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Abstract

The volume operator plays a crucial role in the definition of the quantum
dynamics of loop quantum gravity (LQG). Efficient calculations for dynamical
problems of LQG can therefore be performed only if one has sufficient control
over the volume spectrum. While closed formulae for the matrix elements
are currently available in the literature, these are complicated polynomials
in 65 symbols which in turn are given in terms of Racah’s formula which
is too complicated in order to perform even numerical calculations for the
semiclassically important regime of large spins. Hence, so far not even
numerically the spectrum could be accessed. In this paper, we demonstrate
that by means of the Elliot-Biedenharn identity one can get rid of all the
6 symbols for any valence of the gauge-invariant vertex, thus immensely
reducing the computational effort. We use the resulting compact formula to
study numerically the spectrum of the gauge-invariant 4-vertex. The techniques
derived in this paper could also be of use for the analysis of spin—spin interaction
Hamiltonians of many-particle problems in atomic and nuclear physics.

PACS numbers: 04.60.—m, 04.60.Pp

1. Introduction

The volume operator [1, 2] plays a pivotal role in the definition of the quantum dynamics
[4-6] of loop quantum gravity (LQG) [3]. Since the success of LQG depends on whether the
quantum dynamics reproduces classical general relativity (GR) coupled to quantum matter in
the semiclassical regime it is of upmost importance to know as much as possible about the
spectrum of the volume operator.

The volume operator has been studied to some extent in the literature [7-10] and it is
well known that its spectrum is entirely discrete. However, so far only a closed formula for
its matrix elements has been found. Unfortunately, not only is the formula for the matrix
elements a complicated polynomial in 6 symbols involving extended sums over intertwiners,
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in addition the 6 j symbols themselves are not easy to compute. Namely, the only known closed
expression for the 6 symbols is Racah’s famous formula which in turn involves fractions of
factorials of large numbers and sums whose range depends in a complicated way on the entries
of the 6 symbol. Accordingly, even powerful computer program such as Mathematica or
Maple run very fast out of memory even for moderate values of the spin labels on the edges
adjacent to the vertex in question. For instance, the current authors were not able to go beyond
Jj = 3 when numerically computing the eigenvalues for a gauge invariant, 4-valent vertex, just
using the matrix element formulae available in the literature. Thus, in order to make progress,
analytical work is mandatory.

In this paper, which is based on the diploma thesis [11], we simplify the matrix element
formula as given in [10] tremendously: using an identity due to Elliot and Biedenharn we are
able to get rid of all the sums over intertwiners and all the 6 symbols in the final formula,
no matter how large the valence of the vertex is. The closed expression we obtain is a
harmless polynomial of simple roots of fractional expressions in the spins and intertwiners,
without factorials, that label the spin network functions in question. We reproduce the closed
expression for the gauge-invariant 4-vertex which has been discovered first by de Pietri [8].

This formula should be of interest for a wide range of applications. First of all, it opens
access to the numerical analysis of dynamical questions in canonical LQG. In particular, there is
now work in progress aiming at extending the spectacular results of [12] from the cosmological
minisuperspace truncation to the full theory. Possible first applications are alluded to in the
conclusion. Next, the techniques presented here could be of use for numerical investigations
of convergence issues of spin foam models; see e.g. [13] and references therein. Furthermore,
our methods reveal that the time has come to put LQG calculations on a supercomputer.
Finally, it is conceivable that our formalism is of some use in the physics of many-particle
spin—spin interactions as, e.g., in atomic or nuclear physics.

The present paper is organized as follows. In section 2, we review the definition of the
volume operator as derived in [2] and the closed expression for its matrix elements established
in [10]. Knowledge of LQG [1] is not at all necessary for the purpose of this paper, which
can be read also as a paper on the spectral analysis of a specific interaction Hamiltonian for a
large spin system.

The main result of this paper is contained in section 3 where we derive the simplification
of the matrix elements. At the danger of boring the reader we display all the intermediate steps.
We do this because we feel that without these steps the proof, which in part is a complicated
book-keeping problem, cannot be understood. The compact final formula is (45).

In section 4, we use our formalism in order to study the gauge-invariant 4-vertex. The
simplification of the matrix element formula now enables us to diagonalize the volume
operator in a couple of hours for spin occupations of up to a 2. &~ 10%. More efficient
programming and compiler-based programming languages such as Lisp should be able to
go significantly higher. Among the ‘spectroscopy experiments’ we performed are the
investigation of the computational effort, the possible existence of a volume gap (smallest
non-zero eigenvalue), the spectral density distribution and the relative number of degenerate
(zero volume) configurations. Among the surprises, we find numerical evidence for a universal
density distribution in terms of properly rescaled quantities valid at large spin. Next, there is
numerical evidence for the existence of a volume gap at least for the 4-valent vertex. Finally, it
seems that the eigenvalues form distinguishable series just like for the hydrogen atom, which
provides a numerical criterion for the question, which part of the spectrum remains unaffected
when removing the finite size ‘cut-off’ jiax.

In section 5, we summarize our results and in the appendices we provide combinatorial
and analytical background information which hopefully make the paper self-contained.
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2. Revision of known results

This section summarizes the definition of the volume operator of LQG and reviews the matrix
element formula proved in [10]. Readers not familiar with LQG can view the volume operator
as a specific spin—spin interaction Hamiltonian for a many-particle system. After some
introductory remarks for the benefit of the reader with an LQG background, we will switch
to a corresponding angular momentum description immediately which makes knowledge of
LQG unnecessary for the purposes of this paper.

In LQG, typical states are cylindrical functions f,, which are labelled by graphs y. The
graph itself can be thought of as a collection E(y) of its oriented edges e which intersect
in their endpoints which we call the vertices of y. The set of vertices will be denoted by
V(y). The cylindrical functions f, depend on SU(2) matrices &, which have the physical
interpretation of holonomies of an SU (2)-connection along the edges e € E(y).

In [1, 2], the operator describing the volume of a spatial region R, namely the volume
operator V(R)y acting on the cylindrical functions over a graph y, was derived as

V(R), = /R d’py/det(q)(p), = /R &EpV(p), (1)

where
Vipy =6 Y 8.V, )
veV(y)
A i
Voy = 3.8 Z €(er, ey, ex)quk 3)

er,ej,eg€E(y)
erNejNex=v

qug = eij'kX;XiX]]((- 4)

The sum has to be taken over all vertices v € V() of the graph y and at each vertex v over
all possible triples (e, ey, ex) of edges of the graph y adjacent to v. Here, €(e;, e;, ex) is
the sign of the cross product of the three tangent vectors of the edges (e;, ey, ex) at the vertex
v and we have assumed without loss of generality that all edges are outgoing from v.

Xll are the right invariant vector fields on SU(2) acting on the holonomy entries of

the cylindrical functions. They satisfy the commutation relation [X bX }] = —281./eiijll‘ .

The self-adjoint right invariant vector fields Y Jj = %X§ fulfilling [Y 1’ Y Jj ] = irS,,e’jkY," are
equivalent to the action of angular momentum operators J 1‘ It is this algebraic property which
we use in order to derive the spectral properties of the volume operator: it turns out that the
Hilbert space of LQG reduces on cylindrical functions over a graph y to that of an abstract
spin system familiar from the theory of angular momentum in quantum mechanics. There
are as many degrees of freedom as there are edges in y and furthermore we can diagonalize
all VW simultaneously as they are obviously mutually commuting. Hence, in what follows
familiarity with LQG is not at all necessary; abstractly, we are just dealing with an interaction
Hamiltonian in a many-particle spin system.
We can therefore replace

2\? o
quk = (;) i) If. )
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Using furthermore the antisymmetry of €;; and the fact that [J T JJ ] = 0 whenever I # J,
we can restrict the summation in (3) to / < J < K if we simultaneously write a factor 3! in
front of the sum. The result is

Voy = Z €er, ey, eK)G,'ijIiJJjJ[]; . (6)
1<J<K

Now the following identity holds:
. i
el J] T = Z[(’”)Z’ (J1x)°] )

where J;; = J; + J;. This relation can be derived by writing down every commutator as

()% (T2 = X3y [(Fi+73)%, (97 +71)?], using the identity [a, be] = [a, ble+bla, c]
for the commutator, using the angular momentum commutation relations (A.1) and the fact
that [J}, J]] = O whenever [ # J.

We may summarize

Viy = ||Z- Z €(er, es, ex)quk (8)

I<J<K

where Gk == [(J)*, (Jix)*] and Z = §.
Unless announced differently we will study the operator

Guk = [(I)* (Tx)? )

in the following.

2.1. Matrix elements in terms of 3nj-symbols

Now we can apply the recoupling theory of n angular momenta to represent g in arecoupling
scheme basis using the definitions (A.1)—(A.3) given in the appendix.

We will do this with respect to the standard basis (A.2), where we can now easily
restrict our calculations to gauge-invariant spin network states, by demanding the total angular
momentum j and the total magnetic quantum number M to vanish, that means we will take
into account only recoupling schemes, coupling the outgoing spins at the vertex v to resulting
angular momentum 0.

In terms of the recoupling schemes these states are given by

8UT)jj =0M =0) :=g(J)) (10)

where we introduced an abbreviation, since the quantum numbers ] Jj = 0M = 0 are the same
for every gauge-invariant spin network state with respect to one vertex v.

We will now represent §x := [(Ji7)?, (Jjx)?*] in the standard-recoupling scheme basis
of definition (A.2) where |a) := |a(12)), |a@’) := |a’(12)).

The point is that by construction a recoupling scheme basis |g(/J)) diagonalizes the
operator (G2)? = (Ji)? = (J; + J;)? that is

(G)*1ZUT)) = g2(1T)(g2(1T) + DIZUT)). (1)

Furthermore, every recoupling scheme |g (I J)) can be expanded in terms of the standard basis
via its expansion coefficients, the 3nj-symbols given by definition (A.3) in the appendix. So,
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it is possible to express

(@lguxla’y = @ll(Jin)?, (Jx)*11d’)

@l () (J)*a’y — (@l (Jx)* (Ji)*1a’)

D &) (&) + DI@lgU DGyl d') — @l gu) g )la')]

g

= > aUN(@U))+ DK (@ K)+ D(EUNIZNEIK)IG)
gn),g(JK),g"(12)
x (U Na)y g K)la'y — (a(JK)Ig) g )la')]

=Y | Y U (g ))+ DEUIDNIZNEUDE)

§'(12) | g(1J)

x Y (K@U K)+ DEUK)IENEIK)IE) | —la < d] 12)
FUK)

which is again an antisymmetric matrix possessing purely imaginary eigenvalues (we could
alternatively consider the Hermitian version by multiplying all matrix elements by the
imaginary unit i). Here, we have inserted suitable recoupling schemes |g(1J)), |g(J K))
diagonalizing (Ji)? and (Jjx)? and their expansion in terms of the standard basis |g(12)) by
using the completeness of the recoupling schemes |g(J)) for arbitrary I # J:!

=" 1gUDIEUD. 13)

§aJ)

So we have as a first step expressed the matrix elements of §jx in terms of 3nj-symbols.

2.2. Closed expression for the 3nj-symbols
The 3nj-symbols occurring in (12) can be expressed in terms of the individual recouplings

implicit in their definition.

2.2.1. Preparations. In [10] the two following lemmas are derived:

Lemma 2.1 (contraction on identical coupling order).

(§UNIE) = (82(j1.71).83(82,J1)s - - -, 814181 J1=1):&142(& 141, J141)s - - -85 (87—1, Js—1)]
x g5 (j1s j2), 85(855 Ja)s - -+ 811 (&1 Ji-1),
X 81811 1)+ s 87814 J))8g,g) B 1gr -

Lemma 2.2 (interchange of coupling order).

(82(j1s J2)s - -+ 8k 8k -1+ JK): 841 (8k» JK+1): 82841+ Jk+2)]
X 182(j1s J2)s - -+ 8k (8k—1, JK), 8k +1(8K s Jr+2), 8k +2(8K+15 JK+1))
= (8k+1(8K- Jk+1)s 8k 428k s> Tk |8k 41 (8K s JK+2)
X 8k+2(8K+15 JK+1))8¢,,0¢ 05 =+ Oglgi * Ogh hgxan-

! The summation has to be extended over all possible intermediate recoupling steps go, ..., gn—1 that is
ljr — Jg| < 8xUyg, Jr) < Jjg + Jjr allowed by theorem A.1 given in the appendix.
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2.2.2. Closed expression for the 3nj-symbols. Now we can reduce out the 3nj-symbol.
In what follows we will not explicitly write down the §-expressions occurring by using
lemmas 2.1 and 2.2, but keep them in mind.

Collecting all the terms mentioned in [10], one obtains the following equation for the
3nj-symbols:

(gUN)|g'(12)) = Z (820j1> J1)s 83(82, jh2(jr, j1)s 83(ha, ji))
ha(jrs 1)

x Z (83(h2, js), 84(83, j2)h3(ha, j2), ga(hs, ji))
h3(ha. j)

X Z (8r-1(h1—2, j1), 81(81-1, ji—2)hi—1(hi—2, jr,), &g1(hi-1, ji))
hi—1(hi—2,ji-2)

X (gr(hi=1, j1)s gra(gr, ji—0Ig; (hi=1, ji—1), gre1(8, j1))
X (gr41(87s 1)y 81+2(&1+1s Jra)18141(&7s Jre1)s 8142(8] 415 J1))
X <g1+2(g§+17 jl)v g1+3(g1+21 j1+2)|g;+2(g;+11 j1+2)7 gl+3(g}+2s .]J))

X (81-1(8) 2, J1)s 85(8r=1, Jr-DI&1_1(&) 5, Jr=1), 81(&)_1+ 1))
X (ha(j1, j1), hs(ha, j2)1g5 (s j2). h3 (g, ji))
X (h3(g5, ji). hahs, j3)185(85, j3), ha(gs, j1))
X (ha(85s J1)s hs(ha, ja)1g4(g5, Ja)s hs (g ji))

X (hy—1(8r_as J1), &1 (=1, jr—D)I87_1(&7_2, Ji-1). &1(&1_1, J1))- (14)

3. Simplification of the matrix elements

3.1. 3nj-symbols expressed in terms of 6 j-symbols

It is now obvious that we can express (14) via the 6 j-symbols defined as in (B.1):

(U121, J2)s JUrzs J3)1 232y J3), J (s J23))

= [@ji2 + D@y + D (=D {J.l " J.‘z} . (15)
J3 J J2
Here, we have used the fact that j, + j, + j3 + j is integer. Now the definition of the 6 j-symbol
in terms of Clebsh—Gordon coefficients (CGC) come into play. Because of the properties of
the CGC we can change the order of coupling in every recoupling scheme in (14) taking care
of the minus signs we create:

(U121, J2)s JUrzs J3)1 232y J3), J (s J23))
= (=772 1oy J1)s J Grzs J3)123 s J3)s (s J23))
= (=) (=)BTRTE (1 (fo, 1)y J Gz, J3)1 23, J2)5 (s 23)
— (_l)jlz—jl—jz(_l)jza—jz—ja(_1)j—j12—j3
X {j12(j2, J1)» J (3, 1)1 j23(3, J2), J(j1s j23))
— (_1)1’12*1’1*]2(_1)/’23*/’2*]3(_1)1‘*/'12*]3(_l)j*jlszs

X {j12Cj2, J1)» J sy 121233 J2)s J (Gazs Jj1))-
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In this way, we are able to change the coupling order in (14) to get the order required for a
translation into the 6j-symbols. With these preparations, we are now able to express (14) in
terms of 6j-symbols:

(g N)1g'(12))

— Z(_l)—jl—jﬁgz(_1)hz+jj—g3(_1)./'1+j/+.i1+g3\/(zgz +1)(2hy + 1){].] Jr gz}
Ji

" g h
x Z(_1)*j/*hz+gz(_1)h3+j1*g4(_1)jj+hz+j2+g4\/(2g3 + D(Q2h; + 1){]..] hy g3}
" 2 g h3

% Z(_l)—jj—hlfﬁgp](_1)h171+j1—g1 (_l).i/+h172+.i172+g1 \/(2g171 +1D)Qh + 1)
hiy

9 Ji hio 81—1}

Ji—2 &1 hia
% (_1)—j1—h171+g1(_1)j/+g}—g1+1(_1)j1+h17|+j171+g1+1 \/(281 + 1)(2g; +1)

Ju hi—y 81}
Ji-1 &1 &)

% (_])—jj—g}+gl+1(_1)jj+g',+1—g1+z(_])j/+g'1+.i1+1+g1+z\/(zg”l + 1)(2g/l+l +1)

x{jj g; gl+1}
Jis1 8142 g/,+1

X

% (_1)—.71—8}+1+g1+2(_1)jj+g',+2—g1+3(_1).i1+g}+1+j1+2+g1+3\/(zg“_z + 1)(2g}+2 +1)

X{jj [ 81+2}
Jiv2 8143 g}+2

% (_1)—jf—g’,,z+g/7| (_1)j1+g’,,1—g1 (_1)j1+g},2+j/7|+g/\/(zgj_l + 1)(28,1_1 +1)
X{ Ji g/jfz gJ—l}
ji-1 &1 &
X (1) (A Ry +1)(2g5 + 1) {J.’ /1 h2}
J2

hsy g,
X (= 1) 78I (I (i [Qhs + 1) (2] + 1) {’.’ % h;”}
J3 ha g
x (_1)_8§_]'I+h4(_1)jl+g</1_hs(_1)jl+g§+j4+h5\/(2h4+ 1)(2&1 +1) {JI gé hi‘}
Ja hs gy,
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x (_1)—8}72—]1#1171 (_1)_/1+g},1—g1(_1)j1+g',,2+j171+g',\/(2],1171 + 1)(2g;_1 +1)

j ’ hy_
X { Jro 82 1}. (16)
JI-1 81 811

This is the complete expression of (14) with all the exponents written in detail which are
caused by the reordering of the coupling schemes while bringing them into a form suitable
for (B.1). We want to emphasize that we have the freedom to invert the signs in each of the
exponents of (16) when convenient for our calculation.

