Zf: (5.20)
Although we have performed a genuine string theory calculation we can think of it as a
supergravity calculation in which string theory was merely used as a sophisticated regu-
larization scheme. This can be seen if we restore the appropriate factors of @’ or the string
length I,: The R* comes with a relative g2a’3 (a quantity that is not available in pure
gravity) with respect to the classical Einstein-Hilbert action. The original amplitude in
supergravity diverges but string theory provides a finite coefficient for the counter term.

So far, we have focused on the ten-dimensional case because there, we have string
theory at hand as a tool for computing supergravity amplitudes. Next, we would like
to argue that this R* counter term is also present in eleven dimensions. There, one can
do a similar calculation as we have done before [GGV]: These authors consider a loop of a
superparticle in a supergravity background. The action of the Green-Schwarz superparticle
is

1 . . .
Sparticle = 5 /dT Gy,u(Xu - ZGFHG)(XV — Z@FV@)
Just as in the string calculation one can insert eleven-dimensional vertex operators in

the world line to obtain scattering amplitudes. The vertex operator for a graviton of
polarization ¢ that is inserted at proper time 7 has the form

. .. 1 . . 1 .
_ ik 2 2 . k kl ik-X
V¢, T)=C"(X" — ppes Oy 0k;) (X ypes Oy  0k;)e"™ .
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The four graviton amplitude is given by (compare the string discussion above)

4
_ 1 n [T dr T ) |
A = mﬂ/d pA ? (El dT V e

By the same argument as above, the analysis of the fermionic trace leads to the kinematical
factor K from (5.19) that finally provides us with the expected tensor structure of the R*
term. In the leading order that we are interested in, we can replace the H;‘le i dr (") by
74 and perform the momentum integration. The proper-time integral is then

d

* dr _ _

/ 0T 4 _—11/2 _ _-3/2
0

T

oo

0

As 7 has mass dimension —2 this is just the cubic divergence that we were looking for.

The amplitude is diverging in supergravity and we do not have string theory at our
disposal to regulate it. But we would expect M-Theory to play this réle in eleven dimen-
sions. A non-renormalizable interaction is always a sign for a lack of proper understanding
of the high energy degrees of freedom in a quantum theory. Here, the conjecture is that
M-Theory could be used as a definition of this high energy behavior. If the M(atrix)-Mo-
del-conjecture is true, that M(atrix)-Model should be able to provide this regularization.

In the rest of this chapter, we will test this assertion. We will approach this cal-
culation by treating the R* term as an additional interaction in the supergravity action
with an unspecified coefficient, work out its contribution to scattering amplitudes and try
to reproduce the result in a M(atrix)-Theory calculation. Naively, one would a consider a
process with two ingoing and two outgoing particles, as the R* term is quartic in gravi-
tons. But in this kinematical setup, the interaction induced by the new term is a contact
interaction.

4

R

Fig. 21: R* as a contact interaction

Unfortunately, the M(atrix)-Model scattering technology as we have described it
so far is not able to handle such kinematics with finite momentum transfer. Remember
that in order to calculate scattering amplitudes in M(atrix)-Theory we have always used
the diagonal classical background that describes free particles at the classical level. The
vectors b, and v, that we used to set up the kinematics are defined with respect to this
classical solution. As it is, this classical solution allows only to consider perturbations of
the free motion of particles. In the language of scattering theory this means that only
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t-channel amplitudes can be obtained from this classical solution. M(atrix)-Theory in this
background provides us only with the leading ¢-pole behavior where t is the square of
the momentum transfer. This kinematical restriction has also been described as eikonal
scattering.

Thus, we have two possibilities: Either we find a different classical solution of the
M (atrix)-Model equations of motion or we consider a process in supergravity that is also
eikonal but contains the new R* vertex. We will investigate the first possibility in a later
chapter and follow the second here as it was done in[HPSW], The process we will consider
is again a three-particle one, with a diagram that is of V-type in the classification we have
used above. However, it differs from the diagram we considered above in that we now take
the new R* vertex as the four-point vertex in the middle:

Fig. 22: The eikonal supergravity diagram containing the R* vertex

Any other possible contribution, involving for instance the Y-type or re-scattering-
type graphs, will either be sub-dominant in a small velocity and momentum transfer ex-
pansion or outside the eikonal kinematical regime of particles that only exchange virtual
quanta in the t-channel. We then need to compute only one tree level graph with the
insertion of the R* term, up to permutations of the external legs. This is most easily
done by noticing that the linearized tensorial structure appearing in (5.20) is precisely the
same as that obtained by computing four-graviton tree-level scattering in a theory of pure
gravity in any space-time dimension(Sa].

One might think that inserting the new vertex in the diagram might lead to incorrect
results since the R* vertex was calculated under the assumption of all four legs being on-
shell whereas in the diagram we consider, two of the legs represent virtual particles that
might be off-shell. Here, the key observation is that in the eikonal and spin-less limit
(where one discards terms canceling the double pole as well as contractions of momenta
with polarizations) the two a priori off-shell legs entering the R* vertex are effectively put
on-shell.

By using the results of [Sal the computation of the graph in Fig. 22 is then greatly
simplified. We find that the result for the part of the amplitude with the external polariza-
tions contracted as in (5.2) and in the kinematical parameterization (5.3), can be written
as follows (neglecting an overall coefficient):

1 /1 2 .
At = | 5= (—v%zv§3q§ + T(a: 'V12)> + cyclic | (5.21)
41493 4



5. Two Loops and Three Particles ....... ... ..o i 77

where Y was defined in (5.5).

Here, an additional remark is needed. As we have explained earlier, the M(atrix)-
Model is supposed to arise upon the compactification of eleven-dimensional supergravity
on a light-like circle of radius R1;. Therefore, the above calculation should have done also
after performing this compactification. This would have resulted in terms with different
dependences on Rq;. Our philosophy is to find that part of the amplitude that can be
reproduced by the M(atrix)-Theory calculation we are heading on next. Therefore, we
have only picked up those terms that have the correct scaling behavior to have a chance
to be found in the following two-loop calculation.

The N dependence of (5.21) that we omitted, is easily computed to be globally
of order N°, in disagreement with the N3 dependence arising at two loops in M/(atrix)-
Theory. This produces indeed the disagreement found in [KVK1], As we have explained
earlier, we do not consider this as a problem here, since we can trust our M(atrix)-Theory
result only for N = 3, anyway. Thus, the different scalings with N would maximally show
up as an overall numerical factor.

Armed with the above clear-cut scheme for the computation of the M(atrix)-Theory
S-matrix elements and given the precise agreement of the tree-level supergravity amplitude
with the leading order M(atrix)-Theory result we now turn to the question of whether the
M(atrix)-Model is sensitive to the one-loop correction (5.21)to the M-Theory effective
action. Performing a Fourier transform on (5.21), we see that it scales like

€I2)4U8

7 18
R{ris.

