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Abstract. This paper is concerned with the Einstein vacuum equations under the
additional assumption of T 3-Gowdy symmetry. We prove that there is a generic set of
initial data such that the corresponding solutions exhibit curvature blow up on a dense
subset of the singularity. By generic, we mean a countable intersection of open sets (i.e. a
Gδ set) which is also dense. Furthermore, the set of initial data is given the C∞ topology.
This result was presented at a conference in Miami 2004. Recently, we have obtained a
stronger result, but the argument to prove it is different and much longer. Therefore, we
here wish to present the original argument. Finally, combining the results presented here
with a paper by Chruściel and Lake, one obtains strong cosmic censorship for T 3-Gowdy
spacetimes.

Keywords: Strong cosmic censorship; spacetime singularities; wave map equations.

1. Introduction

The motivation for studying the problem discussed in this paper is the desire to
understand the structure of singularities in cosmological spacetimes. By the singu-
larity theorems, cosmological spacetimes typically have a singularity in the sense of
causal geodesic incompleteness. However, it seems that the methods used to obtain
this result are not so well suited to answering related questions concerning, e.g.
curvature blow up. To proceed, it seems difficult to avoid analyzing the equations
in detail. After some appropriate choice of gauge, one is then confronted with the
task of analyzing the asymptotics of a nonlinear hyperbolic equation. Since this is
difficult in general, one often imposes some symmetry condition, and we shall here
consider a class of spacetimes with a two-dimensional group of symmetries. The
problem one ends up with is then a system of nonlinear wave equations in 1 + 1
dimensions.
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The Gowdy spacetimes were first introduced in [7] (see also [5]), and in [11] the
fundamental questions concerning global existence were answered. We shall take the
Gowdy vacuum spacetimes on R × T 3 to be metrics of the form (1.1). For natural
geometric conditions leading to this form of the metric, we refer the reader to [7]
and [5] or, for a brief description, [14]. Let

g = e(τ−λ)/2(−e−2τdτ2 + dθ2) + e−τ [eP dσ2 + 2ePQdσdδ

+ (eP Q2 + e−P ) dδ2]. (1.1)

Here, τ ∈ R and (θ, σ, δ) are coordinates on T 3. The functions P , Q and λ only
depend on τ and θ. The vacuum equations become

Pττ − e−2τPθθ − e2P(Q2
τ − e−2τQ2

θ) = 0 (1.2)

Qττ − e−2τQθθ + 2(PτQτ − e−2τPθQθ) = 0, (1.3)

and

λτ = P 2
τ + e−2τP 2

θ + e2P(Q2
τ + e−2τQ2

θ) (1.4)

λθ = 2(PθPτ + e2PQθQτ ). (1.5)

Obviously, the equations for P and Q are independent of λ, excepting the condition
on P and Q implied by (1.5). The algorithm for producing a solution to (1.2)–(1.5)
is thus to specify initial data to (1.2), (1.3) such that the integral of the right-hand
side of (1.5) is zero, solve (1.2), (1.3) and then find λ by integrating (1.4), (1.5).
In the above parameterization, the singularity corresponds to τ → ∞, and by the
above observations, it is clear that the main mathematical problem one is confronted
with when studying the singularity in metrics of the form (1.1), is to analyze the
asymptotics of solutions to (1.2), (1.3) as τ → ∞. It is of interest to note that
there is a special solution to the equations given by P = τ , Q = 0 and λ = τ . The
corresponding Lorentz metric has a curvature tensor which is identically zero. This
is one of facts that make the analysis of Gowdy spacetimes interesting; there are
special solutions that have the undesired property of having singularities that are
not curvature singularities.

The Eqs. (1.2), (1.3) are wave map equations. In fact, let

g0 = −e−2τdτ2 + dθ2 + e−2τ dχ2

be a Lorentz metric on R × T 2 and let

gR = dP 2 + e2P dQ2 (1.6)

be a Riemannian metric on R2. Then (1.2), (1.3) are the wave map equations for a
map from (R × T 2, g0) to (R2, gR) which is independent of the χ-coordinate. Note
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that (R2, gR) is isometric to the upper half plane H = {(x, y) ∈ R2 : y > 0} with
metric

gH =
dx2 + dy2

y2
(1.7)

under the map

φRH(Q, P ) = (Q, e−P ). (1.8)

Thus the target space is hyperbolic space. Note that due to the wave map structure,
isometries of hyperbolic space take solutions to solutions. One particular isometry
which will be of great use is the inversion, defined by

Inv(Q, P ) =
[

Q

Q2 + e−2P
, P + ln

(
Q2 + e−2P

)]
. (1.9)

The reason for the name is that it corresponds to an inversion in the unit circle with
center at the origin in the upper half plane model. Let us introduce the potential
and kinetic energy densities, defined respectively by

P(τ, θ) = e−2τ (P 2
θ + e2P Q2

θ)(τ, θ) (1.10)

K(τ, θ) = (P 2
τ + e2P Q2

τ )(τ, θ). (1.11)

In the analysis of Gowdy spacetimes, the existence of expansions for the solutions
close to the singularity in certain situations is the key starting point. The idea of
finding such expansions started with the paper [8] by Grubǐsić and Moncrief. In our
setting, the natural expansions are

P (τ, θ) = v(θ)τ + φ(θ) + u(τ, θ) (1.12)

Q(τ, θ) = q(θ) + e−2v(θ)τ [ψ(θ) + w(τ, θ)], (1.13)

where w, u → 0 as τ → ∞ and 0 < v(θ) < 1. This should be compared with (5)
and (6) of [10], where −Z = P , X = Q and t = e−τ . Note that if we have a
solution with the asymptotics (1.12), (1.13) and v(θ) > 0, then Q(τ, θ) converges
to a finite limit and P (τ, θ) tends to infinity as τ → ∞. Applying φRH , we see that
for a fixed θ the solution roughly speaking goes to the boundary along a geodesic
in the upper half plane model. A heuristic argument motivating the condition on
the velocity can be found in [1]. In the non-generic case Q = 0, one can prove that
(1.12) holds without any condition on v. This special case is called polarized Gowdy
and has been studied in [9], which also considers the other topologies for Gowdy
spacetimes. Due to the work of Kichenassamy and Rendall [10, 12], one can specify
smooth functions v, φ, q, ψ, where 0 < v < 1, and then obtain unique solutions to
(1.2), (1.3) with asymptotics of the form (1.12), (1.13). For our applications it is
of interest to note that if the q one specifies is constant, the condition on v can be
relaxed to v > 0.

