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Chapter 1

Introduction

1.1 Numerical Relativity

Albert Einstein’s formulation of the theory of general relativity in 1915 changed our view-
point on gravity and its significance in the universe. General relativity considers spacetime as
a curved four-dimensional manifold, its curvature being induced by matter and determining
the motion of matter in the spacetime. The equations introduced by Einstein, which govern
the curvature as a manifestation of gravity, are a set of ten non-linear, coupled, partial differ-
ential equations for the ten components of the metric tensor. Still, more than 80 years after
their publication, only a limited number of analytical solutions to this equations for highly
symmetric problems is known. The solution space of the Einstein equations is essentially
unknown.

A problem of special interest is the two-body problem of general relativity. In vacuum
this is the binary black hole problem. That is the scenario of two black holes orbiting each
other, spiraling inwards and eventually merging. Such black hole coalescences are expected
to be strong emitters of gravitational waves which are candidates for detection [34, 35] by
the gravitational wave detectors [51] LIGO (Livingston, USA), VIRGO (Pisa, Italy), and
GEO600 (Hannover,Germany), which will soon be operational.

In contrast to Newtonian physics, where the two-body problem can be solved analytically,
the full binary black hole problem is, in general, still unsolved. There are different attempts
to the calculation of the inspiral of two black holes: In the early phase of the inspiral post-
Newtonian methods are applicable [16] and the final stage of the coalescence can be modeled
by perturbation methods [36]. But these methods are not applicable to the late strong-
interaction phase of the coalescence. This phase is only accessible by numerical relativity,
which employs computers to construct numerical solutions to the full Einstein equations.

Numerical relativity dates back to the year of 1964 where the first attempts to the numeri-
cal solution of the Einstein equations have been reported [38]. At this time the computational
resources concerning computing speed and memory had been so small that the problem of an
axisymmetric black hole merger was more or less intractable. In addition, no suitable algo-
rithms had been developed at this time. Since this time the young research field of numerical
relativity has evolved to a more mature state as is detailed by Hobill and Smarr in [33].
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Today, the achievements of numerical relativity are strongly connected to the development
of supercomputer technology. The computer technology has even reached a state allowing
for the consideration of full three-dimensional problems.

In the 1990°s many of the old problems have been reconsidered, employing larger comput-
ers to obtain more accurate results. However, one of the major goals, the general simulation
of the binary black hole system, is still unsolved.

While applying numerical relativity to problems connected to binary black hole mergers
Anninos et al. [11, 12] recently studied the axisymmetric collision of two black holes. Dis-
turbed black holes have been studied by Camarda [29]. Such systems are analogous to excited
black holes generated by a black hole merger. These simulations allowed evolution times to
about 100M, where M is the spacetime mass. Furthermore, a first study of the evolution of
a full three-dimensional binary black hole data set was reported by Briigmann [26]. In this
work two black holes, each with momentum and spin, have been evolved until about 10M.
This evolution time was sufficient for the black holes to merge but to short for the calculation
of emitted gravitational waves. However, Briigmann showed that waves are at least possible
in such simulations.

In this thesis I will also consider the full three-dimensional problem of binary black hole
systems. This is strongly connected to Brigmanns work. Since this work, the initial data
solver (‘puncture’ initial data) used by Briigmann, has been ported to a collaborative com-
putational framework for numerical relativity, called Cactus, which will be described below.
Using Cactus 1 will perform an intensive study of puncture initial data showing it’s capabil-
ities to provide initial data for studies of binary black hole systems. In addition, evolutions
of full three-dimensional binary black hole data sets are performed. These are the first long
time evolutions of such data sets which allow for the extraction of gravitational waves.

Before presenting the initial data study in chapter 7 and evolutions of puncture initial
data in chapter 8 I will review the reformulation of the Einstein equations for numerical
treatment in chapter 2. Further, in chapters 3 and 4, I will discuss the generation of initial
data and different evolution algorithms. Different methods to extract physical quantities
from the numerically generated spacetime will be discussed in chapter 5.

1.2 The Computational Environment

Numerical Relativity is a challenging research field. Due to the complexity of the Einstein
equations, there are many computational difficulties. The coupled, nonlinear equations are
of mixed hyperbolic, elliptic, and even undefined types. Due to the tensorial character of the
equations, typically between 50 and 100 variables, like the metric components, require to be
stored at each point of the computational grid. The equations consist of thousands of terms
and thousands of operations have to be performed per grid point per evolution step. As a
special feature of general relativity regions of strong gravity can generate singularities. Since
these cannot be treated numerically they need to be avoided. Thus, a dynamic control of the
coordinate system is necessary.

This complexity requires to push the limits of massively parallel computation. It also
requires a collaborative technology: Solving the Einstein equations involves gravitational
physics, computational science, the development of suitable and effective numerical algo-
rithms and applied mathematics as for the development of appropriate boundary conditions.
If the Einstein equations with sources are considered, for example in the simulation of neu-
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tron stars, even the fields of astrophysics, hydrodynamics, and magneto-hydrodynamics have
to be taken into account.

These challenges are most effectively solved by collaborative work of researchers out of the
different fields. At the Albert-Einstein-Institute [3] a new code for collaborative treatment
of the Einstein equations in three dimensions has been developed, the Cactus code [27].

This code exhibits a modular structure in featuring a central kernel, the ‘flesh’ and appli-
cation modules, the ‘thorns’. The flesh provides the basic infrastructure and the interface to
the thorns together with input-output routines. It is optimized for parallel computing using
the “Message Passing Interface” (MPI) libraries. The thorns provide routines for the physical
application like evolution algorithms and are connected to the flesh via a defined interface for
variables and function calls. This structure allows for collaborative code development since
the development of applications is done the thorns while the flesh is maintained by a small
group of researchers. Nonetheless, also the source code of the flesh is publically available.

While older versions of Cactus had been specialized for the use in numerical relativity, the
latest version, Cactus 4.0, is a general tool for the numerical treatment of partial differential
equations on parallel computers, since the flesh has been rewritten and all parts belonging
to numerical relativity have been moved into thorns. Now it is possible to apply Cactus to
numerous numerical problems by writing the corresponding thorn which can be used with
other existing thorns, like output-routines. Thus, parallel computation is possible without
special knowledge in parallel computing.

A user does apply the code by obtaining the required flesh and thorns via the Internet.
With this he obtains the source codes which can be compiled by specifying the thorns in a
configuration file and applying a “make” procedure. The run parameters are set by an input
file which is read at execution time. Since the user only obtains and compiles the routines
necessary for the problem he wants to solve or simulate, the development of a “monster”-code
is avoided.

The work presented in this thesis was done using the release 3.2 of Cactus.

Numerical calculations were performed at the Albert-Einstein-Institute (AEI), the Rechen-
zentrum Garching (RZG), and the National Center for Supercomputer Applications (NCSA),
Champaign, IL.
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1.3 Notations and Geometrized Units

Throughout this thesis the notations conform with those of Misner, Thorne and Wheeler [45].
That is, Greek indices range from 0 to 3 and label spacetime components while Latin indices
ranging from 1 to 3 refer to spatial components. Indices are used equivalently to label tensor
components as well as tensors itself.

The signature of the four-dimensional spacetime metric is Lorentzian with (—+++). The
signature of the of spatial metric is (+++).

Naturally, the Einstein summing convention is used, unless otherwise noted. That is, quan-
tities are summed with respect to identical lowered and raised indices.

Tensors and vectors are either written with indices or in bold face without indices.

Partial derivatives with respect to a coordinate z# are denoted in differential or by comma
notation:

afr
dzV

=0, " =",

Covariant differentiation with respect to a coordinate z# on a four-dimensional spacetime is
written as V, or in semicolon notation as

while the covariant derivative induced on three-dimensional hypersurfaces is denoted by D
or the semicolon notation

D.f’=f,

where it should be obvious from the context if the semicolon refers to the covariant derivative
on the spacetime or a hypersurface.

Lie differentiation with respect to a vector field % = n is indicated by the symbol £,,.

The units used in this theses are the ‘geometrized’ units. That is the gravitational constant
G and the speed of light ¢ are set to unity.
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3+1-Formalism

In general relativity spacetime is considered to be a curved four-dimensional Lorentzian man-
ifold. The geometry, i.e. curvature, of spacetime is related to the distribution of matter and
energy by the Einstein equations

G = 81T, (2.1)

with the Einstein tensor G, = R, — %gm,R being the trace-reduced Ricci tensor for the
four-dimensional manifold and the stress-energy tensor 7),,. This equation treats time and
space variables on an equal base.

A convenient way to solve the Einstein equations numerically is to write them in the form
of a Cauchy problem. Then, we have to find an appropriate initial data set of basic variables
according to some initial value equations specifying constraints on the initial data. We can
evolve this data set by evolution equations, i.e. equations specifying time derivatives for the
basic variables.

2.1 Maxwell Equations as a Cauchy Problem

Before rewriting the Einstein Equations we will consider the structure of the Maxwell equa-
tions. In vacuum the Maxwell equations read

V-B = 0 (2.2)
V.-E =

oB

OF

SS-VxB = 0. (2.5)

These equations can be broken up into two classes: Equations 2.2 and 2.3 do not contain
any time derivatives. These are the initial value or constraint equations for the electric
and magnetic fields E and B. The constraint equations specify the allowed fields at a
particular time, i.e. one obtains Cauchy initial data. Equations 2.4 and 2.5 are evolution
equations. Containing first order time derivatives of the electric and magnetic fields they
propagate the fields in time. The constraint and evolution equations are independent though
they are compatible. That is, the evolution equations propagate the fields without violating
the constraint equations. This is of course not guaranteed in numerical integrations of the
equations due to the finite precision of the computations.
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Written in this form the Maxwell equations exhibit “3+1” form. The initial data is
constrained by equations only including spatial coordinates (“3”) while the propagation in
time (“17) is governed by a separated set of equations. Once the initial data have been
specified they may be evolved forward in time by the evolution equations.

There is a third class of equations which will also appear in the 34+1 formulation of the
Einstein equations. Introducing the vector potential A there is an additional equation

B=VxA. (2.6)
Any transformation of the vector potential of the form
A— A+ VA (2.7)

with an arbitrary scalar function A, leaves the field variables E and B invariant. So equation
2.6 is a gauge equation. This adds an additional degree of freedom to the equations which
can be used to cast the equations in a convenient form dependent on the problem to be
calculated. By rewriting the Maxwell equations in terms of the vector potential A and the
scalar potential ¢ and using special choice of the gauge, like the Coulomb gauge (V- A = 0),
one can often simplify the equations.

2.2 Einstein Equations in 3+1 form

We now turn to the discussion of the 3+1 formulation of the Einstein equations. Before con-
sidering the mathematical derivation of the equations we will introduce the more illustrative
approach to the foliation of the spacetime as described in the textbook by Misner, Thorne
and Wheeler [45].

ﬁdt T_
ot
Y _
/ A Bdt

Figure 2.1: Two three-dimensional spacelike hyersurfaces ¥, and ¥,,s, connected by lapse

function « and shift vector 5.

We can foliate the four-dimensional spacetime (M, g) into a family of spacelike three-
dimensional hypersurfaces {3}. These can be parameterized by a time parameter ¢.
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For infinitesimally separated events the invariant distance between them, i.e. the metric
of the spacetime, is

ds? = yap(da® + 5dt) (da® + godt) — o*dt? (2.8)

as is illustrated in figure 2.1. Here 74 is the (spatial) 3-metric on the hypersurface at time
7, Xr. The distance from A to B is given by the purely spatial separation vector dz® and
the time vector dt. This can be split into the part normal to the hypersurface, adt, which
gives the propagation in time between the hypersurfaces and the tangential part given by a
spatial shift 5%dt.

The ‘lapse function’ « describes the lapse of proper time between the two hypersurfaces
Y, and X, 45 at the times t = 7 and ¢ = 7 4 6t while the ‘shift vector’ §® determines the
coordinate distance a constant coordinate point moves away from the normal vector when
advancing from . to X, 44.

In numerical relativity the choice of the lapse function, and sometimes the foliation itself,
is called ‘slicing’ with the spacelike hypersurfaces being called ‘slices’.

The derivation of the standard 341 formulation of the Einstein equations was introduced
by Arnowitt, Deser and Misner (ADM) [13]. York presented a detailed review of the Cauchy
problem in [54]. A study of the initial value formulation of general relativity can also be
found in the textbook by Wald [52]. We will follow the formal way in the notation of York
[54] while reviewing the derivation of the equations.

In general the 3+1 formulation is derived by the introduction of a foliation of the four-
dimensional spacetime by three-dimensional spacelike hypersurfaces. This slicing allows to
define projection operators from the four-dimensional spacetime onto the three-dimensional
slices. Using the foliation and the projection operators we are able to project the Einstein
equations, equation 2.1, for the four-metric g, onto the slices.

Mathematically the foliation is created by a normalized one-form w,,, which is the gradient
of the time parameter ¢ times the lapse function «:

ou=aVyt, el = -1 (2.9)

The foliation is spacelike if each of the slices is spacelike. Associated with the foliations due
to wy, is the timelike unit normal vector field

nt = —g"w,, nfng = -1 (2.10)
which yields the metric v, induced on the slices as
YaB = YaB + Nang . (2.11)
The mixed form 7% is the projection operator into the slice
955 = vh = 8%+nng =1% (2.12)
while the projection normal to the slice is given by
NG = —-n%ng . (2.13)

(L without indices will denote the projection of all free indices.)
Using this we can project the covariant derivative V, associated with the four-metric g
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into a covariant derivate D, associated with the three-metric y,3 (Davsy = 0) on the slice

by
D, =1V, (2.14)

Using this derivative operator we define the Riemann curvature tensor R,,,” of a slice in
analogy to the curvature tensor of the four-dimensional spacetime by the commutator of the
covariant derivative acting on a one-form wy,:
1
D[MDV]MO- = §w7RMWV (215)
From this the Ricci tensor R, and the curvature scalar R follow from the standard definitions
by successive contractions.

The foliation {¥} is embedded in the four-dimensional spacetime. To describe the em-
bedding we use the extrinsic curvature tensor K,g. If the embedded slice is bent the normal
vector n® changes along each coordinate. This is expressed by the non-vanishing of the co-
variant four-derivative V,ng. The projection of this derivative is the change of the normal
vector for an infinitesimal displacement within the surface and defines the extrinsic curvature
tensor K,g:

Kyag =—-1 V(anﬁ) (2.16)

The triple (X,7, K) represents the complete geometry of an embedded slice and must
be specified to obtain an initial data set. However, it cannot be chosen arbitrarily since the

Einstein equations must be fulfilled. We find a first condition for the initial data by projecting
(4)

swap ONtO the slice. This yields the ‘Gauss equation’

all indices of the Riemann tensor R

1L RW

pra = RNVO‘B + I{MQI{Vﬁ - I{MBI{VQ (217)

where the definition of the extrinsic curvature, equation 2.16, was used.

A second relation, the ‘Codazzi equation’, is found by the contraction of one index with
the normal vector and subsequent projection of the remaining indices:

L RW 0" =DyKyua — DuKya (2.18)

The ‘Gauss-Codazzi’ equations 2.17 and 2.18 represent integrability conditions for the
embedding of the foliation (X,+,K) in the four-dimensional spacetime (M,g). They are
directly related to the initial value or constraint equations of the 341 formulation: Four of
the ten Einstein equations 2.1 which contain no second derivatives of the metric in a timelike
direction can be written in terms of the Gauss-Codazzi equations. Thus, these are the initial
value or constraint equations. They read, with trK = 'yo‘ﬁKag:

R+ (trK)* — K*’K,s = 167p (2.19)
Dg(K*? — y*PtrK) = 8mj® (2.20)

where p and j¢ are matter terms given by projections of the stress-energy tensor 7,,. Equa-
tion 2.19 is called the ‘Hamiltonian constraint’ and equation 2.20 the ‘momentum constraint’.
Only initial data sets which fulfill these constraint equations are allowed by the Einstein equa-
tions.
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To derive the evolution equations from the remaining Einstein equations we have to
consider how the initial data .3 and K,g propagates off the initial slice. Thus we need an
equivalent to the Newtonian time derivative which here describes the change of a tensor field
along a vector field. This mathematical procedure is provided by the ‘Lie derivative’. It is a
general form of derivatives which, in contrast to the covariant derivative, is independent of
the metric. A treatment of Lie derivatives in mathematical form can be found in Wald [52].

The Lie derivative £ can be written as a directional derivative of a tensor T = T, along
a vector field u = u*:

L£,T=V,T-Vru (2.21)
With this the Lie derivative of the metric v, along the timelike normal vector n = n® is
£n7a5 = —21{0(5 (2.22)

and analogous the Lie derivative of the extrinsic curvature K,g is:
. 1
Koﬁ = —5 1 £n7a5. (2.23)

For the time vector t# in an evolution, i.e. the vector along which the system is evolved,
we have a remaining degree of freedom as t is only required to be dual to the normalized
one-form w,, (t*w, = 1). That is, the time vector is not necessarily normal to the slice. Thus
we can decompose the timelike normal vector field N® = an®, which connects the slices of
the foliation, into a spatial translation and one in time direction. So the vector t¢ in time
direction is given by a motion along the normal to the slice proportional to the lapse function
o and a shift 5% in spatial direction as is illustrated in figure 2.1:

t* = an® + 49, %0a =0 (2.24)

Equation 2.24 specifies the gauge freedom. The lapse function and the shift vector can
be chosen quite arbitrarily (They just have to be spatially continuous and differentiable).
Different choices result in different foliations without changing the underlying physics of the
four-dimensional spacetime. Only well chosen gauge conditions allow a long time evolution
of the Einstein equations in the sense that singularities existing in the spacetime are avoided
by the slices.