Comparing with (5.1), we immediately see that this one-loop correction has a chance to
match with the three-graviton M(atrix)-Model calculation pushed to one order higher in
velocities than we have done above.

The setup of the computation is now clear: We simply expand all the terms in the
two-loop effective action [ajoep 0f (5.7) to order v® and apply the same manipulations
discussed above in this section to obtain the M(atrix)-Theory amplitudes.

The order v® result of the spin independent 1+ 2 + 3 — 1’ + 2’ 4+ 3’ amplitude is
again comprised of three terms

SS_>3|1,8 = SZ’__(;S|1,8 + S‘?’/_}3|vs + 813/_>3|v8

Dropping the overall energy and momentum conserving delta functions, we find

9 4 .4
VoV 1 1
g3—=3 o T | Y12l (/1 : - :
oo lus 6 | q - vis J% qs:Viz + 05 d2 V31
1 1
Faantad ((7)+(5;))
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1 1
— 4via - V3107505 <<a_%> vy + <J_%> 032,1>
2.2 (2 2 1 1
—4q2 - V12071503, (7}12(12 V31 + U393 V12) — )+ —
g1 (o))
2.2 2 1 1 .
+ 16vy2 - v31(Qa - V12) 07503 — )+ (— + cyclic (5.22)
o1 (o]
along with
0 1 7o 1 1
S‘?}—>3|vg :71);‘11)‘112 <R> — gvlz . V3]_’U%2U?2)1 [U]Z_Z <0__1> + <0__2>
1 1
—ata v ()4 (7))
g1 (o))

where we have used the abbreviation

+ cyclic (5.23)

(f(01,02)> = / d20 f(a‘l,o-2)e_01qg—02q?2,;
0

i.e. the proper time integrals remain to be performed. As a matter of fact, all integrals
in (5.22) and (5.23) are divergent, but exist in a distributional sense, see for example [Z].
We first note that none of the terms in (5.22) and (5.23) displays the genuine two pole

structure !

1) = —
L) a3q3

which found in the supergravity amplitude (5.21); such terms, however will arise from the
S373],¢ amplitude to be studied.

An immediate disagreement arises from the first term of (5.22) with a “re-scattering
pole” 1/(qs - vi2), whereas on the supergravity side re-scattering diagrams of the type
of Fig. 16 are absent since there are no R? or R? curvature corrections to the effective
M-Theory action that could lead to three point vertices, as argued above. Note also that
S$73],s does not give rise to re-scattering poles, as we shall see shortly. Performing the
corresponding o integrals for this term in a distributional sense

&0 1 2 1
do—e 7% = —q?(logq®> + v — 1
[; o —5¢ gl (loga” +v—1),

where 7 is the Euler constant and the logarithm is to be understood as log ¢?/A? for some
cut-off A, the re-scattering contributions of S373|,s take the form

2

4,4 2
vl
12731 (_qz qs - Vi + q—:;’qz : V31> + log terms.
d2 - Vi2 \ g3 a3
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Hence it is clear that M(atrix)-Theory produces terms with no counterpart on the
supergravity side. However, taking a conservative point of view one could argue that only
“truly eikonal” terms with a double pole 1/(g3¢3) structure should be compared on both
sides. A similar phenomenon occurred in the polarization dependent two graviton scat-
tering amplitudes [PSWI where the spin dependent contributions to the M(atrix)-Theory
amplitude gave rise to terms canceling the 1/¢? pole and had to be dropped because they
are not reliable in the eikonal setup of classically free particles.

Taking this viewpoint we would have to conclude that all terms in (5.22) and (5.23)
are spurious and we need to go on to the rather involved computation of I'y at order v5.
The outcome of this computation is the amplitude (remember that p = o105+ 0203+0307)

oo
1
S33) 0 = / o —e 102G (Y220, 4 Ypll, + ), (5.24)
0 p
where T was introduced in (5.5) and where the II,, are polynomials of order 7 — n in the
o’s and of order n in in q - v’s. In particular
87?

My = ——= ((viz - @1) (01 + 02)(0103)” = 215 - Q1 Va3 - Q2 010305) + cyclic

and

167°
IT, = 3 Vi2 - q1

X <(0%U‘112 + 03vas) o102 (0102 — 2(01 + 02)03) + 3v3, (010203)?

2 2 3 3 2 2 2 3 2 3
+ 2075V550102(0 02 + 0503 + 30705 + 010203 + 0703 + 010503 + 010%)
2.2 200 2 2 2 2 2 2 2 2
2 2 2 2., 22 22 2 2 2 .
— Vi903107 (2010905 + 0705 — 005 — 2010503 + 30203)> + cyclic

along with

879
_ 8 3 2 2 2 2 2 2 2 2 2
I, = 5 V1907 (—20505 — 010503 — 010205 — 4070203 + 0105 + 0103)

— 40?20330% (303032, + (7103032, + 5oio303 — 0%0203 — 30208 — 030903
+ 0302 — 20302) — 20i,02502 01 (0103 — 20903 + 0109 (0202 — 30202
+ 0303 — 5020903 + 0309 + 30103) + viyvss (2010503 — 010503

+ 1oioyos + 10070503 + aioy + 10050303 + 120505

32 4 _ 2 4 _3 5 5_2 5 2 5 2
+ 1loj0503 — 010205 + 120705 + 2070203 + 0705 + 0705 + 0503)

+ permutations.
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Note that the permutations in the above formula act on the “index objects” (vi,q1,02),
(ve,q2,03), and (v3,qs,01) because of the coupling of proper times o; and momenta q;
in the exponent of (5.24).

Amongst these terms it is now instructive to focus on a specific class of terms that
have easily identifiable counterparts in the supergravity amplitude (5.21). We choose to
study terms with the structure

4”4

(a-v) et (5.25)

On the M(atrix)-Theory side these terms are easily isolated from S373|,s of (5.24), in
particular

(e @] H
353 2 3 12 —qlos—qios—qion
SY |’U4(CI'V)4 — T A d g 3 [ .

Of course, it is rather hard to evaluate this integral exactly. Being interested only in the
poles 1/(¢?¢3) and permutations thereof, we proceed as follows: First perform the integral
over (say) os exactly and thereafter expand the integrand in powers of 1/07 and 1/05.
Using

* 1 2
/ do—e "7 = —logq® — v
0 o

we obtain the final result contributing to the structure (5.25) (up to overall factors, drop-
ping the logarithms)

1 1 .
nggop|’u4(q~V)4 = T2(<11 : V12)2 < + —) + cyclic

a3 4id
which is astonishingly close, but nevertheless not equal to the corresponding terms in the
supergravity amplitude of (5.21)

1 .
A’R,4 |'U4(q-V)4 = T2 (ql : Vlz)zﬂ + CyChC.
4341

This constitutes the above-mentioned definite disagreement of the two results and con-
cludes our study of the R* contributions to the three-graviton amplitudes.