According to our experience, the most important part of the expansions (1.12),
(1.13) is the function v. This is related to the intuition that the kinetic energy
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density is what controls everything else. Naively differentiating the expansions and
computing K, given in (1.11), one sees that this expression converges to v2. In [16]
we proved that the pointwise limit of K always exists. It therefore makes sense to
make the following definition.

Definition 1.1. Consider a solution x = (Q, P ) to (1.2), (1.3). Then we define
v∞ by

v∞(θ) =
[

lim
τ→∞K(τ, θ)

]1/2

.

If we wish to refer to the particular solution with respect to which it is defined, we
shall write v∞[x].

Define Dθ0,τ = [θ0 − e−τ , θ0 + e−τ ]. One important result from [16] is the
following.

Proposition 1.2. Consider a solution to (1.2), (1.3) and let θ0 ∈ S1. Then

lim
τ→∞ ‖|Pτ (τ, ·)| − v∞(θ0)‖C0(Dθ0,τ ,R) = 0, lim

τ→∞ ‖(eP Qτ )(τ, ·)‖C0(Dθ0,τ ,R) = 0

and

lim
τ→∞ ‖P(τ, ·)‖C0(Dθ0,τ ,R) = 0.

In particular, Pτ (τ, θ0) converges to v∞(θ0) or to −v∞(θ0). If Pτ (τ, θ0) → −v∞(θ0),
then (Q1, P1) = Inv(Q, P ) has the property that P1τ (τ, θ0) → v∞(θ0). Furthermore,
if v∞(θ0) > 0, then Q1(τ, θ0) converges to 0.

Remark. In the above statement, C0 is the space of continuous functions and S1

is the unit circle, i.e. the interval [0, 2π] with the endpoints identified.

Let us give an idea of the proof. The proof is based on a study of the quantity

Fθ0(τ) =
1
2

∑
±

‖[(Pτ ± e−τPθ)2 + e2P (Qτ ± e−τQθ)2](τ, ·)‖C0(Dθ0,τ ,R).

Note that it dominates P +K in Dθ0,τ . It turns out that this quantity is monoton-
ically decaying, so that it converges, since it is bounded from below. Furthermore,
by looking at the estimates in detail, there is strict decay if P is nonzero. Intuitively,
one thus expects P to converge to zero in Dθ0,τ . In order to turn the intuition into
a proof, one needs to be able to estimate the variation of P and K, which is the first
step. One then observes that one only needs to focus on a small neighborhood of the
characteristics, due to how information propagates. These things can be combined
to prove that P has to converge to zero along the characteristics ending at θ0. Due
to the concentration of information along characteristics, one can then prove that
the lim inf of K along characteristics dominates Fθ0 . This can in turn be used to
prove that P converges to 0 in Dθ0,τ . One can then conclude that the variation of
P and K inside Dθ0,τ converges to zero and that K has to converge to something.
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Combining these observations with a study of Pτ + e−τPθ along the characteristic
(τ, θ0 + e−τ ) and the equations, one obtains the conclusions of the proposition.

The importance of the asymptotic velocity comes from the fact that if
v∞(θ0) �= 1, then the curvature blows up along any causal curve ending on θ0. Let
us be more precise. Given an inextendible causal curve γ, the θ coordinate converges
as the curve tends to the singularity. Let us call this coordinate θ0[γ]. In [16], we
proved that if v∞(θ0[γ]) �= 1, then

(RαβµνRαβµν)[γ(s)] → ∞
as s tends towards the parameter value corresponding to the singularity. Let Y be
the set of smooth initial data to (1.2), (1.3). This set is in one-to-one correspondence
with solutions to (1.2), (1.3), and for the sake of definiteness, we shall take it to be
understood that given ξ ∈ Y , we obtain a solution x to (1.2), (1.3) by specifying
that the initial data of x at τ = 0 be ξ. Note that an element of Y does not
necessarily correspond to a solution of the Einstein vacuum equations. In order to
get a solution, the integral of the right-hand side of (1.5) has to be zero. This is
however the only condition. Let us denote the set of smooth initial data such that
the integral of the right-hand side is zero by Yc. We shall consider Y and Yc to
be topological spaces by endowing them with the C∞ topology. Let G be the set
of smooth initial data such that the corresponding asymptotic velocity is different
from 1 on a dense subset of the singularity. Define Gc = G ∩ Yc. We wish to prove
that Gc, considered as a subset of Yc, is a dense Gδ set. Recall that a set that can
be written as a countable intersection of open sets is called a Gδ set. Consider a
solution to (1.2), (1.3). If the initial data are such that v∞ �= 1 on a dense subset
of the singularity, there is not much more to be said. What remains to be analyzed
is thus the situation in which v∞ = 1 on an open subset of the singularity.

Theorem 1.3. Consider a solution (Q, P ) to (1.2), (1.3). Assume that v∞ = 1 in
an open neighborhood J of θ0 and that Pτ (τ, θ0) → 1 as τ → ∞. Then there is an
open I ⊆ J containing θ0, φ, r ∈ C∞(I, R) and constants q0 and Ck such that for
all k ≥ 0 and τ ≥ 0,

‖Pτ (τ, ·) − 1‖Ck(I,R) ≤ Cke−2τ , (1.14)

‖P (τ, ·) − τ − φ‖Ck(I,R) ≤ Cke−2τ , (1.15)

‖[e2pQτ − r](τ, ·)‖Ck(I,R) ≤ Cke−2τ , (1.16)∥∥∥[
e2p(Q − q0) +

r

2

]
(τ, ·)

∥∥∥
Ck(I,R)

≤ Cke−2τ , (1.17)

where p(τ, θ) = τ + φ(θ).

