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Rotationally symmetric Ricci flow on
asymptotically flat manifolds
Todd A. Oliynyk and Eric Woolgar

We study Ricci flows on R
n, n ≥ 3, that evolve from rotationally

symmetric, asymptotically flat initial data containing no embed-
ded minimal hyperspheres. We show that in this case the flow is
immortal, remains asymptotically flat, never develops a minimal
hypersphere, and converges to flat Euclidean space as the time
diverges to infinity. We discuss the behaviour of quasi-local mass
under the flow, and relate this to a conjecture in string theory.

1. Introduction

The Ricci flow

(1.1)
∂gij

∂t
= −2Rij .

was first introduced in the mathematics literature by Richard Hamilton [10]
in 1982. Almost immediately, it was applied to the classification problem for
closed 3-manifolds and much subsequent work in the subject in the interven-
ing 25 years has been focused on this application, culminating in the recent
celebrated results of Perelman [20].

By contrast, Ricci flow on noncompact manifolds has received some-
what less attention. Of course, structures on noncompact manifolds, such
as Ricci solitons, are relevant to the compact case, and this has been to
now an important motivation for work on the noncompact case. The case of
asymptotically flat Ricci flow has remained virtually untouched (nontrivial
solitons do not occur in this case [17]).

But physics provides considerable motivation to study the asymptoti-
cally flat case. Our interest in it arises out of a conjectural scenario in string
theory. Equation (1.1) is the leading-order renormalization group flow equa-
tion for a nonlinear sigma model that describes quantum strings propagating
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in a background spacetime [7].1 What is important to understand from this
statement is that fixed points of this equation provide geometric backgrounds
in which the low energy excitations of quantum strings can propagate (in
the approximation that radii of curvature are large and excitation energies
small relative to the so-called string scale).

The variable t in renormalization group flow is not time: it is (a constant
times) the logarithm of the so-called renormalization scale. However, there
are conjectured relationships between renormalization group flow and tem-
poral evolution. A specific case concerns tachyon condensation, the scenario
wherein an unstable string system is balanced at the top of a hill of potential
energy (for a review of tachyon condensation, see [13]). The system falls off
the hill, radiating away energy in gravitational waves. The system comes
to rest in a valley representing a stable minimum of potential energy. In
open string theory, a more elaborate version of this scenario involving the
evaporation of a brane and the formation of closed strings is now well under-
stood, even quantitatively. In closed string theory, much less is known but,
conjecturally, the fixed points of the renormalization group flow equation
(1.1) are the possible endpoints of this evolution. Sometimes it is further
conjectured that time evolution in closed string theory near the fixed points
is determined by renormalization group flow, and then t in (1.1) does acquire
an interpretation as a time.

Comparing dynamical and renormalization group pictures, we see that
the radiation of positive energy in the form of gravitational waves as the
system comes to rest in the valley should produce a corresponding decrease
in the mass of the manifold under the Ricci flow. This suggests that we
should endeavour to formulate and test a conjecture that mass decreases
under Ricci flow, at least if the initial mass is positive.

The asymptotically flat case has a well-defined notion of mass, the
Arnowitt-Deser-Misner (ADM) mass, so this seems an appropriate setting in
which to formulate the conjecture. However, the metric entering the renor-
malization group flow or Ricci flow in this scenario is not the full spacetime
metric, for which (1.1) would not be even quasi-parabolic, but rather the
induced Riemannian metric on a suitable spacelike submanifold [9]. Now
ADM mass is conserved (between Cauchy surfaces, and in the closed string
scenario of [9]), even in the presence of localized sources of radiation. This,
we will see, is reflected in the Ricci flow. The mass of g will not change
during evolution by (1.1). But if energy loss through gravitational radiation

1We ignore the dilaton since it can be decoupled from the metric in renormaliza-
tion group flow [18].
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occurs, then the quasi-local mass contained within a compact region should
change along the flow to reflect this.2

After describing asymptotically flat manifolds in Section 2, we outline
local existence, uniqueness, and continuation for Ricci flow on asymptoti-
cally flat manifolds in Section 3. We then specialize to rotational symmetry
in Section 4. In Section 4.1, we pass to a coordinate system well suited to our
subsequent assumption that no minimal hyperspheres are present initially.
We show in Section 4.3 that this coordinate system remains well defined on
the interval [0, TM ), where TM is the maximal time of existence for Ricci
flow. This is essentially a consequence of the result, proved in Section 4.2,
that no minimal hyperspheres develop during the flow.

The absence of minimal spheres allows us to analyze the problem in
terms of a single PDE, the master equation (4.18). From this equation,
we derive a number of maximum principles that yield uniform bounds on
the curvature which allow us to conclude that TM = ∞. We obtain these
principles in the first two subsections of Section 5. Even better, we obtain
not just uniform bounds but decay estimates, from which we can prove
convergence to flat Euclidean space. Now given our assumptions, this is the
only Ricci-flat fixed point available. That is, the string theory discussion
above would lead one to conjecture that:

When no minimal hypersphere is present, rotationally symmet-
ric, asymptotically flat Ricci flow is immortal and converges to
flat space as t → ∞;

and this is what we show. Though we have motivated this conjecture from
string theory for the case of positive initial mass, we will prove that it holds
whether or not the initial mass is positive. This is our main theorem, proved
in Section 5.3, which states:

Theorem 1.1. Let {xi}n
i=1 be a fixed Cartesian coordinate system on R

n,
n ≥ 3. Let ĝ = ĝijdxidxj be an asymptotically flat, rotationally symmet-
ric metric on R

n of class Hk
δ with k > n/2 + 4 and δ < 0. If (Rn, ĝ) does

not contain any minimal hyperspheres, then there exists a solution g(t, x) ∈
C∞((0,∞) × R

n) to Ricci flow (1.1) such that

(i) g(0, x) = ĝ(x),

2We prefer not to discuss in terms of the Bondi mass, which would require us to
pass back to the Lorentzian setting which is not our focus in this article. See [9]
for a discussion in terms of Bondi mass.
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(ii) gij − δij ∈ C1([0, T ], Hk−2
δ ) and gij − δij ∈ C1([T1, T2], H�

δ) for any
0 < T1 < T2 < ∞, 0 < T < ∞, � ≥ 0,

(iii) for each integer � ≥ 0 there exists a constant C� > 0 such that

sup
x∈Rn

|∇�Rm(t, x)|g(t,x) ≤ C�

(1 + t)t�/2 ∀ t > 0,

(iv) the flow converges to n-dimensional Euclidean space E
n in the pointed

Cheeger–Gromov sense as t → ∞, and

(v) if furthermore k > n/2 + 6, δ < min{4 − n, 1 − n/2}, R̂ ≥ 0, and R̂ ∈
L1, then the ADM mass of g(t) is well defined and mass(g(t)) = mass
(ĝ) for all t ≥ 0.

When a minimal hypersphere is present initially, if the neck is sufficiently
pinched then we expect long-time existence to fail. To see why, consider rota-
tionally symmetric metrics on Sn. If there is a sufficiently pinched minimal
(n − 1)-sphere, the curvature blows up in finite time. This has been shown
both rigorously (n ≥ 3) [1] and numerically (n = 3) [8]. Our assumption
of no minimal spheres in the initial data is intended to prevent this. The
ability to make this assumption and to choose coordinates adapted to it is a
distinct advantage of the noncompact case. However, we also expect (based,
e.g., on [8]) that for initial data with minimal hyperspheres that have only
a mild neck pinching, the flow will continue to exist globally in time as well.
Thus, when a minimal hypersphere is present, we believe there would be
considerable interest in determining a precise criterion for global existence
in terms of the degree of neck pinching because of the possibility, raised in
[8], that the critical case on the border between singularity formation and
immortality may exhibit universal features such as those observed in critical
collapse in general relativity [5].