Let us mention a further result found in [NP2]: There, all possible contractions of
four powers of the Riemann tensor were considered as possible terms in the supergravity
effective action at one loop order. It was found that some of them do (up to a numerical
factor) reproduce the same amplitude as the “correct” contraction whereas the remaining
ones do not contribute at all in the kinematical setup we have chosen above. This means
that the M(atrix)-Theory amplitude we have derived cannot be obtained from a Lorentz
invariant theory in eleven dimensions. It might be necessary to add further terms to the
M(atrix)-Theory action to render it covariant. Such corrections are not uncommon for
theories in light-cone gauge.



5. Two Loops and Three Particles ....... ... ..o i 81

5.5. Why the Discrepancy?

In this chapter, we have presented detailed comparisons between three-graviton scattering
amplitudes in M(atrix)-Theory and d = 11 supergravity along with its leading M-theoretic
higher derivatives corrections. On the one hand, we have been able to complete and unify
the results of [0Y1] and [0Y2] showing that the leading order v® eikonal spin independent
S-matrices of tree level supergravity and one-loop M(atrix)-Theory exactly agree. On the
other hand, the moment one studies the next-to-leading v® M (atrix)-Theory amplitude, the
result fails to match the corresponding (conjectured) term in R* corrected supergravity.
Why does such a mismatch occur?

There are several different possible levels of explanation. The first is to ask why
one might have expected agreement in the first place. Both the M(atrix)-Model-conjecture
that relates a gauge theory to M-Theory (and especially, as we have studied it in this
thesis, to its gravity limit) and the AdS-CFT correspondence that relates a conformally
invariant gauge theory on the boundary of anti de Sitter space to gravity in its bulk, use
string theory as an intermediate step to motivate or explain the correspondence. In both
cases, there is then a duality between a gauge theory and a gravitational interpretation of
the stringy setup.

But a closer investigation reveals that the two descriptions apply in different corners
of the moduli space of M-Theory: From a stringy perspective, we see that the description
in terms of stretched open strings stretching is appropriate if the particles are close and
the open strings are short and therefore light. On the other hand, we would trust a
description in terms of classical gravity if we can neglect higher curvature corrections. This
approximation is justified if curvature is small everywhere. But this is equivalent to saying
the probe particles should be far away from the source for the supergravity description
to be valid. Only in special cases, the scaling behavior of the effective force between the
particles will show the same scaling behavior in both regimes as we encountered it in the
case of the v* and v® terms. It is highly plausible that supersymmetry is responsible for this
protection of amplitudes. The R* term we have been investigating is the first amplitude
calculated in both descriptions that is not believed to be protected by supersymmetry and
in fact cannot be protected as we found a disagreement between the two different regimes.

This discussion of regimes can also be made more quantitative: The description in
terms of open strings is justified if the length of the strings is much shorter than the string
scale £; = v/o/. In that case, the strings are light while the higher modes are heavy and
Yang-Mills theory is a good approximation to the Born-Infeld action that includes higher
order terms in /. On the other hand, we expect supergravity to be valid at distances that
are large compared to the Planck scale £,. More concretely, the supergravity solution
that describes a DO-brane at macroscopic distances has a curvature/IMSY]

N (0%
Q%MN
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at distance r from the center. Here, we reinserted the M(atrix)-Theory coupling gym.
As the coupling appears in the denominator, it is obvious that the requirements of small
curvature and small coupling (such that perturbation theory is valid) are in conflict. We
cannot expect classical gravity and Yang-Mills theory to hold at the same time, keeping
N finite.

Another possible explanation for the disagreement is that supergravity in eleven
uncompactified dimensions is not the right theory to compare to. The light like limit we
have to take for finite NV bears a subtlety in its definition.

As we explained in the previous section, the two amplitudes on the supergravity
and on the M(atrix)-Theory side, respectively, scale differently with respect to N, the
momentum in the compactified direction. In the original M(atrix)-Model conjecture put
forward in [BFSS]| N has to be taken to infinity to recover uncompactified M-Theory. As
the two amplitudes of supergravity and the M(atrix)-Model respectively scale differently
with NV, they are no longer comparable. Rather one should consider the non-orientable
five-loop diagram on the M(atrix)-Model side that one obtains from world sheet-duality,
as we explained earlier.

On the other hand, if one seriously tries to approach the problem of the large N
limit (for some progress in this direction, see e.g. [KNSI) it is no longer sufficient to take
the diagonal matrices we have been using as the background. Rather one would have to
use the true ground state wave function of the N, model to describe the configuration of
parton a with compact momentum N,. As long as no further information in this direction
is available (but, see [FGHHY]) one has to restrict oneself to finite NV calculations in which
each parton carries momentum N, = 1. In this setup, the scaling with N is invisible and
the matrix diagram we have been considering stands on the same level as the five-loop
non-orientable diagram in Fig. 22.

For finite IV, the original proposal of [BFSS] does not apply, rather we have to use the
second proposal of [Sul. There, one has to consider M-Theory compactified on a light-like
circle. This so-called Discrete Light-Cone Quantization (DLCQ) was used at some time
in canonical approaches to quantum chromo-dynamics because it promised to significantly
simplify the structure of the QCD vacuum.

As it turned out, once again, there is no such thing as free lunch and DLCQ is
plagued by conceptual problems that we will describe here because there are indications
they are connected to the problem of the mismatch between the supergravity and M(atrix)-
Theory amplitudes. These well-known problems were first investigated in the context of
the M(atrix)-Model in [HP].

As a simple example, we consider the DLCQ of a scalar field. To do so, we use a
metric

ds? = —2drdx~ + 2dz—dx~ + dztdz’



5. Two Loops and Three Particles ....... ... ..o i 83

with a small parameter €. In this metric, the norm of the vector field d_ is

9 | _
|~ ©

Therefore, =~ becomes light-like once we take the limit € — 0. We compactify this direction
by imposing

r =x + 27TR11.
Then, we Fourier transform the scalar field in the compact direction:

- 1 iy inL—
(r, ’x):\/TTHand)n(T’$)e R

Writing out the mode expansion, the action becomes
S = /ddx (8u¢*8“¢ +m2p*op + interactions)
— Z /dr/ d¥2z (62&(;5:87(;5” + %@taﬂﬁn — 0;¢y, 0ibn
+m2pX  + interactions) . (5.26)

Now, we would like to take the light-like limit ¢ — 0. This removes the first term with two
0, derivatives. For the zero mode ¢q, also the second term vanishes. Thus, in a canonical
treatment, we see that its conjugate momentum

0S8

= Sody "

o

is identically zero. This means that ¢¢ is an auxiliary field and not dynamical. It gives
rise to a constraint

S
dpo
This has to be solved for ¢y and the solution has to be re-inserted into the action. In

general, this yields an infinite series of interactions that make the theory very difficult to
deal with.

o .