3.2. The matrix elements in terms of 6 j-symbols

Taking a closer look at (12), a basic structure contained in the matrix elements of the volume
operator appears:

D &) (g1 ]) + D(EUDNIG (2 ))|a(12)). a7
)

Using (16) we now express the 3nj-symbols occurring in (17) via 6j-symbols. For
(g(IJ)|g"(12)) we use hs, ..., h;_; as intermediate summation variables and for its (—1)-
exponents the sign convention we chose in (16). For (g(1J)|a(12)) we use ky, ..., k;_; as
intermediate summation variables and for its (— 1)-exponents the negative of every exponent in
(16), since every exponent is an integer number. Writing down carefully all these expressions
most of the exponents can be cancelled.

The result of this is (using the abbreviation A(x, y) = v (2x + )2y + 1))

3 D) (g + DEUDIZADNEUDNIEAD) = Y g1 (g2(1]) +1)

g gdJ)
x Y (=12 AGgr, by 7 g2}§ —1) R A(gy, k {J.’ I gz}
hz( )2 A(g 2){J1 o h kz( ) (g2, k2) o ko
iy ha g3 - Ji kg

x 3 (=D A, )T }2:—1 k5 A(gs, k {
hq( )P A(gs 3){}2 2 hs k;( ) (g3, k3) g ks

] hy_ -
X Z(—l)h”‘A(glﬂ,hpO {jﬁz . l} Z(—l)_k’*‘A(gkh ki-1)

1 hio
hi_y § ki

X{jJ ki_o 81—1}
Ji—2 81 kr—1

" ] hi_ ] kj_
X (_l)glA(gl, g}/) { .‘]] -1 g,l,} (—l)_“’A(g1, Cl[) { .‘]J -1 gl}
Ji—-1  81+1 & Ji—-1  81+1 a4y

" Jjr &l g —a Jiooar g
X (=1)*m1 A(grs1, 8741) { . (=D™"" A(gre1, a1+1) 3
81+t 811 Ji+1  8I1+2 8/1/4.1 811 Al Ji+1  81+2  ar+1

" Ji &l & —a Ji a1 &
x (=1 812 A , " ){ } —1)"U2 A .a ){ }
) (812 8142 Ji+2  8I+3 g}/+2 ¢ (812, 12 Ji+2  81+3  A[+2
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g, " Ji 81 81— —ay
X (=D®%-1A(gs-1,85_1) 1 . st (=1 A(gy-1,a;-1)
JJ—1 87 871

X{jl ajo gJ—l}
Ji-1 & aj-

v i oj1 h _ Jj1 1 k2
x (=182 A(h,, g5) 1", Tt (=17 A(ky, a ]
(DA gz){lz h3 gz/}( Ak 2){12 ks 612}
7 jr & h3} o {j, a» k3}
x (=) Ahs, g§) 17 02 —1)BB A(ks, az) {7,
(=D (h3, g3) {h hy gl =D (k3, a3) ok as
" i “ h .
X (=1 A, ) {J-' e f‘f} (— D) Ak ) {’-’ o k4}
Ja hs 84 Ja ks ay

" j “ hi_
X (=) Ay, 28 ) { JIo8ra M ‘} (=D)R O Ak ag )
JI—1 81 8r1-1

X{.]l aj—» k11}_ (18)
JI—1 a ar—i

Up to now we have only made a translation between different notation. The reason for doing
such an amount of writing will become clear soon: using identities between the 6 j-symbols it
is possible to derive a much shorter closed expression for the matrix elements by evaluating
step by step all the summations in (18).

3.3. A useful identity

Before we can start the evaluation we want to derive an identity which will be essential. We
want to evaluate the following sum:

Fljtz. ji) = 3 Qo+ D jasCizs + 1) {’? P Jﬁ“} {JF 2 ffZ} . (19)
Jin J3 J4a Ja3) Uz J4 J23

There exist numerous closed expressions for 6 j-symbols, whose entries have special relations.

They are much more manageable than the general expression given in appendix B.2 (Racah

formula). One of them reads as ([14], p 130)

{a b c} — (-1 atbrct] 2[b(b+1)+c(c+1) —a(a+1)]

—. (20
I ¢ b [2b(2b + 1)(2b +2)2¢(2¢ + 1) (2¢ +2)]2

Using the shorthand X (b, ¢) = 2b(2b+ 1)(2b+2)2c(2c¢ + 1)(2c¢ +2) and the fact thata +b + ¢
is integer, we can rewrite the equation to obtain

a b c

a(a + 1) — (_1)a+b+c {l . b

}X(b, c)% +[(b+ 1) +c(c+ 1] 21

Putting a = j»3 and inserting (21) into (19), one finds for F (ji», j},) for any b, ¢
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1
F(jn. Jia) = 5 (=D X @, c)?

I
o Js b cl|iv 2 Jellit i j{z}

X —1)/3 Q2+ 1 . . . . . .
g( )i ){1 ¢ b}{h Ja stHJs Ja J»s
bb+1)+c(c+1) : . {jl J2 j12}{j1 .2 j{z}
+ 2jip+ D2+ 2 .

Qjin+1) %:( A N | I

6/12/{2

(22)
where we have used the orthogonality relation (B.6) for the 6j-symbols. Let us take a
closer look at the three 6j-symbols of I on the right-hand side of (22). We now apply
some permutations to the rows and columns of the first 6 j-symbol within / which leave this
6j-symbol invariant, see (B.4), (B.5). After that we have for /

' b b1 L L.y
1= (=D)"@Q2jn+1) { . } {’.l /2 J.“} {J.l 72 J.IZ} .
Jo3 ¢ ¢ Junfls3 Js J3) s Ja Jn
Now we fix b = ji, ¢ = j4 and can evaluate
' . 1 L .
1=3 =P+ 1) {J.l o } {’.l 2 ’.12} {’.l 2 1.12}
Jin Ja Ja g3y s Ja Js) WUz Ja s
= (= 1)Utk st {j}2 Y jZ} { Iin jfz}
Jvodia Yl s s
Here, we have used the Elliot—Biedenharn identity (B.8). Inserting this back into (22) yields
F(jlz ]]/2) — l(_1)j1+j4(_1)—(j|z+j|+j1+j3+jz+1+j4+jl’2+j4)X(jl ]4)%
b 2 b
« {j12 i jz} { L e jfz} LA+ D+ jaGa+D oo
vodn M) oJs s 2jiz+1) e

Using that, by definition of the 6j-symbols (B.1), (ji2 + ji + j2) and (j3 + 1 + js + j{,) are
integer numbers, we can invert their common sign in the exponent of (—1). After summing

up all the terms in the exponents and performing some permutations on the arguments of the
6j-symbols according to (B.4), (B.5) we obtain the final result for F (ji2, jj,):

. . o i g2 Juel it 2o Jb
F(j, jl,) = 23+ 1 +1)4q°. .
(12, J12) E (2j23 + 1) j23(jo3 ){]3 i ]23} {]3 i ]23}

J23
1 T - PR (V2 N I 2T SN 0T
= (=) Heritistintintly () )2{ . . y X
2 i Ja L jn J L jio Ja
(i+ D)+ ja(ja+1
+J1(11 (2; -:41()14 )8j12j1/2 23)
12
with X (1, ja) = 2j12j1 + D@2j1 +2)2j4(2ja + 1)(2js +2).

Remark. By the integer/positivity requirements of the factorials occurring in the definition
of the 6;-symbols of (23), see (B.2), we can read off restrictions for jj, jj,, namely, the
selection rules
Jiz—1
J 1/2 =1J2
j12 +1.
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3.4. Precalculation

After these preparations we can now go in medias res: we will carry out all the summations in
(18). Step by step we will only write down (with reordered prefactors) the terms containing
the actual summation variable, suppressing all the other terms and sums in (18).

We start with the summation over g(IJ) (using again the shorthand A(x,y) =
Vv (2x +1)(2y + 1) and the fact that A(g2, h2) - A(g2, ko) = A(ha, kp) - (2g2+1). Additionally,
we will frequently use the integer conditions (B.2)):

e Summation over g,:

Ay, ko) (— 1)~k + 120 + 1 {Jl] Ji gz}{j.f Jr gz}
(ha, k2)(—1) %:gz(gz (EEE L A

B.4).(B.5 _ i1 J1 h i1 g1k
B Az, ko) (- 1) kzzgz(g2+1)(2g2+1){h n 2”“ n 2}
P 8 Js 8)\8 Ji &

integer

(25) ha—k 1 i1+ j1+h i +1+k 1
= A(hy, k) (=D F 5(—1>”+f1+ AR (G DE

« {j1 Jr hz} {gs Ju hz}+j1(j1+1)+jj(j]+1)5hzkz

1 ki 1 k jy 2hy +1

1 PR S I 'R hz} {g3 Ji hz}
= A(ha, ko) = (= 1)L X (G, ) CH(=D# :
(ha 2)2( ) Ui Jn) {1 k (=D I ks

M,
+LrGr+ D)+ jiGr + D] i,
N

e Summation over g3:

_ & j5 Jjir hy g3
A(hs, ks) (=175 :[Mz(—lw{ ; }+Nah2k2] (2g3+1){ . }
- 1 ky jy J2 81 hj

Ji kg hy—k
X 3 = A(h3, k3)(—=1)"P7% I M, —D% Qg3+ 1
{Jz 2 k3} (h3, k3)(—=1) { 2 Eg3 (=D*Q2g+1)

« {83 Ji hz} {jl ho 83} {jl ka 83}
1 k js) 2 8 h) |l & k
Ji o hy g |jr ko g
+N§ 2g5+1 ; ;
ok §( g+ 1) {]2 84 ha} {Jz 84 ks”

BB 4 0y 1yhh {Mzz(—l)g3(2g3+l){;lj Ji 1}{]1 h3 g4}
2

- ky g) |2 & h
Ji 8 k3 N {j] 84 h3}
X 3 + —— E 2k3+1)2g3 + 1 .
{Jz ka 83} (ks +1) " o (2ks + D23+ 1) 2 ha g

Ji 8 k| |1 hy ks } N
1 : TN .
{Jz hy gs} {Jz ky ho| " Qg+ 1) ROk
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M AGhs ey - L2 e
2

(B.2).(B.4),(B.5)

1 k3

M;
X{g4 Ji hs

1 k3 j] } + N8h2k25/‘13k3'

Note. That is in principle the same term with the same index order as we got from the
summation over g».

Generally, we have for the summation over g; for4 <i < I:

ki )& s hio
Ahi, k) (=1 ) {[Mz e M (=D {gl o J.J‘} + Néjug, - -8h,-_lk,-_]]
8i -

iy hie i ] i i
x(2gi+l){,]J 1 g}{.]J ki1 8”
Ji-t &+t hif ljic1 g&n ki
L . g& Jjr hig
= A(h, k(=DM =R I My - M § —1)%(2g; +1 { ) }
( )(—1) 2 1g.()(g )lki—l i
{ Ji hica gt}{ Ji kicy gi}
x{: ;
Ji-1 &ix1 hy Ji-1 &n ki
Jio o hicv gl kicr &
+Nbnk, - On 1k E 2gi+ 1)1 ;
haky hi—1ki—1 ~ ( 8 ) {]i—l gir1 hz} {Ji—l Qi1 ki }}
(B4),(B.5)

o
A hi,ki —1 hi—k; My M;_ —1% (2 i+1 { JJ JJ }
(hi ki) (—1) { > 1;( Kbyt

Ji hi g Ji o 8in ki N
X1 . * o ) ke Ok
{/i—l 8i hi—l} {Ji—l ki—1 gi} @k + 1) e
Ji hi gin Ji &ix ki}
X 2ki+1)(2gi+ 1)1 . '
;( )(2g ){]il g hi1} {]il ki1 & }

integer integer
(B.4),(B.5) hi—k; —(hi+j+ji1+jr+gis+14ki +hiy+ki_y)
= A(/’li,ki)(—l) i—Ki MZ"'Mi—I(_l) it]ytji—1t]it8iv1 i Thi—1tki—

hiJs gm} { 1 ok ks }
X9 . . + NSk Ok ik
{JJ ki 1 Jict kioy hiog haks i ki Ohik

B2BHBD) \r A k) ()] {ji—l hi—i  h

i —1)8i+t
1 k,' ki—l}( 1)

M;
x{g”l Ji o hi

1 k; s } + Nahz’éz to 8hi—lki—18h[ki .

For the summation over g;.1, we have the same terms as above with a slight difference in
one index (underlined):
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At kpan) (=DM 3 My My (= 1y 180 "L Nt 0,
81+1 1 kl Ji

Jro hr gl [ i ki g
x (2 +1)4 ;
@gra+1D) {]1+1 81+2 h1+1} {J1+1 g2 ki H

. j h h
=M+ My Ay, kp)(—1) skl {J’“ ! ’“}(—ng
1 ko kg
Ml+l
j h
X {g11+2 kJIil JI:I } + Nahzkz T 8h1k18h1+1k1+1 .
e Summationover g; for I +2 <i < J — 1:
i i i i
A(h"’k")(_l)hiikiz My MMy - ¥ (—D {80 !
" L ki Jjs
Jrohic g |Js kicn &
+Nbpk, - O ki 2g;+1 ) .
e h""“} oD {ﬁ 8 hi} {ﬁ i ki”
- - - i1 hicr kg
= My My My - Wiy AChy, ki) (—1)~Jrthizihizit L] 1
1 ki ki1
M;
f iy hi
X (_1)81+‘ {glﬂ ‘]]cj ]./} * N8h2k2 T ahfflkifl(shiki'
Here, we keep the following notation in mind:
hi = ji ki = jr JLiIiKN:gi=g =a
ha = hy(j1, 1) ky = ka2 (j1, J1)
h3 = h3(ha, j2) k3 = ks (k2, j2)
hi1=hi1(h; -2, j1-2) ki1 =ki-1(kj-2, j1-2) (24
hy =g} ki =ap
hiv = 874 kivi =arm
hy1 =g, kjisi=ay-1.

We have now carried out completely the summation over g(IJ) in (18). After this we write
down the remaining terms of this summation and the terms of (18) which have not taken
part in the summation yet. So, we end up with (do not get confused about the notation
A(x,y) = /(2x + 1)(2y + 1) where A, A; are abbreviations from certain terms)

Z g(g2+ DU DI g I)la)
gurn)
part I part II

J—1

! Tl . "

1/ a . .