The constancy of the ADM mass in statement (v) is not at odds with
the conclusion that the flow converges to a flat and therefore massless mani-
fold. This constancy was also noted in [6] but we draw different conclusions
concerning the limit manifold, owing to our use of the pointed Cheeger–
Gromov sense of convergence of Riemannian manifolds.3 In Section 4.4

3The rotationally symmetric, expanding soliton of [9] can be used to illustrate
this phenomenon explicitly (albeit in 2 dimensions, whereas our results are for
n ≥ 3 dimensions). For this soliton, one can easily compute the Brown–York quasi-
local mass on any ball whose proper radius is fixed in time and see that for each
such ball the quasi-local mass tends to zero as t → ∞, and the flow converges to
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we define three different kinds of metric balls in (Rn, g(t)), n ≥ 3; balls of
fixed radius, fixed volume, and fixed surface area of the bounding hyper-
sphere. To clarify the behaviour of the mass in the limit t → ∞, we express
the Brown–York quasi-local mass of these balls in terms of sectional cur-
vature and, by anticipating the decay rate for sectional curvature derived
in Section 5, show that these quasi-local masses go to zero as t → ∞, even
though the ADM mass, as measured at infinity, is constant. The picture is
not strongly dependent on the definition of quasi-local mass, of which the
Brown–York definition is but one among many. In rotational symmetry in
any dimension, the metric has only one “degree of freedom”. The study
of the evolution of quasi-local mass then reduces to the study of this sin-
gle degree of freedom, no matter which definition of quasi-local mass one
prefers.4

The problem of global existence for rotationally symmetric metrics on
R

3 has previously been investigated in [14]. There the assumptions on the
initial metric are different than ours. Namely, the initial metric in [14] has
positive sectional curvature and the manifold opens up as least as fast as
a paraboloid. Under these assumptions, it is shown that Ricci flow exists
for all future times and converges to either a flat metric or a rotationally
symmetric Ricci soliton.

Finally, throughout we fix the dimension of the manifold to be n ≥ 3.
As well, we usually work with the Hamilton-DeTurck form of the Ricci flow

(1.2)
∂gij

∂t
= −2Rij + ∇iξj + ∇jξi,

which is obtained from the form (1.1) by allowing the coordinate basis in
which gij is written to evolve by a t-dependent diffeomorphism generated by
the vector field ξ.

Euclidean 2-space. But the mass at infinity of the soliton (the deficit angle of the
asymptotic cone in 2 dimensions) is a constant of the motion which can be set by
initial conditions to take any value.

4The assumption of spherical symmetry in general relativity precludes gravita-
tional radiation, according to the Birkhoff theorem. But on the string side of our
scenario, the picture is one of closed strings existing as perturbations that break
the spherical symmetry of the background metric (as well, we should include a
dilaton background field that modifies general relativity). Viewed in the string pic-
ture, these perturbations create the radiation that is detected as a change in the
quasi-local mass of the spherically symmetric Ricci flow.



540 T.A. Oliynyk and E. Woolgar

2. Asymptotically flat manifolds

The definition of asymptotically flat manifolds that we employ requires the
use of weighted Sobolev spaces, which we will now define. Let V be a finite-
dimensional vector space with inner product (·|·) and corresponding norm
| · |. For u ∈ Lp

loc(R
n, V ), 1 ≤ p ≤ ∞, and δ ∈ R, the weighted Lp norm of u

is defined by

(2.1) ‖u‖Lp
δ

:=

{
‖σ−δ−n/p u‖Lp if 1 ≤ p < ∞,

‖σ−δ u‖L∞ if p = ∞

with

(2.2) σ(x) :=
√

1 + |x|2.

The weighted Sobolev norms are then given by

(2.3) ‖u‖W k,p
δ

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝∑

|I|≤k

‖DIu‖p
Lp

δ−|I|

⎞
⎠

1/p

if 1 ≤ p < ∞,

∑
|I|≤k

‖DIu‖L∞
δ−|I|

if p = ∞,

where k ∈ N0, I = (I1, . . . , In) ∈ N
n
0 is a multi-index and DI = ∂I1

1 . . . ∂In
n .

Here ∂i = (∂/∂xi) and (x1, . . . , xn) are the standard Cartesian coordinates
on R

n. The weighted Sobolev spaces are then defined as

W k,p
δ = {u ∈ W k,p

loc (Rn, V ) | ‖u‖W k,p
δ

< ∞}.

In the case p = 2, we will use the alternative notation Hk
δ = W k,2

δ .
As with the Sobolev spaces, we can define weighted version of the bou-

nded Ck function spaces Ck
b := Ck(Rn, V ) ∩ W k,∞ spaces. For a map

u ∈ C0(Rn, V ) and δ ∈ R, let

‖u‖C0
δ

:= sup
x∈Rn

|σ(x)−δu(x)|.

Using this norm, we define the ‖ · ‖Ck
δ

norm in the usual way:

‖u‖Ck
δ

:=
∑
|I|≤k

‖∂Iu‖C0
δ−|I|

.
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So then
Ck

δ :=
{
u ∈ Ck(Rn, V ) | ‖u‖Ck

δ
< ∞

}
.

We are now ready to define asymptotically flat manifolds.

Definition 2.1. Let M be a smooth, connected, n-dimensional manifold,
n ≥ 3, with a Riemannian metric g and let ER be the exterior region {x ∈
R

n | |x| > R}. Then for k > n/2 and δ < 0, (M, g) is asymptotically flat of
class Hk

δ if

(i) g ∈ Hk
loc(M),

(ii) there exists a finite collection {Uα}m
α=1 of open subsets of M and dif-

feomorphisms Φα : ER → Uα such that M \ ∪αUα is compact, and

(iii) for each α ∈ {1, . . . , m}, there exists an R > 0 such that (Φ∗
αg)ij −

δij ∈ Hk
δ (ER), where (x1, . . . , xn) are standard Cartesian coordinates

on R
n and Φ∗

αg = (Φ∗
αg)ijdxidxj .

The integer m counts the number of asymptotically flat “ends” of the
manifold M . As discussed in the introduction, we are interested in manifolds
where M ∼= R

n and hence m = 1. In this case, we can assume that g =
gijdxidxj is a Riemannian metric on R

n such that

(2.4) gij − δij , g
ij − δij ∈ Hk

δ

where gij are the components of the inverse metric, satisfying gijgjk = δi
k.

3. Local existence, uniqueness, and continuation

We now state a local existence result for Ricci flow on asymptotically flat
manifolds. For a proof, see [19], Section 3. Alternatively, one can use [21]
to obtain local existence and then a separate argument for the preservation
of the asymptotics [6, 15].

Theorem 3.1. Let ĝ be an asymptotically flat metric of class Hk
δ with δ < 0

and k > n/2 + 3. Then there exists a T > 0 and a family {g(t), t ∈ [0, T )}
of asymptotically flat metrics of class Hk−2

δ such that g(0) = ĝ,

gij − δij , g
ij − δij ∈ C1([0, T ), Hk−2

δ ),

and ∂tgij = −2Rij for all t ∈ [0, T ). Moreover, g(t, x) ∈ C∞((0, T ) × M)
and gij − δij, gij − δij ∈ C1([T1, T2], H�

δ) for any � ≥ 0 and 0 < T1 < T2 < T .
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The following corollary is a straightforward consequence of the above
local existence theorem, the weighted Sobolev inequality [2, Theorem 2.1],
and the weighted multiplication lemma [16, Lemma 3.3]. See [19, Section
3], for details.

Corollary 3.2. Let k > n/2 + 4 and g(t) be the Ricci flow solution from
Theorem 3.1. Then Rij ∈ C1([0, T ), Hk−4

δ−2 ) and gij(t) = ĝij + fij(t), where
fij ∈ C1([0, T ), Hk−4

δ−2 ). Moreover, if k > n/2 + 6, δ < 4 − n and R̂ ∈ L1

then R(t) ∈ C1([0, T ), L1).

Remark 3.3. In [2] Proposition 4.1, it is established that the mass of an
asymptotically flat metric g of class Hk

δ ⊂ W
2,2n/(n−2)
δ (k ≥ 3) is well defined

and given by the formula

(3.1) mass(g) :=
∫

S∞

(
∂jgij − ∂igjj

)
dSi

provided δ ≤ (2 − n)/2 and the Ricci scalar is both non-negative and inte-
grable. So, by the above corollary, an initial asymptotically flat metric ĝ
of class Hk

δ , where k > n/2 + 6 and δ < min{4 − n, (2 − n)/2}, with non-
negative and integrable Ricci scalar will yield a flow g(t) for which the Ricci
scalar continues to be non-negative and integrable for every t > 0. Thus the
mass of g(t) remains well defined. Furthermore, since gij − ĝij ∈ Hk−4

δ−2 ⊂
W 1,∞

δ−2 ⊂ W 1,∞
2−n , it follows easily from the definition of the mass that

(3.2) mass(g(t)) = mass(ĝ) for all t ≥ 0.