In the path integral approach that we have been using in this thesis, the problem
appears as follows: To calculate Feynman graphs in momentum representation, one would
use the propagator

7 7
Gn= 55 2 2 n? 2
€Pr + R Pr —PiPi MY Py — Rz~ PiPi M
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for ¢,,, where we have performed the transformation

N n
=€ i

Puw Pr Rt

In the second form, the propagator GG, is just the ordinary propagator for a scalar field
with a modified mass in d — 1 dimensions. But, what is more, in an L loop diagram, there
are L loop momenta that give contribute

/(ddp)L = }L (/ dpwdd‘lpz')L

after the above transformation. We find that in an L loop computation the light-like limit
leads to an overall e =% divergence in all amplitudes.

In the above argument, we have not used any specific properties of scalar field theory.
Rather, the divergence encountered seems to be a generic feature of all field theories. This
applies also to supergravity if it is viewed as a quantum field theory as we have been doing
it above. The fact that the divergences scale like e~ agrees well with the observation that
M(atrix)-Theory has been successfully compared to L = 0 tree-level gravity whereas the
comparison to L = 1 supergravity fails.

This would suggest that the light-like limit of field theories is not well defined at
least in the naive sense. What we have compared our M(atrix)-Theory result to is eleven-
dimensional supergravity trivially reduced along the light-like circle. On the other hand,
we just have seen this is not allowed as it leads to divergences.

Here, a historical remark is in order: At the time when [HP] came out, there was
a need to explain the disagreement found in [PRl, and the authors of the former paper
suggested that the subtleties of the DLCQ limit might be responsible for the disagreement.
The authors did not recognize that one should expect the problems of DLCQ only for loop
amplitudes of the DLCQ field theory. In the disagreement reported on in [PR], supergravity
as the DLCQ theory was treated in the tree level approximation. So, strictly speaking, the
argument in [HP] cannot explain the disagreement in [PR] that we now know to be based on
a calculational error as impressively demonstrated in [OY1l. In contrast, the disagreement
we found in our above calculation is based on a loop calculation in supergravity in the
DLCQ limit and the problem reported on in [HP] might well affect it.

String theory, as a theory of extended objects, is much better behaved in the DLCQ
limit. Bilal [Bil has calculated the string one-loop partition function in DLCQ and found
it to be finite. Therefore, it is reasonable to expect that also M-Theory, as a theory of
extended objects, is finite in the DLCQ limit. What is more, our results suggest that it is
not a simple reduction of eleven-dimensional supergravity that describes M-Theory in this
limit. In view of the “derivations” of the M(atrix)-Model by SeiberglSeil and SenlSel, we are
led to believe that the DLCQ limit is just another corner of the M-Theory moduli space
that happens to be well described by the M(atrix)-Model. There is some overlap, possibly
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mediated by supersymmetry, with the-low energy corner of uncompactified supergravity,
but for more sophisticated processes, the corners are distinct.

Our first argument about the different regimes implied by the supergravity and
gauge theory approximation used stringy scaling arguments to explain why at least it is
not possible to use perturbative string theory to prove that all supergravity amplitudes
have to be reproduced by the M(atrix)-Model. The argument we gave above suggests that
any amplitude that is not protected by supersymmetry will in general not be the same in
the sub-stringy and in the macroscopic regimes where we expect the two descriptions to
be valid. But we did not show that we should have expected a disagreement. The other
argument suggested that in the DLCQ limit of a field theory there are divergences that at
least make it difficult to relate DLCQ loop amplitudes to amplitudes in the uncompactified
theory. So it might still be that our M(atrix)-Theory result matches DLCQ supergravity
(or even DLCQ M-Theory) once there is a sensible definition of this limit and a procedure
to deal with the e~ divergencies, possibly again coming from string theory as suggested
in [Bi] is adopted.

There is a calculation that is just beyond our present technical ability that would be
able to differentiate between lacking protection by supersymmetry and problems arising
from loops in a DLCQ field theory. This is the test whether M(atrix)-Theory is able to
reproduce the third order v® term in (4.6) or the cz3 term in (5.1). It is not believed
that this term is protected by a supersymmetric non-renormalization theorem, at least
the techniques used to provelPSS1][PSS2][NP1] the supersymmetric protection of the terms at
order v* and v% do not apply and do not easily generalize to v®. Furthermore, [PEG] argue
that IR problems are to be expected at this order. On the other hand, the corresponding
calculation on the supergravity side uses only tree-level so that we do not expect the DLCQ
limit to complicate the correspondence as we explained above. While the expected value
from supergravity can be calculated almost trivially by expanding (4.6) one order further,
the difficulty of obtaining this amplitude on the M(atrix)-Model side lies solely in the
complexity of three-loop gauge theory calculations, with about one hundred diagrams and
up to six proper time integrations.

An even more involved investigation would be the calculation of the M(atrix)-Model
process that is directly related to the one loop gravity amplitude by world sheet-duality.

It is not obvious to find the corresponding open string diagram. For the identification, it is
convenient to note topological invariants: Corresponding to the four external states, there
are four boundaries and the Euler number turns out to be

X=29—-2+0b=4.

As noted already in [KVK1][Ser] the non-planarity of the diagram corresponds to sub-leading
+ behavior on the M(atrix)-Theory side. We have to look for a non-planar ribbon diagram
with four boundaries and we find it to be

The calculation of the Euler number is most easily performed by cutting the diagram into
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Fig. 23: The R* string diagram

O O

Fig. 24: The corresponding gauge theory ribbon diagram
simply connected polygons and using the discrete version of the Euler number calculation
—x = #vertices — #edges + #surfaces = —4.

This surface obviously also has four boundaries. Thinning out the ribbon to lines and
moving the handle to the right,

Fig. 25: The ribbon diagram as ordinary Feynman diagram

we see that this diagram arises at five-loop order. This calculation is definitely beyond
our technical abilities. But as we have pointed out above, to be able to perform large N
calculations one has to have access to the internal structure of the DO-branes given by
the ground state wave function whereas at finite N the contribution of this diagram is
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indistinguishable from the two loop contribution we have calculated above. Furthermore,
we see from the table given in (5.1) that at five loop level there is no term with the correct
scaling with 7 to match the gravity amplitude we have derived above.
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6. Beyond the Eikonal Regime

All scattering calculations that have been performed so far in the M(atrix)-Model proceed
in the same way, namely by calculating quantum fluctuations around the diagonal classical
solution. The particles described by this solution do not interact at all at the classical
level and all interactions merely occur as quantum effects. Therefore, the interactions
appear only as perturbations so that the particles only depart just infinitesimally from
their straight line motion. The effect we have been calculating so far as the effective
action, is, after integration over the particles’ proper time, just a phase shift. As we have
stressed already, this corresponds to an eikonal limit of scattering processes.