= E | |Mn | | M, x (—1)“-’{ / 1 g’,_l} +N| |8h“k” X remaining terms
P Loay— s
2y | =2 m=I+1
ka,.. ki

n=2
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A

1 il ealr i h

=D —(—1)-“—“-2—1-’"—Eff—‘mme(jz,m%(—1)+‘A(hz,kz>{]1l b '2}

h = 2 2
250l —1
ky,....kp—1

Ayon=3,A,<n=4,A3<n=5,...,A;_r<n=I

! i1 h h
1Ytk +1 n—1 n—1 n
% [T At k) (—1) { o km}

n=3
J—1

. jn g//,l g//
< [] Atsja )(—1%1*@1“{ o
ng—l gn " l ap ap—1

J—1

a ] 7 . o
x (—1)‘“{ Ll g’.—‘} LG+ D+ s G+ DI 8n,
J—1 JJ e
) . — S
x (—1)g2A(hz,g;’){J.’ /! 2} (—1)_“2A(kz,a2){J.I " 2}
2 hs g 2 ki a
B[ Cl
hy—ks+g} NN gé/ h3 —a3 Jj1 a k3
x (=1) 3A(hs, g3)1°, " (=1 A(ks, a3)q",
3 ha g J3 ki a3
By C,
—kytg! j 5 hy - Jioaz kg
X (= 1)=ki Ay, o {J,’ & } 1) A(ky, a {
=D (ha, g9) s hs g (=1 (k4, aq) W ks as
Bs (&)
. "
B , o hi
 (—=1)1—kite o Ak, 2 { .]1 81-2 }
( ) ( I1—1 gl—l) Ji1 g;/ g?71
B>
j aj_» kj_
x (=D Aty a0 (25)
Ji—1 ar ar—i
Cra
After noting this intermediate result, we finally have to execute the remaining summations
of (25), namely the summations over h,, ..., h;_y and k, ..., k;_; (leaving out the signs

(—1)& 4 since they will be cancelled, as we will see, due to the occurrence of ¢/, -terms in
the following calculations).
First, we do this summation for part I of (25):

o First step:
summation over /h5:
A Ay

DDA kA T DR A k{2
P 1 k2 JI 1 k3 k2
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By
wlir o h

x A(ha, .
(282){]2 h3 85’}

B.4),(B.4
CALLBD 1y Ak, g A3, ks)

N ik il |k ks |t j2 &
x ;( D@k + 1){ L i hz} {hs hy 1) |\hs ji ha
2

integer

P . . 7
<B_~3>(_1)—<k3+j,+1+g5+k2+j1+h3+jz>{k3 ka 12} {Ji ks gz}

Juo & i)l g 1
(B.2) (_1)k3+jl+1+g/2,_k2_jl—hs_jZ_jl {k3 k2 ]2} {Jl k_3 gg}
gvog g s g 1
:(_1)8§'+1+k3—j1—jz—h3A(h3’k}){jl k.3 gé/} A(kz,gg){k} ko 1:2}; 26)
hs jr 1 J1g&
D, E,
summation over k»:
E, C
N i i Kk
ZA(kz,g2>{.3 2 ’?}Aacz,az){f.’ /! 2}
o J1 & 1 J2 K3 ap
®.4),8.5 Alaz, g5) ik &llh ok a
) o] 2ky + 1)(2ay + 1 , . = 8gJay-
<2a2+1)k2( e T S R TS Bl
&9 ,
gzﬂ')
27
e Second step:
summation over h3:
D] A2
Y (i Ay k| R 8L s g g {0
- > hy jr 1 ’ 1 ks k3
3
B,
x (=175 A (hs g”){j’ 82 h3}
TN hs &Y

= (=D& Aks, g§) A(ha, ky)

i1 ks g [j3 hs ha)l [j1 & hs
x —Dher+ DB 2“ ‘ b
%:( )" (2hs ){h3 g1 1 kg k3 3 hg gé/

(B.4),(B.5) h g ks il [ks ks J3|[g5 3 &
= E (—1)3(2h3+1){ ; }{ !
n 1 JI ]’l3 h4 ]’l3 1 h4 JI h3

integer
P . .
&8 (— 1)~ Rartir+ 1485 +ha+gy+hat o) {k4 ks 13} {JI ke g3 }
" " . .
g & Jr) lha Jr 1
®2) (—)katirtlegs—ks—gy—ha—js—ji { ki ks j3 } { i ks gé’}
g & Jr) lha Jr 1
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= (—1)gé’+‘+"4"fl--f2—f3—h4A(h4,k4>{j’ ".“ gé’} A(ka,gg/){k‘,‘, . ’:3};
hy jro 1 8 & i
Dz EZ
(28)
summation over k3:
E, Cy
k j j k
ZA(/Q, §’){ . J.S}A(kmas){].[ . 3}
3 JI 3 ki a3
29).(8.4),(8.5) Al(az, &%) {az J3 gé’} {az 3 fl3}
= — 22 2k3 +1)(2az + 1 . . = 0glu;-
(2a3+ 1) ;( 3 )( 3 ) k4 JI k3 k4 JI k3 833"
(B='6)5gga3
o Third step: 29
summation over h4:
D, A;
Syt g {5 ST copetans, i P20 )
i JI 5 4
Bs
i h
x (=1 A(ha, g){” 5 “}
J4 5 84
= (=D)S I Ay, gi) Ahs, ks)
Jroka g5 |Ja ha hs} {jl g h4}
x — D" (2hy + 1 , M
;( " ){ Ji 1}{1 ks ki) |js hs g
(B.4),(B.5) h g5 kq ﬁ}{h ks h}{gg Ja gZ}
= —D™"Q2hs+ 1 . .
%:( ) (2hs ){1 Ji ha) |hs hs 1) \hs ji ha
B-8) (— 1)~ kstir+leg] +hatgiths+jatjr) {k5 ks j4} {jl ks gf(}
g5 gi Jr)lhs g 1
B2) (—1)kstirtirgi—ka—gi—hs—js=ji {k5 ks j4} {j’ ks gf(}
g5 & Ji) lhs Jr 1
" : i ; ; ] k " k ]
— (_1)84+1+k5*]1*]2*]3*]4*h5A(hs’ kS) {]1 .5 84 }A(k4, 4/() { 5 4/1, ].4}; (30)
hs ji g5 & Ji
D3 E;
summation over k4:
E; Cs
ks k ] ] k
ZA(/% Z){ o ].4}A(k4,a4){].[ “ 4}
4 JI Ja ks as
(3U(B4J<BS)A4(G4784 { Ja gZ} {03 ja a4}
2ks +1)(2as + 1 . ) =8,
(as + 1) Z( s+ DQa+ D) g ks ks i ks fac
(B:'ﬁ)agf{w

€1V
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In this way, we successively carry out all the summations until the last step:

e Last step:
summation over h;_;:

D;3
Z(_1)g/’/7|+1+k,,lfz,’l;fj,,fh,,]A(hI_l k1_1){ Jji ki g//_z}
™ hi—t i 1

A
i1 hi_ h
)tk 4 Ji—1 -1 1
x (=1) (hi, k) | ko ks

B

o " h _1
x (=DYMH1=k-v Ah, e { .Jl 812 I
(=D (hi-1,87-1) i g gl

= (_1)37_2*22;% j"+k171A(k1_1, g}/,l)A(hI, kr)
Jrokicv gl Jir hier g Jr &1y hia
x Y (=DM 2h_ +1 , 12” . 2
;;( G ){hl—l g 1 Lk ki) i g gl

(B'4)7=(B'5) Z(_l)h1—1(2h171 + 1){6’},1—2 kl._] jl } {kl—l k’ jll—l}

hi_y J1 hi_ hy hi_q
feie i)
hy Ji hio

integer

———— . .
(]3:_8) (— 1)—(kl+jl+1+g}',1 +k11+g}'2+h1+j11+j1){ ky ki1 Ji-1 } {JI ky g}/fl }
" " L .
81— &-1 Jrylh Jro 1
(]3:.2) (_1)k1+j1+1+8;,|kllg/l/zhljlljl{ ki ki-1 jll} {]1 ki gll/—l }
812 &1 hi  ji 1

" -1, 1 k " k ki i
= (_1)glil+1+k1 Z":} jn_h]A(h[’ k]){él .I gll} A(kl—lv g,],_]){ //I - ]1. 1}
1 JI 8 ;

1 T—2 &1 i
01,2 EI—Z
(32)
summation over k;_:
EI,Q CI—Z
ki k-1 Jjioa JI aj—2 ki
A(ky_1, ”_){ VA, ar-n
k,Zl: -1 £1-1 8, &1 i ST G ke ar
®4),B.5 Alar-1,87_,)
N Qa;_ +1)
. P .
xZ(2k1—1+1)(2a1—1+1){a1_2 = ‘i””a"z 1=t i"‘}
P a JI -1 a JI -1
(B=.6)6

"
81—191-1

= Ogjarr- (33)
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Here, we have used that g/ , = a;_, resulting from the summation over k;_, and
additionally the fact that a; = k; from (24).
At the end of the part I summation over hy, ..., h;_1, ko, ..., k;_1, we can now summarize
the remaining terms of (25) resulting in the term D;_; from the summation over A;_; in (32).

With g/, = a;_; from (33), h; = g}, k; = a; from (24), we obtain the drastically
simplified formula:

1 J—1 . "
Z |:1_[ M, 1_[ M, x (=¥ {alj 17 gj,_l}:| X remaining terms
hyy.ohp—y Ln=2 m=1I+1 ar-1 Ji

ky,.. ki

= (—1)‘”*1*‘1(_1)‘”_g,1/)(—l)_2i;1 j”A(g;/, ar) {J{, t;l all_l}
81 1

J—1 .
~ a 14y JJ g] 1
X M, x (—DH¥ 34
ml:_[M =D {1 aj_1 Js } (34)

Now the summation for part II in (25) is the last task in order to complete our calculation:
let us write down this expression (again suppressing the (—1)& % signs) with the product
]_[,{;21 Ok, evaluated (this cancels the summation over k, and all the exponents in (=1)hi—kiy.

J-1
Z |:N 1_[ ahnkn:| X remaining terms

ha,....hj_1 n=2
ka,....kr 1

=G+ D+ jsGr+ D1 Y xA(hz,gg){j.; /! 2} A(hz,m){j.; /! 2}

Byvihy hs & ks a
B C
i1 g5 h Jji ax h3
x A(hs, g% j,l &2 3} Ah,a{,
s g3){13 hy g4 R T
Bz CZ
i I hy Jioas hy
x A(ha, gV J_I & } A(hg, a {
(h4, g4) {]4 hs g (hs, as) i ks as
33 C3
“ hi_ j o hy_
XA(hI 1, 2g1 1){ 81;2 /I I}A(}Hl,all) { .]l ar-2 ! l}.
JIi—1 81 8r-1 JI-1 ar ar—i
B> Ci

(35)
Looking at (35) we can see that every summation gives rise to an orthogonality relation
between the 6j-symbols as follows.

Every sum in (35) has the following form (again using the conventions in (24)):

”
ZA(hn, g {J’ St o }A(hn,a,o{ et h}
hn+1 n ]n hn+1

8 ay
A(g ) al jl g//fl hn jI ap—1 hn (B.6)
— 2h; + 1)(2a; + 1 " . =" 8grg;-
(2 + l) Z( )( “ ){ hn+1 g;,/ hn+1 ay & i

(36)
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One has to start with the summation over /. This gives 8,74,

Secondly, the summation over /3 is carried out by using the result 8,7,, from the summation
before. In this way, one can step by step sum over all ;; upto h;_;.

The final result for part II in (25) is

J-1 J—1
> |:N I 8h,,k,,:| x remaining terms = [j; (jy + 1) + js (s + DI | 8ya,- (37)
hz ..... h[,1 n=2 n=2
kayerskio

Now we have solved the problem posed in (19) and can write down the remarkably simplified
expression by using the results of (34), (37). Note that we have inserted §-expressions coming
from lemma 2.1.

Z eI (g2(IT) + 1)(gI1)|g"(12))(g(I ))]a(12))
guJ)

1 o o1 .
= S (PR X ()

X (—1)(”71(—1)”1_87(_1)_2;11;=jn(_])“‘l\/(zg}/+ 1)(2&[ + 1){6111_1 Cl.[ J{/}

Ji 8
J-1 . " "
x [T v@8)@a, + D(=1ysrra! {’" Soor o Sn }

1 a,  ap

n=I+1
u j g I1-1 N
x (=@ 15 f_-l} Sy Sy
( ) { 1 aj_, J] rg gnalxg &8nan
N
+LirGr+ D+ s G+ DI [ 8ean- (38)
n=2

For configurations (/, J) one has to take all terms of (38), which are in suitable limits, e.g. if
J = I + 1 then the product ]_[,Jl;,1 +1 - 1s not to be taken into account. Note that for special
configurations / < J certain terms drop out, e.g. if J/ = I + 1 then ]—[,{;,1 +1 18 not taken into
account.

Let us for clarity explicitly discuss four special cases of the edge-labelling 7, J, namely
(I =1, J arbitrary), (I =1,J =2), (I =2, J arbitrary) and (I = 2, J = 3).

We will display for every case the parts remaining from (18)

Note that again A(x,y) = 4/(x +1)(2y + 1) and the conventions of (24) are kept in
mind:

34.1.1=1,J arbitrary

D @) (&) + D(EUDNIZADNEUTNE12)) Y gr(IT)(g2(IT) +1)
gl guJ)

” jr & e&m “a Jiooar g
X (=1)¥m1 A(gra1, gf { (=D A(gra1, ara)y
81+t 81 Ji+1  8I1+2 gﬂl 811 I+ Ji+1  81+2  ap41

. ” 1
< (—1 gy+2A i ” .JJ 8r+1 81+2 —1)"u2hq ,a .JJ are1 8142
=D (8142 g1+2){11+2 81+3 g}’+2 b (142 a12) Ji+2  81+3  4r+2
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—1)&/-1 " Ji g;_z 871 —ay,
X (=DF-1A(gs-1,85-11 ; »o (=D A(gy-1,a5-1)
Ji-1 81 8-

x{ Ji aj-2 gjl}
Ji-1 g1 aja

J—1
1 . 1 . . ”
_ _(_1)J1+_/1—Z,{:21 ]"X(jl,jj)% | | A(gﬁ,/,a,l)(—l)g”1+“"‘+1{Jl” 8n—1 8n }

2 n=2 day a,_1
J a g N N
x (=D o T J_l} S8gra, + L1 G+ 1)+ jy (g +1 Sera - 39
b {JJ—I gs  aj- E gran + LG+ D+ G )]g ) n (39

342. 1=1,J=2

N

D &) (&) + D(EANIZU2NEUNE(12)) = az(ar + 1) [ [ 8gyan- (40)
guJ) n=2

34.3. 1 =2,J arbitrary

D eUN(@UT)+ DEUINIEADNEUNIE2)) = Y gr(I1)(g2(I ) +1)

§uJ) guJ)
" j hy_ j ki_
X (_l)glA(gl, g/[/){ '.]J -1 g/]/} (_1)_a1A(g17 al){ ..]J -1 gl}
Ji—-1  81+1 & Ji—-1  8r+1  ar

. ” /
(1) Afgrar. gty B 8 &l e g g Joooar 8
=D (8141 gHI){Jm 81+2 g}’+1 b (8141, a141) Ji+1 81+2  A4r+1

2 Ji o &la &2 “a Ji a8
x (=1)$mA . 8] { ; —1)"=A ,a )
(8122 g1+2) Ji+2  8I1+3 3/1/+2 D (8142, a142) Ji+2  81+3 ar2

. "
X (—1)%51 A(g)1, gﬁ_o{jj’l g;;z i,’,‘} (—1) "1 A(gy_1. ay1)
- J—1

x{ Ji oaja gj—l}
Ji-1 81 aj-
1

-1 . : . "
— 5(_1)!1*]’2*]‘1+1*Zi=; an(jZ’ jj)%A(az, gé/){.]ll J2 g2}
a J2

J-1 . "
% Alg”. a,)(—1 g;’1+a,,1+1{fn 81 &n }
E (8- an)(=1) Lo

N

. N
JJ aj—2 8gi-i . ..

x(—l)‘”{, }”8 + +1)+ +1 ||8
Jiot gy ay_i 11 gnay [,]2(]2 ) JJ(]J )] i gra,

(41)
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344.1=2,J=3
Z eI (1) + D{gUNIg"(12)){g(I Nla(12)) = Z (1)) (g2(17) + 1)

g(J) ga

” hy_ a ki_

x (=1)% A(gy, ,){ - }( 1)~ ’A(gl,al){ - g’}
Ji—-1  8I+1 81 Ji-1 &1 ap

1 i1y (i L hvoj & 83 &
= (=132~ Nnx A " 1)8 > 2
S(=D) (ar J1)? Alaz. 85) {1 P (G A

N
+ L2+ D+ ja(s + DI | Sz (42)
n=2

3.5. Explicit formula for the matrix elements

After having finished the precalculations in the last section, we are now in the position to
evaluate the whole matrix element in (12) by using (38).

