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OPTIMAL GRADIENT ESTIMATES AND ASYMPTOTIC
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SMALL INITIAL DATA.

Hyung Ju Hwang1, Alan D. Rendall2, Juan J. L. Velázquez3

Abstract

The Vlasov-Poisson system describes interacting systems of collision-

less particles. For solutions with small initial data in three dimensions

it is known that the spatial density of particles decays like t
−3 at late

times. In this paper this statement is refined to show that each derivative

of the density which is taken leads to an extra power of decay so that in

N dimensions for N ≥ 3 the derivative of the density of order k decays

like t
−N−k. An asymptotic formula for the solution at late times is also

obtained.

1 INTRODUCTION

The Vlasov-Poisson system provides a statistical description of the dynamics of a
large number of particles which are acted on by a force field which they generate
collectively. One class of applications of this system is in plasma physics where
the force is electrostatic and the particles are electrons or ions [10]. Another is
in stellar dynamics where stars play the role of particles. The particle treatment
is justified in models of galaxies where the distance between stars is much larger
than their diameters. In this case the force is gravitational [2]. The equations
in these two cases only differ by a sign and a lot of the mathematical theory
works in exactly the same way for both. This applies in particular to the results
of this paper. For surveys of results on the Vlasov-Poisson and related systems
see [8] and [1].

The distribution function f of the particles satisfies the Vlasov equation
while the potential φ for the field satisfies the Poisson equation. The function
f depends on time t, the spatial point x ∈ R

3 and the velocity v ∈ R
3. It is

natural to pose an initial value problem with f being prescribed at t = 0. For an
initial datum which is C1 and has compact support it is known that there exists
a unique corresponding C1 solution, globally in time [18], [15]. The support of
f is compact at each fixed time t and an important diagnostic quantity is P (t),
the supremum of |v| over the support of f at time t. Estimates are known for
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P (t) [12] and these imply estimates for ‖ρ(t)‖L∞ where ρ, the spatial density of
particles, is given by ρ(t, x) =

∫

f(t, x, v)dv. We have P (t) ≤ C(1+ t) log(2+ t).
Unfortunately these estimates seem far from optimal. They are the same for
the plasma physics and stellar dynamics cases. Intuitively it is to be expected
that the optimal estimates differ in these two cases. In the stellar dynamics
case there exist time-independent solutions so that ‖ρ(t)‖L∞ does not decay in
general. In the plasma physics case decay estimates for integral norms of ρ are
established in [13] and [17]. The pointwise estimates can also be improved to
give a bound for P (t) of the form C(1 + t)2/3 [21].

It is possible to consider the analogue of the Vlasov-Poisson system in higher
dimensions. It is, however, known that global existence fails in four space di-
mensions [11]. An explicit example of singularity formation and information on
the asymptotics of solutions near a singularity were obtained in [14].

There is a case where much more is known about the long-time asymptotics
of solutions of the Vlasov-Poisson system, namely that of small initial data.
The first global existence theorem for that case due to Bardos and Degond [3]
naturally comes with decay estimates. They show that

‖ρ(t)‖L∞ ≤ C(1 + t)−3

If the data are sufficiently differentiable then the same techniques should lead
to estimates of the form

‖Dkρ(t)‖L∞ ≤ C(1 + t)−3

but they do not give more. In this paper we apply new techniques to this
problem to obtain estimates of the form

‖Dkρ(t)‖L∞ ≤ C(1 + t)−3−k

for solutions with small initial data. Furthermore, we obtain asymptotic expan-
sions for these solutions.

Note that there are a number of generalizations of the results of [3] in the
literature. The fully relativistic generalization of the plasma physics problem is
given by the Vlasov-Maxwell system. An analogue of the result of [3] in that
case was proved in [9]. In the stellar dynamics problem the fully relativistic
generalization is the Einstein-Vlasov system [24] which is much more compli-
cated. A small data global existence theorem in the spherically symmetric case
was obtained in [22]. A related system which is physically incorrect but mathe-
matically interesting is the Vlasov-Nordström system for which there is a global
existence theorem [5]. Surprisingly it seems that no analogue of the asymp-
totic result of [3] has been proved for this system. There are generalizations
of the results for solutions of the Vlasov-Poisson and Vlasov-Maxwell systems
with small data to almost spherically symmetric data [25],[19]. There are also
results for solutions of the Vlasov-Poisson system with non-standard boundary
conditions which are relevant to cosmology [23], [20]. Global existence has also
been proved for some cosmological solutions of the Einstein-Vlasov system with
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symmetry. See for instance [26]. It would be interesting to extend the results
of this paper to some of the cases mentioned in this paragraph.

This paper was motivated by the wish to prove a small data global existence
theorem for the Einstein-Vlasov system which does not require any symmetry as-
sumptions. To understand the difficulty of this problem note first that even the
vacuum Einstein equations, from the present point of view the Einstein-Vlasov
system with f = 0, are very hard to handle mathematically. The landmark
work of Christodoulou and Klainerman on small data global existence for the
vacuum Einstein equations [6] is so complicated as to discourage any attempts
to incorporate matter. The more recent alternative proof of Lindblad and Rod-
nianski [16] looks much more promising. Nevertheless, it seems to require good
decay estimates for higher derivatives, i.e. estimates similar to those proved for
the Vlasov-Poisson system here.

The Vlasov-Poisson system in N dimensions reads

ft + v · ∇xf + γ∇xφ · ∇vf = 0 , x ∈ R
N , t > 0 (1.1)

∆φ =

∫

RN

fdv ≡ ρ (x, t) , x ∈ R
N , t > 0 (1.2)

where f = f (x, v, t) . In the following we assume that f (x, v, 0) = f0 (x, v)
has finite L1 norm and N ≥ 3. The sign γ = ±1 corresponds to the plasma
physics and gravitational problem respectively. Since the results of this paper
apply equally to both cases, we will restrict our analysis to the case γ = 1. No
sign condition on f0 is needed. However, some additional decay properties for
f0 (x, v) will be assumed.

Global existence and decay estimates for the Vlasov-Poisson system were
studied in [3] in three spatial dimensions under suitable smallness and regularity
assumptions for f0. These estimates are optimal in the rate of decay for the
density ρ since, for small compactly supported initial data, the volume of the
support of ρ can be bounded by C (1 + t)3 so that if the decay in L∞ was

stronger than (1 + t)
−3
, the total number of particles (i.e. the L1 norm of ρ)

would decay, leading to a contradiction due to the conservation of that quantity.
However, they do not provide the optimal rate of decay for the derivatives that
could be expected on dimensional grounds.

For small initial data the dynamics of the Vlasov-Poisson system might be
expected to be dominated by the free streaming part of the equation:

ft + v · ∇xf = 0

because the term ∇xφ · ∇vf is quadratic in the density. (Actually this is a
consequence of the Bardos-Degond analysis). If we assume that the dynamics
of the problem is dominated by the free streaming regime as t → ∞ and the
initial density of particles is, say, compactly supported (fast enough decay works
similarly), the velocities of the particles would be bounded by a number of order
one. Therefore, the support of the density ρ would spread linearly. The field ∇φ
generated by a particle density with finite mass spread over a region of order t
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decreases as 1
t2 as can be easily seen by means of a rescaling argument. Notice

that a posteriori this provides a justification for the assumption that was made
before concerning the finiteness of the deviation of the velocities of the particles
due to the interaction of the field.

The main contribution of this paper is the development of a technique that
allows us to obtain optimal decay estimates for the solutions of the VP system
in N -dimensional space. More precisely, the rescaling argument sketched above
suggests that the particles spread into a region of volume tN in the x-coordinate.
Since the total mass of the particles is of order one it would be natural to expect
the following estimates for the density

|ρ| ≤
C

(t+ 1)
N

|∇ρ| ≤
C

(t+ 1)
N+1

∣

∣∇2ρ
∣

∣ ≤
C

(t+ 1)
N+2

...