This result has also been established in [6] using different methods.

On asymptotically flat manifolds, the standard arguments for uniqueness
and continuation of Ricci flow on compact manifolds carry over with only
minor modifications. Again, see [19, Section 3] for details.

Theorem 3.4. Suppose k > n/2 + 4, δ < 0 and ĝ is an asymptotically flat
metric of class Hk

δ . Then Ricci flow ∂tgij = −2Rij with the initial condition
g(0) = ĝ has a unique solution on a maximal time interval 0 ≤ t < TM ≤ ∞.
If TM < ∞ then

(3.3) lim sup
t→TM

sup
x∈Rn

|Rm(t, x)|g(t,x) = ∞.
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Moreover, for any T ∈ [0, TM ), K = sup0≤t≤T supx∈Rn |Rm(t, x)|g(t,x) < ∞
and

(3.4) e−2KT ĝ ≤ g(t) ≤ e2KT ĝ for all t ∈ [0, T ].

This theorem can also be proved by combining the uniqueness result in [4]
with the local existence result in [21].

4. Rotational symmetry

4.1. The coordinate system

We now restrict our attention to flows evolving from a fixed initial metric
that (i) is rotationally symmetric and admits no minimal hyperspheres, and
(ii) is asymptotically flat of class Hk

δ with δ < 0 and k > (n/2) + 4. In an
attempt to manage the several constants that will appear from here onward,
we will sometimes use the notation C+

x to denote a constant that bounds
a quantity x from above; dually, C−

x will sometimes be used to denote a
constant that bounds x from below.

Remark 4.1.

(i) By Theorem 3.1, there exists a solution ḡ(t) to Ricci flow satisfying

ḡij − δij , ḡ
ij − δij ∈ C1([0, TM ), Hk−2

δ ),
ḡ(t, x) ∈ C∞((0, TM ) × R

n), and ḡ(0) = ĝ.(4.1)

(ii) From (4.1) and the weighted Sobolev embedding (see, [2, Theorem
1.2]), it follows that ḡ(t) ∈ C1([0, TM ), C2

δ ) and hence there exists a
time dependent constant C(t) such that

(4.2) |DI
xḡij(t, x)| ≤ C(t)

(1 + |x|2)(|δ|+|I|)/2

for all (t, x) ∈ [0, TM ) × R
n, and |I| ≤ 2.

(iii) Since Ricci flow preserves isometries, each metric g(t) is rotationally
symmetric and hence

(4.3) ḡ(t, x) = q2(t, r)dr2 + h2(t, r)gcan
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for functions q(t, r) and h(t, r) which are C1 in t, C2 in r, C∞ in t and
r for t > 0, and satisfy

q(0, r) = a(r), h(0, r) = r,(4.4)

|∂s
r(q

2(t, r) − 1)| ≤ C(t)
(1 + r)|δ|+s

s = 0, 1, 2,(4.5)

|∂s
r(r

−2h2(t, r) − 1)| ≤ C(t)
(1 + r)|δ|+s

s = 0, 1, 2.(4.6)

Since ∂rh(0, r) = ∂rr = 1, it follows that there exist constants
0 < C−

∂rh ≤ 1, C+
∂rh ≥ 1, such that

(4.7) 0 < C−
∂rh ≤ ∂rh(t, r) ≤ C+

∂rh for all (t, r) ∈ [0, T ] × (0,∞)

for some T > 0. Note that T has no a priori relation to TM , the maximal
existence time of the flowing metric (4.3). However, let T̃ be the largest
time such that (4.7) holds whenever T < T̃ . We will show in Section 4.3
that we can take T̃ = TM .

Letting (θA) denote angular coordinates on the sphere S
n−1, the map

(4.8) ψt(r, θA) = (h(t, r), θA)

defines a C2 diffeomorphism on R
n for each t ∈ [0, T̃ ) which is smooth for

all t > 0. So then

(4.9) ψ−1
t (r, θA) = (ρ(t, r), θA)

for a function ρ(t, r) that is C1 in t, C2 in r, C∞ in r and t for t > 0, and
satisfies

(4.10) h(t, ρ(t, r)) = r, ρ(t, h(t, r)) = r, and ρ(0, r) = r

for all (t, r) ∈ [0, T ] × (0,∞). Next, define

(4.11) g(t) := (ψ−1
t )∗ḡ(t).

Then we finally obtain that

(4.12) g(t) = f2(t, r)dr2 + r2gcan,
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where

(4.13) f(t, r) =
q(t, ρ(t, r))

∂rh(t, ρ(t, r))
for all (t, r) ∈ [0, T̃ ) × (0,∞).

Note that f(t, r) is C1 in t, is C2 in r, and C∞ in r and t for t > 0.
As well,

(4.14) lim
r→∞

f2(t, r) = 1

(proof: from (4.5) we have q2 → 1 and from (4.6) it is easy to check that
∂rh → 1; then apply these in (4.13)). Finally note that the mean curvature
of constant-r hyperspheres is

(4.15) H =
1
rf

,

so a minimal hypersphere occurs iff f diverges at finite r and some t ∈ [0, T̃ ].
We show in the following subsection that such a divergence cannot develop.

4.2. Ricci flow in area radius coordinates

The metric (4.12) is a solution of the Hamilton-DeTurck flow (1.2), at least
for t ∈ [0, T̃ ). Now from (4.12) we can directly compute the Ricci curvature
and obtain

(4.16) Ric =
(n − 1)
rf(t, r)

∂f

∂r
dr2 +

[
(n − 2)

(
1 − 1

f2(t, r)

)
+

r

f3(t, r)
∂f

∂r

]
gcan.

We can then use the components of the flow equation (1.2) normal to ∂/∂r
to determine ξ, expressed as a 1-form, to be ξ = ξ1(t, r)dr, where

(4.17) ξ1 =
[
(n − 2)

r
(f2(t, r) − 1) +

(∂f/∂r)
f(t, r)

]
.

We can then write the rr-component of (1.2) as a differential equation for
f and use (4.17) to eliminate ξ from this equation. The result is

∂f

∂t
=

1
f2

∂2f

∂r2 − 2
f3

(
∂f

∂r

)2

+
(

(n − 2)
r

− 1
rf2

)
∂f

∂r

− (n − 2)
r2f

(f2 − 1).(4.18)
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This is our master equation upon which our global existence proof is based.
Obviously f(t, r) = 1 (flat space) is a solution, as is f = const �= 1 when
n = 2 (flat cone) but not for n > 2.

We will now prove that minimal hyperspheres cannot form along the flow
if none are present initially. A variant of this argument will be employed sev-
eral times over in Section 5. Our technique is to prescribe limits as r → ∞
and as r → 0 on f(t, r) or, depending on the situation, an expression involv-
ing f (and, in the next section, its radial derivative as well). These limits
constitute time-dependent bounds on the behaviour of the geometry over
the time interval [0, T̃ ). But if the flow exists subject to these limits, then
maximum principles will give bounds expressed solely in terms of the initial
conditions. The bounds are therefore uniform in time and independent of T̃ .

To see how this works, express (4.18) in terms of the variable

(4.19) w(t, r) := f2(t, r) − 1.

Then, working from (4.18), we see that w obeys

(4.20)
∂w

∂t
=

1
f2

∂2w

∂r2 − 3
2f4

[
∂w

∂r

]2

+
[
n − 2

r
− 1

rf2

]
∂w

∂r
− 2(n − 2)

r2 w.

Since f(t, r) solves (refer equation 4.18) and obeys limr→0 f2(t, r) =
1 = limr→∞ f2(t, r), the corresponding w = f2 − 1 will solve (4.20) with
limr→0 w(t, r) = 0 = limr→∞ w(t, r).