We have now (again we abbreviate A(x, y) = v (2x + 1)(2y + 1))
(a(12)lguxla’ (12)) = Z Z eI ) (g2(1) + 1)(g(IJ))[g"(12))(g(1 J)|a(12))

§'12)gJ)

x Y & (JK)(g(JK)+ D{EJK)IZ"(12))(g(JK)la(12)
FUK)

—[a(12) < a’(12)]

MO)Z |:|: (— 1)]1 Jr= s = .jm(_l)alfl(_l)al_g}/(_l)_zi;i jn(_1)+1

§'(12)
a ar j ph
. . 1 — "
xxuz,;»zA(g;’,aI){ T gf,} [T A" an (1o
I} =141

.n //7 ;z/ o a .
x{fl Soor 8 }(—1)’{11 S 1}1‘[%1‘[8%}
n=2

n n—1 aj—i

N
+ [[j,u, +D+j,Gr+ D] 5g,;anﬂ

n=2

X |:|:%(_1)1ij2;” Jn= Yt Jm (—)¥- (— 1)“;75'7(—1)7 Sl n (_1)+1

a’ i
x X (js, JK>2A(g,,aj){ -1 4 ’{,}

JJ 8y
= jn & gn
x [T A", a)(—1)sir 1*‘{ oot o }
1 Ca el

71

, . N
x (—1)% {alK Jk gK 1} H5 1_[ 3g;;a;l:|
n=K

+ |:[jJ(jJ + 1)+ jk(jxk + D] 1_[5gga;,:|j| —[a(12) <= d'(12)]

n=2
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— |:|:%(_1).71—.i1—21_i Jn= e Jm (=41 (— 1)611—!1} (-1~ P (— 1)+1

x X(ji. jr)? Ada), a,){a’ll o ”}

JI a}
J-1 . / / . /
x]_[A(a’,an)(—l)”r’w“‘"‘“{J” -1 On }(—1)‘”{“’ o a“”
T | A I a;-1 s

% [l(_l)jKjJZﬂ_ll Jn= Yot Jm (=)@~ (_1)11}7&/ (_1)*2,1;1 Jn (_1)+1
2

N ay , a; j
xxm,mm(a},a’,){ o ’,’}
Jr  ay

a, ay—q

K—-1 ‘
X 1_[ A(anva;)(_l)an_l"—ar’l1+1{]1n a”71 ?n }

n=J+1

1—1 N
g lax  Jk aka
x (=1 { 1 a/l( jk }ili| ljg&l,,a; ljll( aanaé

—1

+ |:|:l(_1)j1—jz—2f,_ll = n (—D)U (=1)H % (=1)" i (—=D*!
2

. aj_1 ar Jji
X (jr, jp)2Aa, .
x X (1, jr)?Aa; al){ L a’,}

J—1 . ,
X 1_[ A(a/ a )(—l)ar/t1+alxl+l{~]n a;l—l (ln }
ny “n

1 a, ap—i

n=I+1
. -1 N
olar Jiooaj o o
<0 T U+ D+ G+ D1 [ o, [ ] 80
B n=2 n=J

+ [[%(_1)#/‘/2}” Jn= M)t m (—=)@-1(— l)a',faj (-1~ S dn (_1)+1

! / ]
x X(js. jx)? Alay, apy -t G0 N
1 Jjioay

K—-1 ‘
X H A(an,a;l)(_l)an_lm,’,l+1{]n ay_1 ?n }

1 a a

n=J+1 n n—1
J—1 N
o Jax  Jk o ak— L .
X (=1) { Coae e H [JI(]I+1)+JJ(]J+1)]i| ]j[zéa,,a,; ];[(8%

N
+[LsGr+ D+ jxGr + DI Gr+ D+ js (o + DI 1_[ 8a,a,

n=2

—[a(12) = a'(12)]. 43)

Here, we have in the last step carried out the summation over g7, by evaluating all the §-
expressions. Finally, we take a closer look at the symmetry properties which the four terms
of the sum in (43) have with respect to the interchange [a(12) <= a’(12)], that is the
simultaneous replacement a, — a,,, a, — a, foralln =1,..., N:
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o Fourth term. Due to the product of §,,. -expressions this term is obviously symmetric
under [a(12) <= a’(12)].
o Third term. The symmetry is not obvious, we will show it part by part:

(1) In the (—1)-exponents a;_; = a’;_,, ayx = ak by the §-expressions at the end of the
term.

(2) The term (—1)“//’“1 is not changed by interchanging a’, <> ay, since a;, — ay
is an integer number and therefore the first formula of (B.3) holds. The integer
statement is verified by the fact that dj,, dy, are standard recoupling schemes,
defined as in (A.2). Therefore, they recouple all j;, ..., jy successively together
according to theorem (A.1). Since dy, d}, contain temporarily recoupled angular
momenta, namely a;y = ai(ar—1, jx), a, = a;(a;_,, ji) for which |ag_1 — ji| <
ap < ag_1 + ji, |a,/(71 — il < a,/{ < a;_, + ji, the integer or half-integer property of
each component ay, aj, is only caused by the order the involved spins j, ..., jy are
coupled together. Since this order is the same in aj», 5’12, the components ay, aj, are
simultaneously (for every k = 1, ..., N) either half-integer or integer and therefore
every sum or difference a; % a; is integer.

(3) The same statement as in (1) holds for a’,_,, a} as the entries in the upper-left corner
of the two 6 j-symbols before and after the product in the middle of them.

(4) Inthe product of the 6 j-symbols the exponent of (—1) contains only asuma,_; +a,,_,
and is therefore symmetric.

(5) All prefactors A(ax, a;), k = J, ..., K — 1, are symmetric too.

(6) Finally, all 6j-symbols in the third term turn out to be symmetric, if we recall that
they are invariant under an interchange of their last two columns (B.4) followed by
an interchange of the upper and lower arguments of their last two columns (B.5).

e Second term. The symmetry is again not obvious, so we will show it part by part:

(1) In the (—1)-exponents a;_; = a;_,, a’; = a; by the §-expressions at the end of the
term.

(2) The term (—1)%~% is again not changed by interchanging a; <> ay, by the same
integer statement as under point (2) in the third term discussion.

(3) The same statement as in (1) holds for a;_;, a, as the entries in the upper-left corner
of the two 6 j-symbols before and after the product in the middle of them.

(4) In the product of the 6;j-symbols, the exponent of the (—1) contains only a sum
a,_, +a,— and is therefore symmetric.

(5) All prefactors A(a,’(, ap),k=1,...,J — 1, are symmetric too.

(6) Finally (again) all 6 j-symbols in the third term turn out to be symmetric, if we recall
that they are invariant under an interchange of their last two columns (B.4) followed
by an interchange of the upper and lower arguments of their last two columns (B.5).

o First term. This term is not symmetric under [a(12) <= a’(12)]. Arguments similar to
the ones we gave in the previous points now let us conclude that:

(1) The prefactors (—1)%, (— 1)%-1 are not symmetric with respect to the interchange of
a;y = ay,a;_ — aj_i.

(2) The two 6 j-symbols containing a;, a’;_, in the upper-left corner are not symmetric
either.

The analysis has revealed that the last three terms in the sum of (43) are symmetric in @ (12)
and a’(12), hence after an antisymmetrization with respect to the interchange of @(12) and
a’(12) only the first term in (43) survives.
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Summarizing, we get by explicitly writing down all the terms occurring through the
antisymmetrization:

1 .. -1 . -1 . ’ -1 .
(&(12)|@11K|Zl’(12))=|:[5(— 1)]1-]1—2,,:1 In=n 1 Jm (- l)al—l (_1)a1—a1 (_])—anl Jn (_1)+1

. J—1
L) ’ ar—1 ar Ji ’ a,_ +ay_1+1
><X<JI,JJ)2A<a,,a,){ L a}} [1 A, an(=1)%-

n=I+1
% {]n a;,_l a;, } (_l)a, {al Ji a/]._l}
I a, a, I a;1 s

x |:%(_1)1ij2,{—11 =gt Jn (—D)%1 (=14 (_1)*25;1] (=)t

K—1

’ ’ .
X X(jj’ ]K)%A(a;, aj){aj—l a.J ],J} 1_[ A(an, a;)(_l)anqﬂl;_ﬁl
Vo) 27
o Jn Gno1 ap (—1)% ay jk  ak-i ﬁ(S ﬁ s
1 a, da_, 1 ay_, Jk il il
n=2 n=K
) |:|:%(_1)j1_jl—z,l,{ =0 et (_1)61',,1 (— l)a}—al (=)~ Yozt n (— 1)*!
| a; a;, jr = ,
XX(J.I:]..I)ZA(CZI,CZ;){ I-1 .1 } 1_[ A(an7a]/1)(_1)an71+a”71+l
1 Ji ar n=I+1

jn ap—1 ay a a‘,] jJ aj—1
X (-1 ’{ : }
{ 1 a, ai/ll} L oa, s

% |:1(_1)j1<—j1—2111 R S (=¥ (_])a’,—az (=)~ S (— 1)+1
D) =

K-1

.l aj—1 ay js ,
x X (js, JK)ZA(aJ,a’J){ L - } [ A, ap)(=1y-rtom!
Jr 4}
L o g . d -1 N
< {]n n—1 n } (_1)a1<{ kK JK Kl} Sana; 1_[ Sayar -
I a  ap 1 a1 Jjk 5 a
n=2 n=K
(44)
Here, we have underlined the terms, which are different with respect to the antisymmetrization
(recall that (—=1)¥~% = (—1)"@=%) = (—=1)%~%), because the exponent is an integer

number. All the other terms are symmetric under the interchange a(12) <= a’(12), again
because of the symmetry properties (B.4), (B.5) and the symmetrization by the §-expressions.
Before we write down the final result we can simplify the exponents in (44):

(=D~ PR (=)~ ot n (=)~ DRI D (=)~ i
= (= 1) 22X ()™ e (1) 7205 (= 1) D
— (_1)—21:_1'“ ju(_l)—ZZ,f;' jn(_l)—Z,'f;f+| Jn
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— (_ 1)2j1_3 Z;{;I]H j’I_ZIIx(:_Jl+l Jn
. J-1 K-1 .
=(— 1)2JI+Zn:1+1 Jn=2nse1 In

Now we are able to give a closed expression of the matrix elements of gk in terms of standard-
recoupling scheme basis (12). In order to avoid confusion we assume that I > 1,J > [ +1;
the remaining cases will be discussed below.

Theorem.

" - 1 i . o O
(@lqu |’y = § (= 1) ()@ ()Xot (= 1)~ X

X X(ir. ) X Gr jo)ty Qar + D(@a) + 1), Qay +1)Qd, + 1)

. J—1
ar—1 Jr ar 7 _1\d_ a1+l
x{ 1 ' jl} |: I l VQal, + 1)(2a, + 1)(—1)%-

n=I+1

/

K—1
]1,’ a a, }:| |: 1_[ \/(2‘1 +1)a, + (- 1)“;: (g +1

n-1 n=J+1

% a,’, ag Jk ag—1
1 ap ap—1 1 a/K—l jK

~.
B
Q

/

x| (— 1)"1*’“1 1{ j-/ aj-_l} {a/J—l j-/ a,J} _ (_1)a1+a171

aj—1 Jji 1 a; jy
a’ j a’ a Jji a = N
J J J—1 J-1 J J
X . . Sana’ (Suna’ (45)
{ L oaj gy } { L ay JJ}}E "nl:!( !
with X (j1, jo) = 2j12j1 + DQ2j1 +2)2j2(2j> + 1)(2j2 +2). Note that all 6 j-symbols still
appearing are just abbreviations for the following simple expressions in which summations

or products (factorials) no longer need to be carried out as compared to (B.2), e.g. (using
s=a+b+c),

a b c} il 2[b(b+ Dc(c+1) —a(a+1)]
= (=1) : (46)
L ¢ b [2b(2b + 1)(2b + 2)2¢(2c + 1) 2c + 2)]2
cll b C} — 1y |:2(s+ (s —2a)(s — 2b)(s — 2c + 1):|; a7
c—1 26(2b + 1)(2b +2)(2c — 1)2¢(2c + 1)
a b el s(s +1)(s — 2a — 1)(s — 2a) 2
1 c—1 b }_( b [(219—1)2b(2b+1)(2c—1)2c(2c+1)] (48)
a b c [(s—2b—1)(s — 2b)(s — 2c+ 1)(s —2c+2)
X }= (=1 [ } (49)
c—1 b (2b + 1)(2b +2)(2b + 3)(2c — 1)2¢(2c + 1)

Remark (gauge invariance). Recall that a vertex is said to be gauge invariant if the angular
momenta coming from the edges ey, .. ., ey meeting in the vertex v are coupled to a resulting
angular momentum j = gy = 0. Using the notation from (A.5), this means

J:=) Ji=1Gy =Gy +Iy=0. (50)
i=1
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This implies

!
Gy1=Gyoa+ Iy =—Jn (51)

~Gyoo=Gy i3+ JIvo2=—JIy—JIy_1. (52)

But that gives gy_; = jn and a certain restriction on which values gy_, can take due to the
Clebsh—Gordon theorem A.1:

max (| jy—2 — gnv=3l, ljn — Jn-1l) < gnv—2 < min (jy_2 + gn-3, jn + jn—1)- (53)

This relation will become useful when we consider gauge invariance later.

As promised we now display the remaining cases of (45) explicitly. They are obtained, if
some of the special cases (39)—(42) are involved.

35.1. 1 =1, J, K arbitrary

. . 1 o 4, o
@grxla’) = Z(—l)fk‘f“““‘(—l)ﬂﬁ' (= 1) Zomi i X (jy, j)?

x X(j. jx)ty @ay + D@d) +1)

[J—1 ) .n a/_ a
g _}E \/(za;l ’ 1)(2an ’ 1)(_1)anil+a”71+1 {Jl an anil } :|
= a’ _ +a,_1+1 le a, 1 a,
X _nl—[m VQal + 1)2ay, + 1)(—1)%- 1= {1 Z; an"l}]
o lax /jk alf—l} |:(_l)aj,+a',1{01 Ji a}._l} {a}_l Ji a}}
1 ay_, Jjk L oaj s L a; s

. . , N
— (=D {“9 o “9.1} {““ o “.’” [T %0 (54)
1 ay_ JjJ 1 ay js K "
352. 1 =1,J =2, K arbitrary
@uaxldy = (1At ()T 1) Ty
N ; v @
><X(Jz,]K)-\/(2a2+l)(2a2+1){1 aé jz}
K—1 j a/ a/
/ a,_+ta,_+1)Jn n—1 n
x []1 J@al +1)2a, + 1)(—1)%-a- { Lo aﬂ”
a J a A
K K K—1 i
x{ Uod i }[az(a2+1)—az(a2+1)] [ ] % (55)
n=K

353. 1 =1,J =2,K = 3. This case is actually the easiest. We will use it in the next
section. Therefore, we will write down the calculation explicitly. We start with (40), (42) to
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obtain
a 1 R
(@lgizla’y = ar(a, + 1) 1_[(Sg,’[an|:§(_1)]2_11+]3X(j2’ j3)5\/(2g§’ +1)(2a) + 1){ 11 (; ]z}
n=2 2

wlas " .. o al
x (1) { > ‘jz} [T 80,0, + Li2Gia + D+ js s + 1)]]‘[8%0;,]
2

n=3 n=2

_ (Zi <« (;/) = (az(az + 1) — aé(aé + 1))

1 L 1 2 @
_(—1)2— Nt 4
X [2( 1) X (jo, 13)2\/(2a2 +1)Q2ay + 1){ 1o

. N
B I3 @ ,
=D {1 aj 13”“5“"“"' 0

n=3

Now the conditions for the arguments in the definition of the 6j-symbols (B.2) give certain
relations for a,, aé occurring in (56), namely,

a2—1
i
a, = Yy
a2+1.