Remark. In [16] we have proven a similar result in which the asymptotic velocity
is allowed to be nonconstant and pass through 1. To prove such a result one has
to make some additional assumptions and it requires more of an effort. For the
purposes of the present paper the above result is however sufficient.
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The proof will be given at the end of Sec. 3.
In order to prove the desired result, it turns out that all one needs to do is to

prove the following. Consider a solution with smooth expansions of the form (1.14)–
(1.17) in some open interval I. Then there is a sequence of solutions converging to
it, in the C∞ topology on initial data, which have v∞ �= 1 on some point of I. To
obtain such a result, one uses the Fuchsian techniques developed in [10] and [12].

Theorem 1.4. With notation as above, Gc is dense in Yc. Furthermore, Gc can be
written as a countable intersection of open and dense subsets of Yc.

Remark. By definition, a solution (Q, P ) corresponding to initial data in Gc has
the property that the asymptotic velocity is different from 1 on a dense subset of
the singularity. By the discussion following Proposition 1.2, we conclude that the
corresponding Gowdy metric has the property that it exhibits curvature blow up on
a dense subset of the singularity. Finally, note that the intersection of a countable
number of open and dense sets in a complete metric space is dense, so that all one
needs to prove is the second statement of the theorem.

The above theorem follows from Lemma 4.1 below. As was mentioned in the
abstract, we have recently obtained a stronger result. It is contained in [16] and [17].
Since this paper uses the results of [16], it is natural to ask the question what
purpose it serves. To start with, the results presented here preceded the results
of [16] and [17]. Secondly, [16] is roughly 60 pages and [17] is roughly 50 pages
long. For the results presented here, we only need two sections of in total 11 pages
from [16]. In other words, the present proof is considerably shorter. On the other
hand, as opposed to the present paper, [16] and [17] do not use the results of [10]
and [12]. Finally, we would like to take this opportunity to draw the attention of
the reader to the related work in [4] and [6]. In [4], the authors prove, among other
things, that the asymptotic velocity makes sense on an open and dense subset of
the singularity and that there are asymptotic expansions in a neighborhood of these
points. Furthermore, the authors study the cases where the velocity equals 1 or 0.
As was mentioned in the abstract, according to [6], the results of this paper can be
combined with those of [6] in order to prove strong cosmic censorship for T 3-Gowdy
spacetimes.

2. Notation

Let (Q, P ) be a solution to (1.2), (1.3). Define

Ak,± =
1
2
eτ [(∂τ∂k

θ P ± e−τ∂k+1
θ P )2 + e2P(∂τ∂k

θ Q ± e−τ∂k+1
θ Q)2].

In order to obtain estimates for the higher derivatives, let us compute

(∂τ ∓ e−τ∂θ)Ak,± = I1,k,± + I2,k,±, (2.1)
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where

I1,k,± =
1
2
eτ{(∂τ∂k

θ P )2 − e−2τ(∂k+1
θ P )2 + e2P [(∂τ∂k

θ Q)2 − e−2τ(∂k+1
θ Q)2]}

− e2P+τ (Pτ ± e−τPθ)[(∂τ∂k
θ Q)2 − e−2τ(∂k+1

θ Q)2]

+ e2P+τ (Qτ ± e−τQθ)[(∂τ∂k
θ P ± e−τ∂k+1

θ P )(∂τ∂k
θ Q ∓ e−τ∂k+1

θ Q)

− (∂τ∂k
θ P ∓ e−τ∂k+1

θ P )(∂τ∂k
θ Q ± e−τ∂k+1

θ Q)] (2.2)

and

I2,k,± = eτ{∂k
θ [e2P(Q2

τ − e−2τQ2
θ)] − 2e2P (Qτ∂k

θ ∂τQ − e−2τQθ∂
k+1
θ Q)}

· (∂τ∂k
θ P ± e−τ∂k+1

θ P ) + e2P+τ
k−1∑
l=1

(
k

l

)
[−2∂k−l

θ ∂τP∂l
θ∂τQ

+ 2e−2τ∂k−l+1
θ P∂l+1

θ Q](∂τ∂k
θ Q ± e−τ∂k+1

θ Q). (2.3)

If k ≤ 1, the sum is taken to be zero. If I = [a, b] is a subinterval of R, let

DI,τ = [a − e−τ , b + e−τ ].

The definition if I is an open interval is similar. If DI,τ has a length which equals
or exceeds that of the circle, we shall interpret it as the whole circle.

2.1. Equations in the disc model

It is sometimes convenient to consider the equations in the disc model, where they
take the form

∂τ

(
zτ

(1 − |z|2)2
)
− e−2τ∂θ

(
zθ

(1 − |z|2)2
)

=
2z

(1 − |z|2)3 [|zτ |2 − e−2τ |zθ|2]. (2.4)

The easiest way to see this is to use the action
∫∫

[P 2
τ + e2P Q2

τ − e−2τ(P 2
θ + e2P Q2

θ)] dθ dτ

in order to derive the Gowdy equations. It translates into
∫∫

4(|zτ |2 − e−2τ |zθ|2)
(1 − |z|2)2 dθ dτ

in the disc model. Note that the isometry from (R2, gR) to the disc model defined by

φRD(Q, P ) =
Q + i(e−P − 1)
Q + i(e−P + 1)

(2.5)
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defines an injective and surjective map of solutions to (1.2), (1.3) to solutions of
(2.4). We shall also use (ρ, φ) as variables. They are defined by

z = |z|eiφ, ρ = ln
1 + |z|
1 − |z| . (2.6)

Note that ρ is the hyperbolic distance from the origin of the disc to the solution. In
the end we are only interested in the absolute value of derivatives of φ, and since

φ2
τ =

∣∣∣∣∂τ

(
z

|z|
)∣∣∣∣

2

,

it is clear that these make sense as long as |z| > 0. It is useful to keep in mind that

ρ2
τ + sinh2 ρφ2

τ =
4|zτ |2

(1 − |z|2)2 , (2.7)

and similarly for the θ-derivatives. It will be convenient to have the inverse of (2.5),

(Q, P ) =
[
− 2 Im z

|1 − z|2 ,− ln(1 − |z|2) + 2 ln|1 − z|
]

. (2.8)

Using the definition of ρ, this yields

P = ρ − 2 ln(1 + |z|) + 2 ln|1 − z|. (2.9)