Up to this point no spacetime basis has been introduced. We can choose the so called
‘computational frames’ (cf. [54]): We set t* = (1,0,0,0) and also require the spatial set
nt, (¢ =1,2,3) of the four basis vectors to be purely spacelike. With this the four-metric v,
on the slice reduces to a three-metric v, with a,b = 1,2, 3 which we use to raise and lower
indices. The four-metric g,g of the four-dimensional spacetime is then given by

o =+ BB B )
e ( 5 " (2.25)

which is equivalent to the line element given by equation 2.8.

In this basis the Lie derivative along the time-like vector t* reduces to a partial time
derivative:
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Thus the evolution equations for the metric v, and the extrinsic curvature K, are

8t7ab = 20K, + 2D(aﬁb) (2.27)
0 Kuw = —DuDyat a[Rap — 2Kk, + KaptrK]
DK gy + Koo Dy + Koy Daf5° . (2.28)

Also the constraint equations simplify to

R+ (trK)> — K™K, = 167p (2.29)
Dy(K® — vt K) = 8mj°. (2.30)

We have obtained the evolution equations in the standard ADM form and the constraint
equations. Appropriate solutions to equations 2.29 and 2.30 provide the initial data sets,
which can be evolved by the use of the evolution equations 2.27 and 2.28.
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Initial Data

In the initial data problem of general relativity we are concerned with the solution of the
Hamiltonian and the momentum constraint equations given by 2.29 and 2.30.

In this work we only consider solutions to the vacuum Einstein equations representing
black hole spacetimes. Such initial data sets are obtained by the introduction of a non-trivial
topology onto the hypersurfaces representing the initial data slice. Further, the trace of
the extrinsic curvature ¢trK is required to vanish. Since in vacuum the matter terms in the
constraint equations vanish the equations simplify to

ham =R - K%K, = 0 (3.1)
mom® = D, K
We will discuss the procedure for finding initial data according to the review by York [54].

Then we will review several types initial data sets representing black hole systems.

3.1 The conformal decomposition method

York [54] describes a formalism for solving the constraint equations which is based on a
conformal transformation of the metric ;; and the extrinsic curvature K;;. This technique
traces back to work of Lichnerowicz [43].

We set, with the ‘conformal factor’ 1:

vij =M K =97 K (3.3)

Since we have not imposed any restrictions on the form of the metric 4;; we can choose it to
be flat space. Then the three-metric v;; is conformally flat.
With this the momentum constraint becomes an equation for the extrinsic curvature

DK™ =0 (3.4)
and the Hamiltonian constraint becomes an elliptic equation for the scalar field

N 1. .
DDyt + gﬂ’“bﬂ'am” =0 (3.5)

where the covariant derivate ﬁa is defined by the flat metric J4p.
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This procedure decouples the Hamiltonian and the momentum constraint equations in
the sense that, for a given extrinsic curvature, it remains to solve the elliptic equation for the
conformal factor .

We can now solve the constraint equations in three steps:

e First we solve the conformal form of the momentum constraint, equation 3.4, to obtain
the extrinsic curvature K. This can be done analytically or numerically.

e Then we solve the elliptic equation for the conformal factor <. This is usually done
numerically.

e Finally we reconstruct the physical fields v, and K,p, with the transformation equations
3.3.

3.2 Schwarzschild Initial Data

The Schwarzschild metric is a static spherically symmetric solution to the vacuum FEinstein
equations. It describes the spacetime of the exterior of a static star or a non-rotating un-
charged black hole. In its standard form the metric is given for a mass M of the black hole

by

ds® = — (1 — g) dt* + . _1M dr? + r2dQ? (3.6)
r
For » = 0 this metric exhibits a physical singularity and for » = 2M there is a coordinate
singularity. For r — oo the metric is asymptotical flat.
Due to the divergence of the g,, term the standard form of the Schwarzschild metric
is not amenable to numerical treatment. But for numerical calculations we can write the
Schwarzschild metric in isotropic form by the introduction of the isotropic coordinate 7

M 2
=71 — . .
r r( + Qr) (3.7)
Thus the metric is
_ 2
ds® = — (7;: %) dt* + (F)*(dr? + 72dQ?) (3-8)
with the conformal factor
M
ry =1 — . .
V() =1+ (3.9)

Considered as initial data, the time symmetry of the Schwarzschild solution leads to
Kg=0. (3.10)

Now equation 3.9 is a local solution to the elliptic equation 3.5 for the conformal factor .
Hence, the initial data is given by equations 3.10 and 3.9 and the requirement that 4;; is the
metric of flat space.
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In isotropic coordinates the Schwarzschild solution does not exhibit the singularity at
r = 2M any more. Now there exists an isometry at coordinate radius r = M/2. That is,
inversion through a sphere of this coordinate radius

M2

r—= — 3.11

4r ( )

leaves the coordinate sphere 7 = M/2 invariant while mapping the entire exterior region into

that sphere. Hence, there exists a second asymptotically flat region for ¥ — 0. These two

asymptotically flat regions are connected by the isometry sphere, which is called the ‘throat’

or ‘Kinstein-Rosen bridge’. In this case of a time-symmetric solution to the Einstein equa-
tions the throat coincides with the event horizon.

The two asymptotically flat regions together with the throat can be displayed in a Kruskal
diagram showing the Schwarzschild spacetime in Kruskal-Szekeres coordinates [45]. The
Kruskal-Szekeres coordinates u and v are related to the Schwarzschild coordinates r, and ¢,

by:

u? —v? = (27_;\4 - 1) ere/2M (3.12)

(3.13)

p_ 4M tanh™'(v/u) in I and I
* 7| 4M tanh™l(u/v) in Il and IV

where I to IV denote quadrants of the diagram which is displayed in figure 3.1. As the classical
Schwarzschild solution only covers the regions I and II, Kruskal-Szekeres coordinates extend
the solution. Furthermore the coordinate singularity at » = 2M vanishes.

In the Kruskal diagram the ¢ = 0-line shows the following characteristics: The smallest
coordinate distance to the singularity of the initial slice is » = 2M for w,v = 0. On the
right hand side the slice approaches spatial infinity, »r — co. Here is one of the two isometric
asymptotical flat regions (I). On the left hand side for r — oo the other isometric asymptotical
flat region (III) is reached. Since the closest distance is r = 2M the initial data slice does not
penetrate the event horizon, located at r = 2M. Thus, the slice does not enter the interior
regions II and IV of the black hole solution.

The character of the Schwarzschild black hole can be also depicted in an embedding
diagram as displayed in figure 3.2. This is the classic wormhole picture [45, 23] showing the
non-trivial topology of the hypersurface. In the embedding one recognizes both asymptotic
flat regions as well as the throat connecting them. The manifold consists of two sheets, each of
geometry R® — S?, with the surfaces of the S? identified. This excised sphere with coordinate
radius r = 2M is the throat of the black hole. Due to the isometry of the two sheets we can
treat the initial data on R®— S? with an inner boundary given by the surface of the excised
sphere.

A second possibility in which the Schwarzschild solution in isotropic coordinates, equa-
tions 3.8 and 3.9, can be viewed arises from the fact that these equations are also valid when
considered as a problem on R?® with just the point r = 0 excised. In this case no isometry
exists.
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Figure 3.1: Representation of the Schwarzschild black hole in Kruskal-Szekeres coordinates
(from [45]). The Schwarzschild geometry consists of four regions I, II, ITI, IV where I and III
are two distinct asymptotically flat regions. The black hole interior is given by the regions 11
and IV. The classical Schwarschild solution, equation 3.6, covers regions I and II.

Figure 3.2: The geometry of the slice t = 0 for Schwarzschild initial data as embedded in
flat space (from [52]) with one dimension suppressed so that each circle displayed represents
a 2-sphere S2.
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Despite the fact that the Schwarzschild spacetime is static, it is of some numerical interest
(cf. work by Camarda [28], Anninos et al. [9], and Briigmann [24]). With appropriate slicings
we can generate a dynamical evolution. Thus, we can evolve an analytically known system to
check the implemented numerics. This is also important since the end state in the evolution
of any black hole system without net linear and angular momentum will be a Schwarzschild

black hole.

3.3 Brill-Lindquist and Misner Initial Data

For time symmetric and conformally flat initial data the Hamiltonian constraint 3.5 reduces
to

A =0 (3.14)

where A is the standard flat space Laplace operator: A = V,V? We are seeking for
asymptotic flat solutions (1> — 1 for r — oo) to this equation.

Such solutions are known, e.g. from the theory of electromagnetism, to be unity and
1/r-terms [40]. Hence the general solution is

D;
= 1‘|‘Zm (3.15)

with parameters D;. The conformal factor of Schwarzschild initial data equation 3.9 obviously
has this form.

To generalize Schwarzschild initial data to initial data describing a time symmetric slice
with N black holes located at {r,} we can simply write

N
M;
vpr =1+ ST (3.16)
=1 *

where M; is the mass of black hole ¢ for the case of infinite separation of the holes. The total
mass of the spacetime (ADM mass m4pas as will be discussed below) is in this case just the
sum over the masses M; of all holes. This form of initial data is called the ‘Brill-Lindquist’
solution [23].

The Brill-Lindquist solution can be viewed as a solution on R?® with several 2-spheres
of radius r;, = 2M; excised. The surface of each 2-sphere can again be identified with the
inner boundary of another R> with one sphere excised. Each black hole located in the upper
asymptotically flat sheet of the manifold has its own lower asymptotically flat sheet as is
displayed in figure 3.3(a). Thus the initial data is a N + 1-sheeted manifold. Alternatively
this solution can be considered on R with several punctures located at the {r;}. In any case,
this initial data does not possess an inversion symmetry through 2-spheres.

To obtain initial data which does show inversion symmetry we have to consider an infinite
sum of mirror ’charges’ with different amplitudes, analogous to the theory of electrodynamics
[40]. This calculation yields an initial data set which is specified by a single parameter u as
was reported by Misner [44]. In Cartesian coordinates the conformal factor for two black
holes is given by

St () o)

sinh(np) \ try, Tn
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(a) (d)

Figure 3.3: Embedding diagrams showing the geometry for two-black hole initial data slices
(from [30]). (a) three-sheeted manifold representing Brill-Lindquist two black hole initial
data. (b) two-sheeted manifold representing Misner initial data.

with

tr, = Va2 +y? + (2 £ coth(np))? . (3.18)

This solution to the Hamiltonian constraint represents a system of two equal mass black
holes, which are non-rotating and at rest on the initial slice. The holes are aligned along
z-axis, centered at z = £ coth(y) and with throats of radius ¢ = 1/sinh(p). The parameter p
specifies the total spacetime mass m 4 pps and the proper distance along the spacelike geodesic
connecting the two throats. While increasing p the centers of the holes approach each other
in coordinate space and the throat radii decrease, leading to a decrease in the total mass of
the system and a growing proper distance of the two holes. The topology of this solution
is a multiply-connected, two-sheeted manifold, each sheet being asymptotically flat. This is
displayed in figure 3.3(b) for a system of two black holes.

Misner initial data is of particular interest for numerical relativity as it represents either
a system of two black holes or a single black hole dependent on the parameter y (For g > 1.8
there are initially separated event horizons [8]). Furthermore the system is axisymmetric.
This allows for the treatment with a two-dimensional (2D) computational code which saves
computation time and memory. Finally, due to the isometry, this data set allows a rather
stable evolution. Since the interior of the throat is often covered only by a very limited number
of grid points in discrete numerical grids, this region is only poorly resolved. Considering the
isometry and mapping the exterior region into the interior of the throat during an evolution
gives more precise data for the interior.

Misner initial data has first been studied in numerical evolutions in 1964 by Hahn and
Lindquist [38]. In the recent years this system was again studied intensively by Anninos et
al. [7, 10, 11].

There have also been studied a number of other initial data sets which are generalizations
of Schwarzschild, Brill-Lindquist or Misner inital data. For the case of a single black hole
this have been rotating black holes as well as distorted black holes caused by an superposed
gravitational wave (e.g. [21]). Also Misner initial data has been studied for cases with different
masses by Brand and Anninos [12]. Usually also the generalized data sets are chosen such
that they are still axisymmetric or do show symmetries that allow to compute only an octant
of the Cartesian grid to reduce the memory requirements.
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3.4 Full 3D Black Hole Initial Data

The data sets presented so far can be further generalized to non-time symmetric initial data.
By the introduction of linear momentum and spin on the black holes we can create initial
data sets which are full three-dimensional. l.e. they are not showing any symmetries. Hence,
these data sets can no longer be treated with 2D computational codes.

The creation of such initial data is based on work of Bowen and York [19]. Cook et al.
[30, 31, 32] constructed and studied a generalization of Misner initial data, which is a multiple
black hole system with spin and momentum on the holes. Like the Misner data this data
is isometric through the throats. The extrinsic curvature is first given analytically and then
deformed to be consistent with the isometries. In this case the solution of the Hamiltonian
constraint for the conformal factor +, which has to be done numerically, is difficult. This
arises from the fact that the constraint is an elliptic equation on R3 — {several 2—spheres}
with an inner boundary on the excised 2-spheres given by the isometry.

In this work I will focus on another type of full 3D black hole initial data, which was
introduced by Brandt and Briigmann [20]. It is based on the idea of a compactification of
the internal asymptotically flat regions (lower sheets of the manifold) leading to a simple
domain of integration. Analogous to Brill-Lindquist initial data a solution for the initial data
on R? — {r(;} with {r(;} being the coordinate locations of the black holes. Therefore this
type of initial data is also referred to as ‘puncture’ initial data.

In the case of vacuum, a conformally flat metric v4p, and a trace free extrinsic curvature,
K, = 0, but no time symmetry the conformal Hamiltonian constraint is given by equation
3.5

1 -,
At + gK“bKapr_7 =0 (3.19)

with A being the flat space Laplace operator. The momentum constraint in this case is,
according to equation 3.4

0. K% =0. (3.20)

Following Bowen and York [19], a solution to the momentum constraint for the extrinsic
curvature of a slice representing a single black hole at the origin with intrinsic momentum
P? and spin §¢ is

Ii'j"g% = 2—2[P“nb + Pbpo — (’%“b - n“nb)Pch]
r
3
—I—r—3(6“CdSCndnb + S nan®) . (3.21)
Here n® is the radial vector n¢ = z%/r (r = (22 + y? + 22)'/% in Cartesian coordinates)

and €% is the completely antisymmetric (Levi-Cevita) tensor. The constants are chosen in
such a way, that the spacetime mass, the linear, and the angular momentum computed by
the integrals which will be introduced in section 5.1, are consistent with the parameters P¢,
S and the intrinsic mass M appearing in the conformal factor. This extrinsic curvature is
smooth and regular on the punctured manifold R — {0}.
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Using the extrinsic curvature introduced by Bowen and York, Brandt and Briigmann
create an analytic extrinsic curvature for N black holes by setting

N
Kip =Y Kpyg - (3.22)
=1

Each term of the sum is defined by equation 3.21 with its own origin r(;), momentum P;),
and spin S(;). Due to the linearity of the momentum constraint this extrinsic curvature is
clearly a solution of it.

Since the momentum constraint is solved analytically it remains to solve the Hamiltonian
constraint. For this the conformal factor is written as

= i +u (3.23)

with
N
M.
1 Yoo (3.24)
X o2 -

where M;) is the mass of the i-th black hole. The Laplacian of Y~ ! is zero on the punctured
R3 — {r(i)}. Hence, the Hamiltonian constraint, equation 3.19, becomes an elliptic equation
for u:

1 . .
Au+ §X7K“6Kab(1 +xu)T =0 (3.25)

In general this equation has to be solved numerically. Brandt and Briigmann showed in
[20] that the conformal factor u is regular on R since puncture initial data is asymptotically
flat at the punctures. Thus, equation 3.25 can be solved on R® without excision of points
and without inner boundaries which simplifies the numerical implementation.

Mathematically, each puncture represents the “point at infinity” for one of the lower
sheets of the N 4 1-sheeted manifold. Thus solving equation 3.25 on R involves a compact-
ification of N out of N + 1 asymptotically flat sheets.

The necessity of a numerical solution of equation 3.25 points to the question of boundary
treatment. The elliptic solver implemented into Cactus is a multigrid algorithm based on
Briigmann’s BAM [20, 25]. There are two boundary conditions implemented.

For asymptotic flatness it is required

u — 1 for r — o0 (3.26)

Thus, the simplest boundary condition is a static one, requiring

u|rbound =1 (327)

at the boundary rpoung. Generally this works fine as long as the boundary is so far out that
the slice is almost flat at the boundary.

A more advanced boundary condition is given by the Robin condition. This arises from
a multi-pole expansion for the conformal factor, v =1+ a/r+ ..., (cf. [54, 56]) and is the
condition

_ 1- u(rbound)

Tbound Tbound

Oy ul (3.28)
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In the Cartesian numerical grid used in Cactus this is implemented as

1—
d,u| = = hound (3.29)

Thound rg d
OUTY

where Zpoung is one of the Cartesian components of the location rpung of the boundary. This
boundary condition gives the correct asymptotic form of u to order O(r=1) as it assumes

u=14+0("1).

In figure 3.4 the regular part u of the conformal factor for a single black hole of mass
m =1 and with a momentum P = (1,0, 0) is displayed. As is visible, u is regular also in the
vicinity of the puncture where it exhibits a small bump. Furthermore, despite the fact that
the function was computed using Robin boundary conditions, the influence of the boundary
is visible. This is caused by the influence of 1/r? terms which are not considered in the
boundary treatment as this assumes a 1/r fall-off. However, the influence of the boundary
on the values in the interior of the computational grid diminishes with an increasing location
of the outer boundary.