We can choose either the first or the third case to obtain a non-vanishing matrix element. We
choose a), = a, — 1 (the other choice would give us a sign, due to the antisymmetry of §). So,
we continue (considering only the nontrivial information a, ¢} contained in the recoupling
schemes d, d'):

(a2lg123laz — 1) = (az(az + 1) — (a2 — Daz)

* B(‘””""”}x(h, W@ D+ DCar 1>{jf & “-2}

% (_1)a3 {a; J3 (12} ] ] (57)

a—1 j;

Now we can rewrite the second 6 j-symbol in (57) by using the identity?
a b cl _ 20aR2a+1)2a+2) [b a c
1 c—1 b) \2b2b+1)(2b+2) |1 ¢c—1 a

. | o
(@ldislay — 1) = 2ay 5 (12X (o, 1)} Qay = DQRay + DM 2@
2 I a—-1 jp

< (_1)a3 26{3 (2613 + 1)(261'; + 2) j3 as ar (58)
2j3(2j3+1)(2j3+2) 1 a—-1 a3 '

At the last step we once more use (47) to express all 6 j-symbols in (58) explicitly. Furthermore,
we use the fact that j; + a, + a3 is an integer number and therefore (— 1)2(*a+as) — 1 (one can
see this by applying the integer conditions (B.2) to the second 6 j-symbol in (58)). Additionally,
recall the shortcut introduced earlier: X (j2, j3) = 2/ (2jx + 1)(2jo +2)2j3(2j3 + 1) (23 + 2).
After carefully expanding all the terms and cancelling all identical terms in the numerator and

2 This follows directly from (47).
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the denominator, the explicit result is

ax|Giazlar — 1) = W+ h+ta+D)(—ji+jpo+a)(ji—ja+a
(a2lg13laz — 1) J(Zag—l)(2a2+1)[(J1 Rta+D(—ji+ jp+ta)(ji — j2+az)

X(i+p—a+D(jztaz+ay+1)(—j3+a3+ax)(jz —as +az)

X (js+as —ay + D]? = —(ay — 1G123la). (59)

The analytical result for this special case coincides with the result already obtained by graphical
methods in [8], if one considers the gauge-invariant 4-vertex (see the next section!) by putting
a, — jip andas — j4 (as a consequence of applying the definition of the standard-recoupling
schemes (definition A.2) to a 4-vertex).

3.5.4. Comparison: computational effort. At the end of this section, we want to compare the
computational effort one has to invest for calculating the matrix element (12) using the full
definition in terms of 6 j-symbols (18) or the derived formula (45) instead. We will give here
only a rough estimate, since for the full definition (19) the calculation can hardly be done for
all possible combinations of arguments.

Consider an N-valent monochromatic vertex® v with N outgoing edges ey, ..., ey, each
carrying the spin j; = -+ = jy = jmax. Assume, we had to calculate the matrix element
(12) for a certain combination of the triple / < J < K,namely I =~ (J — ) =~ (K — J) :=
L~%>1.

Let us first discuss the full definition using (12) with (18) inserted.

Consider first the definition (B.2) of the 6j-symbols: we will only pay attention to
the w-coefficient, since the number of A-coefficients is constant. By the requirement for
the summation variable n(max[j; + jo + jio, j1 + j + jus, 3 + Jo + jo3, 3 + J + jio] <
n < minlji + jp+ j3+ j, 2+ jio+ j+ jo3, jiz + j1 + jo3 + j3]), we can (if we put
J1 = Jo = j3 = ] = Jmax,Jj23 = jio = 2j) extract 0 < n < 4j. That is, we have
approximately 4 j,.x summations and therefore 7 - 4 j,.x factorials to calculate for every 6j-
symbol.

Now look at the definition of the 3nj-symbol in terms of 6j-symbols (16): we have
approximately 2/ = 2L 6j-symbols, due to summation over the intermediate recoupling
steps hy and additionally J — I = L 6j-symbols not involved in that summation, a constant
number which we can drop. Now in the worst case, 0 < A1 < 2jmaxs Jmax < A2 <
2jmax + jmaXv L) (1 - 1)jmax < hl—l < (1 + 1)jmax- Therefore7 each hk (2 < k < (I - 1))
can take 2 jyax different values and we have thus about (2 jmay)’ possible combinations for /.
So we had to calculate all 27 (2 jnax)’ = 2L (2jmax)” 6j-symbols.

Every term in the sum (12) contains a product of four 3n;j-symbols. Now the summation
over g(1J), g(JK), g”(12) again gives (under the assumption that each intermediate angular
momentum g(IJ), g(J K)i, g(12); can take 2jun.x different values, but only (J — I) ~
(K — J) := L intermediate steps of each summation contribute to calculations, due to the
S-terms in (14)), for each matrix element approximately (2 - 2 jmax)>F3nj-symbols to calculate.
Summarizing these three steps we end up with a computational effort of approximately

. . . . . 4
7- 4]max . 2L(2]max)L : (2 : 2]max)3L ~ (]max)4L ~ (]max)sN

calculations of factorials occurring in (B.2).
It is much easier to discuss the effort one has in the case of using the derived equation (45).
We have only a product of special 6 j-symbols containing no summation and factorials at all.

3 Of course this special case is not that expensive, because it is the most symmetric case. But it illustrates the
estimates for the general case with different spins.
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Figure 1. The configuration at the 4-vertex: four outgoing edges each carrying a representation of
SU (2) with a weight according to ji, j2, j3, ja-

So, one only has to carry out the product consisting of only K — I = 2L ~ %N factors,
independent of jp,x.

Be aware that this estimate given is only rough, one could introduce the symmetry
properties (B.4), (B.5) and additionally keep in memory previously calculated 6j- or 3n;j-
symbols to save calculation time. Nevertheless, the computational effort for the calculation of
the matrix element (12) depends on jyax if one uses the original formulae (12) with (18). This
is no longer the case if one uses (45). It is clear that if one wants to numerically compute all
the matrix elements then one cannot get very much over jpn.x = 2 with (12).

3.5.5. Conclusion. 'We have shown in the last section that it is possible to explicitly evaluate
the matrix elements of the volume operator in (12). Here, by ‘explicitly’ we mean that there
are no more 6;j-symbols in the final expression. The derived formula is a simple algebraic
function of the spin quantum numbers, no factorials appear any longer and no conditional
summations, implicit in Racah’s formula for the 6 j-symbol, have to be carried out anymore.
Thus, the computational effort in order to evaluate the matrix elements has decreased by a huge
order of magnitude, which grows with growing maximal spin jn.x. This simplification has
been achieved by the discovery of a nontrivial fact, namely, that the highly involved formula
(12) or (18) is like a telescopic sum of the form Ziv:l (a, — a,_1) = ay — ap once one takes
the orthogonality relations of the 6 j-symbols and the Elliot—Biedenharn identity into account.

A first observation is that the matrices defined by (45) show a banded structure, that is a
rich selection rule structure. Non-vanishing entries are only on certain parallels to the main
diagonal, because of the restrictions of the presence of an entry 1 in every 6 j-symbol contained
in (45).

4. Gauge-invariant 4-vertex

In this section we will examine in more detail the gauge-invariant 4-vertex, that is the
configuration of edges as shown in figure 1.

We have four edges ey, ..., e4 outgoing at the vertex v carrying the spins jj, ..., js and
the corresponding representations of SU(2), j,, ..., m,.
The square O, = V2 of the volume operator represented in terms of the standard-

recoupling scheme basis was (note that in what follows we will stick to the squared version
of the volume operator, therefore of all eigenvalues we write down, the square root has to be
taken in order to obtain the spectral behaviour of the volume operator itself)
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Qvi=27- Y e J, K (Jx)*]
I<J<K
=Z- Y €U, J K)jux. (60)
I1<J<K
Since we have four edges the summation in (60) has to be extended over the combinations
I<J<K)=(1,2,3),,2,4),(1,3,4),(2,3,4).

The point is now that due to gauge invariance the four angular momenta ji, ..., js should
couple to a resulting zero-angular momentum j = 0 at the vertex v. For this reason the angular
momentum operators Ji, ..., Jy hold due to (53)

Jit+h+h+Ji=0 (61)
which implies

Jy=—(1+ D+ J3). (62)
It follows that

G12a = —(G121 + G122+ G123) = —G123

Gi3a = — (G131 + G132+ §133) = —G132 (63)

G23a = — (G231 + G232 + §233) = —G231.

Here, we have used the fact that §;;; + G = 0 VI, JA
Thus, (60) reduces to

D el I K)quk = €(1,2,3)G12s + €(1, 2, 4)G1oa + €(1, 3, 4)g 134 + €(2, 3, )34

I<J<K

=[e(1,2,3) —€(1,2,4)+€(1,3,4) —€(2,3,4)]1G123

=243 (64)
where we have used in the last line the configuration of the four edges outgoing from v described
above to obtain the orientation (£1) of every triple of tangent vectors corresponding to three
distinct edges (note that for different orientations of ey, ..., e4 just the prefactor 2 changes).
This brings us precisely into the situation of the last example in the previous section. We can
now explicitly write down the matrix elements of O, represented in a basis of standard gauge-
invariant recoupling schemes |a(12)j = OM = 0) = |az), |a'(12)j = OM = 0) = |a}). For
simplicity, we relabel a, — jio, a3z = a5 — ja, @) = ji,, a3 = a5 = ja.

Now the non-vanishing matrix elements in (59) are
1

V@i - D@+ D
X(Ji+p—ju+tDGs+ja+ jio+ D(=j3+ ja+ j12)(Jz — ja+ j12)

(J12lg123lj12 — 1) [+ 2+ ji+ D(=ji+ ja+ ji2) (i — j2 + j12)

L . 1 , O
X (3 + ja— jrz+ D12 = —(jiz — 1§ 1231 j12)- (65)
By (55) we get certain restrictions for the values that j;, may take’:
max (|j1 — ja2l, [j3 = jal) < jiz <min (i + j2, j3 + Jja)- (66)

Therefore, the dimension n of the matrix-representation A of §,3 in the standard basis is given
by
ni=dimA =min (ji + ja, j3 + ja) —max (|ji = jal, Ij3 — jaD) + 1

=i —Jn + 1 (67)
4 To see this, just take the definition q,_,K = [(Ji)?, (Jix)?] and expand the resulting commutators. Alternatively,
use the antisymmetry of Gy ~ e J; J4 J* to see that §uy +Grr = Guys — Guur = 0.
> We may label w.l.o.g. edges in such a way that 0 < j; < jo < j3 <ja < i+ jo+j3)and ji + o+ ja + jy =
integral.
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We find for the matrix A (labelling the rows by ji» and the columns by jj,, where the first
row/column equals jj» = ji, = jl"z‘i“ increasing down to the last row /column with jj» = j{, =

rmax

j5™ and using the abbreviation for the matrix element aj := i - (j5" + k|§ 23| j5" + k — 1)

(where i is the imaginary unit®),k =1,...,n —landay =a, =07)
0 —a 0 o .. 0
ay 0 —ap
a0 @ 0 . (68)
. . . —dp—1
0 o e e @y 0

That is, the matrix A possesses a banded matrix structure which is called a Jacobi matrix.
Note that g, are purely imaginary, because A is Hermitian and its eigenvalues are real. We
will discuss the spectral theory of A by analytical and numerical methods. Note the following
advantages of the gauge-invariant case over the gauge variant:

e The dimension of A scales only linearly with the spins outgoing at the vertex v (this
advantage will be useful for the numerical studies).

e There is no sum over matrices left any longer, as would be the case for the gauge-variant
4-vertex.

e Due to the formulation in a recoupling scheme basis we have automatically implemented
gauge invariance.

4.1. Analytical investigations

4.1.1. Eigenvalues. As pointed out before, all eigenvalues A of A are real and come in pairs
4. The special case of zero eigenvalues will be discussed below. One can find upper bounds
for the eigenvalues by applying the theorem of GersSgorin (see [26], p 465).

Theorem 4.1 (GerSgorin).
Every characteristic root A of an (n x n)-matrix A lies in at least one of the discs

n

|aii_k|<2|a[j| i=1,...,n.
j=1
J#i

That is, every eigenvalue lies in a disc centred at the diagonal element a;; with radius of the
sum of moduli of the off-diagonal elements a;;, i # j of the ith row or column (called the ith
row or column sum). In the case of the gauge-invariant 4-vertex this theorem simplifies due
to the banded matrix structure of (68) and the fact that a;; = 0 to

Al < Z laij| = laii—1] + Gii1. (69)
J#i
We will give an upper and a lower bound for the eigenvalue spectrum in terms of the leading
polynomial order of the largest angular momentum jp,x = max(jy, ..., ja).

6 This only changes the spectrum of A from being antisymmetric to Hermitian and therefore rotates its spectrum
from purely imaginary to purely real.

7 Justinsert jip = JBtor jio = j{'z‘i“ +n = j5* into the matrix element (65).
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By inspection of (68) one can see that the row sum introduced in theorem 4.1 is dependent
on the modulus of each of the matrix elements a; (j12) := (ji21d123lji2—1),i =1,...,n—1.
This observation will be useful for obtaining an upper bound for the modulus of the eigenvalues
of A. On the other hand we could also use theorem 4.1 for giving a lower bound of
the eigenvalues if we could guarantee the existence of the inverse A~! that is the absence
of the eigenvalue 0, which will be discussed explicitly in appendix C. Then the upper bound
of the eigenvalues of A~! would give us a lower bound of the non-zero eigenvalues of A.
However, due to the general formula for the matrix element of the inverse matrix

det Mij
det A

(where M;; denotes the sub-determinant of A with row i and column j deleted) all the entries

of A~! will be of the order m We can therefore try to find the extrema of the matrix

element (65) in terms of the spins ji, ..., js by partial differentiation®. Note that we have the
freedom to choose j; < jo» < j3 < Jj4 = Jmax, Since the matrix element (65) is symmetric
under permutations of ji, ..., ji:

AN = (70)

da(ji2) | .(0) L1 . . .
=0« =—+—,/1+4 +4j,+4
i J1 ) 2\/ J12 J2 J2
da(j 1 1
W) Lo g0 =il fliai vaj a2
aj> 2 2 1)
atin) L o o _ —l+1\/1+4'2 +4jy+4)2
s J3 D) Jip taJat 4,
da(jiz) | .(0) 11 .2 . .2
=0 =——+\/1+4j5 +4j3+4]);.
a Ja B 2\/ Jpta)t4a]3

If we want all relations of (71) to be fulfilled at the same time with strictly positive values of
Jjis ..., ja then we have to demand

1

Lo, Lo .
Ji=jri=m and J3 = J4 ‘= Jmax- (72)

Therefore, (67) reads due to the ordering j; < jo» < j3 < Jj4 = jmax a8
0< ji2 <2m. (73)

And the matrix element (65) simplifies to

| —

2
/12 [[(2a + 1)2 - j122][(2jmax + 1)2 - 1122]] -, (74)

a(jin) = ————
V4in —1

(1) Largest eigenvalue
By inspection of (74) we can maximize the order of j,x contained in the matrix element
by putting

M~ Jmax ~> @(j12) ™ fax- (75)
The result is an upper bound on the growth of the maximum eigenvalues of the matrix A

8 We will list here only those solutions which allow positive values for ji, ..., Ja and mutually different ji, j2, j3, ja!
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with the maximum angular momentum jmax:9

3

[ max Gima) | ~ Jivax = 1 Vinax Gimax) | ~ jimax- (76)

(i) Smallest non-zero eigenvalue
By assuming the existence of the inverse A~! with a sparse population of entries of the

order i, one can minimize the order of j.x contained in the matrix element (that is

maximizing the matrix elements of A~") by putting
m~ 1<K jmax ~ a(j12) ~ Jjmax- )

The result is an upper bound on the growth of the maximum eigenvalues of the matrix
A~! with the maximum angular momentum jnax and therefore for the smallest non-zero
eigenvalue of A:'°

1
|)"min(jmax)| ~ jmax = |Vmin(jmax)| ~ jnzlax~ (78)

These are first estimates, we will come back to this, when we discuss the numerical
investigations, since the theorem 4.1 and our approximations tell us nothing about the numerical
coefficients in front of the leading powers of j,.x. Nevertheless, this estimate will give us
a certain criterion for completeness of numerically calculated eigenvalues: since the smallest
eigenvalue A, grows with jn,,x we can at a certain value of jn,x be sure of having calculated
the complete volume spectrum for all V' < Vi,;, as we shall see in the numerical section below.