3. Asymptotic Expansions

The purpose of this section is to prove Theorem 1.3. The essential assumptions of the
theorem are that v∞ = 1 in an open set. In other words, we only make assumptions
concerning the pointwise limit of K. The conclusions, on the other hand, contain
statements concerning uniform limits of an arbitrary number of derivatives. Let us
point out that the potential energy P converges to zero everywhere, but there are
examples where it does not converge to zero uniformly. The step from pointwise
to uniform convergence is therefore not necessarily a triviality. Lemma 3.1 serves
the purpose of taking the step from pointwise to uniform convergence for the first
derivatives. Furthermore, the result that P −τ is bounded is very convenient to have
since factors of the form eP−τ appear frequently, and it is of interest to estimate
them from above and from below. Finally, due to the fact that Qθ converges to zero
uniformly, which is a consequence of the lemma below, if ∂τ∂k

θ Q decays exponen-
tially for some k ≥ 1, then ∂k

θ Q decays exponentially (since we know that if ∂k
θ Q

converges, it has to converge to zero). This will also be very useful information in
the derivation of the estimates for the higher derivatives.

Lemma 3.1. Consider a solution x = (Q, P ) to (1.2), (1.3). Assume that v∞ = 1
in an open neighborhood J of θ0 and that Pτ (τ, θ0) → 1 as τ → ∞. Then there is
an open I ⊆ J containing θ0 and a constant C such that for τ ≥ 1

‖P (τ, ·) − τ‖C0(DI,τ ,R) ≤ C

‖[(Pτ − 1)2 + e−2τP 2
θ + e2P(Q2

τ + e−2τQ2
θ)](τ, ·)‖C0(DI,τ ,R) ≤ Cτ−2.
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Remark. As a consequence, Q converges to a constant in C1(I, R).

Proof. We can consider the solution as being defined for θ ∈ R by making it
2π-periodic in θ. The relations

P1 = τ − P, Q1τ = −e2(P−τ)Qθ, Q1θ = −e2P Qτ

define a new solution to (1.2), (1.3) with θ ∈ R. The definition is up to a constant,
but the value of the constant is of no importance. Note that the resulting solution
need not be 2π-periodic. This is the so called Gowdy to Ernst transformation,
which has been used for example in [13]. Let x1 = (Q1, P1). By construction and
Proposition 1.2, v∞[x1](θ0) = 0. Let z = φRD ◦ x1, where φRD is defined in (2.5).
Then z is a solution to (2.4) with θ ∈ R. Since φRD is an isometry, we conclude
that K(τ, θ0) converges to zero, where

K =
4|zτ |2

(1 − |z|2)2 .

Due to (2.7), we conclude that ρ(τ, θ0)/τ converges to zero, where ρ is defined as
in (2.6). Due to Lemma 7 of [15], we conclude that there is an open neighborhood
I of θ0 contained in J , a function v ∈ C0(I, R2) and a C such that for τ ≥ 1,∥∥∥∥1

τ

z(τ, ·)
|z(τ, ·)|ρ(τ, ·) − v

∥∥∥∥
C0(I,R2)

+
∥∥∥∥ 2zτ (τ, ·)

1 − |z(τ, ·)|2 − v

∥∥∥∥
C0(I,R2)

+ e−τ

∥∥∥∥ 2zθ(τ, ·)
1 − |z(τ, ·)|2

∥∥∥∥
C0(I,R2)

≤ Cτ−1.

Since v(θ0) = 0 and v is continuous, we can assume that |v| < 1/2 in I. This implies
that v∞[x1](θ) < 1/2. Since v∞[x] = 1 in I and since we have Proposition 1.2, the
only possibilities for v∞[x1] in I are 0 or 2, so that v∞[x1] = 0 in I. Thus v = 0
in I. In particular, this means that ρ(τ, θ) is bounded by a constant for τ ≥ 1 and
θ ∈ I. Due to (2.9), this leads to the conclusion that P1 is bounded in the same set,
which leads to the first conclusion of the lemma, with DI,τ replaced by I, due to the
definition of P1. Furthermore, we get the conclusion that the kinetic and potential
energy densities of x1 decay like τ−2. Compute

(Pτ − 1)2 + e−2τP 2
θ + e2P (Q2

τ + e−2τQ2
θ) = P 2

1τ + e−2τP 2
1θ + e2P1(Q2

1τ + e−2τQ2
1θ).

Since the right-hand side is O(τ−2), the second conclusion of the lemma follows.
In reality, we only get the conclusions with DI,τ replaced by I, but this can be
remedied by making I smaller.

We need to improve the above estimates before we can use them to obtain
estimates for the higher derivatives. In particular, it is important to go from τ−1

decay to exponential decay. It is also useful to have a first estimate for the second
derivatives.
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Lemma 3.2. Consider a solution x = (Q, P ) to (1.2), (1.3). Assume that v∞ = 1
in an open neighborhood J of θ0 and that Pτ (τ, θ0) → 1 as τ → ∞. Then there is
an open neighborhood I of θ0, a polynomial Π and a function r ∈ C0(I, R) such that
for τ ≥ 0

‖P (τ, ·) − τ − r‖C0(I,R) + ‖Pτ (τ, ·) − 1‖C0(DI,τ ,R) ≤ Πe−τ , (3.1)

‖[e−2τP 2
θ + e2P (Q2

τ + e−2τQ2
θ)](τ, ·)‖C0(DI,τ ,R) ≤ Πe−2τ ,

‖[P 2
τθ + e−2τP 2

θθ + e2P (Q2
τθ + e−2τQ2

θθ)](τ, ·)‖C0(DI,τ ,R) ≤ Π.

Proof. Note that the conditions of Lemma 3.1 are satisfied, so that there is an
open set I ⊆ J containing θ0 in which the conclusions of that lemma hold. By (2.1),
we have

(∂τ ∓ e−τ∂θ)A1,± =
1
2
eτ [P 2

τθ − e−2τP 2
θθ + e2P(Q2

τθ − e−2τQ2
θθ)]

+ 2eτPθe
2P(Q2

τ − e−2τQ2
θ)(Pτθ ± e−τPθθ)

− e2P+τ (Pτ ± e−τPθ)[Q2
τθ − e−2τQ2

θθ]

+ e2P+τ(Qτ ± e−τQθ)[(Pτθ ± e−τPθθ)(Qτθ ∓ e−τQθθ)

− (Pτθ ∓ e−τPθθ)(Qτθ ± e−τQθθ)]. (3.2)

Define

Ac
1,± = A1,± +

1
2
(1 + τ2)−1eτP 2

θ .