Technically, this means that S-matrix elements can only be evaluated at the maximal
t-pole, i.e. in the limit of vanishing momentum transfer. It would be highly desirable to
drop this restriction, so one would be able to explore a much wider kinematical regime.
Furthermore, this restriction will have to be overcome if the full eleven-dimensional Lorentz
invariance of the M(atrix)-Model is to be shown some day.

The issue of momentum transfer comes in two similar though distinct versions: The
momentum transferred can either be in the transversal directions or in the compactified
light-like direction. The first amounts to particles with different asymptotic velocities for
incoming and for outgoing particles. The latter possibility is described by block diagonal
matrices in which the size of the blocks changes during the interaction.

Processes of the first kind are included in the supergravity scattering set-ups we
have been studying and had to be excluded later by extracting only the most singular
terms with respect to momentum transfer, whereas processes with momentum transfer of
the second kind were excluded by the choice of kinematical setup.

The key question to be able to deal with processes with any of the two kinds of
momentum transfer is whether one can find a classical solution that already accomplishes
momentum transfer. On such a background, it would be possible to study quantum fluctua-
tions that could then be related to momentum-transferring interactions on the supergravity
side. It is the aim of this chapter to study these non-eikonal classical solutions. In the end,
it will turn out that — at least for a toy model — no such solutions exist for finite N and
again one has to resort to the large N limit. We will give good reasons why we think that
also the full M(atrix)-Model has no scattering solutions with momentum transfer. Most of
the material presented in this chapter is original and has not been published before.

6.1. Momentum Transfer in Higher Dimensions and N =

Classical solutions to the M(atrix)-Model equations of motion that describe momentum
transfer have been studied in [PP], [KVK2] and [GHV], All the three works have one restriction
in common that we would like to avoid here: They provide solutions only for infinite matri-
ces, i.e. for SU(c0). In particular, the latter reference constructs a solitonic solution that
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describes light-like momentum transfer. Unfortunately, it does not directly provide a solu-
tion for the M(atrix)-Model but for M(atrix)-String Theory[PVV] the (1 + 1)-dimensional
super Yang-Mills theory that is obtained from the M(atrix)-Model by T-dualizing in one
dimension. Matrix-String Theory is supposed to encode the dynamics of D-strings, the
images of fundamental strings under S-duality in type IIB string theory. As we have de-
scribed in chapter 3, this T-dualization requires infinite matrices to capture the effects of
the infinite lattice of mirror D-particles. The solution is obtained by giving a complex
structure to the (1+1)-dimensional “space-time” of the gauge theory and then translating
the supersymmetric “square root” Qi = 0 of the field equations into a holomorphicity
condition. The latter can be solved by an analytic ansatz incorporating boundary condi-
tions which describe the scattering kinematics. As should have become clear, this approach
depends crucially on the world-volume of the D-string being two-dimensional and cannot
be translated to the M(atrix)-Model in a straightforward way.

The descriptions in [PP] and in [KVK2] also use T-duality to first transform the field
theory to a higher-dimensional one. In that case, two dimensions are T-dualized. The
authors obtain a U(2) gauge theory in 2+1 dimensions which, for separated D2-branes, is
spontaneously broken to U(1) x U(1). Here, the transfer of compact momentum in the
M (atrix)-Model appears as a solitonic process that transfers magnetic flux from one U(1)
factor to the other. Again, we conclude, using Taylors M(atrix)-Model version of T-duality,
that we end up with infinite matrices in the (0+1)-dimensional theory.

As we have mentioned already, here, we prefer to take a more conservative point
of view and restrict ourselves to finite N as long as further input from the ground state
wave functions seems not to be available. If there is some truth to the finite N M(atrix)-
Model conjecture of [Sul, this model, too, should possess momentum transferring classical
solutions.

As we have seen in chapter four, leading order polarization independent processes
are described by purely bosonic backgrounds. Fermionic backgrounds encode polarization
dependent effects. Thus, one expects a momentum transferring solution already in the
bosonic model, and for the question of existence of such solutions, we can neglect the
fermionic degrees of freedom.

This should not be confused with the findings of [{WLN]: There, it was proven that,
in the supersymmetric model, the Hamilton operator has a continuous spectrum while the
Hamilton operator of the purely bosonic model has a discrete spectrum. The reason was
that, in the bosonic case, the Heisenberg uncertainty principle prevents the wave function
to leak out to infinity through the valleys of the potential that we investigate in this
chapter. The zero point energy that we found in chapter three to be responsible for the
confinement of the DO-particles in the bosonic model lifts, in the language of [dWLN] the
bottom of the potential valleys. This lifting does not occur in the supersymmetric model
as supersymmetry requires the zero point energy to vanish. Therefore, in the model with
fermions, the wave function can leak out; it is no longer confined and the spectrum is
continuous.
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At this point, it is important to note that this is a consequence of zero point energies
and the uncertainty principle. Both are genuine quantum effects. The question about the
existence of solutions to the equations of motion we investigate in this chapter is a purely
classical one and thus we do not expect the picture to be qualitatively different between
the bosonic and the supersymmetric version of the model.

Let us, for concreteness, fix N = 2 and consider only bosonic degrees of freedom
from now on. Then we can use a vector notation for SU(2) indices, and the Lagrangian
reads

L= XX ® x|
i i#j

1 S0 2 2 . S
:§ZX XS CIXPIXP 4D (X X2 (6.1)

i#j i#j

Because we have gauged away the A field, we furthermore have to impose gauge invariance
in the form of a Gauf law: .
S Fix X =0
i

The equation of motion is found to be
X=X X7+ ) (X7 X)X
i i

Furthermore, for some time ¢t = t;, we can use the SO(9) invariance to adapt the coordinate
system to the “main axis” as

Xi(to)- X (tg) =0  foralli#j
so that the second term in the equation of motion vanishes for ¢ = .

As we are looking for backgrounds for the quantum scattering computations, we are
only interested in solutions that come in from infinity, interact and then leave again to
asymptotically infinite separation of the particles. We are not interested in bound solutions
that stay in the vicinity of the origin forever. In the language of chapter three, we only
look for solutions where ||7]| goes to infinity for early and late times. There, we fixed
a gauge by requiring the matrices to be diagonal. Since we are now interested in more
general solutions we pose this requirement in a gauge invariant way:

2., 12 : 2 _
R =Xl B =

At time tg, the potential energy is given by

V= IIXP X

i#]
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For some i, the squared length || X%||2 has to be at least R2/9 which goes to infinity. As V
is bounded from above by the total energy, it follows that for large to all the other SO(9)
I

directions j of | X7||2 have to be small and go to zero for late times. Of all contributions

to R2, one of the X largely dominates the others by at least two powers of R.