∣

∣∇kρ
∣

∣ ≤
C

(t+ 1)
N+k

The first estimate was obtained by Bardos-Degond for the case N = 3 and
can be similarly extended to the case N > 3. Our method allows us to obtain
the corresponding estimates for the derivatives for small initial data.

The basic idea of the method is as follows. It is easy to see self-similar be-
haviour for the density (and the derivatives) in the free streaming case. Indeed,
in that case, integration along characteristics yields

f (x, v, t) = f0 (x− vt, v)

whence:

ρ (x, t) =

∫

f (x, v, t) dv =

∫

f0 (x− vt, v) dv

In order to obtain self-similar behaviour we make the change of variables

x0 = x− vt

dv =

∣

∣

∣

∣

det

(

∂v

∂x0

)∣

∣

∣

∣

dx0 =
1

tN
dx0

whence:

ρ (x, t) =
1

tN

∫

f0

(

x0,
x− x0

t

)

dx0

In the limit t → ∞ this formula yields the self-similar behaviour in the region
where |x| is of order t:

ρ (x, t) ∼
1

tN

∫

f0

(

x0,
x

t

)

dx0 =
1

tN
ρfs

(x

t

)

(1.3)
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Here the asymptotic free streaming density ρfs is given by

ρfs (y) ≡

∫

f0 (x0, y) dx0

Notice that (1.3), at least formally, provides the desired estimates for the
derivatives of ρ. The key idea of our argument is a method for generalizing this
method to the full VP system with small initial data. The main point is the
following. Suppose that the characteristics starting at x0, v0 reach the points
x, v at time t. Assuming suitable invertibility conditions any pair of variables
in the set (x0, v0, x, v) can be used as a set of independent variables in order
to represent the others. The previous argument for the free streaming case
suggests using x, x0 as independent variables. However, in order to determine
the functions that provide v0, v in terms of x, x0 it turns out to be necessary
to solve a boundary value problem for the characteristic equations. The main
argument of this paper consists in proving that such a boundary problem can
be solved for small initial densities and that the corresponding solutions of such
a boundary value problem satisfy suitable regularity and decay estimates.

Using a similar method it is possible to obtain not only estimates for the
derivatives of the density, but also convergence of the solutions of the VP system
to a self-similar solution. More precisely, we rewrite the problem using the self-
similar variables y = x

(t+1) , v = v, τ = log (t+ 1) , f = 1
(t+1)N g and after

integrating the resulting equations along characteristics we replace the variables
(y, v) by (y, y0) . This change of variables requires the solution of a boundary
value problem for the characteristic equations analogous to the one described
above. Such a boundary value problem can be analyzed in detail as τ → ∞,
and this provides the asymptotic behaviour of the density ρ as t → ∞. One of
the relevant results of the analysis is the fact that although the asymptotics of
the solutions is self-similar, the precise function describing the asymptotics of
the density depends in a very sensitive manner on the choice of the initial data
f0 (x, v) . This analysis is done in the last section of the paper.

The paper is organized as follows. In Section 2, we derive estimates for the
density and its derivatives. In Section 3, we prove convergence to the self-similar
solution. Throughout the paper, C > 0 will denote a generic constant that may
change from line to line and is independent of t, ε0, f0.

2 ESTIMATING ρ AND ITS DERIVATIVES.

2.1 The main result.

We will use the following function spaces extensively.
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‖ρ‖Xk,α
(2.1)

= sup
t≥0

{

∫

|ρ (x, t)| dNx+ (t+ 1)
N

k
∑

ℓ=0

(t+ 1)
ℓ ∥
∥∇ℓρ (·, t)

∥

∥

L∞(RN )

+ (t+ 1)N+k+α sup
x,y∈RN

∣

∣∇kρ (x, t) −∇kρ (y, t)
∣

∣

|x− y|
α }

where 0 < α < 1.

‖φ‖Yk,α
= sup

t≥0
{(t+ 1)

N−2
k+2
∑

ℓ=1

(t+ 1)
ℓ ∥
∥∇ℓφ (·, t)

∥

∥

L∞(RN )
(2.2)

+ (t+ 1)N−2+k+α sup
x,x′∈RN

∣

∣∇k+2φ (x, t) −∇k+2φ (x′, t)
∣

∣

|x− x′|
α }

The main result of the paper is the following Theorem:

Theorem 1 Suppose that f0 (x, v) satisfies the following assumptions:

k
∑

ℓ=0

ℓ
∑

m=0

∣

∣

∣

∣

∂ℓf0
∂xm∂vℓ−m

∣

∣

∣

∣

≤
ε0

(1 + |x|)K (1 + |v|)K
,

(2.3)

k
∑

m=0

sup
x,x′∈RN

∣

∣

∣

∂kf0

∂xm∂vk−m (x, v) − ∂kf0

∂xm∂vk−m (x′, v)
∣

∣

∣

|x− x′|
α ≤

ε0

(1 + |v|)
K
, 0 < α < 1 ,

k
∑

m=0

sup
|v′−v|≤1

∣

∣

∣

∂kf0

∂xm∂vk−m (x, v) − ∂kf0

∂xm∂vk−m (x, v′)
∣

∣

∣

|v − v′|
α ≤

ε0

(1 + |x|)
K

(1 + |v|)
K
, 0 < α < 1 ,

for some suitable K > N and ε0 > 0 small enough. Then there exists a corre-
sponding solution of the Vlasov-Poisson system with

‖ρ‖Xk,α
≤ Cε0

A result analogous to Theorem 1 was proved in the case k = 0 under slightly
different assumptions on f0, by Bardos-Degond (cf. [3]). The main contribution
of this paper is to derive the optimal decay estimates for the derivatives of ρ.
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2.2 A basic boundary value problem for the characteristic

curves.

We introduce some basic notation. Suppose that the characteristics starting at
(x0, v0) at time t = 0 reach the point (x, v) at time t. The basic idea in the
paper is to use x, x0 as independent variables to describe the values of v and
v0. More precisely, we will write:

v = w (x, x0, t) (2.4)

v0 = w0 (x, x0, t) (2.5)

Note that the existence of the functions w, w0 is assured by the implicit function
theorem as well as the estimates that we will derive later where it will be shown
that the change of variables is close to a change of variables that can be inverted
explicitly. By changing the variable v to x0 in the integral with x and t fixed,
it then follows, using (2.4) that

dv =

∣

∣

∣

∣

det

(

∂w (x, x0, t)

∂x0

)∣

∣

∣

∣

dx0

whence

ρ (x, t) =

∫

RN

f (x, v, t) =

∫

f (x0, v0) dv =

∫

f (x0, w0 (x, x0, t))

∣

∣

∣

∣

det
∂w (x, x0, t)

∂x0

∣

∣

∣

∣

dx0.

We now formulate the following auxiliary boundary value problem that de-
scribes the evolution of the characteristics starting at the spatial point x0 at the
initial time and reaching the point x at time t :

dX (s)

ds
= V (s) ,

dV (s)

ds
= ∇φ (X (s) , s) , X (t) = x, X (0) = x0 (2.6)

Notice that the functions X (s) , V (s) depend also on the variables x, x0, t.
However, for simplicity, we will not write the dependence on these variables
explicitly unless it is needed. We then rewrite the above characteristics as a
perturbation from those associated to the free streaming case as follows

dX (s)

ds
= V (s) =

x− x0

t
+ϕ (s) ,

dϕ

ds
= ∇φ (X (s) , s) , X (t) = x, X (0) = x0,

(2.7)
where ϕ (s) = ϕ (s;x, x0, t) is the perturbed value of the velocity with respect
to the free streaming case. Notice that in the limit of zero density ρ ≡ 0, the
field φ vanishes and ϕ (s) ≡ 0.