The corresponding rescaled metric component v,,/¢* is shown in figure 3.5. For V black
holes the factor ¢ is given by

N

M;

¢:1+§:ZT' (3.30)
=1 *

and results in a rescaling such that the metric components are not diverging.

I will carry out an extensive study of puncture initial data and evolutions of such data
sets below in the chapters 6 and 7.
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Figure 3.4: Regular part of the conformal factor u for a single black hole with m = 1 and
with P = (1,0, 0) for different boundary locations computed with Robin conditions.
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Figure 3.5: Metric component g, for a single black hole with m = 1 and with P = (1,0, 0)
for different boundary locations computed with Robin conditions.



Chapter 4

Evolution Algorithms & (Gauge
Conditions

In order to evolve the the initial data, which has been specified using the formalism discussed
above, we have to apply the evolution equations resulting from the 3+1 decomposition of the
Einstein equation. In the standard ADM form these equations are given by 2.27 and 2.28:

8157(16 - _204-[{(16 + 2D(aﬁb) (41)
0 Kapy = —DyDpa+ a[Rup — 2K Kp + KuptrK]
‘|‘ﬁCDcI{ab + I{ac-Dbﬁc + I{cbDaﬁc (42)

Despite the fact that the derivation of these equations is straightforward they are prob-
lematic for numerical implementation. This system of equations is not hyperbolic in any
known sense, which can cause stability problems in the numerical code (cf. [14]).

Due to this there have been proposed several alternative, hyperbolic formulations of the
evolution equations (e.g. [18]). But, according to Baumgarte and Shapiro [14], it is not yet
clear to which degree the non-hyperbolicity of the ADM equations affects the stability of the
numerical implementation. They propose a different, ADM-like formalism which is based on
the evolution of conformal quantities which we will review in the next section.

Alcubierre et al. [4] have performed a numerical examination of the stability properties
of different evolution systems. In particular, they compared evolutions with the ADM for-
malism with evolutions using the formalism by Baumgarte and Shapiro. This study showed
that the instability of the ADM formulation is caused by constraint violating zero speed wave
modes, which acquire a finite speed in the Baumgarte-Shapiro formalism.

Having chosen an evolution formalism it remains to specify the gauge conditions. Thus
we have to specify the evolution of the shift vector 7% and lapse function «. The choice of «
is referred to as ‘slicing’ since it determines the shape of the foliation. I will discuss gauge
choices in section 4.2

4.1 The Conformal ADM Evolution System

Baumgarte and Shapiro [14] propose an evolution system in extending work of Shibata and
Nakamura [49]. T will refer to this system as the BSSN formalism.
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Instead of evolving just the metric v, and the extrinsic curvature K, we can evolve
a conformal factor A, the trace K = v K, of the extrinsic curvature, and a conformally
rescaled metric and extrinsic curvature. We construct the BSSN evolution system for vacuum
as follows:

We write the conformal metric as

Vij = 6_4)‘%']‘ (4.3)
with the choice
et = 71/3 = det('yij)l/3 . (4.4)
For the trace-free part of the extrinsic curvature K;;
1
Aij = Kij — 37K (4.5)
we set analogous to the conformal decomposition of the metric
A,’j = 6_4)\14,']‘ . (4.6)
Using the trace of the ADM evolution equations the relations
d 1
—A=—=-aK 4.7
i~ 6" (4.7
and
d .. ij ioqi o L2
%K = —v ]D,'D]‘Oé + Oé(A,']‘A I+ gK ) . (4.8)
are obtained. The trace-free parts of the ADM evolution equations yield
d _ ~
pralh —20A;; (4.9)
and
d - s oo
—A,']‘ = 6_4)\< — (D,'D]‘Oé)TF + OéRz;F> + Oé(I{A,']‘ — 2A,'1Alj) (4.10)

dt
where the superscript TF denotes the trace-free part of a tensor.
Finally we bring the Ricci tensor R;; into a manifestly elliptic form by introducing ‘con-
formal connection functions’

[ = ,?jkf;k _ _;wa

(4.11)

where the f’;k are the connection coefficients associated with 7;;. With this the evolution
equations for the conformal metric 4.9 and the trace-free extrinsic curvature 4.10 reduce to
a coupled set of nonlinear, inhomogeneous wave equations, with source terms given by the
gauge terms K and fij and the conformal factor A.

In general the connection functions T% are pure gauge quantities. However, we impose
the gauge by choosing the shift 5 and evolve the I with the evolution equation 4.12 which
can be derived by permuting a time derivative with the space derivative in 4.11. It is for
vanishing shift

%f" = —24Yq j + 2a(I" AM — %”’J‘KJ +6AY) ;) (4.12)

In the BSSN formalism the fundamental variables are A, K, ¥;;, fl,'j, and T which will

be evolved with the evolution equations 4.7, 4.8, 4.9, 4.10, and 4.12.

Throughout this work I will use the BSSN formalism for evolutions.
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4.2 Gauge Choices

In the evolutions to be discussed in chapter 7 a vanishing shift vector
B4 =0 (4.13)

is used since this simplifies the evolution equations.

For the specification of the lapse function there are several possibilities. A careful study
of different conditions has been carried out by Bernstein [15].

The simplest choice is a constant lapse

a=1 (4.14)

This choice is called ‘geodesic slicing’ since grid points correspond to freely falling observers.

The slicing is displayed in a Kruskal diagram in figure 4.1(a). Geodesic slicing is often
used to test codes for numerical evolutions of black holes, like e.g. in [25]. For a Schwarzschild
black hole a grid point initially on the horizon (r = 2M) will hit the singularity in the limited
time of M. Hence, the metric in a numerical evolution will become infinite at this time,
causing the ’crash® of the evolution. So this slicing condition only allows for very short evo-
lution times. But the knowledge of the time when the singularity will be hit yields a good
test of the implementation of the evolution system.

For long time evolutions one desires a slicing condition which allows for a dynamic evolu-
tion of the slice while slowing down the evolution in the vicinity of the singularity. Such the
sliced are bent into the past near the singularity. This can be achieved by a lapse function
approaching unity for large radii while decreasing in the region near the singularity. Such
slicing conditions are called ‘singularity avoiding’.

One such slicing which is commonly used is ‘maximal slicing’. The name arises from the
fact that this condition generates a lapse which maximizes the volume of the hypersurface.
Since volume elements decrease when approaching the curvature singularity, a foliation with
slices of maximal volume will tend to avoid the singular region.

For slices of maximal volume the mean extrinsic curvature vanishes, trt/ = 0. Thus,
taking the trace of the evolution equation 4.2 for the extrinsic curvature and considering the
vanishing shift and d;trK we obtain the equation

Aa = —aR = aK®K (4.15)

where in the last step we applied the Hamiltonian constraint 2.29. This condition on the
lapse function is an elliptic equation which has to be solved numerically.

Viewed in a Kruskal diagram, maximal slicings will bent around the r = 3M/2 line in
Schwarzschild coordinates, which is the limiting slice for this gauge condition. This is dis-
played in figure 4.1(b). Hence, in an embedding diagram the throat would become more
and more stretched while for late times the radius of the throat will be constant. Also for
maximal slicing grid points are falling into the black hole.

Since the numerical solution of an elliptic equation is time consuming a promising alter-
native to maximal slicing are ‘algebraic slicings’. These utilize the property of the metric as
a measurement of the volume element. The determinant v of the metric can be regarded as
an infinitesimal volume element, which becomes smaller in the region of the singularity.
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75T

Figure 4.1: Kruskal diagrams showing (a) slices for geodesic slicing and (b) slices for maximal
slicing. The slices are evenly spaced in time (from [15]) and the trajectories are displayed
with evenly spacing on the radial coordinate 7 given by r = 2M cosh?(17/2) where r is the
radius in Schwarzschild coordinates.
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This can be employed to control the lapse function by considering an algebraic relation
between the determinant of the metric and the lapse function

a=f(z%)g(7) (4.16)

where f(2?) is an arbitrary function of the spatial coordinates ¢ and g¢(v) is a function of
the determinant v of the metric 7,4, on the slices.
A common choice is given by the ‘14log’ slicing

o= ") (14 log(7)) (4.17)

which mimics the action of maximal slicing.

Algebraic slicings do have the drawback that they are calculating the lapse locally. So,
if some feature develops at a particular point in the 3-metric, the algebraic lapse responds
instantly and locally. This is in sharp contrast to maximal slicing which exhibits non-local
character due to the elliptic equation to be solved.

In order to decrease the locality of the algebraic lapse condition we can use an evolution
equation for the lapse o which allows for the introduction of diffusion terms. This will smooth
out local features of higher frequency leading to a more stable evolution. Thus the condition
for the lapse can be expressed as

O = —ong(oa)trK + e1Ara + eAa (4.18)

with Ap being the flat space laplacian and A the curved space laplacian. The variables ¢
and €y are the diffusion parameters. The choice of the function f specifies the type of the
algebraic slicing. For f(a) = 1/a we obtain 1+log slicing as o = g(z;) + log|y'/?| with a
function ¢ dependent on the initial data. For f(a) = N/« the resulting lapse condition is
a ‘power log’ condition o = g(z;) + log|yN/?|.
have been discussed by Bernstein [15].

Several different algebraic slicing conditions

The drawback of all singularity avoiding slicing conditions is that the retarded evolution
in the neighborhood of the singularity results in a ’stretching’ of the grid: The proper dis-
tance between neighboring grid points increases which leads to large gradients in the metric
functions. This finally causes errors in the numerical evolution and finally the ’crash‘ of the
code.

To avoid the problem of grid stretching it has been proposed by Unruh [50] that an excision
of the black hole interior from the numerical grid together with an inner boundary condition
should lead to stable evolutions since the large gradients in the metric functions disappear.
This technique is referred to as ‘black hole excision’, or when the inner boundary conditions
are applied at the apparent horizon as the ‘Apparent Horizon Boundary Condition” (AHBC).
The problem is not yet fully solved, but it has been shown in one and two dimensions that
this technique works. A review on the AHBC can be found in [53].
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4.3 Boundary Conditions

For the evolution of Cauchy data several boundary conditions have to be considered. Appro-
priate boundary conditions are necessary for the calculation of the lapse function. Further,
boundary values for the evolution variables need to be specified.

As described in the previous chapter puncture initial data has the benefit that it can be
solved and evolved without inner boundaries. Thus, only outer boundary conditions have to
be applied.

A simple choice for the initial lapse of 1+log slicing would be o« = 1 for the whole
computational domain. In the following time steps the lapse would be calculated according
to the 1+log slicing. The evolutions in this work which use 14log slicing utilize a more
elaborate form of the initial lapse, which stabilizes the evolution to a high degree. For the
first time step a solution for the maximal slicing condition is used. The boundary values for
this are given by the Schwarzschild value:

1- (Zl 2|:'n—lr|>
= — 4.19
SRR VS 19

where the sum is over all black holes 7 with mass m; and coordinate location r;. The
Schwarzschild value is supported to the maximal solver as a static condition.

The boundary of the evolution variables, which are ¢, K, ¥;;, fl,'j, and I in the BSSN
formalism, can be treated as a static boundary condition. With this the boundary values of
all evolution variables and the lapse « are kept at their initial value.

Alternatively ‘radiative’ boundary conditions are possible. This boundary treatment as-
sumes an outgoing radial wave given by a function g with falloff 1/r which is propagating at
speed v. Therefore, the boundary value is given by:

f=h+ g(rrﬂ (4.20)
Since the function ¢ is unknown one considers the time derivative of equation 4.20 leading to
the condition

ﬂathrva,,;urvgc"(fi;fo):0 (4.21)
T T

where z; is the normal direction to the given boundary. fy is chosen to be 1 for the diagonal
metric components v;; and the lapse «, and to be 0 for all other variables. The asymptotic
speed v is chosen to be 1 for all evolution variables except the gauge variables {«a, ¢, K'}. For
these variables the speed is set to be the asymptotic gauge speed (cf. [17])

v=vN (4.22)

where N is the exponent from the ‘power log’ slicing described in the last section.

Despite the fact that radiative boundary conditions yield better results than static condi-
tions there will still be errors running inwards from the boundary. However, usually not this
error from the outer boundaries but rather the increasing grid stretching cause evolutions to
terminate. Thus the technique of black hole excision with inner boundary conditions should
really allow for longer evolution times.
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Extraction of Physical Quantities

From the numerical calculations the metric v;; and the extrinsic curvature K;; on the slices
3 are obtained. Although all the physics is contained within this quantities, they depend on
the coordinate system and the gauge in which the system is evolved. This complicates the
physical interpretation of the numerical results.

In this chapter I will present several techniques to extract physical information from the
numerically generated slices (3,+, K). This will be at first the calculation of the spacetime
(ADM) mass together with the computation of linear momentum and total angular momen-
tum of the black hole system under examination. Further I will review algorithms for finding
horizons whose existence shows the presence of black holes in the examined spacetimes. Fi-
nally the gauge invariant extraction of gravitational waves from numerical evolutions of the
black hole systems is reviewed.

5.1 Extraction of Mass and Momentum

5.1.1 The Algorithm for Extraction of Mass and Momentum

The spacetime mass or energy, the linear and the angular momentum can be extracted from
the slice (X,7, K) by integration over a sphere of constant coordinate radius r in the limit
of an infinite radius which encloses the black hole system. This is possible since, due to the
asymptotic flatness of the initial slice, the initial data represents an isolated system of black
holes.

As is shown e.g. in [47] the energy or mass of the spacetime (ADM mass) mapas is given
by

1 : 13kl 2
mApM = o im P " ik — yigr)md” A (5.1)
where n! is the unit normal vector to the sphere (n! = z!/r) and d?A the area element.
Similar the linear momentum p’ is given by (cf. [52])

P= 2 fim §(EKn; — Kind)d?A . (5.2)

T r—oo r

Together the linear momentum p? and the ADM mass m4pys form a four-vector p# with

p° = mapn and pi = pi7 i.e. it transforms as a vector. Further pj and m4pys are gauge

invariant under asymptotic coordinate transformations, as is shown e.g. in [55].
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The extraction of angular momentum is a more severe problem. We derive an integral
for the angular momentum by considering the analogy to the linear momentum p'. From the
general viewpoint, the total linear momentum p' in the direction of a translational Killing
vector ¢' of the flat metric is given by [55]

P =py = 8% lim. T(K"j — 8itrK) ¢’ d*S; (5.3)
with the oriented area element d2S;.

In analogy to this the angular momentum vector J' can be calculated from the same
integral 5.3 with ¢' being a “rotational Killing vector of the flat metric to which =;; is
asymptotic.” [55] This description of the rotational Killing vector is quite ambiguous unless
# is an exact symmetry (and hence Killing vector) of 7vij- The ambiguity is due to the
coordinate gauge freedom of the metric v;;. Without exact symmetry there is no way to
distinguish the action of ¢' and the action of an asymptotic gauge transformation on the
data as was shown by York in [55]. At least there is a dependence on the origin for constant
translations of the origin.

However, for frames in which p' = 0 the angular momentum J7 should be well defined, so
that the angular momentum is “intrinsic”, as is stated by York. Then the angular momen-
tum is also well defined if the asymptotically dominant term of the extrinsic curvature K;;
possesses the form

3
KY = r—3(€kilslnkn]‘ + Gk]‘lslnkni) (5.4)

with S! being the intrinsic angular momentum and ¢;;x the Levi-Civita tensor. This extrin-
sic curvature defines also the explicit angular momentum term in puncture initial data as
described in section 3.4. According to this the angular momentum is well defined for black
hole spacetimes with an extrinsic curvature given by equation 3.21 as long as the total linear
momentum of the system vanishes. Hence, in this work I will concentrate on black hole
systems with vanishing net linear momentum.

With ¢’ as a tangential vector to the surface of integration it follows from equation 5.3
for the total angular momentum in analogy to equation 5.2 (cf. [56])

1 . .
Ji = — hm fijk f(wj_[{kl — $k_[{]l)nld2A (55)

167 r—oo

where 2 is the normal vector to the integration sphere (n' = 2'/r).

5.1.2 Extrapolation of Extracted Quantities

The integrals 5.1, 5.2, and 5.5 provide the information for the ADM mass, the linear, and
the angular momentum. For a numerical implementation the remaining problem is the finite
size of the computational domain. At least for three-dimensional problems the limit of large
radii is impossible due to limited computer resources.

However, in the computational domain there are two distinct regions. Innermost is the
‘multi-pole’ region which is the direct neighborhood of the black hole system. The extent
of this region depends on the mass of the black holes and their intrinsic momenta. In the
example displayed in figure 5.1 the multi-pole region extends out to a coordinate radius of
about r = 10.
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Figure 5.1: Extracted linear momentum components for a system of two black holes. Shown
is the dependence on the extracted momentum value in dependence on the coordinate radius
where this extraction has been done.

Exterior to the multi-pole region the ‘asymptotic’ region is located. Here the initial data
quantities K;; and +;; show their behavior of asymptotic decay. Thus, also the extracted
values which are derived from K;; and +;; exhibit an asymptotic behavior. For the linear
momentum this is visible in figure 5.1 for » > 10. The distinction between multi-pole region
and asymptotic region becomes visible for example in the radial dependence on p, as shown
in figure 5.1. However, the distinction between theses regions is not always as obvious as in
this example.