Proposition 4.2. Suppose that w(t, r) is a classical solution of (4.20) for
(t, r) ∈ [0, T̃ ) × [0,∞) =: D̃ and that limr→0 w(t, r) = 0 = limr→∞ w(t, r) for
all t ∈ [0, T̃ ). Then there exist constants C−

w ≤ 0 and C+
w ≥ 0 such that

C−
w ≤ w(t, r) ≤ C+

w for all (t, r) ∈ D̃.

Proof. First choose positive constants 0 < r1 < r2 and restrict the domain
to r ∈ [r1, r2]. Let T < T̃ . By the maximum principle, if the maximum of w
on [0, T ] × [r1, r2] is positive, it must lie on the parabolic boundary P (which
consists of those points where either t = 0, r = r1, or r = r2). But now
take the limits r1 → 0 and r2 → ∞. By assumption, w(t, r1) and w(t, r2)
tend to zero in these limits, so for r1 small enough and r2 large enough,
the maximum, if it is positive, lies on the initial boundary {(t, r)|t = 0} (and
since w(0, 0) = 0, even when the maximum is zero it is realized on the initial
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boundary). Finally, take T → T̃ . This proves

(4.21) C+
w := max

r∈[0,∞)
{w(0, r)} = max

D̃
{w(t, r)} ≥ 0.

Dually, by the minimum principle, if the minimum of w on [0, T ] × [r1, r2]
is negative, it must lie on P , and the argument proceeds as before, yielding

(4.22) C−
w := min

r∈[0,∞)
{w(0, r)} = min

D̃
{w(t, r)} ≤ 0.

�

Corollary 4.3. Define constants C±
f2 such that 0 < C−

f2 := minr∈[0,∞)

{a2(r)} and let C+
f2 := maxr∈[0,∞){a2(r)}(a(r) is defined in (4.4)). Then

(4.23) 0 < C−
f2 ≤ f2(t, r) ≤ C+

f2 .

for all (t, r) ∈ D̃ = [0, T̃ ) × [0,∞).

Proof. Using w := f2 − 1 and noting in particular that w(0, r) = f2(0, r) −
1 = a2(r) − 1, apply Proposition 4.2 and use C±

w + 1 = C±
f2 . �

Now we say that a minimal hypersphere forms along the flow iff f(t, r)
diverges in D̃ = [0, T̃ ) × [0,∞).

Corollary 4.4. If no minimal sphere is present initially then none forms.

Proof. From Corollary 4.3, the classical solutions f of (4.18) developing from
initial data (4.1) are bounded uniformly in t on [0, T̃ ). �

4.3. The continuation principle in area radius coordinates

To adapt the continuation principle of Section 3.2 to the rotationally sym-
metric case, we must deal with the following point. While we can assume the
solution of Ricci flow in the coordinate system (4.3) to exist for all t < TM ,
the diffeomorphism transforming the coordinates to those of (4.12) is, so far,
only defined for t < T̃ , and perhaps T̃ < TM .

Proposition 4.5. T̃ = TM .

Proof. Let K = sup0≤t≤T ′ ‖Rm‖L∞ . But R̄ijkl is bounded on [0, T ′] (indeed,
on any closed subinterval of [0, TM )), so we can use (3.4), which states that
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for all (t, r) ∈ [0, T ′] × [0,∞)

(4.24) e−2KT ′
C−

f2 ≤ e−2KT ′
a2(r) ≤ q2(t, r) ≤ e2KT ′

a2(r) ≤ e2KT ′
C+

f2 .

Here the inner two inequalities come from (3.4) and the outer two are just
the definitions of the constants C±

f2 .
Assume by way of contradiction that T̃ < TM . If we restrict attention

to t ∈ [0, T̃ ) then we can divide (4.24) by (4.23). This yields

(4.25) 0 < e−2KT ′ C
−
f2

C+
f2

≤ q2(t, r)
f2(t, r)

≤ e2KT ′ C
+
f2

C−
f2

on [0, T̃ ). Using (4.13), we can rewrite this as

(4.26) 0 < e−2KT ′ C
−
f2

C+
f2

≤ ∂h

∂r
≤ e2KT ′ C

+
f2

C−
f2

on [0, T̃ ). We see by comparison of this to (4.7) that the constants that
appear in (4.7) are independent of T . But the ≤ signs give closed relations
so, by relaxing the constant bounds slightly if necessary (keeping the lower
bound positive of course), we can extend (4.26) (equivalently, (4.7)) to [0, T̃ ]
and then to some interval [0, T ′) ⊃ [0, T̃ ]. This contradicts the assumption
that T̃ < TM , and since necessarily T̃ ≤ TM we must therefore conclude
that T̃ = TM . �
Thus the diffeomorphism (4.8–4.11) is defined for all t ∈ [0, TM ). The square
of the norm of the curvature tensor is given by

(4.27) |Rm|2 = RijklR
ijkl = 2(n − 1)λ2

1 + (n − 1)(n − 2)λ2
2,

where

(4.28) λ1(t, r) =
1

rf3(t, r)
∂f(t, r)

∂r

and

(4.29) λ2(t, r) =
1
r2

(
1 − 1

f2(t, r)

)

are the sectional curvatures in planes containing and orthogonal to dr,
respectively. Now in terms of the curvature tensor R̄ijkl of ḡ(t) we have that

(4.30) |Rm| = |Rm| ◦ ψ−1
t .
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But R̄ijkl is bounded on any interval [0, T ′] with T ′ < TM and thus the
sectional curvatures are bounded functions of (t, r) ∈ [0, T ′] × [0,∞), using
Proposition 4.5. Thus

C−
λ1

(t) ≤ λ1(t, r) =
1

rf3
∂f

∂r
≤ C+

λ1
(t),(4.31)

C−
λ2

(t) ≤ λ2(t, r) =
1
r2

(
1 − 1

f2(t, r)

)
≤ C+

λ2
(t),(4.32)

for all t ∈ [0, TM ). In particular, the limits r → 0 of these quantities exist
at each fixed t. It also follows easily from the fall-offs (4.5) and (4.6) that

(4.33) lim
r→∞

r−|δ|−s∂r(f2(t, r) − 1) = 0

for s = 0, 1, 2 and all t ∈ [0, T ′). Thus we have that

Proposition 4.6. The function f(t, r) given by (4.13) solves the PDE
(4.18) on the region [0, TM ) × (0,∞), equals a(r) at time t = 0, and sat-
isfies the boundary conditions

(4.34) lim
r→0

1 − f2(t, r)
r2 = L1(t), lim

r→0

∂rf(t, r)
r

= L2(t),

for locally bounded functions L1, L2 : [0, TM ) → R and

(4.35) lim
r→∞

r−|δ|−s∂r(f2(t, r) − 1) = 0 (s = 0, 1, 2)

for all t ∈ [0, TM ) and δ < 0.

Proof. To obtain the boundary conditions (4.34), multiply (4.31) by f3,
(4.32) by f2, take the limit, and use that f is a bounded function of r.
The fact that f solves (4.18), subject to these conditions, for all (t, r) ∈
[0, TM ) × [0,∞) follows from the facts that (i) q and h enter (4.3) which
solves Ricci flow (1.1), (ii) f enters (4.12) which solves Hamilton-DeTurck
flow (1.2), and (iii) the diffeomorphism (4.8–4.11) relating these flows is valid
for all such (t, r) (Proposition 4.5). �

Theorem 4.7. If there exists a constant Cλ > 0 independent of TM such
that

(4.36) sup
0<r<∞

(
|λ1(t, r)| + |λ2(t, r)|

)
≤ Cλ,

then TM = ∞.
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Proof. From Proposition 4.6, the solution f of (4.18) exists up to time TM .
From (4.27–4.30), if the sectional curvatures λ1 and λ2 are bounded indepen-
dent of TM , then so is |Rm|2, and then by Theorem 3.5 we have TM = ∞. �

4.4. Quasi-local mass

This subsection is a brief aside, not necessary for our main results, but
intended to relate our results to the motivation discussion in the introduc-
tion.