We examine the derivatives of the function ϕ (s) with respect to the variables
x, x0, in order to derive suitable estimates for ρ. The density function ρ can be
represented as

ρ (x, t) =

∫

f (x, v, t) dv =

∫

f0 (x0, V (0;x,w (t, x, x0) , t))

∣

∣

∣

∣

det

(

∂w

∂x0

)∣

∣

∣

∣

dx0.

(2.8)
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Along the characteristics, we have

∂w

∂x0
=
∂V

∂x0
(t) = −

1

t
IN +

∂ϕ

∂x0
(t) ,

where IN is the N -dimensional identity matrix.
On the other hand, we wish to obtain estimates for the derivatives of ρ.

Suppose for the moment that we restrict our attention to the first derivative of
ρ with respect to x. Such a derivative is given by:

∂ρ

∂x
(x, t) =

∫

∂f0
∂v

(x0, V (0;x,w (t, x, x0) , t))
∂V

∂x
(0)

∣

∣

∣

∣

det

(

∂w

∂x0

)∣

∣

∣

∣

dx0

+

∫

f0 (x0, V (0;x,w (t, x, x0) , t))
∂

∂x

[∣

∣

∣

∣

det

(

∂w

∂x0

)∣

∣

∣

∣

]

dx0.

To estimate the first derivative of ρ reduces to derive estimates for:

∂V

∂x
(s = 0) ,

∂V

∂x0
(s = t) ,

∂2V

∂x∂x0
(s = t) .

Equivalently
∂ϕ

∂x
(0) ,

∂ϕ

∂x0
(t) ,

∂2ϕ

∂x∂x0
(t) .

Notice that the equation of the characteristics (2.7) indicates that in order
to obtain bounds for two derivatives with respect to x, x0 of the characteristic
curves we need to estimate three derivatives of the potential φ. These are the
exact number of derivatives that can be expected to be estimated from the
Poisson equation under the assumption that ∂ρ

∂x is bounded. Nevertheless, in
order to avoid the standard problems that arise in the regularity estimates for
the Poisson equation in the spaces Ck, it is necessary to work with the Hölder
spaces Ck,α.

2.3 Estimates on the regularity and the rate of decay of

ϕ (s; x, x0, t) in terms of the properties of the potential

φ.

We present a key a priori estimate for ϕ in terms of φ in the following Propo-
sition. We define two norms with respect to the spatial variable x.

Definition 2 For u (·) ∈ L∞
(

R
N
)

,

‖u‖L∞(x) ≡ ess sup
x∈RN

|u (x)| ,

For u (·) ∈ C0,α
(

R
N
)

,

[u]0,α,(x) ≡ sup
x1,x2∈RN

|u (x1) − u (x2)|

|x1 − x2|
α .
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For notational simplicity, in the following, we will use ‖u (s)‖L∞(x) , [u (s)]0,α,(x)

instead of ‖u (s; ·, x0, t)‖L∞(x) , [u (s; ·, x0, t)]0,α,(x), which in fact depend on s, x0,

and t. For example,
[

∂ϕ
∂x (s)

]

0,α,(x)
will denote

[

∂ϕ
∂x (s; ·, x0, t)

]

0,α,(x)
.

Proposition 3 Suppose that

‖φ‖Y1,α
≤ ε0.

for a suitable ε0 > 0 sufficiently small. Suppose that t ≥ 1. Then, the following
a priori estimate holds:

t sup
0≤s≤t

∥

∥

∥

∥

∂ϕ

∂x
(s)

∥

∥

∥

∥

L∞(x)

+ t1+α sup
0≤s≤t

[

∂ϕ

∂x
(s)

]

0,α,(x)

≤ C ‖φ‖Y1,α

t

∥

∥

∥

∥

∂ϕ

∂x0
(t)

∥

∥

∥

∥

L∞(x)

+ t1+α

[

∂ϕ

∂x0
(t)

]

0,α,(x)

+ t2
∥

∥

∥

∥

∂2ϕ

∂x∂x0
(t)

∥

∥

∥

∥

L∞(x)

+ t2+α

[

∂2ϕ

∂x∂x0
(t)

]

0,α,(x)

≤ C ‖φ‖Y1,α

∫ t

0

∥

∥

∥

∥

∂ϕ

∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds+ tα
∫ t

0

[

∂ϕ

∂x0
(s)

]

0,α,(x)

ds

+ t

∫ t

0

ds

∥

∥

∥

∥

∂2ϕ

∂x∂x0
(s)

∥

∥

∥

∥

L∞(x)

+ t1+α

∫ t

0

[

∂2ϕ

∂x∂x0
(s)

]

0,α,(x)

ds

≤ C ‖φ‖Y1,α

for some suitable constant C > 0 independent of t, ε0.

Proposition 3 is the main new technical result of the paper. This estimate
provides optimal decay properties for the derivatives of the characteristics in
terms of the decay properties of the derivatives of the potential φ.

Furthermore, we derive a generalization of Proposition 3 under additional
regularity and decay assumptions for the potential φ :

Proposition 4 Suppose that

‖φ‖Yℓ,α
≤ ε0, ℓ ≥ 2

for a suitable ε0 > 0 sufficiently small. Suppose that t ≥ 1. Then, the following
estimates hold:

ℓ
∑

k=1

tk sup
0≤s≤t

∥

∥

∥

∥

∂kϕ

∂xk
(s)

∥

∥

∥

∥

L∞(x)

+ tℓ+α sup
0≤s≤t

[

∂ℓϕ

∂xℓ
(s)

]

0,α,(x)

≤ C ‖φ‖Yℓ,α

(2.9)

ℓ
∑

k=1

tk
∫ t

0

∥

∥

∥

∥

∂k+1ϕ

∂xk∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds+ tℓ+α

∫ t

0

[

∂ℓ+1ϕ

∂xℓ∂x0
(s)

]

0,α,(x)

ds ≤ C ‖φ‖Yℓ,α

(2.10)

ℓ
∑

k=1

tk+1

∥

∥

∥

∥

∂k+1ϕ

∂xk∂x0
(s)

∥

∥

∥

∥

L∞(x)

+ tℓ+1+α

[

∂ℓ+1ϕ

∂xℓ∂x0
(t)

]

0,α,(x)

≤ C ‖φ‖Yℓ,α

(2.11)
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for some constant C > 0 independent of t, ε0.

2.3.1 Preliminary results: Integral equation satisfied by ϕ (s, x, x0, t) .

The perturbed velocity ϕ (s) satisfies the following integral equation

Lemma 5 ϕ (s) = ϕ (s;x, x0, t) in (2.7) satisfies the integral equation

ϕ (s) = −

∫ t

s

G (ξ) dξ +
1

t

∫ t

0

ξG (ξ) dξ, (2.12)

where

G (ξ) ≡ ∇φ (X (ξ) , ξ) , (2.13)

X (ξ) = x0 +
x− x0

t
ξ +

∫ ξ

0

ϕ (s̄) ds̄. (2.14)

Proof. We integrate (2.7) to obtain

ϕ (s) = ϕ (0) +

∫ s

0

G (ξ) dξ, X (s) = x0 +
x− x0

t
s+

∫ s

0

ϕ (s̄) ds̄. (2.15)

The boundary condition X (t) = x yields
∫ t

0

ϕ (s) ds = 0. (2.16)

Therefore, integrating the first equation in (2.15) from s = 0 to s = t and using
(2.16), we have

ϕ (0) = −
1

t

∫ t

0

[∫ s

0

G (ξ) dξ

]

ds.

Thus, we obtain from (2.15)

ϕ (s) = −
1

t

∫ t

0

[
∫ s

0

G (ξ) dξ

]

ds+

∫ s

0

G (ξ) dξ.