Since the asymptotic behavior of the quantities K;; and +;; is given by

f(ry=a+ g + r% +0(r™?) (5.6)

with parameters a, b, and ¢, also the extracted quantities will show this asymptotic behavior
according to the integrals 5.1, 5.2, and 5.5. Thus, we can approximate the radial dependence
on the extracted quantities by

ﬂﬂ:a+§+%m (5.7)

By omitting terms of higher order on r one should not cause extra error since, at least for the
described Robin boundary conditions, the boundary is correct to order O(r=2). With this
approximation the parameter ¢ gives the extrapolated value of f for r — oo.

Thus the procedure to extract the asymptotical value for the ADM mass, the linear
momentum, and the angular momentum will be as follows:

o First we extract the quantities at different radii large enough to be in the ‘asymptotic’
region.

e Then we fit the extracted dependence according to equation 5.7 to obtain the value at
infinity if the extracted quantity, i.e. its extrapolated value, by reading it off the zero
order term a in equation 5.7.
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Figure 5.2: Extracted mass me,; for a binary black hole system dependent on the extraction
radius compared with the fitted dependence according to equation 5.7. The agreement is
excellent.

The integral for the mass extraction had already been coded in one of the Cactus thorns.
For a better characterization of the black hole systems under examination I added the inte-
grals for both types of momentum. The numerical integration is performed on a Cartesian
grid by the introduction of a spherical coordinate system and interpolation of the metric and
extrinsic curvature from the Cartesian grid onto a coordinate sphere.

In figure 5.2 the extracted mass for a black hole system similar to that in figure 5.1 is
shown. Also displayed is the interpolation according to equation 5.7. The agreement of the
curve fit with the extracted behavior is excellent and leads to an extrapolated mass value of
mapy = 2.76.

Finally I consider how the boundary treatment in the initial data solver affects the extrac-
tion from the initial data and the subsequent curve fitting. In figure 5.3 the radial dependence
on the extracted mass me,; for different boundary locations is shown for a binary black hole
system with different masses and both linear momentum and spin. Also the extrapolated
value of the mass mapys for different boundary locations and different minimal interpola-
tion radii is displayed. The extraction from data computed with static and Robin boundary
conditions is compared.

The major advantage of the Robin boundary condition is obvious. In diagram (b) all
five curves of the extracted mass for the different boundary locations are displayed but they
are all lying on top of each other. In diagram (a) the static boundary treatment has led
to a significant difference in the radial dependence. However, the independence from the
boundary with Robin conditions is only true for large grids, as was discussed in connection
with figure 3.4.

According to the diagrams (c) and (d) also the extrapolated mass is less dependent on the
boundary location for Robin boundary conditions. For a boundary location at rpoung = 16 the
extrapolated mass is only 0.5 percent larger than the mass extrapolated from the extraction
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with boundary location at rpound = 32. In addition, the extrapolated value settles down very
fast to a fixed value of about m4pys = 3.01. For static boundary conditions the differences
are much bigger. Here the extrapolated masses differ by 4.5 percent in the upper example.
Also the extrapolated mass does not settle down as fast as with Robin conditions.

It is obvious that for the different boundary treatments the extrapolated masses differ also
for large grids and large minimal extrapolation radii. (In this example by about 5 percent.)
This is caused by the fact that the solutions of the initial data solver are distinct due to the
different boundary treatments.

In figure 5.4 an analogous examination for the angular momentum is shown for the same
initial data set. The basic features are the same as in the case of mass extraction. However,
the agreement of the extraction for Robin boundary conditions is worse with about 4 percent
mass difference in the upper example. For larger grids and minimal interpolation radii the
settling of the extrapolated value is slower. However, also the angular momentum can be
extracted to within 1 percent for larger grids.

5.1.3 Validation of the Procedure for a Single Black Hole

In the preceding section I examined the boundary dependence on the extraction for a system
where the analytic values were unknown. Now I will examine and validate the formalism
with the test case of initial data which represents a single black hole with known values of
the extracted quantities. Again the two different boundary treatments are compared.

In figure 5.5 the extracted and extrapolated mass mspys dependent on the intrinsic mass
M of a black hole for vanishing linear momentum and spin is displayed. The solid line shows
the expected linear behavior of the mass. For an intrinsic mass up to M = 10 the mass mapa
shows the linear dependence, too. For larger intrinsic masses the extracted mass shows a non-
linear behavior where the extracted mass value becomes reasonably bigger than the expected
mass value. This is due to the fact that the multi-pole region grows for increasing intrinsic
masses shifting the extraction into the multi-pole region. The behavior is about the same for
both boundary treatments. The influence of the boundary location can be made visible by
considering an extraction much further out. This is included in figure 5.5 for the extracted
mass of data computed with the outer boundary at rpoung = 144 but the same grid spacing
and a minimal interpolation radius of r,,;, = 60. In this case the difference to the intrinsic
mass is much smaller and it will still diminish when one increases the minimal interpolation
radius.

The extraction of the linear momentum can be studied from figure 5.6. Analogous to the
examination of the mass the extracted momentum p, is shown in dependence on the intrinsic
momentum P, of a single black hole. The right momentum is again only extracted for small
intrinsic momenta. With applied Robin boundary conditions the correct value is given with
an accuracy of 1 percent up to an intrinsic linear momentum of P, = 17. The deviation
when static conditions are applied is much bigger, leading to an error of about 29 percent for
P, =17.

The extraction of angular momentum is displayed in figure 5.7. Here the extracted angular
momentum .J, is shown in dependence on the value of the spin parameter S,. In this case the
extraction from initial data computed with Robin boundary conditions is again much better
than with static conditions. The extraction errors are of the same order as for the extraction
of linear momentum.
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Figure 5.3: Extracted and extrapolated mass for a binary black hole system with masses
M, = 1.5, M3 = 1.0, linear momenta P = (£1.5,0,0), and spins S; = (—0.5,0,—0.5) and
Sy = (0,1.0,—1.0). Displayed is the dependence on the location of the boundary and the
minimal interpolation radius. The extracted mass me,; for different boundary locations is
displayed in (a) for static boundary conditions and in (b) for Robin conditions. The bottom
diagrams show the extrapolated ADM mass mapys for different boundary locations and
different minimal interpolation radii. (¢) shows the dependence for static conditions and (d)
for Robin ones. All calculations have been done with a resolution of h = 0.5.
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Figure 5.4: Extracted and extrapolated total angular momentum J, for the same binary black
hole system as in the previous figure. Shown is the extracted value Jz(ext) in dependence on
the boundary location in (a) for static boundary conditions and in (b) for Robin conditions.
Below the z-component of the extrapolated angular momentum .J, for the different boundary
distances and different minimal radii of the extrapolation is displayed. (c) shows the depen-
dence for static and (d) for Robin boundary conditions. The resolution of all calculations

was h = 0.5.
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Figure 5.5: Extracted mass mapps in dependence on the mass parameter M for the single
black hole initial data computed with static and with Robin boundary conditions. Also shown
is the theoretical linear mass dependence. The resolution of all runs has been h = 0.75; the
boundary has been at rpoung = 60 for the minimal curve-fitting radius of r,,;, = 32 and at
Tbound = 144 for rp,;,, = 60.
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Figure 5.6: Extracted linear momentum p, for the single black hole dependent on the mo-
mentum parameter P,. The extracted value for initial data computed with static and with
Robin boundary conditions are compared with the theoretical linear momentum dependence
is shown. The boundary location was rpoung = 60 while the minimum radius of the curve
fitting was rp,, = 32.
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Figure 5.7: Extracted angular momentum for the single black hole for varying spin an the
black hole computed for static and Robin boundary conditions. For comparison the theoret-
ical linear spin dependence is shown, too. The configuration of the grid was identical with
the study of the linear momentum dependence.

In conclusion from this examination, I will focus on initial data computed with Robin
boundary conditions for the extraction of mass and momenta in the next chapter where
puncture initial data will be studied.

5.2 Apparent Horizons

Since black holes are defined by the existence of a horizon, it is important to also find horizons
in the numerically generated spacetimes. Usually the black hole is defined by the existence
of an ‘event horizon’ (EH) (cf. [39]). The event horizon is defined as the boundary of the
causal past of the future null infinity ZT. This is, the event horizon separates null geodesics
(light rays) which reach infinity from those which will fall into the singularity. Thus the event
horizon is a global property of a spacetime and can numerically only be found if one evolves
a black hole system far into the future.

In contrast to the global definition of the even horizon the ‘apparent horizon’ (AH) is
defined locally in time as the outermost marginally trapped surface on a slice. That is, the
apparent horizon is defined on a given slice as a surface with a vanishing expansion of out-
going null geodesics [39]. Since there may exist multiple marginally trapped surfaces the
outermost one is referred to as the apparent horizon. If an apparent horizon exists an event
horizon must exist enclosing it. Thus, the AH guarantees the existence of a black hole, too.

Since in this work the focus will be on initial data and evolutions of full 3D data sets
which are currently possible are not long enough for the examination of event horizons, only
apparent horizons will be studied here.
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5.2.1 Finding Apparent Horizons

To review an algorithm for finding apparent horizons we follow the descriptions by Gundlach
[37] and Alcubierre et al. [5]. This algorithm is implemented in Cactus.

We want to find an AH on a slice ¥ which is a smooth spacelike hypersurface (2, v4p, Kup)
embedded in a spacetime (M, ¢,,). Let S be a closed smooth two-dimensional surface em-
bedded in ¥ and k* be a future-pointing null geodesic congruence whose projection on 3. is
orthogonal to S. Then for a marginally trapped surface the expansion H of this congruence
is:

H=V,k"=0 (5.8)

Let s* be the outward pointing normal vector on S which is spacelike and normal to the
normal n* to ¥. Thus, on S we have

ktlg = st + n* . (5.9)
Then we can write the expansion H as
H=D;s 4+ K;;s's’ — trK . (5.10)

For a numerical treatment of equation 5.10 we need to parameterize the surface. We can
do this using the level set
D'F

F(z2') = 0; t— 11

which allows us to rewrite H in terms of F and its derivatives. The zero-level of F now
defines the marginally trapped surface.
We expect that a single AH has the topology S?. Hence, we choose

F(r,80,¢)=r—h(0,¢) (5.12)

and expand the function h(f,¢) in terms of spherical harmonics Y., (6, ¢) up to order ly4y
as

lmaa: m=l

h(0,0) =" Y VaramYimb, ¢ (5.13)

=0 m=-1

where we use a real basis of spherical harmonics where terms with m < 0 represent an angular
dependence cos(m¢) and terms with m > 0 a dependence sin(m¢). With the factor /47 the
coeflicient agp is the average radius of the surface and ay¢ its average displacement in radial
direction.

With this we can start now from a given trial function h and calculate the expansion
H via the construction of F. At the points with r = h(6, ¢) we interpolate H onto a two-
dimensional grid in {6, ¢} and compute the surface integral of H?. Using a minimization
algorithm we can find the values of the coefficients ay,,, for which the integral is minimal.

This minimization algorithm is implemented into Cactus (see [5] for tests). The drawback
is, that the algorithm becomes extremely slow for full three-dimensional horizon searches, in
which all m-modes have to be taken into account. Thus, the focus here will be on the fast
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flow algorithm as proposed by Gundlach [37], which is faster in the 3D problems examined
in this work. However, even with this algorithm finding an apparent horizon is extremely
time consuming. In contrast to the one-dimensional case where the horizon is given by an
algebraic equation and the two-dimensional case where a simple iteration procedure can be
applied [8, 37| the horizon search in 3D is much more complicated. For the studies presented
in this work the procedure typically takes about 10 minutes for a single horizon to be found.

The fast flow algorithm, as is detailed in [37], starts from a large sphere as an initial guess
and approaches the AH through an iteration procedure given by

(nt1) _ (n) A (n) 5 14

A, A, 1—|—Bl(l—|—1) (p )lm . ( . )
Here p is a ‘weight’ function and (pH)grr;) are the Fourier components of the function pH.
The iteration step is labeled by (n). A and B are parameters which can be chosen in order
to tune the algorithm.

Gundlach names three different choices for the weight p:

H flow : p = 1 (5.15)
C flow : p = |DF] (5.16)
N flow : p = 2r%|DF|[(yY — s's’)(3:; — DiyrDyr)] 7! (5.17)

where 7;; is the flat background metric associated with the coordinates on the Cartesian grid
and D the corresponding covariant derivative. A and B are usually rescaled as
o B

A=z —rnvn— : B=— 1
lmax(lmax + 1) + ﬁ7 a4 (5 8)

such that o and 3 are independent of the value of I,,,44.

For the calculations presented in this work typically the weight p as defined in equation
5.16 (C flow) and @ = 0.01, 3 = 0.5 was used. According to Gundlach he obtained the best
results using the ‘N flow’ (equation 5.17). Since this weight was not yet implemented in the
horizon finder routine by Alcubierre [5] used in this work, I coded the weight for the ‘N flow’.
Unfortunately there was no speedup using the ‘N flow’ instead of the ‘C flow’ as described
above.

The file output of the horizon finder routine consists in an output of the expansion coeffi-
cients which allows the three-dimensional reconstruction of the AH. Also the level function F
and the expansion H can be written into files as two-dimensional slices along the coordinate
planes of the Cartesian numerical grid. Since the expansion H has to vanish for an apparent
horizon, the comparison of the zero-level of the quantities F and H allows an visual estimate
whether the surface found by the algorithm is really an apparent horizon. The expansion
coefficients as well as the level function F represent the shape of the horizon with respect to
the curved slice. Thus, images based on these quantities do not represent embeddings of the
horizons in Cartesian space.

The particular choice for the parameterization, introduced with equation 5.12, limits the
algorithm to find only a single surface of topology S%. Since I am concerned with binary
black hole systems which will merge after finite evolution time I have to cope with topologies
different from S2. However, the topology of a single AH will still be S?. According to this I
changed the implementation in that way that the routine starts the search three times with
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a different center of expansion in spherical harmonics and a different radius of the initial
trial surface. This allows to find three different surfaces. The found expansion coefficients
are written into separate files for each surface while the two-dimensional slices of the level
function are simply multiplied for the three searches and written into a single output file.
These changes allow to apply the apparent horizon finder routine in evolutions of binary
black hole systems. The routine searches for the two separated horizons, one around each
puncture, and for the common horizon enclosing both punctures.

5.2.2 Horizon Analysis

After a horizon has been found by the horizon finder algorithm we can analyze its geometry
to study physical properties of the black hole data. For this the 2-metric on the surface is
calculated and the geometric properties are derived from this.

A measure of interest is the area of the apparent horizon A,g. It can be calculated from
the integration over the surface where the area element is given by the square root of the
determinant of the 2-metric associated with the surface.

From the horizon area we derive the irreducible mass m;, which is the corresponding mass
of a Schwarzschild black hole. It is given by (cf. [22])

[Aan
w = . 1
m 67 (5.19)

The apparent horizon mass my for a rotating black hole with angular momentum J is then
given as
2

4m?

r

mhg = mi, + (5.20)

This apparent horizon mass can also serve as a dynamic mass during an evolution.

To study the shape of the horizon some circumferences of the surface can be used. This was
often done in axisymmetric studies as in this case one only needs to compare the equatorial
circumference with the polar circumference as was done e.g. in [22]. Here the horizon shape is
oblate if the equatorial circumference is larger than the polar one and prolate if it is smaller.

However, with full three-dimensional data sets the situation is more complex since no
special notion an equator exists. If the vector of total angular momentum of a black hole
system is chosen such as to point in the direction of the pole in the spherical coordinate
system used in the horizon finder routine (i.e. § = 0) an ‘equator’ can be defined. In this
case it remains to choose the particular direction (i.e. ¢-direction) for the calculation of the
polar circumference. In the horizon finder routine next to the equatorial circumference C.
the polar circumferences for ¢ = 0 (Cpo) and ¢ = 7/2 (cpp) are calculated. Thus, as measures
for the shape of the horizons, the ratios

C C Chro
Cr(pO) = 0—2157 Cr(pe) = Czp; Cr(Oe) = Fpe (521)

can be considered.

These quantities provide some information on the horizon’s shape but the situation can
still be ambiguous since we hardly obtain the extremal circumferences in polar direction for
surfaces far from axisymmetry.
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Horizon dynamics have been studied for evolutions of different black hole initial data sets,
usually in axisymmetry like in [8]. However, due to the very high time requirements for the
horizon finder algorithm in full 3D it is not yet possible to do such studies in evolutions of
data sets without symmetries.

5.2.3 Convergence of the Horizon Finder

Before examining initial data with the horizon finder routine I will study its convergence
behavior for analytic initial data.

In figure 5.8 the position of the AH given by the condition F' = 0 is shown in the three
coordinate planes. The initial data is a puncture initial data set representing Brill-Lindquist
data of two black holes with masses My = 1, My = 1.5 located at ¢1 2 = (£0.6,0,0) and with
vanishing linear and angular momentum. This initial data set is expected to hold a common
apparent horizon and has the benefit to be analytical. The location of the AH is displayed
for the three resolutions h = 0.03125, 0.0625, and 0.125. Visually the difference in the found
surface for the three resolutions is very small and the surface seems to converge with the
resolution. This is true for the area of the surface as well as for its shape as is shown in figure
5.9 where next to the area also the largest expansion coefficients of the surface are displayed.
The difference of the surface area between the coarsest resolution shown, h = 0.125, and the
finest resolution, A = 0.03125, is only of order 10~*.

For a quantitative examination of the influence of the grid spacing on the surface found
by the horizon finder algorithm I will consider the convergence of the area as well as of the
major expansion coefficients.