Consider (3.2). By the conclusions of Lemma 3.1, we have

(∂τ ∓ e−τ∂θ)A1,± ≤ 1
2
(A1,+ + A1,−) + Cτ−1(Ac

1,+ + Ac
1,−)

in DI,τ for τ ≥ 1. To obtain this inequality, we used the inequality ab ≤ (a2 + b2)/2
in the term appearing on the second row, and replaced Pτ with 1 in the third row.
Similarly, we can estimate

(∂τ ∓ e−τ∂θ)
[
1
2
(1 + τ2)−1eτP 2

θ

]
≤ 1

2
(1 + τ2)−1eτP 2

θ + Cτ−1(Ac
1,+ + Ac

1,−).

Adding up, we get

(∂τ ∓ e−τ∂θ)Ac
1,± ≤ 1

2
(1 + Cτ−1)(Ac

1,+ + Ac
1,−).

Define

F c
I,1(τ) =

∑
±

‖Ac
1,±(τ, ·)‖C0(DI,τ ,R).
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Let θ ∈ DI,τ and estimate

Ac
1,±(τ, θ) = Ac

1,±(τ0, θ ± e−τ0 ∓ e−τ )

+
∫ τ

τ0

[(∂τ ∓ e−s∂θ)Ac
1,±](s, θ ± e−s ∓ e−τ ) ds

≤ ‖Ac
1,±‖C0(DI,τ0 ,R) +

∫ τ

τ0

1
2
(1 + Cs−1)F c

I,1(s) ds.

Taking the supremum over θ and adding the two estimates, we get

F c
I,1(τ) ≤ F c

I,1(τ0) +
∫ τ

τ0

(1 + Cs−1)F c
I,1(s) ds.

By Grönwall’s lemma, we obtain

‖[P 2
τθ + e−2τP 2

θθ + e2P (Q2
τθ + e−2τQ2

θθ) + (1 + τ2)−1P 2
θ ](τ, ·)‖C0(DI,τ ,R) ≤ Π(τ)

(3.3)

for τ ≥ 0, where, here and below, Π denotes some polynomial. This yields the last
conclusion of the lemma. Compute

∂τ (e2P Qτ ) = ∂θ(e2P−2τQθ) = 2Pθe
2P−2τQθ + e2P−2τQθθ.

By (3.3) and Lemma 3.1, we conclude that the absolute value of the right-hand side
does not grow faster than polynomially. Consequently, eP Qτ decays as Πe−τ in I.
Since e−τ∂θ(eP Qτ ) satisfies the same sort of decay on DI,τ , we can replace I with
DI,τ (here we use the bound |eP Qτ | ≤ C outside of I, which follows from Proposi-
tion 1.2 applied to the endpoints). Since Qτθ decays as Πe−τ and Qθ converges to
zero due to Lemma 3.1, we conclude that eP−τQθ decays as Πe−τ on I. The argu-
ment for going from I to DI,τ is similar to the previous case. This, together with
(3.3), yields the second to last conclusion of the lemma. Combining the information
we have obtained with (1.2), we conclude that (3.1) holds.

Let us turn to the proof of Proposition 3.5. The proof is by induction. We assume
that (3.7) holds for k and wish to prove that it holds for k + 1. In each induction
step, it is necessary to improve the estimates for eP ∂k

θ Q and eP ∂k−1
θ ∂τQ. In order

not to make the proof of Proposition 3.5 too long, we prove these steps separately
in Lemmas 3.3 and 3.4. In the following lemmas, we shall assume that we have an
open set I in which the conclusions of Lemma 3.2 hold. Note in particular that
P − τ is bounded in DI,τ for τ ≥ 0.

Lemma 3.3. With the same notation and assumptions as in Lemma 3.2, assume
that

‖e2P (∂k
θ ∂τQ)2 + e2P−2τ (∂k+1

θ Q)2‖C0(DI,τ ,R) ≤ C,

for some k ≥ 1. Then

‖e2P−2τ (∂k
θ Q)2‖C0(DI,τ ,R) ≤ Ce−2τ . (3.4)

Remark. Note that if we replace the constant C in the assumptions with a poly-
nomial, we get the same conclusions if we take C to be a polynomial.
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Proof. Due to (3.1) and the assumptions of the lemma, we have

|∂k
θ ∂τQ| ≤ Ce−τ .

Furthermore, by Lemma 3.2, we know that Qθ converges to zero. We obtain the
conclusion with DI,τ replaced by I. By the estimate we have on eP ∂k+1

θ Q we then
obtain the desired conclusion.

Lemma 3.4. With the same notation and assumptions as in Lemma 3.2, as-
sume that

‖(∂k
θ ∂τP )2 + e−2τ (∂k+1

θ P )2 + e2P [(∂k
θ ∂τQ)2 + e−2τ (∂k+1

θ Q)2]‖C0(DI,τ ,R) ≤ Ck

for k = 0, . . . , l, where l ≥ 1. Then

‖e2P (∂m
θ ∂τQ)2‖C0(DI,τ ,R) ≤ Πm(τ)e−2τ , (3.5)

for m ≤ l − 1, where Πm is a polynomial.

Remark. Note that if we replace Ck in the conditions with a polynomial, we get
the same conclusion.

Proof. Let us compute

∂τ (e2P ∂m
θ ∂τQ) = e2P−2τ∂m+2

θ Q − 2e2P
m∑

j=1

(
m

j

)
∂j

θ∂τP∂m−j
θ ∂τQ

+ 2e2P−2τ
m∑

j=0

(
m

j

)
∂j+1

θ P∂m−j+1
θ Q. (3.6)

By Lemma 3.2 we know that the conclusion holds for l = 1. Assume now that the
statement of the lemma is true up to and including some l ≥ 1, and assume that
the assumptions of the lemma hold with l replaced with l + 1. Consider (3.6) for
m = l. The first term is bounded, by the assumptions. By the assumptions and the
inductive assumptions, we conclude that the second term is at worst polynomial.
Since ∂j

θ∂τP is bounded for j ≤ l + 1, we conclude that ∂j
θP grows at worst poly-

nomially for j ≤ l + 1. Combining this observation with Lemma 3.3, we conclude
that the last term is exponentially decaying. The conclusion of the lemma follows
with DI,τ replaced with I, a problem which can be dealt with as before.