One of the more popular quasi-local mass formulations is the
Brown–York mass. The Brown-York quasi-local mass contained within a
closed hypersurface Σ is defined to be

(4.37) μ[Σ] :=
∫

Σ
(H0 − H)dΣ,

where H is the mean curvature of Σ and H0 is the mean curvature of the
image of Σ under an isometric embedding of Σ into flat space (assuming
there is such an embedding). In the case of a hypersphere r = b(t), whose
coordinate radius we will allow to possibly change in time, we have (using
(4.15) and writing dΩ to represent the canonical volume element on the
(n − 1)-sphere)

μ(t) =
∫

Sn−1

1
b(t)

(
1 − 1

f(t, b(t))

)
bn−1(t)dΩ

= bn−2(t)
(

1 − 1
f(t, b(t))

)
vol(Sn−1, can).(4.38)

Comparing to (4.32), we can relate quasi-local mass to sectional curvature by

(4.39)
1

bn(t)

(
1 +

1
f(t, b(t))

)
μ(t, b(t)) = λ2(t, b(t))vol(Sn−1, can).

Proposition 4.8. The sign of the Brown–York quasi-local mass within the
hypersphere r = b(t) at time t is determined by the sign of λ2(t, b(t)), and

(4.40) lim
t→∞

λ2(t, b(t)) = 0 ⇐⇒ lim
t→∞

μ(t, b(t)) = 0.

Proof. Obvious from (4.39) and (4.23). �
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Perhaps the three most interesting kinds of hyperspheres are those of

(i) fixed surface area

(4.41) b(t) = b0 = const > 0,

(ii) fixed volume contained within

(4.42)
∫ b(t)

0

∫
Sn−1

f(t, r)rn−1 dr dΩ =: V0 = const > 0, and

(iii) fixed proper radius

(4.43)
∫ b(t)

0
f(t, r)dr =: R0 = const > 0.

In either case, it is easy to see that

(4.44) 0 < C−
b ≤ b(t) ≤ C+

b ,

where obviously C±
b = b0 for the fixed area case, while

(4.45) C±
b =

nV0

C∓
f2vol(Sn−1, can)

for the fixed volume case and

(4.46) C±
b :=

R0

C∓
f2

for the fixed proper radius case.

Remark 4.9. In Section 5.1, we prove that λ2(t, r) ∼ 1/t for large t and
fixed r. Thus, for all three kinds of hyperspheres discussed above, the quasi-
local mass vanishes like 1/t as t → ∞.

5. Immortality and convergence

In the next two subsections we show that the sectional curvatures λ1 and λ2
are bounded on t ∈ [0, TM ). (Equivalently, we obtain bounds on the quasi-
local mass and its radial derivative.) This permits us to invoke Theorem
4.7 to conclude that the solution is immortal. In fact, we find bounds that
actually decay in time, going to zero in the limit t → ∞. This implies that
the flow converges in the limit to a space with vanishing sectional curvatures;
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i.e., to a flat space. In Section 5.3, we prove that it converges to Euclidean
space E

n.
In this section, we use T to denote an arbitrary time that is less than

the maximal time of existence, i.e., 0 < T < TM .

5.1. The decay of λ2

Short-time existence guarantees that f2(t, r) − 1 ∈ O(r2) as r → 0. Specifi-
cally, for all r < r0 and for 0 ≤ t < TM , there is a function C(t) such that

(5.1) |w(t, r)| = |f2(t, r) − 1| < C(t)r2.

This follows by applying the boundedness of f2 (4.23) to equation (4.32)
governing λ2, which can be written (by choosing C(t) less than optimally,
perhaps) as

(5.2) r2|λ2(t, r)| =
∣∣∣∣ 1
f2 − 1

∣∣∣∣ < C(t)r2.

To apply the continuation principle, we need to prove that C(t) is bounded
in t. In this section we will prove more: we will show that C(t) can be taken
to decay in time, converging to zero in the limit t → ∞, so that the sectional
curvature λ2 decays to zero as well.

If w = f2 − 1 decays, then, based on the parabolic form of (4.20), one
might speculate that this decay would go roughly like r2/t, or inverse
“parabolic time”. If so, then the function g(t, r)(f2 − 1) should be bounded
if we take g ∼ t/r2. We will show below that this expectation is basically
correct.

We do not take g = t/r2 exactly. For small t, we will modify the
form g ∼ t/r2 so that g does not vanish at t = 0. For small r, the form
g ∼ t/r2 is problematical because we cannot specify a priori the behaviour
of (1/r2)(f2 − 1) on approach to r = 0. This behaviour is governed by C(t),
the very quantity we seek to control as the outcome of the argument, so we
cannot specify it as input. We therefore choose instead small r behaviour
of the form g(t, r) ∼ 1/rm, m < 2, and only later do we take m → 2. For
m < 2, g(t, r)(f2 − 1) is very well controlled a priori for small r: it goes
to zero. Lastly, as foreshadowed by (5.2), we need to apply these consid-
erations not only with f2 − 1 but also to (1/f2) − 1. The same heuristic
reasoning leads us then to consider functions of the form g(t, r)((1/f2) − 1)
with the same g(t, r).
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Definition 5.1. Let f be defined by (4.13)5 and therefore have all the
properties outlined in Section 4. For such an f , define the um functions,
m ∈ (0, 2], on [0, TM ) × [0,∞) by

um(t, r) :=
(

1 + t

rm + r2

)(
1

f2(t, r)
− 1
)

for r > 0,

um(t, 0) := lim
r→0

um(t, r).(5.3)

The um functions have the following properties, which follow from the
flow equation (4.18) for f , Proposition 4.6, and equation (4.14).

(i) um(t, 0) = 0 for all 0 < m < 2 and limr→∞ um(t, r) = 0 for all 0< m≤ 2.

(ii) For fixed t and r �= 0, the map m �→ um(t, r) is continuous at m = 2.

(iii)

(5.4) λ2 = − 2
1 + t

u2.

(iv) The um obey a maximum principle, as we will show below.

(v) By direct calculation starting from (4.18), the um obey the differential
equation:

∂um

∂t
=

1
f2

∂2um

∂r2 − (rm + r2)
2(1 + t)

(
∂um

∂r

)2

− (2r + mrm−1)
(1 + t)

um
∂um

∂r

+

[
2
(
2r + mrm−1

)
(rm + r2)f2 − 1

rf2 +
(n − 2)

r

]
∂um

∂r

− (2 − m)(m + n − 2)
r2(1 + r2−m)

um

+
1

(1 + t)

{
1

1 + r2−m

[
um − ((4 − m)(m + n − 2) + m(n − 2))u2

m

]

+
r2−m

1 + r2−m

[
um − 2(n − 1)u2

m

]

+
rm−2

1 + r2−m

[
(m − 2)(m + n − 2) − m

(m

2
+ n − 2

)]
u2

m

}
.(5.5)

5wherein, of course, q and h arise from an asymptotically flat Ricci flow of rota-
tionally symmetric initial data obeying the conditions of Theorem 1.1.
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This PDE is the starting point for the maximum principle, which we now
derive.

Proposition 5.2. For um(t, r) defined by Definition 5.1, there is a constant
C+

u which depends only on the initial data a(r) = f(0, r) such that um(t, r) ≤
C+

u for all t ∈ [0, TM ) and all m ∈ (0, 2).

Proof. The technique will be to solve (4.18) for f , given initial data obeying
the bounds in Corollary 4.3. From this initial data, we can construct initial
data for um using from (5.3) that

(5.6) um(0, r) :=
1

rm + r2

(
1

f2(0, r)
− 1
)

= − λ2(0, r)
1 + rm−2 .

Now by the assumed differentiability and asymptotic flatness of the ini-
tial metric stated in Theorem 1.1, the initial sectional curvature λ2(0, r)
is bounded. In particular, then by (5.6) um(0, r) is bounded above on
r ∈ [0,∞) by a constant C+

u which depends only on the initial metric (thus
on a(r) as in (4.4)) and so does not depend on m. Without loss of generality,
we choose C+

u ≥ (1/2(n − 1)), for reasons that will become clear. Now it
remains to be shown that um(t, r) is bounded above for all time t ≥ 0 by a
bound that is dependent only on um(0, r). Of course, the initial data um(0, r)
will vary with m (because of the denominator of (5.6); but f(0, r) = a(r)
and, thus, λ2(0, r) are of course independent of m), but C+

u will always pro-
vide an m-independent upper bound which will then bound the full solution.