6.2. The Toy-Model

In this section, we will study a simplified model that has only two degrees of freedom whose
interactions mimic the ones found in M(atrix)-Theory. (Classical solutions to this model
were also studied in [BMM] and [AMRV] but from the point of view of chaotic dynamics.)
We will first give a handwaving argument why one does not expect this toy-model to have
scattering solutions and then present a mathematical proof for the absence of scattering
solutions. In the next section, we will show that, for asymptotic times, the full M(a-
trix)-Model can be related to the truncated toy-model and therefore it has no scattering
solutions either besides the diagonal ones we have presented in chapter 3 already.

We have seen in chapter 4 that the off-diagonal matrix elements are described by
harmonic oscillators for large separations of the particles whose coordinates are given by
the diagonal matrix elements. The frequency is proportional to the separation of the
“diagonal” particles. The energy landscape has flat valleys in the directions of diagonal
matrices that grow steeper and narrower the larger the separation of the particles gets.

There is a simple toy model with similar valleys in the potential energy landscape
which was already used in [dWLN] to present the strategy for the proof of the continuity of
the M(atrix)-Model spectrum. It should be thought of as a cartoon of the M(atrix)-Model
after global rotation symmetries have been fixed. In this model, there are two real degrees
of freedom, z(t) and y(t), with dynamics given by the Lagrangian

L:%(;i:2+g)2—a:2y2).

The potential V = x%y?/2 is non-negative and vanishes along the coordinate axes in the
(z,y) plane. Perpendicular to the axes, the potential is quadratic, the corresponding
harmonic oscillator has a frequency given by the distance to the origin.

The equations of motion

&= —xy?

j = —yz’
have trivial solutions if both sides vanish simultaneously
z(t) = b+ vt, y(t) = 0;

these should be viewed as analogs of the diagonal solutions of the M(atrix)-Model. Here,
b and v are integration constants. Trivially, there is another solution obtained by in-
terchanging x and y. Next, we would like to find out if there can be further scattering
solutions.
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Fig. 26: The potential of the toy-model

By the name “scattering solution” we mean a solution for which

R(t) == /22 + 2

becomes infinite for ¢ — +o0o. This limit is meant in the usual sense that for each R there
is a time T', such that R(t) > Ry for all |t| > T. We are not interested in solutions that
enter the valleys but always return to the “stadium” around the origin after every such
excursion, although R(¢) might not be bounded for such solutions.

We can use the +z <> +y symmetry to assume without loss of generality that the
solution escapes along the positive z-axis for late times. From the equation of motion, we
see that also & has to be positive after T because otherwise the velocity will stay negative
until z = 0 and we are back to the stadium again. As we have argued above, we expect
a motion that is mainly directed along the x-axis but with small oscillations in y that are
bound by the valleys. There are two possible scenarios: Either these oscillations will get
smaller and smaller as the valleys are getting narrower and narrower or the oscillations
are so strong that, eventually, the component of the gradient of the potential in negative
x direction off the bottom of the valley will stop the motion in the z-direction and force
the particle to return to the stadium.

Numerical evolutions of the equations of motion indicate that the latter behavior is
generic but we would like to investigate if there can be exceptions other than the trivial
y = 0 solution we have given above.

It is instructive to split the energy into two contributions coming from the motions
in the x and y direction:

1

E=FE,+ Ey, E, = 55572, Ey = (y2 + x2y2)

(NN
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Fig. 27: A numerical example: The solution of the toy model returns to the stadium
Taking the time derivative,
E, = —E, = —ii = ziy®> >0

where we used the assumptions z > 0 and & > 0 from above. We see that energy is
transferred constantly from the x motion to the oscillations in the y direction. Thus, if we
took the energy E, to be constant we would underestimate the oscillations.

Let us recall one fact about the harmonic oscillator: It follows from the virial theorem
(Fyin) = (Fpot) that the time average of the square of the oscillating variable (¢?) is given
by
E
2 —_—
<¢ > - wz
in terms of the energy F and the frequency w. Since x, the frequency of the oscillations in
y, is assumed to go to infinity, %, the timescale of the oscillations, is going to zero. Thus,
for late times, the variation of the frequency during one period of the oscillation becomes
smaller and smaller. Therefore, in the equation of motion for x, we can replace the effect

of the oscillations by the average over one period and use (6.2):

(6.2)

=z~ —xy?)= o4 ="~

This force on x can be described by an effective potential as

Vet () = Eylog x.

As the logarithm grows without bound, the motion in x will hit a potential barrier
no matter how big the total energy F is. The only exception would be that E, = 0 but
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\Y/

eff

Fig. 28: The effective potential

this is again the trivial solution without oscillations. Therefore, we do not expect to find
any other solutions that escape to infinity.

One might worry that the above reasoning using the adiabatic time averaging might
be not justified. Therefore, we will give a more formal proof of the non-existence of scat-
tering solutions, next. To this end, we will proceed along the lines of the previous heuristic
argument, but without using any a priori knowledge about the solution. Therefore, we
cannot employ the expressions for the harmonic oscillator in the y direction.

Our strategy will be to assume that there is a solution (x(t),y(t)) with E, > 0
for which x(t) goes to infinity as ¢ — oo, and to show that this assumption leads to a
contradiction. Namely, we will show that under these assumptions

/ dt t = —o0.
0

This implies that any velocity in the x direction will be stopped and z will eventually
become negative again. Thus, only the trivial solutions mentioned above will escape to
infinity. Of course, as the model is invariant under time reversal, this also means that
every solution that comes from x = —oo in the past has to be trivial.

To begin with, let us recall that we can assume z to be arbitrarily large and that
z is positive. Furthermore, E is strictly increasing in time and since the total energy is
conserved, all velocities and y are bounded by constants determined by the initial condi-
tions.

For some tg, label the y-axis such that y(tp) < 0. The first thing to notice is that
the retraction force is bounded by the force of the harmonic oscillator of the “momentary”
frequency wy = z(tp) as long as y is negative. But as a harmonic oscillator returns to 0
within the next time interval of length 7 /wp, the y motion has to cross the x axis within
this interval of time , too. Let us call this moment of y = 0 the time ¢ = 0.