4.1.2. Eigenvectors for » = 0. Posing the eigenvalue problem AW = AW for the matrix A,
we obtain a three term recursion relation that every eigenvector W of A has to fulfil:
ar Vi1 — ap VWi = A, with a9 =a, =0,
(719)
reR, (0 <k < n) purely imaginary.
We can now check, whether the eigenvalue A = 0 belongs to the spectrum. This decouples
the recursion relation (79) to give

ar—1 W1 — ax Wi = 0. (80)
Now for consistency of (80)
k=n:a,_1¥,_1=0 and therefore V¥, =V, 35=---=0
k=1:—-a;¥, =0 and therefore W, =W, =...=0. ®1

But this means that the matrix A can only have an eigenvector ¥ # 0 if the dimension n of
A is odd, because if n would be even, then all components of W would be forced to vanish
by (81).

That means we will only obtain A = 0 as a eigenvalue in configurations with odd
dimension of A. We can now construct explicitly the eigenvector W for odd #: first we choose
W, = x with x = const € C. Then from

W1 Wi

Skl (82)
ag Wi

9 This result coincides with that already obtained in [24]. Note that the number of terms in each row/column sum is
equal to 2 due to the special structure (68) of the matrix A and therefore independent of jmax.

10 Note that one should really use (A~"); j which can be a complicated polynomial in A;;. This is indeed the case as
shown in appendix C and therefore the result presented here is at best a rough estimate.
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we find the general expression

" aas_ n—1
W2,+1=x-m where r = 1,2, ..., n =dim A x=W¥,. (83)
1_[5:1 g 2
Since as were chosen to be purely imaginary, all odd components W3, ..., ¥, of W are real,
all even components W, ..., W, _; are identical to zero, because of (81). Finally we can fix

W, = x to be (up to the sign of x = V)

=

r 2
1 ars—1

x=Y = (84)

? la23

Summarizing, the eigenvalue A = 0 only occurs in the spectra of matrices A, possessing an
odd dimension 7, as a single eigenvalue (since its eigenspace is only one dimensional due to
the uniqueness of construction of the eigenvector W up to a constant rescaling). Hence, we
have shown that A is singular iff # is odd and in that case A = 0 has multiplicity 1.

4.1.3. Monochromatic 4-vertex (j1 = j» = jz = j4 = j). Observing this special case, the
matrix elements in (65) simplify dramatically to

(1)*[n* = ()] (85)

1
(Ji2lg123ljiz — 1) = —/——
Va(jin)? -1

where 0 < jjp <2janddimA =n=2j+1.

4.2. Numerical investigations

In this section, we will describe numerical calculations done for the gauge-invariant 4-vertex.
We will (after describing the set-up) sketch the computational effort first. Secondly we will
give a conjecture about the volume gap, that is the smallest non-vanishing eigenvalue as a
result of the calculations. As a third step, we will take a look on the accuracy of the upper
bound given by theorem 4.1. Finally, we will present some spectral estimates.

4.2.1. General set-up. We calculated for the gauge-invariant 4-vertex the spectra of all
possible edge-spin configurations jj, j2, j3, ja up to a maximal spin of j,.x = 50 using the
mathematical software Maple 7. Since the matrix element (65) is symmetric with respect to
interchange of js, we calculated the spectra of all Q,(ji, j», jo, j3) for

0< ]] ]2 Jz j4 < min(j1 + j2 + j3, jmax) and j] + j2 + j3 + j4 integral. (86)

Thus we compute less than - 7 configurations, without losing any information. The conditions
on the right-hand side of (86) ensure that we exclude all trivial configurations, since if
Ji+ o+ Jj3 < jaor ji+ jo+ j3+ jais not integral it would be impossible to recouple them
to resulting zero-angular momentum, being the definition for gauge invariance. If one spin
is identical to zero, then the obtained configuration would also be trivial, since it would then
effectively describe a gauge-invariant 3-vertex, which vanishes identically, hence we also
impose ji - j2- j3 - ja > 0.

The possible values for the intermediate recoupled jj, are then due to (66) and the order of
the angular momenta introduced above (since we have sorted the ji, ..., ji by their modulus
and each j > 0, we can leave out the modulus notation in (66) by writing j s in certain order):

max(jo — ji, ja — j3) < jiz <min(j + jo, j3 + ja) = j1 + jo. (87)
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The dimension of the matrix A of such a configuration is then according to (67) given by
dim A = dim(jy, j2, j3, j4) = j1 + jo —max(jz — ji1, ja — j3) + 1. (88)

For every configuration then the matrix elements according to (65) are calculated and inserted
into a numerical matrix. This matrix is then numerically diagonalized, its eigenvalues are
sorted ascending and from this spectrum all eigenvalues >0 are taken. These data are then
written into a file linewise, each line starting with the values of j, ..., ji and the total number
of saved eigenvalues followed by the sorted list of the eigenvalues itself. Of course, we have
to keep in mind the multiplicity 2 of every saved eigenvalue >0. Additionally, we have to
pay attention to the ordering procedure we applied on jj, ..., j4 whenever we work with
the number of eigenvalues, since we have suppressed certain multiplicities. The following
table gives the resulting multiplicity factors by which eigenvalue numbers resulting from
corresponding spin configurations should be multiplied'!:

All spins different One pair equal Two pairs equal Three spins equal All spins equal

Noordering 3 =24 %:12 s =6 ‘3%:4 %:1

4.2.2. Computational effort. According to the above set-up we would expect the following.

o Number of configurations

First of all we choose integer spins for simplicity, thatis j; — a; = 2- j; and assume all
as to be different (we therefore neglect configurations containing equal spins which are
dominated by those with different spins). We choose one of the four integer spins to be
maximal and constant, say ax = amax := max (ay), L = 1, ..., 4, and then by condition
(86) we have ax < min ( Z#K ar, amax). Therefore, amax < Z#K ay . Labelling the
three remaining a;, by a1, a,, a3 we get from that a3 > am.x — a2 — a;. But this is only a
question of counting the number N of points of a three-dimensional cubic lattice fulfilling
the last condition which is given by

Gmax  Admax  @max Amax—2 Amax —A1 Gmax—A1—a2

AZHRIE 35 30 S Db DD DRNT )

ai=1a=1a3=1 aj=1  a=l1 az=1

Finally, we add ZZ;‘,zl N (amax). The result is the total number of calculations N (Cpax)-
Due to the integer condition in (86), which becomes an even-number condition in as, we
have to divide that number by 2 and to multiply it by 4, since we have chosen one of the
four integer spins to maximal arbitrarily. If we finally plug in cpax = 2 - jmax, We get for
the number of configurations N ( Jmax = %) with all spins different (figure 2)

N(jmax) = 2 - b+ 12 3+ 2 j =5 Jmax + 2. (90)

This can be compared to the numerically fitted curve of the number of configurations
Nnum:

NoumGimax) = 6.67 - j&  +13.33 -2 +11.42 j2  —8.30 - jmax +2.22. 1)

' In general we have N! possibilities to arrange a list of N elements, but having M identical elements, each of them
with multiplicity K1, K>, ..., Kj in that list, we can only have m different arrangements of the elements
of that list. }
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#config's

2e+07

1e+07

Figure 2. Number of configurations N (jmax)-

o Number of eigenvalues
To calculate the expected number of eigenvalues E (jax) (figure 3) we have to sum over
the dimensions of the individual representation matrix of the volume operator which is
given by

dim = min (ji + j2, j3 + ja) — max (|2 — jil, [ja = jaD)- 92)

One would expect that E (jmax) ~ j2... From the numerical calculation we get for the
total number of eigenvalues (including O-eigenvalues and multiplicities)

E(jmax) = 2.67 - j2. +10.00- j3 +1552- 73 +7.92-j2 +27.90 jma — 77.23.
(93)

4.2.3. Firstimpressions. ~We drove the calculations up to a value of jyax = 50.'> Our primary
goal is to obtain some hints on a possibly analytical eigenvalue distribution function for
large jmax-

Therefore, as a start we scanned through all the configurations saved in a file and computed
an eigenvalue density by distributing the possible eigenvalues A into discrete intervals of width
A) = 0.5 where A belongs to the interval I, = round (£ +0.5) = [A, — AA, A,] where
Mm=n-Al,n=12,....

For this we take the square root of the calculated eigenvalues, since we computed
the spectrum of the square of the eigenvalues of V,, and the interval width Aix does not
scale linearly if we would first sort in the eigenvalues of Q, and then took the square root.
Furthermore, we drop the prefactor Z in what follows.

12 This maximal value is limited to the capacities of the mathematical software Maple 7 on the computer used (Intel
XEON machine with two 1.7 GHz processors). Future calculations will go much further, since Maple 7 is only an
interpreter programming language.
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Figure 3. Number of eigenvalues obtained independent of jmax.

Then we plot the logarithm +1 of the total number of eigenvalues >0 (including their
multiplicity) according to the multiplicity tabular given before in a certain interval [, against
2 - jmax and the volume eigenvalues denoted by 2- V' (the form of the axes labels with prefactors
2 as well as the +1 in the logarithm are only for technical reasons). The result is given
in figure 4.

The diagram suggests that for each interval 7, only configurations up to j) matter.
Configurations with jim.x > j{ do not increase the number of eigenvalues in the interval I,,.
Therefore, we are led to the idea that it would be interesting to look separately at configurations
with fixed jn.x instead of counting all eigenvalues belonging to an interval coming from all
configurations with j; < jnax-

Additionally, it would be good to know the effect that our cut-off j,,x = 50 has on the

calculated eigenvalue spectrum. This is done in what follows.

4.2.4. Lower bound for the spectrum. For this purpose we will split the matrices to be
calculated'® into the sets of matrices indexed by configurations with fixed js = j = jmax.
We then inspect the ordered spectra of every set and try to find some regularity in the spin
configurations ji, j», j3, j4 producing the eigenvalues.

As we have calculated all configurations up to jm.x = 50 we have 100 sets of matrices S
where each set is labelled by j = % 1, ..., Jmax — % Jmax-

In each set, we consider the first 100 positive eigenvalues ordered by values. Additionally
to every eigenvalue we denote the spin configuration of the matrix giving rise to it and the

13 Due to our set-up.
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N#EV+1]

Figure 4. The logarithm of the number of eigenvalues in the intervals I, = [A, — AX, Ay]
An = n - AX as a function of jiyax.

position 4 the eigenvalue takes in the ordered list of eigenvalues of this set S;. Thus, achieved
datasets are written into a file.
Hence, we create a function

A (k) — () 94)

where A (j) is the kth eigenvalue in S;.

It turns out that the map (j, k) —> Ar(j) indeed displays a regularity, that is, the
eigenvalues seem to produce series being separated from each other. Every series can be
associated with a certain position in the ordered spectrum of a matrix set S; with given
ja = j < Jmax- The positions are taken from a minimal j on, as series k will not have
contributions from S; with too low j. It turns out that the lowest eigenvalues of each matrix
set S; are precisely the lowest eigenvalues of the low-dimensional matrices with low spin
configurations j; < j» < 3 < j < (Ji1+ j2+ j3).

Remarkably each of these matrices has rank smaller than 9 (that is, the nontrivial part of
the characteristic polynomial can be reduced to a polynomial of degree less than or equal to
4), hence we can find analytic expressions for these lowest eigenvalues.

We will give here a table containing the first 12 series of eigenvalues. In the second
column, we write down the smallest j from which (by inspection of the data) the noted
order k is reached. Additionally, we note the spin configuration. The eigenvalues given are
always the smallest ones # 0 of the according matrix giving rise to A (j) with the given spin
configuration.

Surprisingly, the first smallest eigenvalues are not equally distributed between even and
odd configurations (the latter possessing 0-eigenvalues), but mainly contributed by the even
configurations (we give in the second table the first odd configurations). Note again that these
eigenvalues of O, are the square of the eigenvalues of V, and that each eigenvalue has a
multiplicity according to the multiplicity table given above.
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Even configurations

k Valid jZ= ji1 j2 j3 Ja A()) ck

. 330 2/iG+D 2

22 11 =L 2/G+D2j—D 2V2

33 32 j 2\/17j2+17j—21—\/208j4+416j3—344j2—552j+441 2v/17 — /208
43 13 -1 2VA/GHEDG -1 2/3

54 12 j=3j 22/G+D2 -3 4

61 11 j—1j 4/JjG+D 4

7 20 13 FEENETRTE) 4

8 4 32 -1 \/108j2+54j721676\/228j4+228j37903j27480j+1152 V108 — 6+4/228
9 % % % J j Too long but analytical expression

10 10 13 -2 2/5/G+D( -2 23/5

11 11 13 j=3j 2/3/(G+D2j -9 24/6

12 18 13 j-3j 2/3/G+D2j -3 276

0dd configurations

k J1 J2 J3 Ja A (J)

24 1 3 i-1 j 2/14j2+7j — 16

61 2 2 j j 2\/52j2+52j—114—18\/4j4+8j3—16j2—20j+33

All of these expressions have, to leading order, the form

i r(j)
im =

Cx 95)

where c; increases with k. Thus, for sufficiently large j the series j —> A, (j) are approximate
lines of different inclinations.

As an illustration we will give a plot of the first eight eigenvalue series, that is, we plot for
each j the first eight eigenvalues of the associated matrix series S;. Then we connect the first,
second, third, and so on, eigenvalues with a line (figure 5). Here, it becomes obvious that for
small j not all series are present, that is A;(j) is ill defined below the threshold j given in the
table for each k.

Thus, we are given a certain numerical criterion to decide which part of the spectrum of
the volume operator for the 4-vertex is already entirely calculated for a given cut-off jiu:
given an eigenvalue A2, draw a horizontal line in figure 5 and find the intersection with the first
eigenvalue series that is k = 1: 3 with A;(j)?> = A2. The value j (1) at which this happens
gives the maximal value j,x(A) which we have to consider in order to find configurations
giving rise to eigenvalues < A, because all eigenvalues produced by j > j(A) are larger than
A because numerically Ax(j) > A1(j) V& > 1.

According to the table above )\.1(j)2 = 2Jj(+1) = 22 and therefore j) =
—% + ‘/% + %. Thus, for jmax = 50 we can trust to have computed the complete spectrum

only for & < Amax (jmax) = 2/ Jmax Gmax + 1. .. Amax = 1.44/50 ~ 10.

4.2.5. Upper bound for the spectrum. By observation of the numerical matrices in S; it turns
out that the maximal eigenvalues Apu() = (V,éﬁl) of configurations with fixed j; = j are
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Figure 5. The evolution of the first positive eight eigenvalues Ay (j) := V2, k =1,..., 8 of 0,
independent of j4 = j. Note that each line represents eigenvalues with multiplicity given by the
table in section 1.

contributed by matrices of the monochromatic vertex, thatis j; = j, = jz = jy = j as we
expected from our estimates (76). We already wrote the matrix elements of this special case
in (85) (0 < jiz < 2)):

1 1
—artk = j12) = (ji2lg13ljiz — 1) = ———=
- k(k = ji2) = (jizlg1231j12 — 1) NTEE
Now theorem 4.1 provides us with upper bounds for the moduli of eigenvalues of a matrix in
terms of its row or column sums. It is natural to ask now how the biggest eigenvalue A0 and
the maximal row or column sum of the monochromatic matrix A of type (68) fit together. It is
clear from the structure of A that the inequality given in theorem 4.1 for the biggest eigenvalue
reads

i) [Q2) + D = (i) (96)

A0 | < max[lag| + |ake1|] =: Lmax k=1,...,n—2.

Therefore, we look for the maximal matrix element of A defined by (96) by differentiating
the given expression with respect to jj, and find the value j3** of j;, maximizing the matrix

element. There are several extrema, but the desired one turns out to be

1
jhr = 8\/24j2+24j+12+6\/16j4+32j3+8j2—8j -2 97)
where for large j
.max /X 2

=S 2 (98)
Since jj» can only take positive integer values, we then choose the maximal row sum which is
given by
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Figure 6. The quotient A;{gx /Lmax as a function of j.