By changing the order of integration in the first integral on the right-hand side
of this formula, we deduce (2.12).

Note that

V (t) = V (t;x, x0, t) = v ≡ w (x, x0, t) =
x− x0

t
+ ϕ (t;x, x0, t) ,

V (0) = V (0;x, x0, t) = v0 ≡ w0 (x, x0, t) =
x− x0

t
+ ϕ (0;x, x0, t) .

The integral equation (2.12), (2.13), (2.14) is the key ingredient that will
be used to derive optimal regularity and decay estimates for the functions
w (x, x0, t) , V0 (x, x0, t) . As a first step we prove that the solutions of (2.12),
(2.13), (2.14) are well defined if ε0 is small enough.
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Lemma 6 (Solvability) Let k ≥ 0 be an integer. There exists ε0 > 0 such that,
for any t ≥ 1, x ∈ R

N , x0 ∈ R
N and any function φ satisfying

‖φ‖Yk,α
≤ ε0,

there exists a unique solution ϕ (·) = ϕ (·;x, x0, t) ∈ C([0, t]) of (2.12), (2.13),
(2.14).

Proof. Let the space of functions for ϕ (s) be

X ≡

{

ϕ ∈ C([0, t]) : sup
0≤s≤t

|ϕ (s)| ≤ 1

}

.

Let

J (ϕ) (s) ≡ −

∫ t

s

Gϕ (ξ) dξ +
1

t

∫ t

0

ξGϕ (ξ) dξ, (2.17)

where

Gϕ (ξ) = ∇φ

(

x0 +
x− x0

t
ξ +

∫ ξ

0

ϕ (s̄) ds̄, ξ

)

We first show that J is a well-defined operator in the space X . By definition,
we have

|Gϕ (ξ)| ≤ ‖∇φ (·, ξ)‖L∞(x) ≤
‖φ‖Yk,α

(ξ + 1)
N−1

.

This yields

|J (ϕ) (s)| ≤

∫ t

s

|Gϕ (ξ)| dξ +
1

t

∫ t

0

ξ |Gϕ (ξ)| dξ

≤ ‖φ‖Yk,α

[

∫ t

0

dξ

(1 + ξ)
N−1

+
1

t

∫ t

0

ξ

(1 + ξ)
N−1

dξ

]

≤ ‖φ‖Yk,α

[

1 +
log (1 + t)

t

]

≤ C ‖φ‖Yk,α
,

where we have estimated the last integral term using the fact that N ≥ 3. This
idea will be used repeatedly in the following. Thus J (ϕ) is bounded for all
t and J is well-defined in the space X . We next show that the operator J is
contractive. Taking the difference of J (ϕ1) and J (ϕ1) yields

[J (ϕ1)−J (ϕ2)] (s) = −

∫ t

s

[Gϕ1
(ξ) −Gϕ2

(ξ)] dξ+
1

t

∫ t

0

ξ [Gϕ1
(ξ) −Gϕ2

(ξ)]dξ.

11



Using the definition of ‖φ‖Yk,α
, we have

sup
0≤s≤t

|[J (ϕ1) − J (ϕ2)] (s)|

≤

∫ t

s

∥

∥∇2φ (·, ξ)
∥

∥

L∞(x)

[

∫ ξ

0

|ϕ1 (s̄) − ϕ2 (s̄)| ds̄

]

dξ +
1

t

∫ t

0

ξ
∥

∥∇2φ (·, ξ)
∥

∥

L∞(x)

[

∫ ξ

0

|ϕ1 (s̄) − ϕ2 (s̄)|ds̄

]

dξ

≤ ‖φ‖Yk,α

[

∫ t

s

1

(ξ + 1)
N

[

∫ ξ

0

|ϕ1 (s̄) − ϕ2 (s̄)| ds̄

]

dξ +
1

t

∫ t

0

ξ

(ξ + 1)
N

[

∫ ξ

0

|ϕ1 (s̄) − ϕ2 (s̄)| ds̄

]

dξ

]

≤ Cε0 sup
0≤s≤t

|(ϕ1 − ϕ2) (s)| + Cε0
log (t+ 1)

t
sup

0≤s≤t
|(ϕ1 − ϕ2) (s)|

≤ Cε0 sup
0≤s≤t

|(ϕ1 − ϕ2) (s)| .

Thus we can choose ε0 small enough such that Cε0 < 1 in the above inequality
and conclude that J is contractive. Notice that C is independent of t, x0, x and
ε0 can be chosen independently of these variables. Then by the Banach fixed
point theorem, we deduce the existence and uniqueness for ϕ satisfying (2.12)
in the space X .

Corollary 7 Let ϕ (s) be the solution in Lemma 6. Then we have

∫ t

0

ϕ (s) ds = 0.

Proof. Using (2.17) we derive the identity:

∫ t

0

J (ϕ) ds = 0.

Therefore, using Lemma 6, we have

ϕ = J (ϕ) .

This completes the proof of Corollary.
Notice that this Corollary implies that the characteristics (2.7) satisfy the

desired boundary condition for X (s) , i.e., X (t) = x.
We now turn to decay estimates for the density function ρ and its derivatives.

Before we proceed, we state some basic properties of the Hölder norms.

Lemma 8

[fg]0,α,(x) ≤ C{‖f‖L∞ [g]0,α,(x) + ‖g‖L∞ [f ]0,α,(x)} ,

for any f, g ∈ L∞ ∩C0,α,

[f ]0,α,(x) ≤ C ‖f‖1−α
L∞ ‖∇f‖α

L∞ ,
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for any f ∈ W 1,∞,

[F ◦ u]0,α,(x) ≤ [F ]0,α,(x) ‖∇u‖
α
L∞ ,

for any F ∈ C0,α and any u ∈W 1,∞.
Proof. The results in the lemma are standard estimates for Hölder norms.

2.3.2 The proof of Proposition 3.

The proof of Proposition 3 follows from a sequence of lemmas. There are three
ideas that will appear repeatedly in all the remaining arguments of this paper.
Estimating terms like ∂ϕ

∂x0
and its derivatives with respect to x, it is not possible

to obtain bounds for the rate of decay suggested by dimensional considerations
for all the values of s ∈ [0, t] . It is, however, possible to obtain such optimal
decay estimates for the integrals of such terms in the interval [0, t] as well as
for the time s = t which is the only one where such optimal estimates are
really needed. The second idea is that it is convenient to obtain, before deriving

pointwise estimates, integral estimates for terms like
∫ t

0

∥

∥

∥

∂ϕ
∂x0

(s)
∥

∥

∥

L∞(x)
ds. The

third idea is that the estimates for terms that do not contain derivatives with
respect x0 are more easily obtained by directly estimating the supremum over
the interval [0, t] and using Gronwall-type arguments, without any need for
estimating integrals over the interval [0, t].

Lemma 9 There exists ε0 small such that for t > 1 and any function φ satis-
fying

‖φ‖Y0,α
≤ ε0,

we have
∫ t

0

∥

∥

∥

∥

∂ϕ

∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds ≤ C ‖φ‖Y0,α
, (2.18)

∥

∥

∥

∥

∂ϕ

∂x0
(t)

∥

∥

∥

∥

L∞(x)

≤ C
‖φ‖Y0,α

t
. (2.19)

Proof. Differentiating (2.12) with respect to x0 yields

∂ϕ

∂x0
(s) = −

∫ t

s

∂

∂x0
G (ξ) dξ +

1

t

∫ t

0

ξ
∂

∂x0
G (ξ) dξ. (2.20)

where, for simplicity Gϕ = G. We now take ∂
∂x0

of (2.13)-(2.14) to get

∂

∂x0
G (ξ) = ∇2φ (X (ξ) , ξ)

∂

∂x0
X (ξ) = ∇2φ (X (ξ) , ξ) [(1 −

ξ

t
)I +

∫ ξ

0

∂φ

∂x0
]

13



and since ξ
t ≤ 1, we have

∥

∥

∥

∥

∂

∂x0
G (ξ)

∥

∥

∥

∥

L∞(x)

≤
‖φ‖Y0,α

(ξ + 1)
N

∥

∥

∥

∥

∥

(1 −
ξ

t
)I +

∫ ξ

0

∂φ

∂x0
(s̄) ds̄

∥

∥

∥

∥

∥

L∞(x)

≤
‖φ‖Y0,α

(ξ + 1)
N

[

1 +

∫ ξ

0

∥

∥

∥

∥

∂ϕ

∂x0
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄

]

.