Comparing with the harmonic oscillator once more, we can conclude that the motion
again is bounded from above by that of the harmonic oscillator and that y will eventually
return 0 at some moment 0 < t; < 7/wp.
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sn(x(0)t)
E—) o
...... cubic approximationm

Fig. 29: Upper and lower bounds on y(#)

Now, we are going to estimate the retarding effect of the oscillations in y on the
motion in x. Since we are going to show that the retardation is strong enough to stop the
motion in z we have to give a lower bound on y. At t = 0, the velocity g is positive. Any
trial function § with 7(0) = 0, 4(0) = ¢(0), and y(t) < §(t) will have this property. Hence,
with the help of the inequality

—§i(t) < ty(0)=(0)?,

which holds because assuming the velocity in y to be constant is an overestimate, we can
underestimate y(¢) by truncating its Taylor series at the cubic order

1
y(t) > \/2E,t — E\/2Eyac(0)2t3.

Here, we have used the equation of motion to see that there is no quadratic term in
t. The right hand side is positive for ¢ < /12/2(0). Therefore, we have the following
underestimate for the deceleration in x:

dt z(t)y(t)*> > z(0)

V12/z(0)
/ dt y(t)?

/\/ﬁ/w(O)

0 0

V12/(0) )
> 2F,x(0) / dt (t — 122(0)%t?)
0

~ 128V3E,
~ 352(0)2

This is the deceleration for one half of a quasi-cycle of the ¥ motion. We have to sum the
contributions of all the cycles. At first sight, this sum (which should be thought of as an
integral over z!) is convergent because the contribution is proportional to 1/x2. But it is
important to note that this contribution comes from the interval [0,%;] and its length is
bounded by 7/x(0). Therefore, the average value is bounded from below by

128V/3E,
35mz(0)

for the cycle beginning at ¢ = 0. To sum the contribution from all values of & one has to
sum a logarithmically divergent harmonic sum. This is in accordance with the logarithmic
divergence we expected from the heuristic argument.
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Hence we found that, however large = and however small the non-vanishing motion
in y is, the motion in x will eventually be stopped which is the contradiction we were
looking for. Therefore, we can conclude that the only motions that reach infinity are those
along straight lines.

6.3. Scattering Solutions in the M(atrix)-Model

The toy model enjoys one important simplification compared to the full M(atrix)-Model:
There is no gauge freedom, the valleys are along the z- and y-axes whereas the global
SO(9) x SU(N) symmetry allows one to rotate the valleys in any possible direction. The
direction of the valleys is therefore dynamically determined and one should use appropriate
variables to deal with this symmetry. Furthermore, one could imagine a solution in which
the matrices cannot asymptotically be brought to diagonal form because there is a non-
vanishing motion in the SU(N) directions that would destroy any choice of gauge at later
times.

To approach these difficulties, let us first discuss another simplified model that now
contains all qualitative features of the full M(atrix)-Model; this allows one to translate the
argument directly to the full M(atrix)-Model, but we prefer to present the approach in this
model for notational simplicity.

The degrees of freedom are two two-vectors X,(t) € R? with a = 1,2. The La-

grangian is given by (note the close similarity to the Lagrangian of the SU(2)-M(atrix)-
Model!)

1 5 = - S\ 2
L= (IF2 + | Xall?) — (%1 x %)

Again, we ask whether there are solutions such that
2= {1 X0 + (1 X
goes to infinity for early and late times. The form of the potential energy tells us that
for large ||X1||, say, the component of X, that is perpendicular to X; has to be small and

oscillates with approximate frequency || X1||. Nevertheless, it is not clear, that there is

an asymptotic direction for X 1, it might rotate around the origin forever. Therefore we
cannot simply fix a gauge in which only one component of X, plays the role of y in the
toy model.

To solve this problem, the first observation is that, just like the M(atrix)-Model,
this model not only has the obvious SO(2) symmetry of vectors in R? that parallels the
SU(N) symmetry of the M(atrix)-Model, but that it is invariant under another SO(2) that

acts on the a index of the Xa, because the potential is just the square of the determinant
of the matrix X,*. A parameterization that is adapted to the SO(2) x SO(2) symmetry is

i cosa  sina z 0 cosf3 sinf3
X, = . . .
—sina  cosa 0 y —sinf3 cosf
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If we rewrite the Lagrangian in these variables

L. . . : L
L= (@ + 3%+ @ +y2) (@ + §2) + doyaf) — a%y",
we see that o and 3 are cyclic variables and their conjugate momenta
Pa = (z° +y*)d + 22y
pp = (z° +y*)B + 2wycr
are integrals of motion. We solve these for & and 3 and use them to eliminate the o and
B dependence from the Lagrangian.

Then, we arrive at the equation of motion for the remaining degrees of freedom
(% + p3)a(z* +102°y* + 5y*) — 2pappy(y* + 102°y* + 5a)
(2> = y?)*
and another one with = <+ y. We use the same argument as before to show

V2E
—, y < -
V2 R

which tells us that for large R we have x ~ R > y ~ 1/R. While the first term in (6.3)
scales like 1/R, the second term scales like 1/R3 and can therefore be neglected for large
R:

&= —2xy? +

6.3)

x >

(P2 + p3)z® — pappys’
1-8

T~ —2zry? +

In the numerator, it is not possible that the coefficient of 2® vanishes while the coefficient
of yx* is finite. Therefore, for large enough R (depending on the two angular momenta),
we can neglect the second term in the numerator against the first. The fraction scales like
1/R? and is always strongly suppressed by the “toy-model” term.

Similarly, for large R, we have

i~ —2ya? + 5(pa + Pp)a'y — 2papp’

8

The second term scales like 1/R3, whereas the first term scales like y R2. As the amplitudes
of the oscillations in y are of the order 1/R the second term will, for most of the time of
one oscillation, be suppressed by four orders of R and can therefore be neglected.

We have argued that in both non-trivial equations of motion, the second terms
can be neglected and in the limit of large R , we are left with the toy model. In the
previous section, we proved that there are no non-trivial solution that can escape to infinity.
Therefore there will be no scattering solutions for this model, too.
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The argument for the full M(atrix)-Modelshould be the same as above: One should
rewrite the Lagrangian in terms of SO(9) x SU(N) angle variables and N “radial” variables.
In [S8]] a corresponding gauge was fixed in which for one instant of time the M(atrix)-Model
X*, were diagonal. Here we will do this “gauge fixing” dynamically by allowing the angles
that determine the gauge to be time dependent degrees of freedom. These angles are again
cyclic and can be eliminated whereas, in the large R limit, the radial variables will be of
the form of the toy model plus asymptotically small corrections.

Therefore, it would be very suprising if there were non-trivial scattering solutions
describing kinematics with momentum transfer in the finite N M(atrix)-Model. It seems
that the finiteness of N is very restrictive and puts strong constraints on the dynamics.