First restrict consideration to the compact domain D = [0, T ] × [r1, r2],
0 < r1 < r2, T < TM , with parabolic boundary P (as defined in the proof
of Proposition 4.2). Now consider in (5.5) the terms that do not contain
derivatives. There are three such terms, each comprised of a function of r
multiplying a factor in square brackets. One can easily check (e.g., by direct
substitution; keep in mind that m ∈ (0, 2) and n ≥ 3) that in (5.5) each of
these factors in square brackets is negative whenever

(5.7) um >
1

2(n − 1)
,

so

∂um

∂t
<

1
f2

∂2um

∂r2 − (rm + r2)
2(1 + t)

(
∂um

∂r

)2

− (2r + mrm−1)
(1 + t)

u
∂um

∂r

+

[
2
(
2r + mrm−1

)
(rm + r2)f2 − 1

rf2 +
(n − 2)

r

]
∂um

∂r
(5.8)
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then. Applying the usual maximum principle argument to this inequality
(i.e., evaluating both sides at a hypothesized local maximum and observing
that the inequality cannot then be satisfied), we conclude that um has no
maximum greater than (1/2(n − 1)) in D\P .

By the properties of um listed above, we have um(t, r) → 0 both for r → 0
and for r → ∞. Thus, as with the proof of Proposition 4.2, if the maximum
of um is >(1/2(n − 1)) (or merely positive) and lies on the parabolic bound-
ary with r1 chosen small enough and r2 large enough, it must lie on the
initial boundary. Taking the limits r1 → 0 and r2 → ∞, then we see that

(5.9) um(t, r) ≤ max

{
1

2(n − 1)
, sup
r∈[0,∞)

{um(0, r)}
}

≤ C+
u ,

for all (t, r) ∈ [0, T ] × [0,∞). But this holds for any T < TM , so it holds for
(t, r) ∈ [0, TM ) × [0,∞). �

Corollary 5.3. Proposition 5.2 extends to the case m = 2 and yields

(5.10) λ2(t, r) ≥ − 2C+
u

1 + t
=:

C−
λ2

1 + t
.

Proof. As in Proposition 5.2, we solve (4.18) with the assumed initial data
to find f , from which we construct um for, say, 0 < m ≤ 2. Fixing any t ∈
[0, TM ) and any r �= 0, the map m �→ um(t, r) = ((1 + t)/r2 + rm)
((1/f2(t, r)) − 1) is obviously continuous at m = 2. This and Proposition
5.2 imply that u2(t, r) ≤ C+

u for all r > 0. By the continuity of r → u2(t, r),
then u2(t, 0) ≤ C+

u as well, for all t ∈ [0, TM ). Now use (5.4). �

Thus λ2 is bounded below by a bound that tends to zero in the limit of
long times. Next we need a similarly decaying bound from above. To get it,
we work with the following class of functions:

Definition 5.4. Let f be defined by (4.13) and therefore have all the prop-
erties outlined in Section 4. For such an f , the vm functions, m ∈ (0, 2] are
defined on [0, TM ) × [0,∞) as

vm(t, r) :=
(

1 + t

rm + r2

)(
f2(t, r) − 1

)
for r > 0,

vm(t, 0) := lim
r→0

vm(t, r).(5.11)
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These functions have essentially the same properties as those listed for
the um, but the relation to λ2 is now

(5.12) v2(t, r) =
1
2
(1 + t)f2(t, r)λ2(t, r),

and the vm obey the PDE [computed directly from (4.18) and (5.11)]

∂vm

∂t
=

1
f2

∂2vm

∂r2 − 3(rm + r2)
2f4(1 + t)

(
∂vm

∂r

)2

+
[
2(mrm−1 + 2r)

(rm + r2)f2 − 3(mrm−1 + 2r)
(1 + t)f4 +

n − 2
r

− 1
rf2

]
∂vm

∂r

+
[
1 − 3(mrm−1 + 2r)2

2(rm + r2)f4 vm

]
vm

1 + t

+
(m − 2)

r2

(
rm

rm + r2

)(
n − 2 +

m

f2

)
vm.(5.13)

We must of course prove that the vm obey a maximum principle. In
fact, Proposition 5.2 holds with vm replacing um and with m restricted this
time to 1 < m < 2. Just as with Corollary 5.3, the result can be extended to
cover m = 2. To prove this, it will help to note that when vm ≥ 0, n ≥ 3, and
1 < m < 2, then we can discard most of the nonderivative terms in (5.13)
to obtain

∂vm

∂t
≤ 1

f2
∂2vm

∂r2 − 3(rm + r2)
2f4(1 + t)

(
∂vm

∂r

)2

+
[
2(mrm−1 + 2r)

(rm + r2)f2 − 3(mrm−1 + 2r)
(1 + t)f4 +

n − 2
r

− 1
rf2

]
∂vm

∂r

+
vm

(1 + t)

[
1 − 6vm

f4

]
, vm > 0.(5.14)

Proposition 5.5. There is a constant C+
v which depends only on the initial

data f(0, r) = a(r) such that vm(t, r) < C+
v for all (t, r) ∈ [0, TM ) × [0,∞)

and all m ∈ (1, 2).

Proof. The proof follows that of Proposition 5.2. Consider first the ini-
tial data

(5.15) vm(0, r) =
(

1
rm + r2

)(
f2(0, r) − 1

)
=
(

1
1 + rm−2

)
w(0, r)

r2 ≤ C+
v
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because (|w(0, r)|/r2) is bounded, where C+
v is independent of m. This time,

we will choose without loss of generality that C+
v ≥ (1/6)(C+

f2)2, for reasons
that will become clear below.

Again we work first on the domain D = [0, T ] × [r1, r2], 0 < r1 < r2, with
parabolic boundary P . Observe that if vm > (1/6)(C+

f2)2, the last term in
(5.14) will be negative. As before, elementary arguments applied to (5.14)
imply that this term cannot be negative at a maximum in D\P , and thus
such a maximum can occur only on P . Also as before, we take r1 → 0,
r2 → ∞ and since vm vanishes in both limits, the maximum of vm, if it is
greater than (1/6)(C+

f2)2, must occur on the initial boundary where t = 0.
Thus we obtain for any (t, r) ∈ [0, T ] × [0,∞) that

(5.16) vm(t, r) ≤ max
{

1
6
(C+

f2)2, max
r∈[0,∞)

{vm(0, r)}
}

≤ C+
v ,

and C+
v does not depend on m. It also does not depend on T and so the

result extends to hold for all (t, r) ∈ [0, TM ) × [0,∞). �

Remark 5.6. For use in the next subsection, we observe that in virtue of
this result um is now bounded below, as well as above, on (t, r) ∈ [0, TM ) ×
[0,∞) by a bound that depends only on the initial data for f and so is inde-
pendent of m. The proof is to observe that um = −vm/f2 ≥ −C+

v /C−
f2 =:

C−
u . We define

(5.17) Cu := max{|C±
u |},

which bounds the magnitude of |um| and is independent of m.

Corollary 5.7. Proposition 5.5 extends to the case m = 2 and yields

(5.18) λ2(t, r) ≤ 2C+
v

C−
f2(1 + t)

=:
C+

λ2

1 + t
.

Proof. The extension to m = 2 follows exactly as in Corollary 5.3. Equation
(5.18) follows directly from (5.12). �

Proposition 5.8. |λ2| is bounded on [0, TM ) × [0,∞) and if TM = ∞ then
λ2 converges uniformly to zero as t → ∞.

Proof. Immediate from Corollaries 5.3 and 5.7. �
In this regard, note that by Theorem 4.7 we can assume TM = ∞ if we can
bound λ1, which we now proceed to do.
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5.2. The decay of λ1

A lower bound and decay estimate on λ1 is now easy to obtain. It is quickest
to work from the flow equation for the scalar curvature, which is

∂R

∂t
= ΔR + ξ · ∇R + 2RijR

ij

≥ ΔR + ξ · ∇R +
2
n

R2,(5.19)

with ξ = ξ1dr given by (4.17) and where we used the elementary identity
RijRij ≥ (1/n)R2. Inequality (5.19) gives a well-known minimum principle
for R. Moreover, if we define

(5.20) R̃ := (1 + t)R,

we obtain from (5.19) that

(5.21)
∂R̃

∂t
≥ ΔR̃ + ξ · ∇R̃ +

1
(1 + t)

(
2
n

R̃2 + R̃

)
,

which also has a minimum principle.