The convergence is computed in the following way: A function S can be approximated at
any grid point x and for any grid spacing h by a Taylor expansion with a truncation error of
order ¢ by

S(h,x) = S(x) + h7¢(h, x) (5.22)

where S is the exact solution of the function and €(h) is a smooth error term of order one in
h.

Since the exact solution S is generally unknown we can utilize three functions S which
are numerically computed at three different resolutions and calculate the convergence from
these. For a refinement of b, i.e. the resolutions &, bh, and b%h, we consider the ratio

L S(0*h,x)— S(bh,x)

— = . 2

M S(bhx—S(hx) (5:23)
With equation 5.22 we obtain at a grid point x

L (b%h)7 — (bh)°

= 2 T T .24

M) — ke (5:24)
Thus we can calculate the convergence exponent as the three-level convergence o3 by

S(b*h,x) — S(bh
o3(h,x) = log, (6%, x) = S(bh, x) (5.25)

S(bh,x) — S(h,x)

where the minus denotes a point-wise subtraction of the values which is only valid if the grid
points for the three resolutions coincide. If the grid points do not coincide we can compute
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Figure 5.8: Location of the apparent horizon in the three coordinate planes along the axes
for Brill-Lindquist initial data with black hole masses M; = 1, M; = 1.5 and locations
c12 = (£0.6,0,0). The data is computed with Robin boundary conditions for the three
resolutions h = 0.03125, 0.0625, 0.125.
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Figure 5.9: Area Aap and major expansion coefficients ay,, of the apparent horizon for the

same initial data as in figure 5.8. Also shown are the convergence exponents os.
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the [2-norm of the function first and perform the subtraction afterwards. This leads to a
convergence exponent which is position independent.

If the exact solution S(x) of the function under examination is known, it suffices to
calculate the two-level convergence o5 as

S(bh,x) — S(x)
S(h,x) - S(x) (5.26)

a2(h,x) = log,

This can also be computed with the [2-norm of the functions if the grid points do not coincide.
From equation 5.26 results that, when the grid spacing is doubled the error must increase by
a factor of four and for a grid spacing which is coarser by a factor of four the error increases
16 times.

Equations 5.25 and 5.26 generally allow for the calculation of the convergence exponent.
If an algorithm is implemented to be accurate to second order it should show second order
convergence. Thus an implementation can be tested in this way, as I will do in section 6.1
with solutions for puncture initial data. Furthermore also the calculation of the convergence
in numerical evolutions is possible. As convergence can be lost during an evolution, e.g. due
to boundary effects, an evolution can be verified by its convergence. I will do so in chapter 7.

Applied to the apparent horizon area and the expansion coefficients equation 5.25 yields
the following result. The convergence exponent o3 for the area is o3 = 3.21 and for the
expansion coeflicients the convergence order is between 1.7 and 2.3. As the initial data is
implemented to be second order convergent there should be second order convergence in each
coordinate direction. Hence a surface in this data is expected to be convergent to fourth
order. Nonetheless, the surface found by the apparent horizon finder algorithm is convergent.
Later, in chapter 6, I will study the case of an apparent horizon in initial data which has
been calculated numerically.

5.3 Gravitational Waves

As gravitational waves emitted from a system of colliding black holes are of particular as-
trophysical interest I will examine such waves, which will be extracted from the numerical
evolutions of binary black hole systems, in chapter 7. As there are a number of ways to
treat the problem of radiation extraction I will focus here on the first order gauge invariant
extraction technique developed by Abrahams [2] and is implemented into Cactus.

The method uses the fact that the spacetime surrounding a perturbed black hole is basi-
cally spherical, with some non-spherical perturbation superposed. This enables us to examine
the spacetime applying perturbation theory while it is still evolved fully nonlinear by the
numerical code. We can extract two independent wave modes, even- and odd-parity which
correspond to two polarization modes of the waves (The odd-parity perturbations have parity
(—1)"*! and involve angular momentum). The procedure is detailed in [1].

We assume the numerically calculated metric g, to be of the form

Ju = guu + haﬁ (527)

where §,,, is a static background metric and A, a metric perturbation tensor.
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The spherical symmetric background metric in general exhibits the form
G = diag(—N? A% R? R*sin?0) (5.28)

where N, A, and R are functions of the coordinate radius r and time t¢.

The non-spherical perturbation tensor for even-parity perturbations is then

~NH"Y,, B, 7™ Yinn g 0
= g™y,  AH{"™Y, B i 0 0 (5.29)
By, W™y e R? (KU 4 gm 22y, 0
0 0 0 R*FY,
with
F = KU gin?g + GUm) 8—2 + sinf cosd 9 (5.30)
= 962 90) '

The functions Hg, Hy, Hy, ho, b1, K, G are referred to as the ‘Regge-Wheeler perturbation
functions’. They are functions of the radial and the time coordinates only. The Y}, are the
usual spherical harmonic functions of order (I, m).

(rnum)

The perturbation functions are determined by projecting the full numerical metric g,
onto the perturbed metric by integration over a coordinate two-sphere surrounding the source.
This utilizes the orthogonality of the spherical harmonics ¥y, leading e.g. to
1 l
o f 0 i d2 = (5.31)
Since the metric g, is gauge dependent the found perturbation functions are gauge de-
pendent, too. According to Moncrief [46] certain linear combinations of the perturbation
functions and their derivatives are gauge invariant. Thus we can construct a gauge invariant
function t which is a solution to the ‘Zerilli equation’. This wave equation describes the
propagation of even-parity gravitational waves and reads

9? 9? I
@lﬁ— W¢+V()(r)¢: 0 (5.32)
with the ‘tortoise coordinate’
.
_— 2Min(— -1 5.33
r r 4+ n(2M ) ( )

and a gravitational scattering potential V) (r).
When we assume the form of A to be 1 — 2M/R the gauge invariant function #§ , the
“Zerilli function’, can be written as (cf. [28])

2(1— 1)(1+2) 4RS2E{™ + 1(1 + 1) RE{™

I(141) I(I+1) -2+ M

Vi = (5.34)

for any value of [ and m, with

S=1-22 (5.35)
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and the Moncrief functions

K™= k0 4 sRGGY —2%H1(lm)
Im ~(Im
oy _ HYM 1 0 (REUMN (5.36)
2 25 2/SIOR\ /S
The energy radiated in each Im-mode is given by
even 1 e 2
Bl = sz | (0g) dr (5.37)

The extraction of odd-parity waves is analogous to the even-parity extraction. The per-
turbation tensor has a slightly different form and the gauge invariant linear combinations
building the odd-parity wave modes ¢ have to fulfill the Regge-Wheeler equation, which is
of the same form as the Zerilli equation with a different scattering potential.

The energy emitted from any odd-parity Im-mode is

(odty _ 1 [ 02

The described wave extraction procedure has been implemented into Cactus by Allen [6].



Chapter 6

Examination of Puncture Initial
Data

Now I turn to the study of puncture initial data. I will focus on data sets representing a
binary black hole system with finite linear and/or angular momentum, i.e. initial data with
a numerically generated metric due to the numerical solution for the conformal factor, as
described in section 3.4. I will study some regions of the parameter space for binary black
hole initial data. This will be in respect to the extraction of mass and momentum as well as
in the examination of apparent horizons.

As was explained in section 3.4 puncture initial data is defined by the analytical extrinsic
curvature given by the sum (eq. 3.22)

N
K& g, = Z K?DITS(Z') (6.1)
=1

where each term of the is defined by eq. 3.21:

Ii'j"g% = 53 [Pn® + PP — (’%“b - n“nb)Pch]
r
3
—|——3(6“CdSCndnb + edeScndn“) (6.2)
-

and by the conformal factor (equations 3.23 and 3.24)

1 N M
Qﬁ:;*‘u% X:;ﬁ (6.3)
where the regular part « is a numerical solution of the elliptic equation (eq. 3.25)
Au+ %X7I§'“blgab(1 +xu)""=0. (6.4)
This initial data solves the constraint equations given by 3.1 and 3.2:
ham =R - K%K, = 0 (6.5)
mom? = D,K® = 0 (6.6)

However, in numerical calculations on discrete grids these equations can be violated. This
vields a test for the quality of the numerical solution which we will perform below.
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6.1 Convergence of the Initial Data Solver

For puncture initial data with finite linear and/or angular momentum the conformal factor
has to be calculated numerically as was described in section 3.4. For the convergence test I
will focus on a particular data set which has already been studied by Briigmann [26]. This
had been done with Briigmanns code ‘BAM’ which was later ported to Cactus. The multigrid
algorithm for solving the elliptic equation 3.25 is coded to be second order convergent.

The overall scale of all examined data sets will be set by the .
mass M. Here the data set has the following parameters: masses:
M, = 1.5, My = 1.0, location: ¢ 2 = (0,0,£1.5), linear momentum s,
P2 = (£2,0,0), and angular momentum (spin) S; = (0.5, -0.5,0), m, @ P,

Sy = (0,—1,—1). The orientation of the system and the momenta
and spins is sketched beside. (The sign of the spin components have
been switched here in comparison to [26] since it appeared that in
‘BAM’ there had been a sign error for the spin part of the extrinsic ca
curvature. With this switched spin signs I obtain the same data set |
as was studied in [26].)

6.1.1 Convergence with Grid Points Next to Punctures

The first convergence check is for data where the grid is chosen in a way that next to the
punctures always a grid point is located in a coordinate distance of just 0.01 along each of
the coordinate axis. Further, static boundary conditions are applied to the elliptic solver.
This should resemble the case which was studied by Briigmann.

The results of the convergence test are shown in figure 6.1. In figure 6.1 (a) the rescaled
metric component v../¢* is displayed for four different resolutions. There is not really a
tendency to the ‘right” metric visible, i.e. a tendency to the metric we would expect theo-
retically for infinite resolution. Rather the three finer grid solutions seem to show the same
metric while the solution on the coarsest grid is clearly distinct. It seems that there is kind
of a ‘pathological’ resolution below which the multigrid solver for the initial data does not
converge. However, we have also to take into account that for the coarsest resolution there
are only 32 grid points along the z-axis.

In figure 6.1(b) the solution of the Hamiltonian constraint is shown. The solution has
been rescaled under consideration that a resolution coarser by a factor of two should lead to
an error four times as big. Thus due to the rescaling the curves should lie on top of each
other. This condition seems to be fulfilled in a wide range of the computational region. Only
near to the punctures where the extrinsic curvature has its extrema the convergence rate is
smaller. The solution on the coarsest grid is again distinct. Further in the case of the finest
grid there are negative values for the Hamiltonian constraint at the puncture. Obviously the
constraint is not convergent at these points.

An even stronger statement about the convergence can be drawn out of the calculation
of the convergence exponents. In part (¢) of figure 6.1 the two- and three-level convergence
exponents are shown calculated from the three coarser grids.

The initial data solver is at best first order convergent at the punctures, since here u is
only C? here. This is reproduced as is visible in the diagram where the convergence expo-
nents in the vicinity of the punctures are less than 2 and undefined for the grid points nearest
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Figure 6.1: Convergence of the binary black hole initial data for grid points 0.01 next to
the punctures in the three coordinate directions calculated with static boundary conditions:
a) The rescaled metric for different resolutions, b) The Hamiltonian constraint for different
resolutions, ¢) convergence exponents for the Hamiltonian constraint.
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to the punctures when the finest grid is considered. The convergence exponents o3(0.125)
and 02(0.250) which include the coarsest grid in the calculation are clearly distinct from
the expected convergence exponent of 2. This is even stronger for negative values of z, the
direction where the black hole with the larger mass is located. This effect cannot be seen in
diagram (b), since the deviation lies mostly in the region where the Hamiltonian constraint
is almost zero. Hence, the difference in the values of the Hamiltonian constraint can not be
resolved. However, the convergence exponent ¢2(0.125), which does not involve the coarsest
grid, shows very good second order convergence in the whole computational domain except
in the direct neighborhood of the punctures.

In conclusion this examination of the convergence shows that the solutions for the initial
data with the initial data solver implemented in Cactus does not reproduce the results which
have been presented in [26]. However, for finer grids, i.e resolutions of h < 0.25, the solutions
are convergent as expected on nearly the whole computational region. But there exists a
resolution below which the solution is not convergent any more.

6.1.2 Convergence with Grid Points at the Punctures

In contrast to a configuration with grid points in the direct vicinity of the punctures it is
possible to arrange the grid such that grid points will be located directly at the punctures.
Analytically the conformal factor ¢ diverges at these points but one can avoid this in the
numerics by explicitly introducing a very large, but numerically manageable value for the
conformal factor at the puncture. In Cactus this is done by the choice ¥|puncture = 5 - 10 AL
with the black hole mass M.

In figure 6.2 the convergence test for the same initial data as in the preceding section is
shown. But here grid points are located at the punctures. In this case the rescaled metric
component 7. /¢, displayed in diagram 6.2(a), is approaching the shape of the metric for the
finest grid from the lower side. With finer grids the difference between the solutions decreases.
Hence, the solution seems to converge. The rescaled solution of the Hamiltonian constraint
also shows a convergent behavior as is displayed in figure 6.2(b). In difference to the case
with grid points located near the punctures the solution for the Hamiltonian constraint has no
negative values and shows second order convergence over the whole computational domain
except in the neighborhood of the punctures. Counsidering the convergence exponents as
shown in diagram 6.2(c) there is a good second order convergence for all examined resolutions.
The convergence exponents obtained from the coarser grids are slightly smaller than two.

To conclude, the convergence behavior of the solution for initial data with grid points at
the punctures is better defined as that for grid with points near the punctures. The behavior
here is comparable to the results of Briigmann [26].

Finally in figure 6.3 a convergence test for initial data with Robin boundary conditions
is shown. In this initial data set spin components with flipped signs are used. Thus the
initial data is defined by the following parameters: masses: M; = 1.5, My = 1.0, loca-
tion: ¢1 2 = (0,0,£1.5), linear momentum P; 3 = (£2,0,0), and spins S; = (—0.5,0.5,0),
S2 = (0,1,1). In addition, the boundary is at 18 as opposed to 8 in the two preceding conver-
gence studies. The rescaled metric, displayed in diagram 6.3(a), seems again to be convergent
as in the previous convergence study. This is also true for the Hamiltonian constraint in 6.3(b).
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Figure 6.2: Convergence of the binary black hole initial data with grid points on the punctures
computed with static boundary conditions: a) The rescaled metric for different resolutions,
b) The Hamiltonian constraint for different resolutions, ¢) convergence exponents for the
Hamiltonian constraint.



50 6 Examination of Puncture Initial Data

1.60 I \ \
. a | — 7,,/¢'(0.09375) -
| 4
- - - 7,00°(0.1875) -
1.40 - - 1,/0°0.375)

1.20

l.OO L T T T I I I ST R L
-18.0 -13.0 -8.0 -3.0 2.0 7.0 12.0 17.0
0.010 | =
b — ham(0.09375)
- - ham(0.1875)/4 -
0.005 - — - ham(0.375)/16 _
0.000
_0.005 7\ I T T T I P ! I [ R L ]
-18.0 -13.0 -8.0 -3.0 2.0 7.0 12.0 17.0
4.00 T I I
. C 0,(0.1875) -
f ~ 0,(0.1875) -
2.00 |- - 6,(0.09375) |
000 B T y
. ) / ]
i ‘ [ |
_200 N IR R B \M T FER T N NS SRR RN SO N BN

-150 -100 -5.0 0.0 5.0 10.0 15.0
z

Figure 6.3: Convergence of the binary black hole initial data computed with Robin boundary
conditions for grid points located at the punctures: a) The rescaled metric for different
resolutions, b) The Hamiltonian constraint for different resolutions, ¢) convergence exponents
for the Hamiltonian constraint.
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Diagram 6.3(c) shows the convergence exponents for the Hamiltonian constraint. In the
inner region, z < 5, of the computational domain the convergence is second order. Further
out, where the absolute values of the constraint are already very small, there is a singularity in
the convergence exponents resulting from a line crossing of the Hamiltonian constraint values
for the different resolutions. That is, when we consider the definition for the three-level
convergence (equation 5.25)

S(b*h,x) — S(bh,x)
S(bh,x) — S(h,x)

a3(h,x) = log,

is it obvious that the denominator becomes zero when the lines of the constraint for the
two finer grids cross each other. Thus, in the limit to the crossing point the ratio becomes
infinite. If S(bh,x) is greater than S(h,x) the difference becomes positive infinite at the
crossing point. If the crossing point is approached from the other side S(bh, x) does have the
smaller value and the difference becomes negative infinite in the limit to the crossing point.
This leads to the particular shape of the dependence on the z-coordinate.

Further out in the computational domain only the two-level convergence for the finest
grid (02(0.09375)) is defined, since, due to the line crossing, the ratio in equations 5.25 or
5.26 for the other convergence exponents is negative.

This analysis shows that the convergence in the outer regions of the computational do-
main differs from that of initial data computed with static boundary conditions when Robin
conditions are applied. This particular difference is caused by the form of the Robin con-
dition. As opposed to static conditions, Robin conditions are dependent on the boundary
location, which is obvious from equation 3.29. This introduces additional terms in the ra-
tio 5.23 modifying the convergence exponent. However, the deviations from second order
convergence in the study done here, occur only in the outer region of the grid, where for
example the value of the Hamiltonian constraint is already very small. Since the inner region
still converges as expected I will apply Robin boundary conditions for most of the mass and
momentum extractions in the next sections and also in the task of evolving the initial data
as presented in chapter 7.

6.2 Connection to Analytic Data

The puncture initial data invented by Brandt and Briigmann [20] is a generalization of the
analytic initial data sets describing a Schwarzschild black hole and the Brill-Lindquist initial
data as was depicted in chapter 3. I will study now how the numerical solution for the con-
formal factor which has to be computed for finite linear and/or angular momentum emerges
from the analytic Brill-Lindquist solution. This will give more insight in the character of this
type of initial data.