We should stress again that this result does not hold for infinite N as there are the
counterexamples we mentioned above[PPIIKVK2][GHV] The way to think about them is that
once the number of degrees of freedom is infinite it is possible that an infinite number of
them could each supply an infinitesimal amount of energy, which finally pushes one of the
“diagonal” degrees of freedom to infinity.

On the other hand, these results about scattering solutions are welcome from the
membrane point of view on the M(atrix)-Model: There, scattering solutions are to be
considered degenerate, they describe membranes whose shape at early and late times is
completely dominated by one of the Fourier-modes of the world volume coordiante func-
tions. The solutions that we classified as “bound states” from the DO point of view describe
membranes with oscillating shapes. Our result can be reformulated by saying that the lat-
ter are generic as one would have expected for fluctuating membranes.
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7. Conclusions

In this thesis, we have investigated the M(atrix)-Model-conjecture that states that M-
Theory, the Ur-theory that arises in the strong coupling limit of type ITA string theory,
is given, in light-cone coordinates, by the supersymmetric quantum mechanics of SU(N)
matrices. In particular, we have tested Susskind’s version of this conjecture that does not
require the limit N — oo and relates the finite N version to the DLCQ of M-Theory.

Since eleven-dimensional supergravity is by definition the low-energy limit of M-
Theory, it is a sensible question to ask if the M(atrix)-Model contains supergravity in the
low-energy limit. A rich test-bed for such questions is provided by scattering processes.
Scattering amplitudes and matrix elements of the S-matrix are natural and well-defined
observables of a theory and we have calculated them using both theories, the M(atrix)-
Model and supergravity.

Let us list the main results of this investigation:

e Besides the well-known result of leading-order scattering of two particles, we have
worked out the spin-spin coupling between the two particles. We have found full
agreement with the spin-spin interactions of two gravitons in supergravity thus
verifying that the particles described by the eigenvalues of the matrices in the M(a-
trix)-Model really have spin two as required by the conjecture. This result about
a purely fermionic term in the model’s effective action was later used in [PSS1] to
prove a supersymmetric non-renormalization theorem for the v* term.

e We have been able to generalize the result of [0Y1] on the scattering process of three
particles by eliminating a kinematical constraint on the initial conditions that Okawa
and Yoneya had to assume, thereby putting the agreement between the supergravity
prediction and the M(atrix)-Model result on a much wider basis.

e We have argued that the next-to-leading order of that three particle scattering am-
plitude in M(atrix)-Theory should be related to the first quantum correction of
supergravity. We have worked out the amplitude on both sides and found a dis-
agreement for finite N not only in a numerical coefficient but in the tensor structure
of the term in the effective action.

e We have discussed the possible origin of this disagreement.

e We have derived a no-go result for classical scattering solutions coming in from and
leaving into the valleys of the potential that have non-trivial momentum transfer
on the gauge theory side. The existence of such classical solutions is a pre-requisite
for quantum scattering calculations that are beyond the restricted kinematics of the
eikonal regime. This no-go result casts further doubt on the physical usefulness of
the M(atrix)-Model-conjecture at finite N.
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We have already discussed possible explanations for the disagreement we found in
the last section of chapter five. Here, we would like to take a more general standpoint
and consider the state of the M(atrix)-Model proposal in the view of our findings. In [T2],
Taylor discusses several possibilities for the nature of M(atrix)-Theory that we would like
to comment on:

(i) M(atrix)-Theory is correct, and DLCQ supergravity is reproduced at finite N per-
turbative M(atrix)-Theory calculations.

(ii) M(atrix)-Theory is correct in the large N limit, and non-perturbative supergravity
is reproduced by a naive large N limit of the standard perturbative M(atrix)-Theory
calculations.

(iii) M(atrix)-Theory is correct in the large N limit, but to connect it to supergravity
even at the classical level, it is necessary to deal with subtleties in the large N limit
(i.e. there are problems with the standard perturbative analysis at higher order).

(iv) M(atrix)-Theory is simply wrong, and further terms need to be added to the dimen-
sionally reduced super Yang-Mills action to find agreement with M-Theory even in
the large N limit.

Given the arguments by Sen and Seiberg we recapitulated in chapter three, it is hard to
believe in possibility (iv) although, as we have pointed out, all the agreement that was
found in the past, including the agreement we have presented here, might be an artefact
of the large amount of supersymmetry in the set-ups that were considered. We do not
believe this is the case.

As we have explained, our results on scattering amplitudes are still compatible with
(i) as long as one has a very narrow definition of the terms used: One might be satisfied
with an agreement with classical supergravity, and not try to derive quantum corrections.
We do not think this is a viable option, as the primary purpose of string theory is to give a
unified description of nature. To the best of today’s knowledge, this “theory of everything”
has to include a quantum theory of gravity. As we have seen, correct implementation
of the DLCQ is very subtle, especially in a quantum theory. It might be completely
impossible to extrapolate results obtained in a DLCQ limit to an uncompactified version
of the theory, much different to the situation in spatially compactified theories that become
uncompactified in a large volume limit.

On the other hand, our findings about the impossibility to transfer momentum in
classical scattering processes appears to be in conflict with possibility (i) as it seems that
the finite N kinematics accessible to M(atrix)-Theory are severely restricted.

On the basis of our investigations alone, we cannot differentiate between possibility
(ii) and (iii) since we have strictly stuck to finite N calculations. Both seem equally likely.
But given today’s large N technology, this means that the usefulness of the M(atrix)-
Theory-conjecture is rather restricted. What would be needed are several achievements:
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First, more information about the structure of the ground state that describes a
graviton with N > 1, ideally the exact wave functionm, is needed. It should be expected
that scattering amplitudes at large N depend for example on the distributions of velocities
of the different “partons” within the graviton.

Then a formalism to extract the leading large N behavior is needed. In the best of
all worlds, this would be some kind of large N renormalization group: A way to integrate
out the contributions of single rows and columns of the matrices that could relate the
theory at some N to a theory with N — 1. Both these requirements are beyond reach given
today’s techniques.

So far, M(atrix)-Theory has only been successfully applied to M-Theory fluctuations
around a flat, possibly toroidally compactified, background. There are indications[POS][DO]
that for curved backgrounds a model with finitely many degrees of freedom is probably
not sufficient to reproduce the appropriate amplitudes. Only very limited work in this
direction has been done and much more is needed.

It would also be fruitful to investigate the importance of supersymmetry in the re-
lation between supergravity and gauge theory. A possible calculation to approach this
problem would be to check the correspondence between supergravity and M(atrix)-Theory
at the eighth order in velocities. As we have explained before, at that order, supersym-
metry is very unlikely to protect the amplitude while supergravity appears still at the
classical level. Therefore, this calculation would allow for a clear-cut distinction between
disagreement because of lack of supersymmetry and disagreement because of subtleties of
the DLCQ limit. We leave this technical tour de force for future investigations.
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