Proposition 3.5. With the same notation and assumptions as in Lemma 3.2, we
have

‖(∂k
θ ∂τP )2 + e−2τ (∂k+1

θ P )2 + e2P [(∂k
θ ∂τQ)2 + e−2τ (∂k+1

θ Q)2]‖C0(DI,τ ,R) ≤ Ck

(3.7)

for all k ≥ 0 and τ ≥ 0.
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Proof. Consider (2.1), with I1,k,± and I2,k,± defined in (2.2) and (2.3). By
Lemma 3.2

I1,k,± ≤
(

1
2

+ Πe−τ

)
(Ak,+ + Ak,−).

If it were only for this term, we would thus be done. To the extent that there are
complications, they arise due to I2,k,±. Define

Âk,± = Ak,± +
1
2
eτ/2(∂k

θ P )2.

Let us start by proving the lemma for k = 1. We have

I2,1,± = 2eτPθe
2P(Q2

τ − e−2τQ2
θ)(Pτθ ± e−τPθθ) ≤ Πe−7τ/4(Â1,+ + Â1,−).

Since

(∂τ ∓ e−τ∂θ)
[
1
2
eτ/2(∂k

θ P )2
]
≤ 1

2
eτ/2(∂k

θ P )2 + Ce−τ/4(Âk,+ + Âk,−),

we get

(∂τ ∓ e−τ∂θ)Â1,± ≤
(

1
2

+ Ce−τ/4

)
(Â1,+ + Â1,−).

Thus

F̂I,1(τ) ≤ F̂I,1(τ0) +
∫ τ

τ0

[1 + Ce−s/4]F̂I,1(s) ds,

where

F̂I,k(τ) =
∑
±

sup
θ∈DI,τ

Âk,±(τ, θ).

By Grönwall’s lemma, we obtain the conclusion for k = 1. Assume inductively that
we have the conclusion up to and including k. We wish to prove that the conclusion
holds for k + 1. By the inductive hypothesis

‖e2P
[(

∂l
θ∂τQ

)2 + e−2τ
(
∂l+1

θ Q
)2)‖C0(DI,τ ,R) ≤ Πl(τ)e−2τ , (3.8)

for l ≤ k−1 due to Lemmas 3.3 and 3.4. By the inductive hypothesis, we also know
that ∂l

θP does not grow faster than polynomially if l ≤ k. Consider the two different
terms of I2,k+1,±. The first can be rewritten∑

i,j,l

aijl∂
i
θ

(
e2P+τ

)[(
∂j

θ∂τQ
)(

∂l
θ∂τQ

) − e−2τ
(
∂j+1

θ Q
)
(∂l+1

θ Q
)]

× (
∂τ∂k+1

θ P ± e−τ∂k+2
θ P

)
,

where i+ j + l = k+1 and j, l ≤ k. If i ≤ k, no derivatives of P of higher order than
k appear, and such terms can be bounded by polynomials. If i = 1 + k, there is a
problem if all k + 1 derivatives hit “the same” P . However, then (3.8) with l = 0
and the fact that e−τ∂k+1

θ P is bounded yields the conclusion that the corresponding
term can be bounded by

Π(τ)e−τ/2(Ak+1,+ + Ak+1,−)1/2. (3.9)
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In fact this sort of bound holds as long as j, l ≤ k − 1 (in fact we get a bound with
e−τ/2 replaced with e−3τ/2 if in addition i ≤ k). Assume therefore that j = k. If
i = 1, we get a bound of the form (3.9) by the induction hypothesis and arguments
already mentioned. If l = 1, there are two cases. If k ≥ 2, we get a bound of the
form (3.9), but if k = 1, we get the bound

Ceτ/2(Ak+1,+ + Ak+1,−)1/2. (3.10)

Consider the second term in I2,k+1,±. We need to estimate terms of the form

e2P+τ
[−2∂k+1−l

θ ∂τP∂l
θ∂τQ + 2e−2τ∂k−l+2

θ P∂l+1
θ Q

](
∂τ∂k+1

θ Q ± e−τ∂k+2
θ Q

)
,

where 1 ≤ l ≤ k. By the induction hypothesis, terms of this form can all be estimated
by (3.10). Adding up the above observations, we get the conclusion that

(∂τ ∓ e−τ∂θ)Ak+1,±

≤
(

1
2

+ Πe−τ

) (Ak+1,+ + Ak+1,−
)

+ Ceτ/2
(Ak+1,+ + Ak+1,−

)1/2
.

Thus

FI,k+1(τ) ≤ FI,k+1

(
τ0

)
+

∫ τ

τ0

[
(1 + Πe−s)FI,k+1(s) + Ces/2F

1/2
I,k+1(s)

]
ds.

Unfortunately, this does not lead to exactly what we want. We only get a polynomial
bound. However, combining the polynomial bound with Lemmas 3.3 and 3.4, we
get better decay estimates which can be used to improve the estimates described in
the proof of this lemma. In this way we get the desired conclusion.

Proof of Theorem 1.3. By the assumptions, we have the conclusions of Lemma 3.2
and Proposition 3.5. Below we shall only consider the behavior for θ ∈ I. Note that
the conditions of Lemmas 3.3 and 3.4 are fulfilled and the consequences of this
will be used freely below. Note also that ∂k+1

θ P does not grow faster than linearly.
Inserting these observations into (1.2), we get the conclusion that ∂k

θ ∂2
τP decays

to zero as a polynomial times e−2τ . Since we know that Pτ converges to 1, we
can integrate this inequality twice in order to obtain the conclusion that there is a
smooth function φ and a polynomial Ξk such that

‖Pτ (τ, ·) − 1‖Ck(I,R) + ‖P (τ, ·) − τ − φ‖Ck(I,R) ≤ Ξk(τ)e−2τ .