Putting the above into (2.20) yields

∥

∥

∥

∥

∂ϕ

∂x0
(s)

∥

∥

∥

∥

L∞(x)

≤ C ‖φ‖Y0,α

∫ t

s

1

(ξ + 1)
N

[1 +

∫ ξ

0

∥

∥

∥

∥

∂ϕ

∂x0
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄]dξ (2.21)

+ C ‖φ‖Y0,α

1

t

∫ t

0

ξ

(ξ + 1)N
[1 +

∫ ξ

0

∥

∥

∥

∥

∂ϕ

∂x0
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄]dξ.

By integrating the above from 0 to t and by the assumption, we obtain

∫ t

0

∥

∥

∥

∥

∂ϕ

∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds ≤ C ‖φ‖Y0,α

∫ t

0

[

∫ t

s

1

(ξ + 1)
N

[1 +

∫ ξ

0

∥

∥

∥

∥

∂ϕ

∂x0
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄]dξ

]

ds

+ C ‖φ‖Y0,α

∫ t

0

ξ

(ξ + 1)
N

[1 +

∫ ξ

0

∥

∥

∥

∥

∂ϕ

∂x0
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄]dξ

≤ C ‖φ‖Y0,α
+ C ‖φ‖Y0,α

∫ t

0

∥

∥

∥

∥

∂ϕ

∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds

≤ C ‖φ‖Y0,α
+ Cε0

∫ t

0

∥

∥

∥

∥

∂ϕ

∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds,

where we have used the estimate
∫ ξ

0

∥

∥

∥

∂ϕ
∂x0

(s̄)
∥

∥

∥

L∞(x)
ds̄ ≤

∫ t

0

∥

∥

∥

∂ϕ
∂x0

(s̄)
∥

∥

∥

L∞(x)
ds̄

and the fact that
∫ t

0

[

∫ t

s
dξ

(ξ+1)3

]

ds =
∫ t

0
1

(ξ+1)3

[

∫ ξ

0 ds
]

dξ ≤ C. Thus if ε0 is

small enough so that Cε0 ≤ 1/2, we get

∫ t

0

∥

∥

∥

∥

∂ϕ

∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds ≤ C ‖φ‖Y0,α
. (2.22)

Putting s = t in (2.21) and using (2.22) yields

∥

∥

∥

∥

∂ϕ

∂x0
(t)

∥

∥

∥

∥

L∞(x)

≤ C ‖φ‖Y0,α

1

t

∫ t

0

ξ

(ξ + 1)
N

[1 +

∫ ξ

0

∥

∥

∥

∥

∂ϕ

∂x0
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄]dξ

≤ C
‖φ‖Y0,α

t
(1 + ‖φ‖Y0,α

) ≤ C
‖φ‖Y0,α

t
.

Thus we obtain (2.18) and (2.19). This completes the proof of the lemma.
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Lemma 10 There exists ε0 small such that for ‖φ‖Y1,α
≤ ε0 and t > 1 we have

the following decay estimates

sup
0≤s≤t

∥

∥

∥

∥

∂ϕ

∂x
(s)

∥

∥

∥

∥

L∞(x)

≤ C
‖φ‖Y1,α

t
, (2.23)

∫ t

0

∥

∥

∥

∥

∂2ϕ

∂x∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds ≤ C
‖φ‖Y1,α

t
, (2.24)

∥

∥

∥

∥

∂2ϕ

∂x∂x0
(t)

∥

∥

∥

∥

L∞(x)

≤ C
‖φ‖Y1,α

t2
. (2.25)

Proof. Differentiating (2.13)-(2.14) with respect to x we get

∂

∂x
G (ξ) = ∇2φ (X (ξ) , ξ)

∂

∂x
X (ξ) = ∇2φ (X (ξ) , ξ) [

ξ

t
I +

∫ ξ

0

∂φ

∂x
(s̄) ds̄]

and thus

∥

∥

∥

∥

∂

∂x
G (ξ)

∥

∥

∥

∥

L∞(x)

≤
‖φ‖Y1,α

(ξ + 1)
N

∥

∥

∥

∥

∥

ξ

t
I +

∫ ξ

0

∂φ

∂x
(s̄) ds̄

∥

∥

∥

∥

∥

L∞(x)

≤
‖φ‖Y1,α

(ξ + 1)
N−1

[

ξ

(ξ + 1) t
+

1

(ξ + 1)

∫ ξ

0

∥

∥

∥

∥

∂ϕ

∂x
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄

]

≤
‖φ‖Y1,α

(ξ + 1)N−1

[

1

t
+

1

(ξ + 1)

∫ ξ

0

∥

∥

∥

∥

∂ϕ

∂x
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄

]

.

Differentiating (2.12) with respect to x and using the estimate above, we obtain

∥

∥

∥

∥

∂ϕ

∂x
(s)

∥

∥

∥

∥

L∞(x)

≤ C ‖φ‖Y1,α

∫ t

s

1

(ξ + 1)
N−1

[

1

t
+

1

(ξ + 1)

∫ ξ

0

∥

∥

∥

∥

∂ϕ

∂x
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄

]

dξ

+ C ‖φ‖Y1,α

1

t

∫ t

0

ξ

(ξ + 1)N−1

[

1

t
+

1

(ξ + 1)

∫ ξ

0

∥

∥

∥

∥

∂ϕ

∂x
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄

]

dξ

≤ C
‖φ‖Y1,α

t
+ C ‖φ‖Y1,α

sup
0≤s≤t

∥

∥

∥

∥

∂ϕ

∂x
(s)

∥

∥

∥

∥

L∞(x)

+ C ‖φ‖Y1,α

log (t+ 1)

t2
+ C ‖φ‖Y1,α

log (t+ 1)

t
sup

0≤s≤t

∥

∥

∥

∥

∂ϕ

∂x
(s)

∥

∥

∥

∥

L∞(x)

.

It then follows that, for t > 1 :

sup
0≤s≤t

∥

∥

∥

∥

∂ϕ

∂x
(s)

∥

∥

∥

∥

L∞(x)

≤ C
‖φ‖Y1,α

t
+ C ‖φ‖Y1,α

sup
0≤s≤t

∥

∥

∥

∥

∂ϕ

∂x
(s)

∥

∥

∥

∥

L∞(x)

(2.26)
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By the assumption, if ε0 is small enough, then we get

sup
0≤s≤t

∥

∥

∥

∥

∂ϕ

∂x
(s)

∥

∥

∥

∥

L∞(x)

≤ C
‖φ‖Y1,α

t
.

and (2.23) follows.