Proposition 5.9. If R is the scalar curvature of a Ricci flow developing
from asymptotically flat initial data on a manifold M then there is a constant
C−

R ≤ 0 such that on [0, TM ) × [0,∞) � (t, r) we have

(5.22) R ≥ C−
R

1 + t
.

For notational convenience, we give the proof for the special case of inter-
est, a rotationally symmetric flow on R

n, but the proof clearly generalizes
to arbitrary asymptotically flat flows.

Proof. First take t ∈ [0, T ], T < Tm. Let B0(a) be the ball of coordinate
radius r = a about the origin 0 ∈ R

n at time t. Applying elementary min-
imum principle arguments to (5.21), it is clear that either the minimum
of R̃ in [0, T ] × B0(a) occurs on the parabolic boundary P or R̃ ≥ −(n/2).
Now the parabolic boundary has an initial component t = 0 and a spatial
component which is a sphere r = a for all t > 0. By asymptotic flatness,
R → 0 as a → ∞ and hence R̃ → 0 as well. Taking this limit, we con-
clude that if R̃ is anywhere less than −(n/2), then the minimum of R̃
over all (t, x) ∈ [0, T ] × R

n exists and is realized on the initial boundary.
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Thus choose C−
R = min{−(n/2), infr{R(0, r)}}, which is obviously indepen-

dent of T , so finally take T → TM . Then R̃ ≥ C−
R ⇒ R ≥ C−

R (1 + t) for all
(t, r) ∈ [0, TM ) × [0,∞). �

Corollary 5.10. Then λ1(t, r) is bounded below on [0, TM ) × [0,∞) �
(t, r) by

(5.23) λ1(t, r) ≥ 1
(1 + t)

(
C−

R

2(n − 1)
− (n − 2)C+

v

C−
f2

)
=:

C−
λ1

1 + t
.

Proof. This follows from the formula

(5.24) R = 2(n − 1)λ1 + (n − 1)(n − 2)λ2

for the scalar curvature in terms of the sectional curvatures, equation (5.22),
and the upper bound (5.18) on λ2. �

Now we turn attention to finding an upper bound and decay estimate.
We have to work harder than we did for the lower bound, but we can apply
essentially the same strategy as we used to prove boundedness and conver-
gence of λ1. Once again, the main issue will be control of λ1 at r = 0, and
we will be forced to work with a sequence of functions with known behaviour
at r = 0. This time, we have found that a choice well suited to our purpose
is given by

Definition 5.11. Let f be defined by (4.13) and therefore have all the
properties outlined in Section 4. For such an f , define the ym functions,
m ∈ (1, 2], on [0, TM ) × [0,∞) by

ym(t, r) :=
(

1 + t

1 + r2−m

){
r

∂

∂r

[
1

rm

(
1
f

− 1
)]}

, r > 0,

ym(t, 0) := lim
r→0

ym(t, r).(5.25)

We can extract λ1 from the relation

(5.26)
ym

1 + t
=

r2f

(rm + r2)

(
m

(1 + f)
λ2 − λ1

)
.
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Notice that ym(t, r) → 0 as r → 0 whenever m < 2. Calculating from
(4.18), we find that ym(t, r) obeys

∂ym

∂t
=

1
f2

∂2ym

∂r2 +
1
r
αm

∂ym

∂r

+
1
r2

{[
2
f

(
2(m − 1)rm + mr2) ym + 1

]
ym

1 + t

+ βmym + (1 + t)γm

}
,(5.27)

where some of the coefficients have rather lengthy expressions so we have
introduced the abbreviations

αm :=
2(rm + r2)

f

ym

(1 + t)
+

4m − 3
f2 − 2m

f
+ n − 2

− 2(m − 2)r2−m

f2(1 + r2−m)
,(5.28)

βm :=
7m2 − 14m + 4

f2 − m(6m − 8)
f

+ (n − 2)
(

m − 1 − 3
f2

)

+
(m − 2)r2−m

1 + r2−m

[
−(3m − 2)

f2 +
2m

f
− (n − 2)

]
,(5.29)

γm :=
1

(rm + r2)

(
1
f

− 1
){

2m(m − 1)(m − 2)
f2 +

2m2(2 − m)
f

+ (n − 2)
[
−m +

m + 2
f

+
2(1 − m)

f2

]}
.(5.30)

We now claim that the ym(t, r) are bounded below on [0, TM ) × [0,∞) by
a constant that is independent of m. Proceeding in our now usual fashion,
let T be such that 0 < T < TM and define D := [0, T ] × [0,∞). As usual,
because ym tends to zero for r → ∞ and for r → 0, either zero is the lower
bound or

(5.31) inf
D

ym =: Y = ym(t0, r0) < 0

for some t0 and some r0 > 0. In the latter case, either t0 = 0 and therefore
the minimum depends only on initial data a(r) = f(0, r) and not on m or
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T , or it occurs at some t0 ∈ (0, T ] and then the minimum obeys a quadratic
inequality which we now state:

Lemma 5.12. Let ym be defined on [0, T ] × [0,∞), T < TM , by Defini-
tion 5.11. For m < 2, if ym has a negative infimum Y < 0, then this infi-
mum is realized as a minimum at some (t0, r0) where r0 > 0 and either
t0 = 0 or
(5.32)

2(m − 1)
f(t0, r0)

Y 2 +
(

1 + t0
rm
0 + r2

0

)
[(1 + βm(t0, r0))Y + (1 + t0)γ(t0, r0)] < 0.

Proof. As discussed immediately above, a negative infimum must be real-
ized at some (t0, r0) where r0 > 0. Then it follows by applying standard
minimum principle arguments to equation (5.27) that either the minimum
occurs at t0 = 0 or the nonderivative terms in (5.27) are governed by the
inequality

0 >
2

f(t0, r0)
(2(m − 1)rm

0 + mr2
0)Y

2 + Y

+ (1 + t0)[βm(t0, r0)Y + (1 + t0)γm(t0, r0)].(5.33)

But in the first term on the right-hand side, use that (2(m − 1)rm
0 + mr2

0)
Y 2 > 2(m − 1)(rm

0 + r2
0)Y

2 for m < 2 to replace the former by the latter.
Replace the second term (the singleton Y ) by (1 + t0)Y < Y . These replace-
ments preserve the inequality. Divide by rm

0 + r2
0 to complete the proof. �

Now further restrict m to some range of form 1 < κ ≤ m < 2, so that
the coefficient of Y 2 in (5.32) is not arbitrarily small; for definiteness κ =
3/2 ≤ m < 2 will do nicely. Then since the criterion (5.32) is quadratic in Y
with positive coefficient of Y 2, it will be violated for Y sufficiently negative.
Thus Y cannot be arbitrarily negative, giving a bound on ym expressed in
terms of the coefficients in (5.32). It remains therefore to manipulate these
coefficients to produce a bound that is manifestly independent of m and T .
The proof is an exercise in elementary manipulation, but we will give the
main points.

Proposition 5.13. Let 3/2 ≤ m < 2. Then for each m, the ym are bounded
below on [0, TM ) × [0,∞) by an m-independent constant.

Proof. As usual, we work on t ∈ [0, T ] with T < TM to obtain a bound which
does not depend on m or T and then take T → TM when we are done.
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If the lower bound is zero, which occurs at r0 = 0 and as r0 → ∞, then
obviously it is independent of m and T , so assume that the lower bound is
negative. Then it is realized as a minimum at some (t0, r0) ∈ [0, T ] × [0,∞).
If t0 = 0, the lower bound is given by the initial data, so again it is clearly
m- and T -independent. Therefore, assume t0 > 0. Then the criterion (5.32)
applies.