Liax = |around jmaxy | + |around(j}"§“)71 .

Plotting the quotient /\EI{;ZX / Lnax as a function of j = j.x we find that this ratio converges to
1 as j increases as shown in figure 6.

Therefore, we have numerical evidence for the following large j behaviour of the biggest
eigenvalue in a matrix set S;:

o0

MRS L () 2 g (13 = L)) > V3Y (99)

rmax

Here, we have inserted jj3™ in equation (96) for the matrix elements to obtain a;m= and
approximated the maximal row sum L,x by 2- |a jm |- Finally, we keep only the leading order
of j in the expression and arrive at the result (99). This coincides with the result obtained

in [24].

4.2.6. Spectral density. 'We now turn to a first investigation of how to get a reliable numerical
estimate for the spectral density.

Let us first briefly discuss the behaviour of the O-eigenvalues. We have proven
that they only occur as a single member of the spectra of matrices with odd dimension.
Therefore, counting the number of odd configurations is equal to counting the number of
0O-eigenvalues. Since the total number of configurations grows with j? we also fit the total
number of 0-eigenvalues with a fourth-order polynomial, whose coefficient in leading order
should approximately be half the coefficient we found when we fitted the total number of
configurations, since we expect odd and even configurations to be nearly equally distributed
(under restriction of (86)) (figure 7).

The fitted polynomial is found to be

#0-eigenvalues (jima) = 3.33 - j* +10.00- j3  +10.66- j2 —7.10 - jyax — 0.85.

Indeed, the coefficient 3.33 of j2 is half the coefficient obtained for the total number of
configurations before. The difference of the other coefficients seems to be caused by the
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Figure 7. The total number of 0-eigenvalues contained in all configurations allowed by (86)
depending on jmax.-

restrictions given in (86). In what follows we will omit the number of 0-eigenvalues, since
their behaviour does not contribute to the spectrum of non-zero eigenvalues. Note that their
relative number as compared to the total number of all eigenvalues is of the order of j1.

Let us first recall how we define an eigenvalue density. We will take the square roots
of the eigenvalues > 0 of ), obtained in the numerical computation and split the real axis
labelling the eigenvalues V of V into identical intervals of the length AV. Then, each
eigenvalue V. = n - AV (n = 1,2,...) is assigned to an interval-number [, defined by
I, = round(55 +0.5). In the third step, we add up all eigenvalues belonging to the same
interval I, to get the number of eigenvalues in the interval [V — AV, V].

Now we define the interval density N; of eigenvalues in the interval / for fixed j, = j by
# eigenvalues(7)
Ni(j) i = —. 100
() AV (100)

Since we want to have a normalized density p

Vi ,
/ prdV =1,
Vin

we divide the interval densities N; by the number of eigenvalues different from O to get the
final definition of the eigenvalue density:

# eigenvalues(/)

p1(j) = 101

AV - (# total eigenvalues — # 0 eigenvalues)

These densities are then represented by a point at V. = n - AV for each interval I,. These
points are joined then (they can be fitted by polynomials for instance) to display the desired
normalized eigenvalue density p. This gives us, for instance for j; = j = 50, the plot as
shown in figure 8 for a fit with a fourth-order polynomial in the eigenvalues V (AV = 0.5).
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Figure 8. The eigenvalue density for j; = 50 (points) fitted by a fourth-order polynomial (solid
line).

0.057

0.04 4

0.03+

rho

Figure 9. The eigenvalue densities for j4 = 10, 15, ..., 50 (just look at the biggest eigenvalues in
order to identify which curve belongs to which j). The points representing the eigenvalue density
are joined by lines.

This can be done for every matrix set S; with fixed j = j;. Remarkably it seems to be
true that the eigenvalue densities in figure 9 are fitted quite well by fourth-order polynomials
(figure 10). But it is even more surprising that if we rescale the obtained densities, by putting
their width W := Viax (j) — Vimin(j) — 1 and their height H (j) := max(p;(j)) — 1 (where
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Figure 11. The eigenvalue densities for j4 = 30, 35, ..., 50 in a ‘fully normalized’ rescaling, that

V—Vinin

i —
5, 4 Vimin— Vimax

P — #{p,y
max(p;(j)) is taken from the fit curves) and plotting the resulting rescaled distributions for
different values of j; = j into the interval [0, 1] as given in figures 11 and 12, the distribution
seems to possess a similar shape.

Hence, the normalized distributions seem to be independent of j, that is, universal. This
discussion suggests to try to define a limit distribution. By taking into account the behaviour
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Figure 12. The fit curves of the spectra in ‘fully normalized’ rescaling.

of the ratio of the distance between the beginning of the distributions Vi, (j) to the value
V(H(j)) at which the maximum H (j) of the distribution is situated and the total length of
the distribution Vinax (j) — Vinin(j),

V(H()) = Viin(J)
Vinax (/) = Vanin ()
The ratio A(j) should tend to a constant value for j = j; — oo in the presence of a limit
common shape of all distributions. Moreover, we want to find out the quality of the fits taken

by calculating the average squared difference between the fitted curves and the real spectra
given by (all quantities at given j)

A(j) =

[(lel)()

1
X2 — Z (,01 _ p;ﬁned))Z'

max(07)(Vmax — Viin) I (Vo)

These quantities seem to behave in a way which is convenient for us (see figures 13 and 14).
That is, the fit quality improves as j is growing and it seems possible that the ratio A(j)
indeed has a certain limit of ~0.25.

4.2.7. Density of the eigenvalues of the volume operator—discussion. Despite the interesting
properties and the occurrence of some systematics in the spectral density in the matrix sets,
we were unable up to this point to give an estimate of the density of eigenvalues of the whole
volume operator so far.

The problem is first that the fourth-order polynomials were chosen only for the reason that
they contain the lowest number of parameters (5) that the achieved spectra can be satisfactorily
fitted by. There is more computational work to be done to ensure the presence of a limiting
eigenvalue distribution. If this turned out to be the case, then we have to look for certain
points, the parameters of the fitted curves of the eigenvalue distribution are fixed by.
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Figure 13. The ratio A(j) dependent on js = j.
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Figure 14. The sum of the squared distances between points of the eigenvalue densities and the
fitted curves, x 2 (defined as above), independent of jy = j.

What we know (at least our computations up to now encourage us to think that we know)
3 1
are four parameters: the maximum volume Vi,ax ~ Jjmax, the minimal volume Viyin ~ jmax, the

maximum of the distribution, situated (see figure 13) at ~ 0.25 - Vp,x and we know the total

number E4+=/m») of eigenvalues which can be obtained from the total number of eigenvalues
E for each jimax by considering EWs=ins) = EV () — E0OD (o, — %) Then we could
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Figure 15. The eigenvalue density of the total volume operator (circles) and the extended
eigenvalue density (boxes) for jmax = 50 on a 4-valent vertex.

compute the eigenvalue density in an interval [V}, V,] by a superposition of all configurations
with Vipin < Vo and Vi > V.

The second problem is then to give a fit function for the total density of eigenvalues for
all configurations. There is one conjecture, based on a similar behaviour for the spectrum of
the area operator (which is easier to handle), that this eigenvalue density should behave as

o(V)=aelfV".

We have tried to fit the part of the spectrum we have fully calculated (V < Viax(jmax = 50))
by this formula. But it seemed to be impossible to give certain values to the three parameters,
especially to y. Maybe the calculated part of the spectrum is still to small, i.e. not sufficient
for statistics or one must also consider higher valent vertices. Of course, the conjecture could
also be wrong. So, it is left as an open task to fix the density of eigenvalues.

Let us conclude by displaying here the complete calculated part of the eigenvalue density
of the volume operator for j.x = 50, according to our numerical criterion, that we can rely on
for given jmax on the part of the spectrum with V' < v/2+/jmax Gmax + 1). That is for jpax = 50
(as we calculated) we have obtained the full spectrum up to V =~ 10.

By inspection of figure 5 we can extend this part up to V & /200 ~ 14 if we draw a
horizontal line in figure 5 at a given 10 < V < 14 and count the eigenvalue series situated
below that line. If we assume that these series grow linearly with growing ji.x, as we expect,
and there do not occur additional eigenvalue series at higher jn,x then we can simply extend
the curves j —> Mg (j) linearly for k = 1, ..., 8 and can thereby estimate (approximately)
the additional contributions not yet calculated explicitly for V2 < 200, that is, for the k = 7
eigenvalue series.

Therefore, we display the original spectrum (circles) and the extended spectrum (boxes)
normalized with respect to the total number of non-zero eigenvalues of the original spectrum
(we have chosen again an interval width AV = 0.5, the eigenvalue density is defined as in
(101)) in figure 15.
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5. Summary and outlook

In this paper, we have analysed the spectral properties of the volume operator defined in loop
quantum gravity.

We discussed the matrix representation of the volume operator with respect to gauge-
invariant spin network functions and were able to derive a drastically simplified formula for
the matrix elements of the volume operator with respect to the latter.

It turned out that there exist certain selection rules for the matrix elements and all the
matrices are i-times an antisymmetric matrix with the structure of a Jacobi matrix, meaning
that non-vanishing matrix elements are only situated on certain off-diagonals.

We were able to determine the kernel, that is, the eigenstates for the eigenvalue 0, of
the volume operator with respect to the gauge-invariant 4-vertex analytically as given in
(83), (84). We have done numerical investigations for the gauge-invariant 4-vertex. Our
numerical investigations support the analytical estimate that there exists a smallest eigenvalue
Vinin dependent on the maximal spin jmax via Vigin ~ ( jmax)% and a maximal eigenvalue
Vimax ~ ( jmax)%. Therefore we were able to find certain numerical indicators for the
completeness of a numerically computed part of the spectrum. Moreover, we found that
the geometrical intuition is reflected in the spectrum: at given jmax, the lowest non-zero
eigenvalues come from rather ‘distorted’, almost flat tetrahedra with large spin on some edges
and low spin on the others. On the other hand, the largest eigenvalues come from regular
tetrahedra with large spin on all edges.

For future analysis one should extend the numerical calculations for the gauge-invariant
4-vertex and higher n-valent vertices to verify and possibly extend (for higher valence vertices)
the regularities of the spectra obtained (for the gauge-invariant 4-vertex) for single matrix sets
S; with j; = j at higher spins. In particular, it would be interesting to see whether there
exists a volume gap as n —> oo. This, however, requires more computing power and better
programming than we have used in this paper.

The formula derived for the matrix elements with respect to a gauge-invariant n-valent
vertex can be used to analyse the whole spectrum of the volume operator numerically and
analytically. Further simplifications are conceivable.

Note again that the restriction to 4-valued vertices and jy.x < 50 was only due to
the computational capacity of the used mathematical software Maple 7 and computer. By
using a compiler-based programming language and optimized numerical matrix-diagonalizing
routines we expect to be able to go much beyond the above computational limits.

Due to the results presented in this paper it seems to the authors that there are good
chances for getting sufficient control about the spectral behaviour of the volume operator in
the future, especially when it comes to dynamical questions in LQG.

As a first qualitative application in that respect, note the following: We have shown
analytically that the volume operator of full LQG has zero eigenvalues at arbitrarily large
Jjmax and that their number grows as j* as compared to the total number of eigenvalues
which grows as j3_ , at least for the gauge-invariant 4-vertex which should be the most
interesting case from a triangulation point of view. Moreover, the volume gap increases as
]é,ﬁ It follows that the full spectrum contains many ‘flat directions’ or ‘valleys’ of zero
volume and the walls of the valleys presumably get steeper as we increase jmax. Therefore
we might find arbitrarily large eigenvalues as close as we want to zero eigenvalues and hence
the ‘derivative’ (rather: difference) of the spectrum around zero volume which enters the
Hamiltonian constraint through the curvature operator, while well defined as shown in [4, 5],
could be unbounded from above. Therefore, the full spectrum could not share an important
property of the spectrum in the cosmological truncation of LQG [12] where the derivative of
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the spectrum at zero volume is bounded from above. As this property has been somewhat
important in [12], some of the results of [12] might have to be revisited in the full theory.
The challenge would be to show that the curvature expectation value remains bounded when
the system is prepared in a semiclassical state for LQG, see, e.g. [35] and references therein.
First evidence for this and further analysis will be presented soon in [36] thus reaffirming the
spectacular results of [12] in the full theory.
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Appendix A. Basics of recoupling theory

A.l. Angular momentum in quantum mechanics

For the angular momentum operator J= (J1, J2, J3) (where each component has to be seen
as an operator) we have the following commutation relations:

i, Jj1=1-€udy [J2%,J1=0 (A.1)
with J2 = J2 = J2 + J2 + J2.
Additionally, we can define
Jo=Ji+i) J_=J —i) (A.2)
with (using (A.1))
[J2,J:]1=0 [J3, Jo] = J, (2, J 1=—-J_ [Je, J_] =2J5. (A.3)

Since every angular momentum state is completely determined'* by its total angular
momentum quantum number j (where J?> = j(j + 1)) and one component say J3 (where

J3 = —j,—j+1,...,j — 1, j), we then associate for certain j a (2j + 1)-dimensional'?
Hilbert space H equipped with an orthonormal basis | jm), m = J3, where
(]m|.]m/> = S’ - (A4)

| jm) simultaneously diagonalize the two operators of the squared angular momentum J? and
the magnetic quantum number J3 [14]:

J2jm) = j(j + )] jm) J3|jm) = m|jm). (A.5)

That is, | jm) is a maximal set of simultaneous eigenvectors of J2 and J3.
On these eigenvectors, the other operators act as

Jeljm) = j(G+ 1) —m@m+1)|jm +1) J_ljm) =i+ 1) —m@m —1)|jm — 1).
(A.6)

A.2. Fundamental recoupling

Equipped with a small part of representation theory we can easily understand what happens
if we couple several angular momenta. For that we first repeat the well-known theorem of
Clebsh and Gordan on tensor products of representations of SU (2):

14 In the sense that we have a maximal set of simultaneously measurable observables.
15 For fixed j there are 2 + 1 values which J3 can take.
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Theorem A.1 (Clebsh and Gordan). Having two irreducible representations wj ,m;, of
SU (2) with weights ji, j» their tensor product space splits into a direct sum of irreducible
representations 7 j, with | ji — ja| < jio < ji + jo such that

Tjy @Mj, = Tjiaj DTjiajy—1 @ - @ 7 jor1) B -y

Equivalently, we can write for the resulting representation space H?) = HP) @ HP>) (where
Dy =2j1+1,D,=2j,+1, D = D; - D, denote the dimensions of the Hilbert spaces):
Jiti2
HDP) = HPD & 1P — @ H @it (A7)
Jju=lj—jl

Or in other words, if we couple two angular momenta j;, j, we can get resulting angular
momenta ji, varying in the range | j; — j»| < ji2 < ji + jo.

The tensor product space of two representations of SU (2) decomposes into a direct sum
of representation spaces, that is, one space for every possible value of recoupling ji, with the
according dimension 2, + 1.

A.3. Recoupling of two angular momenta

According to (A.7), we can expand for each value of jj, the elements |j; j2; ji2(j1, j2) M) €
HZ2*D called ‘coupled states’ into the tensor basis | jin1) ® | jams,) of H):

o JiaGis ), MY = Y Guomas jomaljios jiaGir o), M) Ljim) ® Ljama).  (A8)

my+my=M

Cm1m2

Here, C,,,n, € R denotes the expansion coefficients, the so-called Clebsh—Gordan coefficients.

On the right-hand side | jim; joma) = | jimy) | jamo).

If we change the order of coupling then C,,,,,, changes its sign:

(imis omaljia Gy j)M = my +my) = (=122 (omy; jimy|jia oy )M = my +my)
= (=) (mys jimy | 12 (s j1) M = my +ma).