Due to the finite momentum the analytically given extrinsic curvature will be nonzero. l.e.
the initial slice will be curved as embedded in three-dimensional Cartesian space. Furthermore
the regular part u of the conformal factor will be different from unity as was already visible
in figure 3.4 for a single black hole. Due to the numerical solution of the conformal factor
on a discrete grid the Hamiltonian and momentum constraints are expected to be violated
at least slightly.
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6.2.1 Small Momenta

In figure 6.4 the solution of puncture initial data for small linear mo-
menta is shown. The examined system is a binary black hole system T

with the punctures located at ¢; 9 = (0,0,41.5) and vanishing spins on v, @— P
both holes. The initial data solutions are shown for linear momenta
P = (P,,0,0) which are oriented collinearly on both holes. That is, the
momentum of hole number 1, located at ¢; = (0,0,41.5), is +P, and
the momentum of hole number 2, located at ¢; = (0,0, —1.5),is — P, as c2

is sketched in the neighboring figure. P, <_| M2

In diagram 6.4(a) the regular part u of the conformal factor in z-direction is shown for
static boundary conditions fixing the boundary value of « to unity. For vanishing linear
momentum the initial data is of the analytical Brill-Lindquist type. Thus it is, according to
equation 6.3, v = 1 in the whole computational domain which is also visible in the diagram.
For increasing linear momentum u grows symmetrically about z = 0 in the interior of the
computational domain. As expected the maxima of u are at the punctures with a local
minimum between them. This behavior is also reproduced by the rescaled metric component
7../¢* shown in diagram 6.4(b). The dependence on the maxima of these quantities is non-
linearly on P,.

Diagram 6.4(c) displays the extrinsic curvature component K. in z-direction. This com-
ponent is the only one which has finite value along one of the coordinate axes. According to
equation 3.3 it is given by

Ky =0 2K, .

K, is zero for vanishing linear momentum since K’,'j = 0 for the whole computational do-
main. For finite momentum K. becomes non-zero around the punctures. The values of K.
are linearly dependent on the momentum as can be read off the diagram. At the punctures
the extrinsic curvature is zero due to the division by the square of the conformal factor.

The values of the constraint equations for the initial data with small momenta are dis-
played in figure 6.5. For the analytic case of P, = 0 the constraints are fulfilled by being
zero. For non-zero momentum the constraints are increasingly violated due to the numerical
solution for u. However, the violation is very small and only appears near the punctures. It
is due to the discretization of the grid and are not pointing to a problem with the initial data
solver.

For comparison initial data computed with Robin boundary conditions is shown in figure
6.6. Due to the different boundary treatments the regular part u of the conformal factor
is now also distinct from unity at the boundary and grows with the linear momentum P,.
Due to this the conformal factor has bigger values in the whole computational domain than
for data computed with static conditions. Also this is true for the metric as is shown by
the metric component 7ZZ/¢4 in diagram 6.6(b). The extrinsic curvature component K.
in diagram 6.6(c) is visually not distinguishable from that for static boundary treatment.
However, taking the difference of both quantities shows a difference below 0.02 for P, = 0.5.
This is caused by the different values of the metric components and the conformal factor.

The constraint equations are violated to about the same order as for the initial data com-
puted with static boundary conditions.
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Figure 6.4: Solution of the initial data solver for a binary black hole system with small linear
momenta in x-direction, P, computed with static boundary conditions: a) regular part u of
the conformal factor, b) rescaled metric component 7../¢*, c) non-vanishing component of
the extrinsic curvature.
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Figure 6.5: Constraints for the initial data for the binary black hole system with small linear
momenta in x-direction with static boundary conditions: a) Hamiltonian constraint, ham, b)
x-component of the momentum constraint, mom,.

In figure 6.7 the extracted quantities ADM mass mapys and angular momentum in y-
direction .J, are displayed as a function of the linear momentum P,. The mass is increasing
with the linear momentum in a non-linear way which is to be expected since the mass is
calculated from the metric 7;; which itself shows a non-linear dependence on the momentum.
In contrast to this the total angular momentum shows a linear increase with the linear
momentum. This can be explained by the spin’s dependence on the extrinsic curvature.

When we rewrite the part of the extrinsic curvature KgrBr (cf. equation 3.22) depending
only on the linear momentum parameter P* with reference to the origin, we obtain new terms
of O(r~?) as was discussed by York in [56]. These terms can be separated into two distinct

types:
K 5, =K9+KY (6.7)

The latter term, K’g, carries no angular momentum while the first one does. It has the form
of the normal spin part of the Bowen-York extrinsic curvature (equation 3.21)

o173 3 ac C a
KY = S Tongn® 4 & T.nan) (6.8)

where r is considered in respect to the origin and the angular momentum J is given by the
classical definition

J=2cxP. (6.9)
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Figure 6.6: Initial data for small linear momenta in x-direction on the black holes of the
binary black hole system computed with Robin boundary conditions: a) regular part u of the
conformal factor, b) rescaled metric component v../¢*, ¢) non-vanishing component of the
extrinsic curvature.
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Figure 6.7: Extrapolated ADM mass (a) and angular momentum (b) for puncture initial
data representing a binary black hole system with small linear momenta on the black holes.
The numerical solution for the conformal factor u was performed using Robin boundary
conditions.

This relation is directly reproduced by the extraction as is obvious from diagram 6.7(b).

I will use this relation below to strengthen the confidence in the extraction procedure
when considering initial data sets with higher momenta.

The momenta in this study were chosen such that the total linear momentum of the
binary system is expected to vanish. The dependence on the extracted linear momentum on
the extraction radius for the case of P, = 0.5 was shown in figure 5.1 for the case of. The
extrapolated momentum components are less than 1076, The largest component is p,, the
direction of the intrinsic linear momenta while the two other components are at least two
orders less in size.



6.3 Examination of the Parameter Space 57

6.2.2 Small Spins

The alternative to finite linear momentum to obtain non-analytic initial data sets is the ap-
plication of finite spin on the black holes.

In figure 6.8 the solution for puncture initial data for a small spin S, on the upper black
hole (¢; = (0,0,+1.5)) is shown. Diagram 6.8(a) shows the rescaled metric component
v../¢*. For increasing spin the metric grows around the location of the upper puncture
where also the maximum of the regular part of the conformal factor « locates. The particular
shape of the metric is due to the rescaling by ¢. The values of the Hamiltonian constraint
and the y-component of the momentum constraint are displayed in diagrams 6.8(b) and (c),
respectively. As expected the constraints are slightly violated in the neighborhood of the
upper black hole. Again, there is also a small violation of the constraints in the vicinity
of the lower black hole due to the numerical solution of the elliptic equation 3.25. This is
directly visible in the Hamiltonian constraint where the violation around the upper black
hole is about one order less than around the lower black hole. For the momentum constraint
the violation on the lower black hole is a factor of about 10° smaller than on the upper black
hole.

The components of the extrinsic curvature Ky, which are non-zero along the coordinate
axes are shown in figure 6.9. In contrast to initial data with only finite linear momentum
several components have finite values. This is due to the terms in the extrinsic curvature
involving the Levi-Cevita tensor € (cf. equation 6.2). The highest curvature is located
directly around the upper black hole as displayed by K,. in z-direction the in lower right
diagram of the figure.

abc

The quantities due to the extraction procedure are displayed in figure 6.10. The depen-
dence on the ADM mass mapys, displayed in diagram 6.10(a), is non-linear on the amount
of spin, as in the case of finite linear momentum. The total angular momentum (fig. 6.10(b))
has to be linearly dependent on the intrinsic spin. The extraction reproduces this linearity
in numerical accuracy. Finally the linear momentum, which should vanish here too, shows
no special dependence on the intrinsic spin. Its extracted value is less than 1076.

6.3 Examination of the Parameter Space

After examining the region of small linear and angular momentum I will now turn to the
examination of the parameter space of binary black hole initial data with respect to the ex-
traction of the ADM mass and the momenta.

In general, the parameter space possesses 20 dimensions. Each black hole possesses a
location ¢, a linear momentum P, and a spin S. Since these quantities are vectors with three
components each there are ten degrees of freedom for each black hole when we consider also
the intrinsic mass M of the hole. Due to symmetries these degrees reduce effectively to 12
degrees of freedom: The orientation of the black holes in the grid is not of interest. Thus the
location reduces to one parameter, the coordinate distance d of the punctures. In addition
only the mass ratio My /M, of the holes is important reducing the mass parameters to one.
Finally the system has a rotational invariance around the axis connecting the punctures. This
adds a further reduction of degrees of freedom by two, one for the linear momentum and one
for the spin. I.e. we can specify both spin (or momentum) vectors each in a plane in which
the connection line of the punctures lies and choose the angle between these planes.
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Figure 6.8: Solution of the initial data solver for a binary black hole system with small spin
S, in x-direction on the upper black hole computed with static boundary conditions: a)
rescaled metric component 7../¢* b) Hamiltonian constraint ham, c) y-component of the
momentum constraint mom,,.
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Figure 6.9: Nonzero components of the extrinsic curvature along the Cartesian coordinate
directions for the initial data representing a binary black hole system with small spin in
x-direction on the upper black hole displayed along the Cartesian coordinate directions.
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Figure 6.10: Extracted ADM mass mapy (a) and angular momentum J, (b) for binary black
hole initial data with small spin on the upper black hole.

This large number of degrees of freedom makes it intractable to examine the whole pa-
rameter space. Therefore I will focus on some tests to examine areas of the parameter space
in order to point out general features and dependencies. Furthermore, in all tests the pa-
rameters are chosen such that the total linear momentum of the black hole system vanishes,
as this is necessary for the total angular momentum to be well defined as was depicted in
section 5.1.1. In particular the linear momentum on each black hole is chosen to be oriented
normal to the axis connecting both punctures and the amount of linear momentum is equal
for each hole.

I will examine the dependence on the extracted physical quantities on the coordinate
separation of the black holes, on the size of the linear momentum, and on the mass ratios
and the spin of the holes. Further I will examine the case of large total angular momentum
due to high linear momenta on the holes.

6.3.1 Variation of Black Hole Separation

Figure 6.11 displays the dependence on the extracted ADM mass on the coordinate separation
d of the punctures for vanishing and for three finite linear momenta.

For vanishing momentum the extracted mass is not dependent on the separation of the
punctures. The mass is just the sum of the intrinsic masses of the single black holes as was
already shown by Brill and Lindquist [23]. But this is no longer true for systems with finite
linear momentum as the mass increases here with the puncture separation. The increase rate
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Figure 6.11: Extrapolated ADM mass mapas in dependence on the separation of the black
holes holes for different momenta of the holes.

diminishes with increasing coordinate distance of the punctures pointing to the possibility
that, for the limit of very large separations, the mass will approach a constant value. Such a
behavior is physically motivated since the mass of a system of two black holes which are so
far separated from each other that they are effectively independent will be just the sum of
the single black hole masses.

The ADM mass for single black holes with intrinsic masses M = 1.0 and M = 1.5 can be
extracted for P, = 3 to be mapy = 3.33 and mapy = 3.55, respectively. The comparison
of the sum of this masses (my,; = 6.88) with the extracted mass for the correlated binary
system, which is mpinary = 4.4 for d = 8, shows that the correlation of the black holes is
still strong at this distance. Hence the correlation will extend much further out. The ratio
of these masses is 1.56. Compared to the analogous mass ratio of 1.94 for the data set with
P, = 5, it is obvious that the correlation region is increasing with the intrinsic momentum.
However, in the numerical simulations which are currently possible such large separations
that the correlation is negligible can hardly be reached.

In figure 6.12 the extracted total angular momentum .J, dependent on the puncture coor-
dinate separation d is shown for the three linear momenta P, = 1, 3, and 5. As for the initial
data with small linear momentum on the black holes, studied in section 6.2.1, the dependence
on the linear momentum is linear as is the dependence on the distance. This reflects again
the validity of equation 6.9.

However, for larger distances there is a slight difference to the theoretical value for the
angular momentum. This is best visible in the case of P, = 5. Here equation 6.9 yields
for d = 8 a total angular momentum of J, = 40 but the extracted value is about 39. For
P, = 3 and d = 8 a small difference is visible, too. But it is smaller, in percentage terms,
than for P, = 5. This error is due to the extraction procedure: The masses were extracted
with a minimal extraction radius of r,,;, = 20. Since the multi-pole region increases with
the separation and also with the momenta of the black holes the extraction with constant
minimal radius can lead to errors as in this case. This can be prevented by applying larger
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Figure 6.12: Extracted total angular momentum J, in dependence on the separation of the
black holes for different momenta of the black holes.

grids and using a bigger minimal extraction radius which pushes the extraction procedure
further out into the asymptotic region.

6.3.2 Variation of Black Hole Momenta

In section 6.2.1 I have shown that for small linear momentum the ADM mass increases non-
linearly with the momentum. In figure 6.13 the ADM mass is shown for momenta up to
P, = 5 and three different puncture separations. For d = 5 and d = 3 the mass grow is non-
linear for momenta up to P, < 1.5. With higher momentum the mass increases linearly. For
P, > 3.5 the slope of the mass curve decreases which is again due to the limited extraction
radius.

In contrast to the described linear behavior is the dependence on the mass on the mo-
mentum for the case of a coordinate separation of d = 1. Here the extracted mass does not
show a linear growth with the momentum. This might be caused by the small separation
and hence strong correlation of the two black holes. The extent of the region of non-linear
mass growth seems to increase with diminishing puncture separation, as is visible in figure
6.13. Thus, it has grown so much in the d = l-case that no real linear dependence on the
momentum is visible any more.

The dependence on the total angular momentum J, on the intrinsic black hole momentum
is linear as is shown in figure 6.14. This is expected according to equation 6.9. For larger
separations of the punctures the rising extraction error is again visible. The error is about 2
percent for d =5 and P, = 5.

6.3.3 Variation of the Black Hole Mass Ratio

In figure 6.15 the extracted ADM mass is shown in dependence on the mass ratio M;/M;
of both black holes. The mass My of the lower black hole will be kept fixed as M, = 1.
Hence, the mass ratio is simply given by the mass M; of the upper black hole. Four different
distance-momentum configurations have been tested.
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Two cases with vanishing linear momentum are displayed in figure 6.15. For this initial
data of Brill-Lindquist type the extracted mass should equal for the two puncture separations
d =3 and d = 6. This is reproduced up to a small error by the extraction procedure. Since
the theoretical mass myy,, which is also shown in figure 6.15, is given by

M
M, = = + My = M; + 1 (6.10)
M,

it is obvious that the extraction error also increases with the mass ratio. The behavior of
the extracted mass is analogous to that of the extracted mass for a single black hole, as was
presented in section 5.1.3. The extraction error is even bigger for the larger separations of
the punctures. For M; = 10 the error is already about 9 percent for d = 3 and 11.5 percent
for d = 6. These large errors point out that the effect of the mass parameter on the size
of the multi-pole region is much bigger than the effect of linear or angular momentum. But
larger puncture separations still increase the error.

The extracted masses for finite linear momentum of size P, = 4 show again the mass
increase effect with the puncture distance. The masses for both separations are significantly
bigger than for vanishing momentum and grow with the puncture separation. The difference
to the masses extracted for P, = 0 diminishes with increasing mass M;. This is due to the
fact that the parameter for the Bowen-York extrinsic curvature is the intrinsic momentum,
not some velocity. Hence the system is expected to be less ‘dynamic’ for higher mass ratios
and constant intrinsic linear momentum. This causes a mass increase which is smaller than
for the initial data with P, = 0. For higher mass ratios the d = 3 cases are of comparable
mass but the ‘dynamic’ d = 6 case still shows a higher ADM mass than the ‘static’ (P, = 0)
one. This is also due to the growing extraction error which is even bigger for finite momentum
and larger puncture separations.

In figure 6.16 the corresponding total angular momentum in dependence on the mass
M, is shown for the ‘dynamic’ (P, # 0) initial data sets. Since here equation 6.9 with
J = 2 ¢ X P holds again the expected total angular momenta are J.(d = 3) = 12 and
J.(d = 6) = 24. However, for the small minimal extraction radius of ry,;, = 20 these values
are only reproduced for equal masses. For larger mass ratios the extracted angular momentum
decreases due to the wider multi-pole region of the black hole system. The error reaches about
12 percent for both puncture separations for the mass of M; = 10. This coincides with the
large error in the mass extraction.

The results are by far better when an extraction on a much bigger grid is considered.
In figure 6.16 also the extraction of angular momentum with a minimal extraction radius of
Tmin = 60 on a grid with boundary at rpoung = 96 is shown. There is still a very small de-
crease in the amount of extracted spin but the error amounts only to 1.5 percent for M; = 10.

This analysis shows that the intrinsic black hole masses have a very large influence on
the size of the multi-pole region in the slice. Thus an accurate extraction of the mass and
angular momentum is only possible on very large computational grids.

6.3.4 Spinning Black Holes

In addition to intrinsic linear momentum I will now examine binary black hole systems which
also include intrinsic spin. In figure 6.17 the mass extraction for three different data sets
is shown. These data sets possess two punctures located at ¢; 2 = (0,£1.5,0) and a mass
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Figure 6.17: Mass mapas of the binary black hole system for different spins on the holes and
two different linear momenta.

My = 1.5 of the upper black hole. To examine systems in dependence on the intrinsic spins
the same spin vector S is applied on both holes.