Note that in particular, ∂k
θ ∂τP converges to zero exponentially and ∂k

θ P is bounded
if k ≥ 1. Inserting this information into (3.6), we conclude that we can replace the
polynomial Πm in (3.5) with a constant. Using the above information together with
(1.2), we conclude that (1.14), (1.15) hold. Due to (3.4) and the above,

|∂τ∂k
θ (e2PQτ )| = |∂k+1

θ (e2P−2τQθ)| ≤ Cke−2τ .

Thus there is an r ∈ C∞(I, R) such that (1.16) holds with p replaced by P . Due to
the estimates we have for the difference P − p, one can however prove that (1.16)
holds. Note that we know that Q converges to a constant q0 in any Ck norm with
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an e−2τ bound. Let us compute

[e2p(Q − q0)](τ, ·) = e2p(τ,·)
(
−

∫ ∞

τ

Qτ (s, ·) ds

)
= −

∫ ∞

τ

e2p(τ,·)Qτ (s, ·) ds

= −
∫ ∞

τ

e2(τ−s)(e2p(s,·)Qτ (s, ·) − r) ds − r

2
.

Thus

∂k
θ

(
e2p(Q − q0) +

r

2

)
(τ, ·) = −

∫ ∞

τ

e2(τ−s)∂k
θ (e2p(s,·)Qτ (s, ·) − r) ds.

By (1.16), we get (1.17).

4. Curvature Blow Up on a Dense Subset of the Singularity

As we have already mentioned, we shall restrict our attention to the set Y of smooth
initial data, and given an element ξ ∈ Y , we shall associate a solution x to (1.2),
(1.3) by specifying the initial data of x at τ = 0 to be ξ. The set Y can be given
the topology of a complete metric space, cf. pp. 34–35 of [18]. Let Yc be the subset
of Y consisting of initial data for which the integral of the right hand side of (1.5)
is zero. Let p, q ∈ Q be such that 0 < q − p < 1 and let n ∈ N. Define Cp,q,n to be
the subset of Y such that the corresponding solutions satisfy∥∥∥∥ρ(τ, ·)

τ
− 1

∥∥∥∥
C0(K,R)

≤ nτ−1 (4.1)

for all τ ≥ 1, where K is the image of [p, q] under the map that identifies multiples
of 2π, ρ is defined in (2.6) and z = φRD(Q, P ). In [16], we proved that ρ(τ, θ)/τ

converges to v∞(θ). Consequently, (4.1) implies that v∞ = 1 on K.

Lemma 4.1. The sets Cp,q,n are closed in Y . Furthermore,

G = ∩p,q,nCc
p,q,n

is the set of initial data whose corresponding solutions have the property that v∞ �= 1
on a dense subset of the singularity. Finally, Cc

p,q,n is dense in Y and Cc
p,q,n ∩ Yc is

dense in Yc.

Remark. By the results of [16], we conclude that the curvature is unbounded on a
dense subset of the singularity if the initial data are in Gc.

Proof. If ξk ∈ Cp,q,n converge to some ξ ∈ Y , then it is clear by the continuity of
the map from initial data at one point in time to initial data at some other point in
time that ξ ∈ Cp,q,n. In other words, Cp,q,n is closed. Let ξ ∈ G and let P, Q denote
the corresponding solution. Consider the set of points S where v∞ = 1. Assume
this set contains an open interval. Due to Proposition 1.2 and Theorem 1.3, we

J.
 H

yp
er

. D
if

fe
re

nt
ia

l E
qu

at
io

ns
 2

00
5.

02
:5

47
-5

64
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

A
X

 P
L

A
N

C
K

 I
N

ST
IT

U
T

E
 F

O
R

 o
n 

02
/0

6/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



June 3, 2005 9:30 WSPC/JHDE 00052

562 H. Ringström

have (1.15) in some open interval I, after carrying out an inversion if necessary.
Consequently, ∥∥∥∥P (τ, ·)

τ
− 1

∥∥∥∥
C0(I,R)

≤ n1τ
−1, (4.2)

for τ ≥ 1 and some n1. Note that if we let z = φRD(Q, P ), then z converges to
z0 = (q0 − i)/(q0 + i) on I due to (1.17) and (2.5). Note also that ρ defined in (2.6)
is invariant under inversions, since φRD ◦ Inv ◦ φ−1

RD(z) = −z̄. Since z converges
uniformly to z0 �= 1, we conclude from (2.9) and (4.2) that (4.1) holds for τ ≥ 1
and some n. Since I contains some interval [p, q] with p, q ∈ Q, 0 < q − p < 1, we
conclude that ξ ∈ Cp,q,n for some p, q, n, i.e. that ξ /∈ G. Thus Sc is dense in S1. On
the other hand, if ξ are initial data for which the corresponding solution has the
property that the asymptotic velocity is different from 1 on a dense subset of the
singularity, then clearly, ξ ∈ Cc

p,q,n for all p, q, n.
What remains to be shown is that Cc

p,q,n is dense in Y and that Cc
p,q,n ∩ Yc is

dense in Yc. Let x be a solution corresponding to initial data in Y . We wish to
prove that there is a sequence of solutions xk corresponding to initial data in Cc

p,q,n

such that xk → x in the C∞ topology of initial data. We shall use the notation
xT to denote the initial data of x for τ = T and similarly for other solutions. If
xT ∈ Cc

p,q,n for T = 0, nothing remains to be proved, so we assume that this is
not the case. We can thus assume that x has the property that v∞ = 1 on K.
After performing an inversion, if necessary, and restricting the interval to an open
subinterval I = (θ0 − ε, θ0 + ε) of K, if necessary, we get the asymptotics (1.14)–
(1.17), cf. Theorem 1.3. We are now in a position to apply the results of [10] and [12].
This will be done in several steps. Each step is simple, but there are many of them,
and for that reason, we shall write down the steps in detail.

Step 1: Definition of (φ, ψ) and (φ̃, ψ̃). The functions r and φ are given by (1.14)–
(1.17). Define ψ = −e−2φr/2. Note that φ, ψ ∈ C∞(I, R) and that we have expan-
sions of the form (1.12), (1.13) with v = 1 and q = q0. Choose ψ̃ and φ̃ to be smooth
functions on S1 such that they equal ψ and φ respectively on (θ0−9ε/10, θ0 + 9ε/10).