In order to derive (2.24) and (2.25), we compute ∂2G
∂x∂x0

, ∂2ϕ
∂x∂x0

using (2.13),
(2.14) and (2.15):

∂2

∂x∂x0
G (ξ) = ∇3φ (X (ξ) , ξ)

∂

∂x
X (ξ)

∂

∂x0
X (ξ) + ∇2φ (X (ξ) , ξ)

∂2

∂x∂x0
X (ξ)

= ∇3φ (X (ξ) , ξ) [
ξ

t
I +

∫ ξ

0

∂φ

∂x
(s̄) ds̄][(1 −

ξ

t
)I +

∫ ξ

0

∂φ

∂x0
(s̄) ds̄]

+ ∇2φ (X (ξ) , ξ)

∫ ξ

0

∂2ϕ

∂x∂x0
(s̄) ds̄, (2.27)

∂2ϕ

∂x∂x0
(s) = −

∫ t

s

∂2G

∂x∂x0
(ξ) dξ +

1

t

∫ t

0

ξ
∂2G

∂x∂x0
(ξ) dξ. (2.28)

Taking the norm ‖·‖L∞(x) of this equation, integrating the resulting formula

with respect to s, using Lemma 9, (2.26), and the definition of ‖φ‖Y1,α
, we

obtain

∫ t

0

∥

∥

∥

∥

∂2ϕ

∂x∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds

≤

∫ t

0

[

∫ t

s

∥

∥

∥

∥

∂2G

∂x∂x0
(ξ)

∥

∥

∥

∥

L∞(x)

dξ

]

ds+

∫ t

0

ξ

∥

∥

∥

∥

∂2G

∂x∂x0
(ξ)

∥

∥

∥

∥

L∞(x)

dξ

≤ C
‖φ‖Y1,α

t

∫ t

0

ds

∫ t

s

ξdξ

(ξ + 1)
N+3

+ C ‖φ‖Y1,α

(

∫ t

0

∥

∥

∥

∥

∂2ϕ

∂x∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds

)(

∫ t

0

[

∫ t

s

dξ

(ξ + 1)
N

]

ds

)

+ C
‖φ‖Y1,α

t

∫ t

0

dξ ξ2

(ξ + 1)N+1
+ C ‖φ‖Y1,α

(

∫ t

0

∥

∥

∥

∥

∂2ϕ

∂x∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds

)(

∫ t

0

ξdξ

(ξ + 1)N

)

≤ C
‖φ‖Y1,α

t
+ C ‖φ‖Y1,α

∫ t

0

∥

∥

∥

∥

∂2ϕ

∂x∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds.

Thus if ε0 is small enough, we get

∫ t

0

∥

∥

∥

∥

∂2ϕ

∂x∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds ≤ C
‖φ‖Y1,α

t
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and (2.24) follows. We now set s = t in (2.28) and use (2.27) to obtain
∥

∥

∥

∥

∂2ϕ

∂x∂x0
(t)

∥

∥

∥

∥

L∞(x)

≤
1

t

∫ t

0

ξ

∥

∥

∥

∥

∂2G

∂x∂x0
(ξ)

∥

∥

∥

∥

L∞(x)

dξ

≤
C ‖φ‖Y1,α

t2

∫ t

0

ξ2dξ

(ξ + 1)
N+1

+
C ‖φ‖Y1,α

t

∫ t

0

ξdξ

(ξ + 1)
N

∫ ξ

0

∥

∥

∥

∥

∂2ϕ

∂x∂x0
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄

≤
C ‖φ‖Y1,α

t2
+
C ‖φ‖

2
Y1,α

t2
≤ C

‖φ‖Y1,α

t2

and the proof of Lemma 10 is complete.

In order to complete the proof of Proposition 3, it only remains to obtain es-

timates for the Hölder seminorms of ∂ϕ
∂x ,

∂ϕ
∂x0

, ∂2ϕ
∂x∂x0

. These bounds are obtained
using ideas analogous to those used in the two previous lemmas.

Lemma 11 There exists ε0 small such that for t > 1 and ‖φ‖Y1,α
≤ ε0, we have

the following decay estimates:

sup
0≤s≤t

[

∂ϕ

∂x
(s)

]

0,α,(x)

≤ C
‖φ‖Y1,α

t1+α
, (2.29)

∫ t

0

[

∂ϕ

∂x0
(s)

]

0,α,(x)

ds ≤ C
‖φ‖Y1,α

tα
, (2.30)

[

∂ϕ

∂x0
(t)

]

0,α,(x)

≤ C
‖φ‖Y1,α

t1+α
, (2.31)

∫ t

0

[

∂2ϕ

∂x∂x0
(s)

]

0,α,(x)

ds ≤ C
‖φ‖Y1,α

t1+α
,

[

∂2ϕ

∂x∂x0
(t)

]

0,α,(x)

≤ C
‖φ‖Y1,α

t2+α
. (2.32)

Proof. Using Lemma 8 and (2.23), we get

[

∂

∂x
G (ξ)

]

0,α,(x)

≤ C
∥

∥∇2φ (X (ξ) , ξ)
∥

∥

L∞(x)

[

ξ

t
I +

∫ ξ

0

∂φ

∂x
(s̄) ds̄

]

0,α,(x)

+ C
[

∇2φ
]

0,α,(x)

∥

∥

∥

∥

∥

ξ

t
I +

∫ ξ

0

∂φ

∂x
(s̄) ds̄

∥

∥

∥

∥

∥

α

L∞(x)

∥

∥

∥

∥

∥

ξ

t
I +

∫ ξ

0

∂φ

∂x

∥

∥

∥

∥

∥

L∞(x)

≤
C ‖φ‖Y1,α

(ξ + 1)
N

∫ ξ

0

[

∂φ

∂x
(s̄)

]

0,α,(x)

ds̄+
C ‖φ‖Y1,α

(ξ + 1)
N+α

ξα

tα
ξ

t

≤
C ‖φ‖Y1,α

(ξ + 1)
N

∫ ξ

0

[

∂φ

∂x
(s̄)

]

0,α,(x)

ds̄+
C ‖φ‖Y1,α

(ξ + 1)
N−1

t1+α
.
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Differentiating (2.12) with respect to x, taking the Hölder norm, and using the
previous estimate, we get

[

∂ϕ

∂x
(s)

]

0,α,(x)

≤

∫ t

s

[

∂

∂x
G (ξ)

]

0,α,(x)

dξ +
1

t

∫ t

0

ξ

[

∂

∂x
G (ξ)

]

0,α,(x)

dξ

≤
C ‖φ‖Y1,α

t1+α

∫ t

s

dξ

(ξ + 1)N−1
+ C ‖φ‖Y1,α

sup
0≤s≤t

[

∂φ

∂x
(s)

]

0,α,(x)

∫ t

s

ξdξ

(ξ + 1)N

+
C ‖φ‖Y1,α

t2+α

∫ t

0

ξdξ

(ξ + 1)
N−1

+
C ‖φ‖Y1,α

t
sup

0≤s≤t

[

∂φ

∂x
(s)

]

0,α,(x)

∫ t

s

ξ2dξ

(ξ + 1)
N

≤
C ‖φ‖Y1,α

t1+α
+ C ‖φ‖Y1,α

sup
0≤s≤t

[

∂φ

∂x
(s)

]

0,α,(x)

,

where we have used that
[

ξ
t I +

∫ ξ

0
∂φ
∂x (s̄) ds̄

]

0,α,(x)
=
[

∫ ξ

0
∂φ
∂x (s̄) ds̄

]

0,α,(x)
as well

as the fact that, due to (2.23),
∥

∥

∥

ξ
t I +

∫ ξ

0
∂φ
∂x

∥

∥

∥

L∞(x)
≤ 2ξ

t . We then deduce (2.29)

provided ε0 is small enough. We now derive the Hölder estimate of ∂ϕ
∂x0

(t). By
interpolation, the Hölder inequality, Lemma 9, and Lemma 10, we obtain the
following two estimates

∫ t

0

[

∂ϕ

∂x0
(s)

]

0,α,(x)

ds

≤ C

∫ t

0

∥

∥

∥

∥

∂ϕ

∂x0
(s)

∥

∥

∥

∥

1−α

L∞(x)

∥

∥

∥

∥

∂2ϕ

∂x0∂x
(s)

∥

∥

∥

∥

α

L∞(x)

ds

≤ C

(

∫ t

0

∥

∥

∥

∥

∂ϕ

∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds

)1−α(
∫ t

0

∥

∥

∥

∥

∂2ϕ

∂x0∂x
(s)

∥

∥

∥

∥

L∞(x)

ds

)α

≤ C ‖φ‖
1−α
Y1,α

‖φ‖α
Y1,α

tα
≤ C

‖φ‖Y1,α

tα
.