The first case examined is a system with vanishing intrinsic linear momentum. If the spin
vanishes too, the extracted mass is mapys = 2.5 which is just the sum of the single black
hole masses as is expected for this Brill-Lindquist type data set. For finite spin the mass
increases non-linearly with the spin. The decreasing slope of the dependence for higher spins
should again be due to errors caused by the very limited size of the computational domain,
as was discussed in section 6.3.2. Thus the behavior of the extracted mass in dependence on
the spin is analogous to that in dependence on intrinsic linear momentum.

The other two systems examined in figure 6.17 are data sets with P, = 4 and P, = —4.
Analytically the total angular momentum just due to the linear momentum is J, = —12 and
J. = 12, respectively. This can also be extracted from the numerical data, as is shown in
figure 6.18. For vanishing spin both systems exhibit an equal mass of mapy = 3.61. For
increasing spin the extracted mass of the system with P, = —4 increases almost linearly up to
about S, = 7.5 where the slope decreases again due to the limited size of the computational
domain. In contrast to this the extracted mass for the P, = 4 system exhibits a decrease of
about 4 percent up to a spin of S, = 3. For higher spins the mass increases and shows a
behavior which is parallel to the mass of P, = —4 system in figure 6.17.

This deviating mass dependence for the data sets with momentum is caused by the fact
that the spin adds to the angular momentum due to the intrinsic linear momenta of the holes
for the system with P, = —4. As is visible in figure 6.18 the total angular momentum is
J. ~ 12 for S, = 0 in this system. For finite spin the total angular momentum further in-
creases with the spin. In contrast to this the spin subtracts from the angular momentum due
to the intrinsic linear momenta for P, = 4. Thus, the total angular momentum of J, ~ —12
for vanishing spin decreases in its absolute value up to the point where the spin parameter
reaches S, = 6. Here the angular momentum vanishes. Since the spin is applied on each hole

= +12 for S, = 6 which leads

the angular momentum of the system due to the spins is J(4,;n)
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Figure 6.18: Total angular momentum of the binary black hole system for different black hole
spins and two linear momenta.

to the vanishing total angular momentum as shown in figure 6.18. For higher spin the total
angular momentum increases further as now the angular momentum due to the spin exceeds
the angular momentum due to the linear momentum.

The effect of the diminishing amount of angular momentum in the system is reflected in
the decrease of the extracted ADM mass. But, due to non-linear effects, the minimum of the
mass does not coincide with the minimal amount of angular momentum.

6.3.5 High Angular Momentum

The tests up to now showed that the extraction of ADM mass and angular momentum is
possible to within a few percent up to spins and linear momenta of about a value of 10. I will
now consider the case of a binary black hole system with very high intrinsic linear momentum
on the holes and hence a very large total angular momentum. Here the question is how well
the extraction works for such high momentum.

In figure 6.19 and 6.20 the extracted mass M4pys and total angular momentum J, are
shown in dependence on the intrinsic momentum, respectively. There are two extractions
with different grid sizes and different minimal extraction radii for a constant grid spacing of
h = 0.75 where static boundary conditions have been applied. Further there is one extraction
for initial data computed with Robin boundary conditions.

According to figure 6.19 the mass extraction exhibits an almost linear dependence up
to about P, = 10. However, even in this regime the mass of the data sets computed with
static conditions show deviations by a slower than linear increase. For higher momentum
the increase slows down further and finally turns into a decrease of the extracted mass. As
is obvious from the diagram this is caused by the limited size of the computational domain
since the growth in the extracted mass keeps on longer for the larger grid and larger minimal
extraction radius than for the smaller grid. For initial data computed with Robin boundary
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conditions the extracted mass is increasing up to the highest linear momentum tested which
is P, = 200. But also in this case the slope in dependence on momentum decreases.

Thus the mass extraction from initial data computed with Robin conditions looks much
more reasonable than that for static conditions, since at least the mass decrease can not be
physical. However, there are no analytical mass values available for comparison. Thus, a
final decision up to which momentum the mass extraction reproduces the right result is not
possible here.

In contrast to this the theoretical value of the total angular momentum for the binary
black hole system is known. It is given by equation 6.9 and shown in figure 6.20. For
P, < 10 the extraction of the total angular momentum is right for initial data computed with
either static or Robin boundary conditions. For initial data computed with static boundary
conditions the extracted angular momentum for higher linear momentum shows deviations
from the theoretical behavior by being to large in amount. This is even more striking for
the extraction with small minimal extraction radius. For P, = 200 the deviation is about 81
percent for the larger grid and extraction radius and about 117 percent for the smaller grid.

The extraction error is much smaller for initial data computed with Robin boundary
conditions. Further, in contrast to the static boundaries, the extracted total angular mo-
mentum is of smaller amount than the theoretical value. For P, = 50 the absolute value of
the extracted angular momentum is about 8 percent to small. For comparison the extracted
angular momentum is already 60 percent too big at this point when static conditions are
used. Up to a linear momentum of P, = 200 the deviation increases to 38 percent, which is
again much smaller than for static boundary conditions.

To conclude, for initial data computed with Robin boundary conditions, it is possible to
extract the spin with an accuracy of about 10 percent if the value of linear momentum on
the black holes (P,) equals the location rpoyna of the boundary. For initial data computed
with static boundary conditions the error is about 5 times bigger. Thus, the size of the grid
imposes limits to the parameters settings which allow an accurate simulation of the black
hole system. This is independent of the size of the apparent horizons, which are usually small
compared to the extension of the grid as will be discussed below.
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Figure 6.19: Extracted ADM mass of the binary black hole system for high angular momen-

tum J, due to high linear momenta P,.
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6.4 Apparent Horizons

In the last section I discussed several configurations of puncture initial data in order to study
the parameter space for data sets representing binary black hole systems. In this discussion
I focused on the extraction of the ADM mass and the linear and angular momentum. These
examinations allowed for the discussion of several effects appearing in the initial data.

In this section I will focus on apparent horizons. As the finder algorithm for apparent
horizons in three dimensions is very time consuming I will restrict the examination even more
to some particular data sets.

6.4.1 Convergence for Numerically Created Initial Data

In section 5.2.3 I studied the convergence of the surface which was found by the apparent
horizon finder algorithm presented in section 5.2.1. For the analytical Brill-Lindquist data
studied, the shape of the found apparent horizon converged to about second order.

In figure 6.21 the shape of the apparent horizon for numerically generated puncture initial
data is shown in the three coordinate planes. This data set exhibits equal masses (mj o =
1.0) for the punctures located at ¢(; 5y = (£0.4,0,0). The intrinsic momenta are P 5y =
(0,+£0.8,0) and S, = (£0.8,0,0). This data set is currently under examination as a close
limit case studied with perturbation theory [48].

Like in the case with analytical initial data the shape of the found surface is converging to
some surface, too. Considering the area of the horizon and the expansion coefficients shown
in figure 6.22 the convergence of the surface is clear. Despite this, the convergence exponents
show the dependence on the numerical solution for the conformal factor. In contrast to the
Brill-Lindquist case studied in section 5.2.3 with convergence exponents for the expansion
coeflicients between 1.7 and 2.3, the convergence exponents here lie in a wider range, as
shown in figure 6.22. There are even cases like the coefficient a3y which does not show a
defined convergence at the considered resolutions. These effects are due to the fact that the
numerical solution for the conformal factor itself converges to second order as was shown in
section 6.1. Thus the numerical horizon finder algorithm is acting on the numerical generated
solution for the metric which can lead to deviations in the solution of the horizon finder.

6.4.2 Apparent Horizons for Varying Mass Ratios

In figure 6.23 the location of the surfaces found by the apparent horizon finder algorithm are
shown in the x-y plane for different mass ratios and three different linear momenta p. This
binary black hole data is analog to the systems examined in section 6.3.3 with vanishing spin
and the punctures located at ¢(1 ) = (0,£1.5,0). Again the upper black hole possesses a
linear momentum of P, = +p and the lower by has a linear momentum of P, = —p.

For p = 0 the horizon finder algorithm locates separated marginally trapped surfaces
for all mass ratios probed. However, only for the smaller mass ratios these surfaces really
represent apparent horizons. In the interval M; € [3.2,3.4] the transition from separated
horizons to a single common horizon occurs. The location of the surface at these masses is
shown in figure 6.23. For M; = 3.2 the surface found by the algorithm seems already to be
the right one, but since the mean square of the expansion is not small enough, the horizon
finder does not output this surface as an apparent horizon.
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Figure 6.21: Location of the apparent horizon in the three coordinate planes along the axes
for the close limit case. The resolution is from the outer side inwards h = 0.05,0.1,0.2.
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exponents.
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Figure 6.23: Location of the apparent horizons in the xy-plane for different mass ratios
and three different momenta. The solid lines show the separated trapped surfaces while
the dashed lines show the location of the common horizon. The dotted line is a surface
where the horizon finder algorithm stopped without finding a horizon. For the data sets with
p =25 and p = 10 the separated surfaces are shown for the masses My = 5,4, 3,2 (Beginning
from the outermost one.) The common surface is shown for M; = 5,4,3. For p = 0 the
separated surfaces correspond from the outermost surface inwards to My = 5,4,3,2,1.5 and
the common horizons to m; = 5,4, 3.4,3.3,3.2,2.

But for M; = 3.3 also the mean square of the expansion vanishes. Hence for M; > 3.3 the
common horizon exists. According to the definition of apparent horizons as the outermost
marginally trapped surface the common surface is now the apparent horizons. The separated
horizons are then simply marginally trapped surfaces but no apparent horizons.

For p = 5 and p = 10 the horizon search has been performed with larger mass intervals.

However, for M; = 4 an apparent horizon is found while none is found for M; = 3 in both
cases.

It is also obvious from figure 6.23 that the area of the found surfaces increases with
the mass ratio. This can be quantified in terms of the apparent horizon mass mypg. This
quantity has been defined in equation 5.20. Since here each of the separated horizons does
just correspond to a black hole with finite linear but vanishing angular momentum the horizon
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Figure 6.24: Mass of the separated apparent horizons in dependence on the mass M; and
different momenta P.

mass is simply given by the irreducible mass m;,.. Hence the horizon mass is here

Asn
MmAg = m \/ Tor (6.11)

In figure 6.24 the horizon masses of the separated horizons are shown for the three mo-
mentum studies shown in figure 6.23. It is obvious that, despite the fact that only the mass of
the upper black hole is increased, the mass of both apparent horizons increases. This shows
the correlation between both black holes and is also true for Brill-Lindquist data (P = 0).
The masses increase linearly with the momentum for both horizons.

For the Brill-Lindquist type data it is also visible that the sum of the horizon masses is
bigger than the ADM mass of the initial data which is just the sum of the mass parameters.
This effect can be explained analytically: According to Brill and Lindquist [23] the mass
mpy, of an apparent horizon (“bare mass” in the notation of Brill and Lindquist) in binary
Brill-Lindquist data is given by

My My
2d

mpriy = M; + (6.12)
where ¢ is the black hole index. Using this relation we can exactly reproduce the masses m g
found numerically by the horizon finder algorithm 6.24. The difference between the sum of
the horizon masses and the mass of the entire black hole system

Mint = Y _ MBLG) — MADM (6.13)

is the so called ‘interaction energy’ my,:. It is negative due to the “attractive forces” [23]
between the black holes. The amount of interaction energy increases with the mass M; as is
shown in figure 6.28 below.
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For initial data with finite momentum this analytical study is not possible. However it is
at least possible to study the interaction energy. I will do this in the next sections to study
the interaction energy in dependence on the momentum and spin of the black holes.

Another feature, which can be deduced from figure 6.23, is the shape and location of
the horizons in dependence on the momentum. For higher momentum the upper horizon is
displaced in the direction of negative values of z and the lower horizon to positive values.
Hence, the horizons trail the coordinate dependent “motion” of the black hole system, as
was discussed by Alcubierre [5]. For an event horizon one would expect the shift in the
opposite direction, i.e. in the direction of the momentum, since avoiding to fall into a black
hole should be harder if the hole is moving towards the observer. The displacement of the
apparent horizons is motivated by mathematical arguments considering equation 5.10. Mainly
the term I&'ijsisj which is odd under reversal of P! and n' causes the displacement. Also the
common apparent horizon which exists for a higher mass M is rotated in this way.

6.4.3 Separated Horizons for Finite Momentum and Spin

In sections 6.3.2 and 6.3.4 I studied the dependence on a binary black hole system on the
intrinsic linear momentum and on the spin of the black holes in respect to the extraction of
mass and total angular momentum. I will now examine apparent horizons of such systems.

In figure 6.25 the location of the apparent horizons in dependence on intrinsic momentum
and vanishing spin for the data set with d = 3 is displayed. As in the last section, the dis-
placement of the horizons with increasing momentum is visible. Again it is oriented contrary
to the momentum vectors and grows with the momentum.

Further, the horizon shrinks in the coordinates used for computation. Despite this the
horizon area which is computed from the 2-metric on the surface increases as is displayed
in terms of the horizon mass in figure 6.27. Since the horizons shrink in the computational
coordinates while the coordinate location remains fixed the proper distance of the horizons
increases.

However, the shrinkage of the horizon in the computational coordinates is mostly due to
the increasing extrinsic curvature, cf. equation 5.10, which is a property of the slice on which
the horizon is calculated. Thus, a statement if the proper separation between the black holes,
i.e. the physical distance of the black holes, increases with the intrinsic momentum is not
possible based on the apparent horizon study. Such a statement is only possible based on the
event horizon as this encloses the apparent horizon.

The location of the apparent horizons for varying spin on the holes and vanishing linear
momentum is shown in figure 6.26. The data sets are analogous to the systems with P, =0
and d = 3 examined in section 6.3.4. Here, the surface shrinks in the computational co-
ordinate system for increasing spin but the horizon remains centered around the puncture.
However, the area of the horizons is again increasing with the spin. In figure 6.27 the corre-
sponding horizon mass mp is shown. Since the holes possess finite spin the horizon mass is
given by equation 5.20 which involves the spin S of the black hole.

The behavior of the horizon mass when either the intrinsic linear momentum or the spin
is changed is non-linear with a transition to a linear dependence for higher values of spin or
momentum. Thus, this dependence is analogous to that of the ADM mass on momentum
and spin, as was depicted in sections 6.3.2 and 6.3.4. The growth in the mass is bigger in
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dependence on the spin than on the linear momentum. This is partly due to the spin term
in equation 5.20 which gives no contribution for the purely linear momentum case. However,
the irreducible mass m;, increases faster for the spin case, too.

In figure 6.28 the interaction energy my;,:, as defined by equation 6.13, rescaled by the
ADM mass is displayed for data sets with different mass ratio, with different intrinsic linear
momentum, and with different spin. For vanishing spin and momentum on the holes the total
amount of interaction energy m;,; increases linearly with the mass ratio of the black holes.
Normalized by the ADM mass this dependence is non-linear. Considering equations 6.13 and
6.12 for the interaction energy and the mass mpy together with equation 6.10 for mapas it
is obvious that mj,:/mapns will approach —1/3 in the limit of a high mass ratio My /My > 1
for a puncture separation of d = 3. This is consistent with the computed interaction energy
but the numerical extraction has not reached this limit. As was discussed in section 6.4.2 the
ADM mass and the horizon mass m 4y for the system with vanishing spin and momentum are
fully consistent with the calculations by Brill and Lindquist [23]. Hence also the computed
interaction energy must be right.

If only the spin is finite the total amount of interaction energy rescaled by m4pps decreases
with growing spin from its analytical value of -2/9 to about -3.9 at S, = 4. For larger spin
the normalized interaction energy remains almost constant with a small increase for spin
bigger than S, = 6. This should be due to numerical errors. Thus, in dependence on the
spin an asymptotic value for the normalized interaction energy is reached much faster than
in dependence on the mass ratio.

Depending on the linear momentum P, the behavior of the normalized interaction energy
is quite different. Starting, of course, from the analytical value of m;n:/mapy = —2/9
for P, = 0 the total amount of interaction energy diminishes up to a momentum of about
P, = 5 where it amounts to zero. For higher linear momentum the rescaled interaction energy
increases to positive values. From a classical Newtonian viewpoint, this would mean that the
attraction of the black holes diminishes leading finally to a non-attractive system, i.e. to a
system of two black holes which will not merge in the course of an evolution.

However, the size of the errors in the numerical extraction and in the found horizons is
not obvious. The extraction of ADM mass is correct up to errors of about one percent as
was discussed in previous sections. Since in the convergence studies of the apparent horizon
finder algorithm the surface area was strongly converging, the expected error is here below
one percent, too. But since the horizons are smaller here and their size is still diminishing
for increasing momentum the error might be bigger.

Nonetheless, a final statement if the positive interaction energy points to a binary black
hole system with non-merging holes, can only be deduced from long time evolutions of such
initial data sets. If a common apparent horizon emerges during the evolution of the black
holes they are definitely merging. Also it is possible that an event horizon enclosing both
punctures exists already in the initial data. Then the initial data would in fact represent a
single black hole.

Physically it is at least possible that a data set with higher linear momenta on the black
holes represents a system of two black holes which are not merging in the course of the evo-
lution. Since with increasing intrinsic linear momentum the proper distance of the apparent
horizons grows and the momentum of the holes increases, there will be a limiting point above
which the two holes will pass each other and do not merge to a single black hole in the course
of the evolution.
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Figure 6.25: Location of the apparent horizons in the xy-plane for initial data representing
a binary black hole system with intrinsic linear momentum P, = 0,1,3,5,7, and 9 and
vanishing spin on the black holes. For increasing linear momentum the surface shrinks in the
computational coordinates and shifts in x-direction.