As Fj12 £ (ji + j2) is an integer number we are allowed to switch the signs in the exponent

of the factor (—1). The coupled states again form an orthonormal basis:

(Jig2s J12(1s J2)s M j1j2s j12(rs J2)s M) =1 (A.9)
T S e . !
(2 Ji2Givs J2)s M jijas jiaGis j2), M) = 85, 5, 85m- (A.10)
In (A.10), 81»72,]»]2 comes from the orthogonality of HEe+D in (A7), 847 18 caused by the

othogonality of the single | jjm ), | jam2) (A.4)—since always M = m | + m;.
Normalization of the recoupled states (A.9) implies, according to (A.4),

D Wi G, o) Mljujns G i), MIP =Y 1Cpym, P = 1. (A.11)
my+my=M my+moy=M

Furthermore, the Clebsh—Gordan coefficients are all real, which is not obvious, but a result of
two conventions one usually requires [14]

D) 1jijes Ji2(ts j2) = i+ oM = ji+ j2) = |jimy = j1) ® | joma = o).
(2) All matrix elements of J,”", which are nondiagonal in |, j2; j12(ji, j2) M) are real and
nonnegative.
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The maximal set of simultaneously diagonalizable (that is commuting) 2 - 2 operators (A.5) of
the single Hilbert spaces HPV), HP2) is then in HP replaced'® by four operators: total angular

momentum (J)2, total projection quantum number J1”’, single total angular momenta
(J(Dl))z’ (J(Dz))2:

(P2 =Py P = g PO P Py (P2 (AL12)
which are simultaneously diagonal in the new basis manifested through
TP jijas 2, ) M) = jiaGia + Dljujas jGis o), M)
I 1o jiaGins o) MY = M jujos jaGirs j2), M)
TPV j oz jiaGirs j2)s MY = jiGin+ Do 2 Girs j2) M)
TP s haGirs j2)s M) = joGia + D1 jas jiaGis o), M).

(A.13)

AA4. Recoupling of three angular momenta—-©6 j-symbols
In this way, we can expand the recoupling of three angular momenta in terms of CGC:
li12Crs 72)5 7 Ghas 73)) = L (s J2) 33 J Uhzs j3)M = my + my + m3)

= Y (omus jamsljijs jmi +ms) - | jrmi)| jsms)

miams3

Z (Jizmi2; jamsljiajz; jmiz +m3) -

mizm3

Z (Jimy; jamal|jijo; Jizmia = my +ma) - | jimy)| joma)| jzms)

mimy

= Z(leml +my; M —my —ma|jiajz; jM) -

minmy
X (jimy; jamaljijo; jrzmy +ma) - | jimy)|joma)| 3M —my —ma).  (A.14)

As we can see, as we couple angular momenta successively, the order of coupling plays an
important role. Different orders of coupling will lead to different phases of the wavefunctions
(see (A.9)). Concerning this, it would be nice to have a transformation connecting different
ways of recoupling. This transformation between two different ways of coupling three angular
momenta ji, j», j3 to a resulting j defines the 6 j-symbols; see appendix B.

A.5. Recoupling of n angular momenta—23nj-symbols

As mentioned before the case of successive coupling of three angular momenta to a resulting
Jj can be generalized. For this purpose, let us first comment on the generalization principle
before we go into detailed definitions.

Theorem A.1 can be applied to a tensor product of n representations 77 ;, @7 ;, ®- - -®m;, by
reducing step by step every pair of representations. This procedure has to be carried out until
all tensor products are reduced out. One then ends up with a direct sum of representations each
of them having a weight corresponding to an allowed value of the total angular momentum
the n single angular momenta jy, j,, ..., j, can couple to.

16 We are a bit ‘sloppy’ in using this notation. To be correct, we would have to write

P = (TP @ Ly + Loy @ TP P = 1PV @ 1oy + 1) @ 1P and
O =P @ Loy (JP)? = Ly @ (P2
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But there is an arbitrariness in how one couples the n angular momenta together, that is,
the order by which 7;, ® 7;, ® - - - ® 7, is reduced out (by applying A.1) matters.
Let us now have a system of n angular momenta. First, we fix a labelling of these momenta

such that we have ji, j», ..., j,. Again the first choice would be a tensor basis |fﬁ1) of all
single angular momentum states | jymy), k = 1, ..., n defined by
) = 1Gs oo ) myma, o my)) = Q) L) (A.15)
k=1
with the maximal set of 2n commuting operators (J;)?, J 13 I=1,...,n).

Now we proceed as in section A.3 finding the commuting operators according to (A.13),
that is, a basis in which the total angular momentum (Jio)? = (J)> = (J1 + o + - - - + J,)? is
diagonal (quantum number j) together with the total magnetic quantum number JS)[ =J3=
J13 + 123 +---+ J,f’ (quantum number M).

As (J)? and J? are two operators, we need 2(n — 1) more quantum numbers of operators
commuting with each other and with (J)? and J?3 to have again a maximal set. We choose
therefore the n operatorsq(] N3 1 =1,...,n of total single angular momentum (quantum
numbers (ji, ..., j,) := j). So, we are left with the task of finding additional n — 2 operators
commuting with the remaining ones. For this purpose, we define

Definition A.1 (recoupling scheme).
A recoupling scheme |g(IJ)jjm) is an orthonormal basis, diagonalizing besides
D213, UD*A =1,...,n)the squares of the additional n — 2 operators G, G3, ..., G,_1

defined as'’

G, = Jyp, G, = Gy + Jy, Gy = Gy + Jq, Gy = Gz + Jo, ..., G, =
Gi_1+J1=2, G111 :=Gi+Jim1, Gro:=Gra+Ji, Graz:=Grotl, ..., Gji=
Gio1+Jj—1,Gr =Gr+Jp, G =Gr+Jo, ..., Gui1: =G+ 1.
Thevector g(1J) == (&2(j1, j1)> 83(82, J1)s - - - 81+1(81s Ji=1)s 81428141, J1s1)s - 8 (8j =15
Ji=1), 8j+1(8ss jj+1)s -+, 8n—1(8n—2, ju—1)) carries as quantum numbers the n — 2 eigen-
values of the operators (G»)?, ..., (G,_1)>.

So, we recouple first the angular momenta labelled by /, J where I < J and secondly all
the other angular momenta successively (all labels are with respect to the a fixed label set), by
taking into account the allowed values for each recoupling according to theorem A.1.

Let us define furthermore the so-called standard recoupling scheme or standard basis:

Definition A.2 (standard basis). A recoupling scheme based on the pair (I, J) = (1, 2) with

K
Gy = Z Jr
L=1

is called standard basis.

Using definition A.1 with the commutation relations (A.1) and the fact that single angular
momentum operators acting on different single angular momentum Hilbert spaces commute'®,
one can easily check that for every recoupling scheme

(1) Gys fulfil the angular momentum algebra (A.1).
(i) (N2, (JD?, (Gk)?, J3 commute with each otherV I, K =1, ..., n.

17 Note that formally G, := Gu—1 + Ju = Jiotal.
18 That is [J}, J7] = O whenever I % J.
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Note that it is sufficient to prove these two points in the standard basis g(12), because every
other basis g(IJ) is related to it by simply relabelling the n angular momenta.

We have thus succeeded in giving an alternative description of an n angular momenta
system by all possible occurring intermediate recoupling stages G; instead of using the
individual magnetic quantum numbers.

Obviously, every orthonormal basis spanned by a recoupling scheme |g(IJ )f jm) is
singled out by the labelling, namely, the index pair (/J) and therefore not identical, as we
have already seen in the case of the fwo angular momentum problem. So, we are in need of
a transformation connecting the different bases, that is, expressing one basis, e.g. belonging
to the pair (/J), in terms of another basis, e.g. belonging to the pair (K L), respectively. This
leads to the following:

Definition A.3 (3nj-symbol). The generalized expansion coefficients of a recoupling scheme
in terms of the standard-recoupling scheme are called 3nj-symbols:

U jm) = " (§012)jjmgUT)jjm) g (12)]jm).
all g/(12)

3nj-symbol
The summation has to be extended over all possible values of the intermediate recouplings

g'(12) = (85U, jo)» 85(8hs J3)s -, 811 (8l . Jn—1), that is all values of each component
gy allowed by theorem A.1.

In calculations we will suppress the quantum numbers f, Jj,m, since they are identical
all the time, and write (g(1J)|g’(12)). Note, additionally, the following properties of the
3nj-symbols:

(i) They are real, due to the possibility of expressing them as Clebsh—Gordan coefficients:
(g N)|g'(12)) = (g'(12)|g( ).

(i) They are rotationally invariant, i.e. independent of the magnetic quantum numbers m
occurring in (A.15).

Appendix A. Properties of the 65-symbols

In this section, we will give an overview on the 6j-symbols because they are the basic
structure we will use in our recoupling calculations, every coupling of n angular momenta can
be decomposed into them. For further details we refer to [14, 15].

B.1. Definition

The 6j-symbol is defined as ([14] p 92)
{J.‘ 2 J.”} = (21 + D@3 + DI72 (= 1)
J3 J  J3
x {j12(j1» j2)s Jj (2, j3)1j23 (G2, J3), J (1 j23))
= [@ji2 + 1) @jos + DI (= DI N" (rmy: joma ju jojrami +ma)

mymy
X (Jiamy +ma; jsm —my — my| j1ajz3jm)
X (jama; jsm —my — ma|jaj3 joazm — my)
X (jimi; jpsm — myl jyjazjm). (B.1)
The terms under the summation are called Clebsh—Gordon coefficients.
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B.2. Explicit evaluation of the 6 j-symbols

A general formula for the numerical value of the 6 j-symbols has been derived by Racah ([19],
[14],p 99)

o o o o o o

{].l 2 } = A1, Jos j12) AU, Jy J3) A3, J2s j23) A3 s s J12)W {]1 2 }’

J3 ] Jxs i n
+b—o)lla—-b+c)l(—a+b+c)! W

x Ala, b, c) = \/(a o)la o)l (—a ) w {Jl J2 112}

(@+b+c+ 1! 3 J 3

= Z(—l)"(n + DI — ji — o= jid! = i — j — j23)!

x(n—js—jo— j)n—js—j— ji) N G+ o+ ja+j—n)!
X (ot j1a+j+joz — ) (o + ji + oz + j3 — )17 (B.2)

The sum has to be extended over all positive integer values of n such that no factorial in the
denominator has a negative argument. That is,

max[ji + o+ jiz, i+ Jj+js, 3+ o+ i 3+j+ il <n
<minljy + jo+ j3+ j, o+ jio+ j + joz, jiz + Ji + joz + 3l

Remark. From (B.2) we are provided with some additional requirements the arguments of
the 6j-symbols have to fulfil. Certain sums or differences of them have to be integer to be
proper (=integer) arguments for the factorials:

from A(a, b, c) one gets

e a,b,c have to fulfil the triangle inequalities: (a + b —c¢) = 0,(a —b+c) > 0,
(—a+b+c) >0,
e (Fa £ b £ ¢) has to be an integer number;

from the w-coefficient one gets
o ji+ o+ 3+ ], jo+ jio+ J+ jo3, J12 + j1 + jo3 + J3 are integer numbers.

The following (trivial but important) relations are frequently used in calculations involving
6j-symbols:

(=D)*=(=D7* VzelZ
(—1)27 =1 VzeZ (B.3)
(—)* = (=1)*  Vk= % with zeZ.

B.3. Symmetry properties
The 6 j-symbols are invariant

e under any permutation of the columns:
{jl ]2 jz} _ {jz 73 jl} _ {j3 J1 jz}
Ja Js Je Js Jo Ja Jo Ja Js

e PR et A B R ®4)
J5 Ja e Ja Jo Js Jo J5 Ja
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e under interchange of the upper and lower arguments of two columns at the same time, for
example,

{].‘ /2 ].3}={].‘ ’s ].6}. (B.5)
Ja J5 Je Ja J2 )3

B.4. Orthogonality and sum rules

Orthogonality relations

. . v o Jel i i j{g}
2jp+ 1D 2j,+1) 1", Co . Co =36, . B.6
%:( 2+ D@ ){13 J J23}{J3 JoJ»3 e .0
Composition relation
S Ay g 1) {11 i jlz}{jz i 123}={j3 ji jal}_ ®)
JoJ o)l o Jn 2 Jr

J23

Sum rule of Elliot and Biedenharn

{jl W le} {123 Ji j123} - (_1)]1+jz+j3+j4+jl:+j23+j14+j123+j Z(_l)j124(2j124 +1)

J3 iz jas) lJs 0 Jua -
J124
% {]3 J? {23 } {]z .Jl {12} {]3 ]1'2 J.123} ) (B.8)
Jia ] Jia) | J4 Jiza J1a) \J4 T J124

Appendix C. Comment on the smallest non-vanishing eigenvalue

In this section, we will briefly summarize what can be done to obtain a lower bound of the
spectrum of the matrices occurring when expressing the volume operator on a recoupling
scheme basis at the gauge invariant 4-vertex. This is mainly done to illustrate the remarkable
symmetries in that case. The idea is to obtain a lower bound of the non-zero eigenvalues by
applying theorem 4.1, on the inverse matrix, giving an upper bound for its eigenvalues and
therefore a lower bound for the non-zero volume spectrum.

The general form for the gauge-invariant 4-vertex was obtained in (68)

0 —a 0 - A 0
a 0 —ay

. - —an—1
0 - - N 0

We have explicitly discussed the 0-eigenvalues contained in the spectrum of A in section 4.1.2.
We know that only in the odd-dimensional case the matrix A is singular, containing one
0-eigenvalue with the according eigenvector

apas alafs"'an—2i| (C 2)

) .
v:=x-/1,0,—,0,—,0,...,
a  axay axas - Gp_1
where n := dim A and x is an arbitrary scaling factor. We will denote the kth element of ¥
by M, For technical reasons, we will set x = ﬁ in the following to obtain
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—_ arag -+ dy—1 axay ap
(").:::y-|:—,O,...,—,O,—,O,1 )
aas---ap-3 aas a

C.1. Even dimension n of A

Since A is regular in that case we can invert it to find

0 2 0 E== 0 2= 9

==l 0 0 0 0 0

0 0 U .

20 =22 0 0 0

0 0 0 0 R
Al=|-52 0 &2 0 -2 0 0

0 0 0 0 0 0 0

: ; : : ; 0

_& 0 —=Es 0 —=5s 0 v oo —Eu

o}

=
L

m
s

05‘
L

19l

2
T

)]

n—1

n—1
0

i)

(C.3)

(C.4)

where we have used the components @~V &, := &, of the 0-eigenvector "~V E of the (n — 1)

odd-dimensional case with scaling factor y = 1.

C.2. Odd dimension of A

Since A is not regular we have to project out its nullspace ™ E first (with arbitrary prefactor y).
This can be done by applying a similarity transformation W on A to obtain R := W~'AW:

1 0 0 0O -« .- 0 oF
01 0 0 - - 0 &
0 0 1 0
w=|0 0 0 1
1 Erzfl
0 0 g,
1 0 0 0 0 —%
1 0 0 0o -2
0 0 1 0 :
wl=]l0 0 0 1
|
0 0 4

(C.5)
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Now one can check that (all even components of ™ & vanish, again y = 1)
0 —a 0 0 Ea, 0
ag 0 —day 0 0 0
0 ay 0 —as %an,1 0
. 0 0 a 0 :
R:=W AW =
—ap—2 — ’;71 ap—1 0
ay_» 0
0 0 ag‘ 0
(C.6)

To discuss the non-zero spectrum of A it is sufficient to discuss the now regular submatrix R
being the submatrix of R with the nth row and column deleted. One obtains

0 Buot 0 Ens 0 Ens 0 B
ay as as dap—1
M, 0 M3 0 Ms 0 My My, 0
0 0 0 = 0 =2 9 o
My, 0 My3 0 Mys 0 My Mayp— 0
0 0 0 0 0 “;;‘ 0 a“f]
R =1 Mg 0 Me3 0 Mes 0 Mg Me,—
0 0 0 0 0 0 0
0 in:l]
Mynn 0 M3 0 M5 O My 1,2 O
(C.7)
Here, M;; = % and I~€(,- /) 1s a shortcut for the submatrix of R one obtains by deleting

row i and column j. Basically this is the definition for the matrix element of the inverse
matrix. Since, unfortunately, M;; are hard to control (but of order é) we are unable to give an
explicit upper bound for the spectrum of R~! and therefore a lower bound on the spectrum of
A according to theorem 4.1. It is remarkable, however, that half of the structure of (C.4) is
being reproduced by the odd-dimensional case.
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