[

∂ϕ

∂x0
(t)

]

0,α,(x)

≤ C

∥

∥

∥

∥

∂ϕ

∂x0
(t)

∥

∥

∥

∥

1−α

L∞(x)

∥

∥

∥

∥

∂2ϕ

∂x0∂x
(t)

∥

∥

∥

∥

α

L∞(x)

≤ C
‖φ‖1−α

Y1,α

t1−α

‖φ‖α
Y1,α

t2α
≤ C

‖φ‖Y1,α

t1+α
.

Therefore, (2.30) and (2.31) follow.
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We now use Lemma 8, Lemma 9, Lemma 10, and (2.29)-(2.31) to get

[

∂2

∂x∂x0
G (ξ)

]

0,α,(x)

≤ C
∥

∥∇3φ (X (ξ) , ξ)
∥

∥

L∞(x)

[

(1 −
ξ

t
)I +

∫ ξ

0

∂φ

∂x0

]

0,α,(x)

∥

∥

∥

∥

∥

ξ

t
I +

∫ ξ

0

∂φ

∂x

∥

∥

∥

∥

∥

L∞(x)

+ C
∥

∥∇3φ (X (ξ) , ξ)
∥

∥

L∞(x)

∥

∥

∥

∥

∥

(1 −
ξ

t
)I +

∫ ξ

0

∂φ

∂x0

∥

∥

∥

∥

∥

L∞(x)

[

ξ

t
I +

∫ ξ

0

∂φ

∂x

]

0,α,(x)

+ C
[

∇3φ
]

0,α,(x)

∥

∥

∥

∥

∥

ξ

t
I +

∫ ξ

0

∂φ

∂x

∥

∥

∥

∥

∥

α

L∞(x)

∥

∥

∥

∥

∥

(1 −
ξ

t
)I +

∫ ξ

0

∂φ

∂x0

∥

∥

∥

∥

∥

L∞(x)

∥

∥

∥

∥

∥

ξ

t
I +

∫ ξ

0

∂φ

∂x

∥

∥

∥

∥

∥

L∞(x)

+ C
[

∇2φ
]

0,α,(x)

∥

∥

∥

∥

∥

ξ

t
I +

∫ ξ

0

∂φ

∂x

∥

∥

∥

∥

∥

α

L∞(x)

∫ ξ

0

∥

∥

∥

∥

∂2ϕ

∂x∂x0
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄

+ C
∥

∥∇2φ (X (ξ) , ξ)
∥

∥

L∞(x)

∫ ξ

0

[

∂2ϕ

∂x∂x0
(s̄)

]

0,α,(x)

ds̄

≤
C ‖φ‖Y1,α

(ξ + 1)N+1

1

tα
ξ

t
+

C ‖φ‖Y1,α

(ξ + 1)N+1+α

ξα

tα
ξ

t
+

C ‖φ‖Y1,α

(ξ + 1)N+α

ξα

tα

C ‖φ‖Y1,α

t

+
C ‖φ‖Y1,α

(ξ + 1)N

∫ ξ

0

[

∂2ϕ

∂x∂x0
(s̄)

]

0,α,(x)

ds̄

≤
C ‖φ‖Y1,α

(ξ + 1)
N

∫ ξ

0

[

∂2ϕ

∂x∂x0
(s)

]

0,α,(x)

ds+
C ‖φ‖Y1,α

(ξ + 1)
N
t1+α

.

Similarly, we get from (2.12) as well as the estimate above

[

∂2ϕ

∂x∂x0
(s)

]

0,α,(x)

(2.33)

≤

∫ t

s

[

∂2

∂x∂x0
G (ξ)

]

0,α,(x)

dξ +
1

t

∫ t

0

ξ

[

∂2

∂x∂x0
G (ξ)

]

0,α,(x)

dξ

≤
C ‖φ‖Y1,α

t1+α

∫ t

s

dξ

(ξ + 1)
N

+ C ‖φ‖Y1,α

∫ t

s

1

(ξ + 1)
N

[

∫ ξ

0

[

∂2ϕ

∂x∂x0
(s̄)

]

0,α,(x)

ds̄

]

dξ

+
C ‖φ‖Y1,α

t2+α

∫ t

0

ξdξ

(ξ + 1)N
+
C ‖φ‖Y1,α

t

∫ t

0

ξ

(ξ + 1)N

[

∫ ξ

0

[

∂2ϕ

∂x∂x0
(s̄)

]

0,α,(x)

ds̄

]

dξ
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By integrating (2.33) from s = 0 to s = t, we have

∫ t

0

[

∂2ϕ

∂x∂x0
(s)

]

0,α,(x)

ds ≤
C ‖φ‖Y1,α

t1+α
+
C ‖φ‖Y1,α

t2+α
log (t+ 1) + C ‖φ‖Y1,α

∫ t

0

[

∂2ϕ

∂x∂x0
(s)

]

0,α,(x)

ds

+
C ‖φ‖Y1,α

t
log (t+ 1)

∫ t

0

[

∂2ϕ

∂x∂x0
(s)

]

0,α,(x)

ds

≤
C ‖φ‖Y1,α

t1+α
+ C ‖φ‖Y1,α

∫ t

0

[

∂2ϕ

∂x∂x0
(s)

]

0,α,(x)

ds.

If ε0 is small enough, then we obtain

∫ t

0

[

∂2ϕ

∂x∂x0
(s)

]

0,α,(x)

ds ≤
C ‖φ‖Y1,α

t1+α
. (2.34)

Now putting (2.34) into (2.33) with s = t yields

[

∂2ϕ

∂x∂x0
(t)

]

0,α,(x)

≤
C ‖φ‖Y1,α

t2+α
.

and this completes the proof of the Lemma.

2.3.3 The proof of Proposition 4.

Now we prove the decay estimates for the higher order derivatives of ϕ. We
prove Proposition 4 by induction on ℓ. The induction hypotheses consist of the
following estimates, for 0 ≤ m < ℓ,

sup
0≤s≤t

∥

∥

∥

∥

∂mϕ

∂xm
(s)

∥

∥

∥

∥

L∞(x)

≤
C ‖φ‖Ym,α

tm
, sup

0≤s≤t

[

∂mϕ

∂xm
(s)

]

0,α,(x)

≤
C ‖φ‖Ym,α

tm+α
,

(2.35)
∫ t

0

∥

∥

∥

∥

∂m+1ϕ

∂xm∂x0
(s)

∥

∥

∥

∥

L∞(x)

ds ≤
C ‖φ‖Ym,α

tm
,

∫ t

0

[

∂m+1ϕ

∂xm∂x0
(s)

]

0,α,(x)

ds ≤
C ‖φ‖Ym,α

tm+α
,

(2.36)
∥

∥

∥

∥

∂m+1ϕ

∂xm∂x0
(t)

∥

∥

∥

∥

L∞(x)

≤
C ‖φ‖Ym,α

tm+1
,

[

∂m+1ϕ

∂xm∂x0
(t)

]

0,α,(x)

≤
C ‖φ‖Ym,α

tm+1+α
. (2.37)

Estimates (2.35)-(2.37) have been already proved for m = 0, 1 (cf. Proposition
3). We begin with the estimates of G = Gϕ in terms of ϕ :