Figure 6.26: Location of the apparent horizons in the xy-plane for the binary black hole
system with black hole spins S, = 0,1,3,5,7, and 9. Since the linear momentum vanishes
the center of the surfaces is fixed. For increasing spin the horizon shrinks in the coordinates
used for computation.
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Chapter 7

Evolution of Puncture Initial Data

According to the initial data study performed in the last chapter puncture initial data provides
data sets representing slices with multiple black holes of arbitrary mass, linear momentum,
and spin. As was shown in chapter 6 physical quantities like the ADM mass, the linear
momentum and the angular momentum can be extracted with high accuracy. Also appar-
ent horizons, enclosing either single punctures or multiple punctures, can be computed and
studied with geometrically quantities like the horizon mass.

In this chapter I will examine the evolution of such initial data sets. I will focus on one
particular data set representing a binary black hole system with unequal masses, spin, and
linear momentum on the holes. During the evolution these black holes will undergo a grazing
collision and merge to a single hole. In the course of this process they will emit gravitational
waves which can be calculated using the methods described in section 5.3. In addition, the
motion of apparent horizons can be studied, showing that the black holes, as defined by their
horizons, are in fact moving with respect to the computational grid.

The data set examined in the next sections is defined by the following
parameters: masses M; = 1.5, My = 1.0; location ¢y 5y = (0, £2,0);
momenta P = (£1.5,0,0);spins S; = (0.5,0,0.5),S3 = (0, —1.0, 1.0).
The orientation of the spin and momentum vector is sketched in the
neighboring figure.

This system is the analog to the data set examined by Briigmann
[26] with just the system rotated to be oriented along the y-axis of
the computational grid. Due to the choice of different masses and
spins the system does not show symmetries any more, it is a full 3D
data set. Hence, it must be evolved on a full three-dimensional grid
with its large computational requirements.

The ADM mass for this system can be extracted to be mapy = 2.97 and the angular
momentum is J = (0.5, -1.0, —4.5), |J| = 4.637. If only a negligible fraction of the angular
momentum will be radiated away by gravitational waves, the final black hole will correspond
to a Kerr black hole [42] with rotation parameter a/m = J/m%,, = 0.526. A review on
Kerr black holes can be found in the textbook by Wald [52].
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7.1 Numerical Aspects of the Evolutions

The evolutions here are performed applying the conformal ADM evolution system (BSSN
system). Furthermore the 14log-slicing is used during the evolution while for the calculation
of the initial lapse function maximal slicing condition is used to obtain a good form of the
lapse. The shift vector 3! is chosen to vanish.

Since the metric diverges at the punctures the implementation of the evolution algorithms
in Cactus does not rely on the metric 7,; but rather on the rescaled metric v;;/¢* with ¢
defined by equation 3.30

N
¢=1+2Mi
=1

with summation over N = 2 black holes ¢ with mass M;. Here ‘1’ is used instead of u so that
derivatives of ¢, which have to be computed for the calculation of derivatives of the unscaled
metric v;;, can be computed analytically. Since Cactus uses the rescaled metric, all metric
functions shown in diagrams in this work are displayed in the rescaled form. In addition to
this the rescaled metric is also used in the equations of the BSSN formalism which involve
the metric.

For the initial solution of the maximal slicing condition, equation 4.15,
Aa = oeKabK"b7

the question arises, whether it is well defined near the punctures. Considering the analytical
form of the extrinsic curvature as given by equation 3.21 and the conformal flat character
of the metric (v = ¥~*§¥) it is obvious that the principle part of Aa is O(r*). Further,
terms involving first order derivatives of a are O(r?) and the right hand side of the maximal
slicing condition is O(r®) when spin is present, otherwise O(r®). According to this the first
derivatives of & have to vanish at the punctures. This is fulfilled if equation 4.15 is multiplied

by ¢* [26].

Briigmann [26] also showed that with the rescaling of metric and extrinsic curvature a
stable evolution with the classical ADM formalism is obtained in the sense that the character
of the singularities at the punctures does not change and no additional singularities arise.
The time derivatives of the metric and extrinsic curvature rescaled by the conformal factor
1 vanish at the punctures.

The evolutions here are performed with the BSSN evolution formalism which evolves
different variables than the classical ADM formalism. However in Cactus this formalism
utilizes the rescaled metric v;;/¢* which vanishes at the punctures. In addition to this
trIl{ = 0 is chosen initially. Thus, the time derivatives of the BSSN variables (A, K, %;;,
fl,'j, and f’) vanish at the punctures. Thus the initial data can be evolved using the BSSN
formalism even with grid points located at the punctures.

When a configuration with grid points at the punctures is used together with 14log
slicing, the lapse function « does not collapse at the punctures. Thus, the slicing will not be
completely singularity avoiding. Evolutions with this slicing showed that for late evolution
time the lapse in the whole domain around the punctures has collapsed to zero except at the
two grid points where the punctures are located. This results in sharp peaks in the metric
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functions around the punctures and finally in the crash of the simulation. To avoid this effect
I changed the implementation for the lapse function. When grid points are located at the
punctures the lapse at these points is now computed as the average of the lapse at the six
neighboring grid points. Since the lapse function is a pure gauge quantity this approach is
valid.

7.2 Results of the Evolutions

The binary black hole system described above has been evolved on different grids. With very
large grids of 3873 grid points the evolution was possible up to ¢ a2 120 using grid spacings of
h = 0.25 and h = 0.1875. The memory requirements for such simulations amounted to about
110 gigabytes and the computation time was between 24 and 40 hours on a 256 processor
SGI Origin 200 parallel computer.

At the evolution time of t = 120 larger errors, mostly visible in the wave modes, devel-
oped. The simulations have been stopped at this time without crashing. Smaller grids with
either smaller grid spacing or with lesser grid points lead to an earlier development of errors
or even to the crash of the simulations at earlier evolution time.

However, the evolution times possible with the current implementations of evolution al-
gorithms in Cactus are much longer as that of the simulations done in [26]. These crashed
at about t = 20. Now, when applying very large grids and the BSSN evolution formalism,
the evolution of apparent horizons can be studied for longer time and even the extraction of
gravitational waves is possible.

7.2.1 Time Development of Metric and Lapse

In figures 7.1 and 7.3 the time development of the rescaled metric component v,,/¢* and
the lapse function « are shown, respectively. The time is rescaled by the mass M = mapas.
These diagrams show the basic features of the evolution of a binary black hole system with
merging holes.

The metric grows in time and the lapse function collapses to zero. For earlier time the
growth of the metric is located between and next to the punctures since at this time two
separated black holes exist. The value of the lapse function collapses near the holes. With
elapsing time the black holes merge forming a single black hole. Since the lapse is collapsed
to zero between the holes the metric freezes in this region. After the single hole has formed,
the metric increases exterior to the grow region of the separated holes. This leads to the
shoulders on the inner sides of the metric function v../¢*. The region in which the lapse
function collapses is expanding in the course of time since despite of the singularity avoiding
slicing grid points are falling into the black hole. Due to the radiative boundary conditions
used in the simulation, the lapse function also decreases and the metric grows slowly at the
boundary.

7.2.2 Evolution of Apparent Horizons

Since black holes are defined by the existence of an horizon one can study the motion of a
black hole by the time evolution of the apparent horizon. As was pointed out by Brandt
and Briigmann [20], the punctures describing the the internal, asymptotically flat region of
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Figure 7.1: Time development of the rescaled metric component 7,,/®* for the binary black
hole system. The metric is growing during the evolution but freezing in the center region of
the grid at later time.
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Figure 7.2: Time development of the lapse function « in the evolution of the binary black
hole system. At first the lapse is collapsing in the neighborhood of the punctures. Then the
collapsing region grows and the lapse value at the boundary is diminishing, too.
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Figure 7.3: Evolution of the apparent horizon. Dotted lines depict surfaces where the horizon
finder algorithm stopped without finding a horizon, while solid lines represent found horizons
and dashed lines represent marginally trapped surfaces which are no apparent horizons.
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the black holes are, by construction, fixed on the grid. Hence, it is not possible to simulate
multiple orbits of the black holes in binary systems with puncture initial data. The data
gives the possibility to simulate the late state of an inspiraling system, just before the two
black holes merge. But this data is still a generalization to the time symmetric Misner or
Brill-Lindquist data sets since it permits non time-symmetric data sets with momentum and
spin on the black holes.

For the punctures being fixed on the grid, the dynamics of the system is contained in the
metric. This can be shown, for example, by the apparent horizons as is done in figure 7.3. In
the initial time slice two separated horizons exist oriented along the y-axis. The dotted line
shows the surface at which the horizon finder algorithm stopped without finding a common
apparent horizon.

Until ¢ = 2.3M the separated horizons grew. Also a very small rotation of the horizons
around the z-axis is visible. At ¢ =4.5M the common horizon has emerged. Tests with finer
resolution in time show that the common horizon develops at t ~ 3.4.

The separated horizons do not transform continuously to the common horizon. Rather
there occurs a discontinuous process in which at some time the conditions for an apparent
horizon enclosing the marginally trapped surfaces around the single black holes are fulfilled.

After the common horizon appeared the inner surfaces found by the horizon finder al-
gorithm are enclosed by the apparent horizon The horizon finder algorithm does still find
these surfaces as marginally trapped surfaces but for a time of ¢ > 5 the mean expansion on
this surfaces does not vanish. This is due to the limited number of terms in the expansion
which is given by [,,, = 8 here. Hence the dashed lines at t = 6.6 M, 8.9M, and 11.3M show
the location of the surface found by the algorithm but not necessarily the right marginally
trapped surfaces. At least when the two single surfaces touch each other there will be another
minimal surface enclosing these two surfaces. However, also the single surfaces found by the
horizon finder algorithm show the rotation of the binary black hole system. In visualizations
of gravitational waves [41], a larger rotation of the system is visible. Up to ¢ = 80 a rotation
of about 180 degrees is visible for a similar initial data set.

Just after emerging the common apparent horizon is strongly deformed from a spherical
shape. However, with increasing time the shape of the horizon becomes more and more spher-
ical. Due to the infalling grid points grid horizon grows in the computational coordinates.

7.2.3 Gravitational Waves

As the evolution time allow for the extraction of gravitational wave modes I finally present
results of the extraction of gravitational waves from the evolutions.

In figure 7.4 the even-parity wave mode 5, is shown extracted from evolutions on grids
with three different resolutions and a fixed location of the boundary. The simulation on the
coarsest grid (993 grid points with boundary at rpeund = 18 and grid spacing h = 0.375) was
only possible up to t = 90 ~ 30M. It is obvious that for ¢ > 17M the wave form deviates
clearly from the waveforms extracted from finer grids.

Also this is obvious from the calculation of the convergence exponent as shown in the
lower part of figure 7.4. For ¢t < 10M second order convergence is visible. The convergence
is undefined for ¢ < 1M since the initial data has been computed with Robin boundary
conditions showing no defined convergence in the outer region of the grid, as was discussed
in section 6.1.2. The sharp peaks at t &~ 8 M are due to a crossing of the wave amplitudes.
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Figure 7.4: Convergence of the even parity wave mode ¢%,. (a) Wave forms for different
resolutions extracted at r.,; = 4M. (b) Convergence exponent os.

Fort > 10M the convergence exponent decreases slowly, reaching o3 = L att = 16.5M. At
this time the exponent drops down rather fast until zero convergence is reached at t = 18.3M.
After this time the convergence is undefined except between 24M and 29M where a small
convergence rate below first order is achieved.

Considering higher resolutions, like a grid with & = 0.125 instead h = 0.375, the waves
do not show such obvious deviations for the coarsest grid, even for t > 18 M. However, also
in this case the convergence rate diminishes and amounts below first order, but still remains
defined, for t > 18M.

This examination shows that the wave extraction gives accurate results on the examined
grids up to t ~ 16.5M. An extraction at larger radii on bigger grids might result in wave
forms which are convergent for longer evolution time but further convergence tests would be
necessary to verify this.

So far, the convergence tests done here show the possibility to extract the beginning of the
wave modes but no long time development with the desired convergence behavior. Further
work is necessary here to enlarge the interval of accurate wave extraction.
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Conclusion and Future Directions

In this thesis I presented results of a study of binary black hole systems in three dimensions
constructed using the puncture type initial data introduced by Brandt and Briigmann. The
calculations where done in the 341 (space+time) decomposition of spacetime, which was
also reviewed here together with the conformal decomposition method for the construction
of initial data and several types of initial data sets. With puncture initial data the lower
asymptotically flat regions of the manifold representing the black hole system are compacti-
fied. This simplifies the solution of the constraint equations for the initial data.

The study of the initial data pointed out that, with two punctures, the initial data can
represent either two separated black holes or a single black hole with two punctures in its
interior. This was shown by the existence of apparent horizons.

The initial data solver shows very good second order convergence in the whole computa-
tional domain, except in the vicinity of the punctures where the convergence is expected to
be of first order.

For vanishing momentum and spin the initial data is of the analytic, time symmetric,
Brill-Lindquist type with vanishing extrinsic curvature and a regular part of the conformal
factor which is unity. For finite momentum or spin the regular part of the conformal factor
shows values above unity and the extrinsic curvature is non-zero. Due to the numerical solu-
tion in the construction of the initial data, the constraint equations are increasingly violated
near the punctures for finite momentum or spin.

For further characterization of the generated initial data sets the ADM mass, the total
linear momentum, and the total angular momentum were extracted dependent on the mass
ratio, the separation, the momentum, and the spin of the black holes. This was done by
integrating over coordinate spheres and subsequent extrapolation to infinity.

Examining the extracted values, more differences to Brill-Lindquist data showed up for
initial data for finite spin or momentum. The ADM mass changes when the separation of the
punctures is modified. This points to a non-linear correlation of the two black holes.

The total angular momentum is analytically related to the linear momenta of the black
holes by the classical relation J = 2¢ x P. This was reproduced by the extraction procedure
and served for the verification of extraction results.

The ADM mass of the black hole system depends non-linearly on the linear momenta of
the black holes.
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If spin is applied on the holes and counteracts with the angular momentum due to the
linear momenta, the ADM mass can be reduced compared to a system without spin.

For high total angular momentum caused by high linear momenta on the black holes
the extraction shows large errors. In these cases the extraction from initial data computed
with Robin boundary conditions is much more accurate. However, the dynamical (multi-
pole) region of the initial data slice grows with the linear momenta. With Robin boundary
conditions the black hole system can be simulated with an error of 10 percent, according to
the extraction of total angular momentum, when the linear momenta are of about the same
size as the radius of the boundary and the masses of the black holes are of order unity.

Overall, it became clear that the extraction procedure yields the correct results, with an
error of less than one percent, if the computational domain is sufficiently large. However, if
the extraction should be applied in an evolution, the grid has to be very large. With a grid
spacing of 0.25 as the maximum for a long time evolution of the data sets examined, and
a boundary at a minimum radius of 48 for accurate extraction from the initial data, a grid
with 3843 grid points is necessary. In this evolutions such grids required about 110 GBytes
of computer memory and fitted just into the largest available machine. But, since during the
evolution grid points are falling into the black hole, the boundary is in fact still too close to
the black hole to allow an accurate extraction during the evolution.

In connection with the examination of apparent horizons the interaction energy of the
black holes was calculated. Here the interaction energy normalized by the ADM mass ap-
proached a constant negative value when either the mass ratio or the spin of the black holes
was increased. In contrast to this, the interaction energy grew to positive values if a collinear
momentum on the black holes was imposed. However, just from the initial data study it
is not obvious if this means that the black holes will not merge in the coarse of their time
evolution. This has to be tested in future simulations.

The evolution of binary black hole systems with the BSSN-formalism and 1+4log-slicing
showed the typical grid stretching effect due to the singularity avoiding properties of the
slicing. The lapse collapses in the neighborhood of the punctures and the metric components
grow next to the punctures.

According to the examination of apparent horizons during the evolution the separated
black holes merge at a time of about 10M. Also visible is a small rotation of the system.
Considering extracted gravitational waves a rotation of about 180 degrees until t = 80M is
visible near the boundary in visualizations.

The extraction of gravitational wave modes showed a very good second order convergence
until about ¢ = 10M. Until a time of £ = 16.5M the convergence order was larger than unity.

These studies show that, with the current implementations of initial data solvers and
evolution routines, it is possible to evolve full 3D binary black hole systems sufficiently far
into the future to extract gravitational wave modes. The longest evolution time achieved was
about 40M at which the evolution errors have significantly grown but not yet terminated the
evolution. Grids with smaller grid spacing and a boundary located further out can enable
longer evolution times. However, this requires grids with a much larger number of grid points
and hence more computer memory. Since the largest machines available for this work possess
128 GBytes of memory such simulations are currently not possible.
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But waiting for larger machines does not solve this situation, since the required memory
increases by about one order when the grid is refined by a factor of two. An adaptive mesh
refinement (AMR), where resolution is added when needed or reduced when possible, can aid
here.

However, also with finer grids, boundaries located further out, and even AMR the simu-
lations will finally crash due to the grid stretching caused by the singularity avoiding slicing.
Thus gauge freedom and singularities will prevent simulations from lasting for infinite time.
Here the technique of black hole excision with the application of inner boundary condi-
tions promises a solution. This, together with appropriate shift conditions, will reduce grid
stretching effects by a very large amount and eliminates the singularities from the simulation.

Finally, when very long evolution time has been achieved, the importance of boundary
conditions increases in order to obtain highly accurate long time evolutions. With current
radiative boundary conditions there is still an error running inwards from the boundary as
can be seen e.g. in the value of the Hamiltonian constraint. Thus, more advanced boundary
conditions have to be considered or developed.
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