In this last case, we start with (5.32) and seek to re-express, where possi-
ble, factors of the form (1 + t0)/(rm

0 + r2
0) in terms of the bounded quantity

um = ((1 + t)/(rm + r2))((1/f2) − 1). The boundedness of this quantity is
described in Remark 5.6; since f is also bounded, we can also make use of
equivalent form (f/1 + f)um = ((1 + t)/(rm + r2))((1/f) − 1). For exam-
ple, the term in (5.32) that is constant in Y can be written as (understanding
all quantities to be evaluated at (t0, r0))

(1 + t0)2

rm
0 + r2

0
γm =

(
fum

1 + f

)2 [
2m(m − 2)

(
m − 1

f
− 1
)

− (n − 2)
(

2(m − 1)
f

+ m − 4
)]

− 2(m − 2)(m + n − 2)
(

1 + t0
rm
0 + r2

0

)
fum

1 + f
.(5.34)

We can minimize the term proportional to u2
m over (3/2) ≤ m ≤ 2. In the

second term, note that the coefficient −2(m − 2)(m + n − 2) is positive for
3/2 ≤ m < 2. Therefore we write −2(m − 2)(m + n − 2)(fum/(1 + f)) ≥
((1/2) − n)(f/(1 + f))|um(t0, r0)| ≥ ((1/2) − n)(f/(1 + f))Cu ≥
((1/2) − n)Cu, using (5.17). This yields

(1 + t0)2

rm
0 + r2

0
γm ≥

(
fum

1 + f

)2 [
− 4

3
√

3f
− 2(n − 2)

(
1 − 1

f

)]

+
(

1
2

− n

)
Cu

(
1 + t0

rm
0 + r2

0

)

≥ −k1 +
(

1
2

− n

)
Cu

(
1 + t0

rm
0 + r2

0

)
,(5.35)

where k1 is a (positive) constant independent of m, T , and Y .6 The second
term still contains an unwanted factor of (1 + t0)/(rm

0 + r2
0) with negative

coefficient, but for Y sufficiently negative we will be able to dominate this

6For example, k1 = C2
u[(1/C−

f ) + 2(n − 2)] would do fine, where we write C−
f :=√

C−
f2 .
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term with positive contributions coming from the part of the criterion (5.32)
that is linear in Y .

To examine the linear term, start from the expression(
1 + t0

rm
0 + r2

0

)
(1 + βm)Y =

(
1 + t0

rm
0 + r2

0

){
1 +

7m2 − 14m + 4
f2 − m(6m − 8)

f

+ (n − 2)
(

m − 1 − 3
f2

)

+
(2 − m)r2−m

1 + r2−m

[
3m − 2

f2 − 2m

f
+ n − 2

]}
Y.(5.36)

The terms in the last line simplify since we can use that Y < 0, (3/2) ≥m < 2,
and n ≥ 3 to write

(2 − m)r2−m

1 + r2−m

[
3m − 2

f2 − 2m

f
+ n − 2

]
Y >

(2 − m)r2−m

1 + r2−m

[
3m − 2

f2 + n − 2
]

Y

> (2 − m)
[
3m − 2

f2 + n − 2
]

Y.(5.37)

Now we can combine this result with (5.36) and again absorb the factor of
(1 + t0)/(rm

0 + r2
0), wherever possible, using um. We get

(
1 + t0

rm
0 + r2

0

)
(1 + βm)Y >

fum

(1 + f)

[
4m2 − 6m − 3(n − 2)

f

− 2m2 + 2m − 3(n − 2)

]
Y

− (2m2 − 2m + 2n − 5)
(

1 + t0
rm
0 + r2

0

)
Y

≥ fum

(1 + f)

[
4m2 − 6m − 3(n − 2)

f

− 2m2 + 2m − 3(n − 2)

]
Y

−
(

2n − 7
2

)(
1 + t0

rm
0 + r2

0

)
Y,(5.38)

where in the last line minimized over 3/2 ≤ m < 2. It is again evident that
this is the sum of a bounded term and a term involving (1 + t0)/(rm

0 + r2
0).
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Both these terms are linear in Y . That is,

(5.39)
(

1 + t0
rm
0 + r2

0

)
(1 + βm)Y ≥ k2Y −

(
2n − 7

2

)(
1 + t0

rm
0 + r2

0

)
Y,

where k2 is a constant independent of m, T , and Y .7

Inserting (5.35) and (5.39) into the criterion (5.32) and using that
(2(m − 1)/f(t0, r0))Y 2 ≥ (3/f(t0, r0))Y 2 for 3/2 ≤ m < 2, we obtain the fol-
lowing necessary condition for Y < 0 to be the minimum of ym(t0, r0) at
some t0 > 0:

0 ≥ 3
f(t0, r0)

Y 2 + k2Y − k1

+
[(

1
2

− n

)
Cu −

(
2n − 7

2

)
Y

](
1 + t0

rm
0 + r2

0

)
.(5.40)

Then a necessary condition for Y < (1 − 2n/4n − 7)Cu to be the minimum
of ym(t0, r0) at some t0 > 0 is

(5.41) 0 >
3

f(t0, r0)
Y 2 + k2Y − k1,

which is clearly violated whenever

(5.42) Y < CY := min

{(
1 − 2n

4n − 7

)
Cu,−

C+
f

6

[
k2 +

√
k2

2 +
12
C−

f

k1

]}
,

where we use the short-hand C±
f :=

√
C±

f2 . We conclude that

(5.43) ym ≥ C−
y := min{CY , inf

r
{ym(0, r)}}

on [0, T ] × [0,∞) and since these bounds do not depend on T , taking T →
TM we see that they hold as well on [0, TM ) × [0,∞). �

Corollary 5.14. There is a constant C+
λ1

such that

(5.44) λ1(t, r) ≤
C+

λ1

1 + t

on [0, TM ) × [0,∞).

7For example, from elementary considerations applied to (5.38) we obtain that
k2 = 8Cu is a suitable bound.
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Proof. First we prove that y2 is bounded below by C−
y . As with Corollaries

5.3 and 5.7, the map m �→ ym(t, r), with fixed t and fixed r > 0, is continu-
ous, so the bound (5.43) applies to y2(t, r) except possibly at r = 0. Then
the continuity of y2 at r = 0 implies that the bound holds there as well.

Next, the m = 2 case of (5.26) yields

(5.45) λ1 =
2

1 + f
λ2 − y2

1 + t
.

Using (5.18) and the facts that C−
y ≤ 0 and C+

v ≥ 0, we can write this as

λ1(t, r) ≤
(

2
1 + f

)
2C+

v

(1 + t)C− + f2 −
2C−

y

(1 + t)f

≤ 1
1 + t

[
4C+

v

C−
f2

−
2C−

y

C−
f

]
,(5.46)

where we have used that 0 < C−
f2 ≤ f2 and C−

f :=
√

C−
f2 . Now let C+

λ1
equal

the quantity in square brackets in the last line. �
We can now prove the main theorem.

5.3. Proof of Theorem 1.1

Proof of Statement (i). By Corollaries 5.3, 5.7, 5.10, and 5.14, the sectional
curvatures in [0, TM ) × [0,∞) are bounded above and below by bounds
of the form

(5.47) |λ1,2| ≤
|C±

λ1,2
|

1 + t
≤ |C±

λ1,2
|.

Thus, by Theorem 4.7, we can take TM = ∞ and can conclude that there is
a constant C0 such that

(5.48) sup
x∈Rn

|Rm(x, t)|ḡ(t,x) ≤ C0

1 + t
∀ t ≥ 0.

This proves the existence for all t ∈ [0,∞) of the solution developing from the
initial condition, Statement (i) of the theorem and also the � = 0 estimate
of (iii).

Proof of Statement (ii). This is immediate from Theorem 3.1.

Proof of Statement (iii). Follows directly from (5.48) and [11, Theorem 7.1].
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Proof of Statement (iv). This follows from the Compactness Theorem 1.2
of [12] and statement (iii), provided the injectivity radius at the origin is
> δ ≥ 0 for some δ independent of t. Since the metric is uniformly equivalent
to the Euclidean metric and the sectional curvatures are uniformly bounded
in time, this follows immediately from, for example, the Cheeger–Gromov–
Taylor injectivity radius estimate [3, Theorem 4.7].8

Proof of Statement (v). Immediate from Remark 3.3. �
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