Step 2: Definition of (vk, φk, qk, ψk). Let χ ∈ C∞(S1, R) be such that χ = 0 outside
of [θ0 − ε/2, θ0 + ε/2], |χ| ≤ 1/10 and χ(θ0) �= 0. Define φk = φ̃, ψk = ψ̃, qk = q0

and vk = 1 + χ/k.

Step 3: Definition of yk and x̃. By the existence result in [12], we know that there are
unique solutions to the Gowdy equations corresponding to the data (vk, φk, qk, ψk)
and (1, φ̃, q0, ψ̃). Let yk and x̃ be the corresponding solutions and let us define yk,T

and x̃T to be the initial data corresponding to these solutions for τ = T .

Step 4: Convergence of yk to x̃. To prove the convergence of yk to x̃, one can use the
arguments of [12]. In that paper, the author proves that given suitable smooth data
on the singularity, (v, φ, q, ψ) and a sequence of real analytic data converging to these
data in C∞, then the real analytic solutions to the Gowdy equations constructed in
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[10] converge in the C∞ topology when restricted to a regular Cauchy hypersurface.
The only reason the author restricted himself to considering a sequence of real
analytic data on the singularity converging to smooth data was that until then
existence was only known for real analytic data. Using exactly the same argument
as in [12], but starting with a sequence of smooth initial data converging to smooth
initial data, we get the conclusion that the corresponding initial data on a regular
Cauchy surface converge.

Step 5: Uniqueness. By a uniqueness result proven in [12], yk,T = x̃T on

(θ0 − 8ε/10, θ0 − 3ε/4) ∪ (θ0 + 3ε/4, θ0 + 8ε/10)

for T large enough. Furthermore, xT coincides with x̃T on (θ0 − 8ε/10, θ0 + 8ε/10)
for T large enough.

Step 6: Definition of xk. Fix some large T such that the uniqueness of Step 5 holds.
Let the initial data for xk at T , xk,T , coincide with yk,T on [θ0 − 3ε/4, θ0 + 3ε/4],
and xk,T = xT outside of this set. Then xk has the asymptotics of yk on the interval
(θ0 − ε/2, θ0 + ε/2).

Step 7: Convergence of xk,T to xT . Note that by Steps 5 and 6, xk,T − xT is zero
outside of [θ0 − 3ε/4, θ0 +3ε/4] and equals yk,T − x̃T inside this interval. By Step 4,
we get convergence of xk,T to xT with respect to the C∞ topology. Since xk does
not have asymptotic velocity identically equal to 1 in I, we conclude that Cc

p,q,n is
dense in Y

Step 8: Cc
p,q,n∩Yc is dense in Yc. Assume the integral of the right-hand side of (1.5)

is zero. Then we want the same to be true for the approximations xk constructed
above. Consider

jε(T ) =
∫ θ0+3ε/4

θ0−3ε/4

(PθPτ + e2P QθQτ )(T, θ) dθ.

Since we have asymptotic expansions of the form (1.14)–(1.17), we conclude that

lim
T→∞

jε(T ) = φ(θ0 + 3ε/4)− φ(θ0 − 3ε/4).

Let (Qk, Pk) = xk. Due to the equations, the integral of the right-hand side of (1.5)
is always conserved. To prove that it is zero, we need in other words only prove that
the integral converges to zero as T tends to infinity. Since we know that xk,T = xT

outside of [θ0 − 3ε/4, θ0 + 3ε/4], all we need to prove is that

jk,ε(T ) =
∫ θ0+3ε/4

θ0−3ε/4

(PkθPkτ + e2PkQkθQkτ )(T, θ) dθ.

has the property that

lim
T→∞

jk,ε(T ) = φ(θ0 + 3ε/4)− φ(θ0 − 3ε/4)
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for all k. However,

lim
T→∞

jk,ε(T ) = φ(θ0 + 3ε/4)− φ(θ0 − 3ε/4) +
∫ θ0+3ε/4

θ0−3ε/4

1
k

χφθ dθ.

In other words, we need to choose χ so that it is orthogonal to φθ. This is not a
problem.
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[8] B. Grubǐsić and V. Moncrief, Asymptotic behaviour of the T 3×R Gowdy space-times,
Phys. Rev. D47 (1993) 2371–2382.

[9] J. Isenberg and V. Moncrief, Asymptotic behaviour of the gravitational field and the
nature of singularities in Gowdy space times, Ann. Phys. 199 (1990) 84–122.

[10] S. Kichenassamy and A. Rendall, Analytic description of singularities in Gowdy space-
times, Class. Quantum Grav. 15 (1998) 1339–1355.

[11] V. Moncrief, Global properties of Gowdy spacetimes with T 3 × R topology, Ann.
Phys. (N.Y.) 132 (1981) 87–107.

[12] A. Rendall, Fuchsian analysis of singularities in Gowdy spacetimes beyond analyticity,
Class. Quantum Grav. 17 (2000) 3305–3316.

[13] A. Rendall and M. Weaver, Manufacture of Gowdy spacetimes with spikes, Class.
Quantum Grav. 18 (2001) 2959–2976.

[14] H. Ringström, On Gowdy vacuum spacetimes, Math. Proc. Camb. Phil. Soc. 136
(2004) 485–512.

[15] H. Ringström, Asymptotic expansions close to the singularity in Gowdy spacetimes,
in A Spacetime Safari: Essays in Honour of Vincent Moncrief, Special issue of Class.
Quantum Grav., eds. B. Berger and J. Isenberg 21 (2004) S305–S322.

[16] H. Ringström, On the concept of an asymptotic velocity in T 3 Gowdy spacetimes,
preprint (2004).

[17] H. Ringström, Strong cosmic censorship in T 3-Gowdy spacetimes, preprint (2004).
[18] W. Rudin, Functional Analysis (McGraw-Hill, 1991).

J.
 H

yp
er

. D
if

fe
re

nt
ia

l E
qu

at
io

ns
 2

00
5.

02
:5

47
-5

64
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

A
X

 P
L

A
N

C
K

 I
N

ST
IT

U
T

E
 F

O
R

 o
n 

02
/0

6/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.