Lemma 12 Let ℓ ≥ 2 be an integer. Assume the induction hypotheses (2.35)-
(2.37). There exists ε0 such that for t > 1 and ‖φ‖Yℓ,α

≤ ε0, we have the
following

∥

∥

∥

∥

∂ℓG

∂xℓ
(ξ)

∥

∥

∥

∥

L∞(x)

≤
C ‖φ‖Yℓ,α

tℓ (ξ + 1)
N−1

+
C ‖φ‖Yℓ,α

(ξ + 1)
N−1

sup
0≤s≤t

∥

∥

∥

∥

∂ℓϕ

∂xℓ
(s)

∥

∥

∥

∥

L∞(x)

, (2.38)
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[

∂ℓG

∂xℓ
(ξ)

]

0,α,(x)

≤
C ‖φ‖Yℓ,α

tℓ+α (ξ + 1)
N−1

+
C ‖φ‖Yℓ,α

(ξ + 1)
N−1

sup
0≤s≤t

[

∂ℓϕ

∂xℓ
(s)

]

0,α,(x)

,

(2.39)
∥

∥

∥

∥

∂ℓ+1G

∂xℓ∂x0
(ξ)

∥

∥

∥

∥

L∞(x)

≤
C ‖φ‖Yℓ,α

tℓ (ξ + 1)N
+
C ‖φ‖Yℓ,α

(ξ + 1)N

∫ ξ

0

∥

∥

∥

∥

∂ℓ+1ϕ

∂xℓ∂x0
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄ (2.40)

[

∂ℓ+1G

∂xℓ∂x0
(ξ)

]

0,α,(x)

≤
C ‖φ‖Yℓ,α

tℓ+α (ξ + 1)
N

+
C ‖φ‖Yℓ,α

(ξ + 1)
N

∫ ξ

0

[

∂ℓ+1ϕ

∂xℓ∂x0
(s̄)

]

0,α,(x)

ds̄.

(2.41)

Proof. Taking ∂ℓ

∂xℓ of G yields

∂ℓG

∂xℓ
(ξ) =

∑

1≤i≤ℓ,
j1+...+ji=ℓ

Aij1...ji

∂i

∂xi
▽φ (X, ξ)

∂j1

∂xj1
X · ... ·

∂ji

∂xji
X (2.42)

= ▽
2φ (X, ξ)

∂ℓX

∂xℓ
+

∑

jm<ℓ
1≤m≤i

... = ▽
2φ (X, ξ)

∫ ξ

0

∂ℓ

∂xℓ
ϕ (s̄) ds̄+

∑

jm<ℓ
1≤m≤i

...,

where

X = X (ξ) = x0 +
x− x0

t
ξ +

∫ ξ

0

ϕ (s̄) ds̄.

and where Aij1...ji
are suitable numerical coefficients. Using the induction hy-

potheses, we bound each term with jm < ℓ for all 1 ≤ m ≤ i on the right-hand
side of the above identity as
∥

∥

∥

∥

∂i

∂xi
▽φ (X, ξ)

∂j1

∂xj1
X · ... ·

∂ji

∂xji
X

∥

∥

∥

∥

L∞(x)

≤
C ‖φ‖Yℓ,α

(ξ + 1)
i+N−1

C ‖φ‖Yℓ,α
ξ

tj1
·...·

C ‖φ‖Yℓ,α
ξ

tji
≤

C ‖φ‖Yℓ,α

(ξ + 1)
N−1

tℓ
,

[

∂i

∂xi
▽φ (X, ξ)

∂j1

∂xj1
X · ... ·

∂ji

∂xji
X

]

0,α,(x)

≤

[

∂i

∂xi
▽φ (X, ξ)

]

0,α,(x)

∥

∥

∥

∥

∂j1

∂xj1
X · ... ·

∂ji

∂xji
X

∥

∥

∥

∥

L∞(x)

+
∑

1≤m≤i

∥

∥

∥

∥

∂i

∂xi
▽φ (X, ξ)

∥

∥

∥

∥

L∞(x)

[

∂jm

∂xjm
X

]

0,α,(x)

∏

p6=m

∥

∥

∥

∥

∂jp

∂xjp
X

∥

∥

∥

∥

L∞(x)

≤
C ‖φ‖Yℓ,α

(ξ + 1)
N−1

tℓ+α
.

Putting the above inequalities into (2.42) yields
∥

∥

∥

∥

∂ℓG

∂xℓ
(ξ)

∥

∥

∥

∥

L∞(x)

≤
C ‖φ‖Yℓ,α

tℓ (ξ + 1)
N−1

+
C ‖φ‖Yℓ,α

(ξ + 1)
N

∫ ξ

0

∥

∥

∥

∥

∂ℓϕ

∂xℓ
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄

≤
C ‖φ‖Yℓ,α

tℓ (ξ + 1)
N−1

+
C ‖φ‖Yℓ,α

(ξ + 1)
N−1

sup
0≤s≤t

∥

∥

∥

∥

∂ℓϕ

∂xℓ
(s)

∥

∥

∥

∥

L∞(x)

,
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[

∂ℓG

∂xℓ
(ξ)

]

0,α,(x)

≤
C ‖φ‖Yℓ,α

tℓ+α (ξ + 1)
N−1

+
C ‖φ‖Yℓ,α

(ξ + 1)
N

∫ ξ

0

[

∂ℓϕ

∂xℓ
(s̄)

]

0,α,(x)

ds̄

≤
C ‖φ‖Yℓ,α

tℓ+α (ξ + 1)
N−1

+
C ‖φ‖Yℓ,α

(ξ + 1)
N−1

sup
0≤s≤t

[

∂ℓϕ

∂xℓ
(s)

]

0,α,(x)

.

In a similar manner, we take ∂ℓ+1

∂xℓ∂x0
of G to get

∂ℓ+1G

∂xℓ∂x0
(ξ) =

∑

1≤i≤ℓ,
j1+...+ji=ℓ

Bij1...ji

∂i

∂xi
▽φ (X, ξ)

∂∂j1

∂x0∂xj1
X · ... ·

∂ji

∂xji
X

= ▽
2φ (X, ξ)

∂ℓ+1X

∂xℓ∂x0
+

∑

jm<ℓ
1≤m≤i

... = ▽
2φ (X, ξ)

∫ ξ

0

∂ℓ+1ϕ

∂xℓ∂x0
(s̄) ds̄+

∑

jm<ℓ
1≤m≤i

...,

We use the induction hypotheses to bound all the terms with jm < ℓ for all
1 ≤ m ≤ i on the right-hand side of the above identity as

∥

∥

∥

∥

∂i

∂xi
▽φ (X, ξ)

∂∂j1

∂x0∂xj1
X · ... ·

∂ji

∂xji
X

∥

∥

∥

∥

L∞(x)

≤

∥

∥

∥

∥

∂i

∂xi
▽φ (ξ)

∥

∥

∥

∥

L∞(x)

∫ ξ

0

∥

∥

∥

∥

∂∂j1ϕ

∂x0∂xj1
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄ · ... ·

∥

∥

∥

∥

∂ji

∂xji
X

∥

∥

∥

∥

L∞(x)

≤
C ‖φ‖Yℓ,α

(ξ + 1)
i+N−1

C ‖φ‖Yℓ,α

tj1

C ‖φ‖Yℓ,α
ξ

tj2
· ... ·

C ‖φ‖Yℓ,α
ξ

tji
≤

C ‖φ‖Yℓ,α

(ξ + 1)
N
tℓ
,
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[

∂i

∂xi
▽φ (X, ξ)

∂∂j1

∂x0∂xj1
X · ... ·

∂ji

∂xji
X

]

0,α,(x)

≤

[

∂i

∂xi
▽φ (X, ξ)

]

0,α,(x)

(

∫ ξ

0

∥

∥

∥

∥

∂∂j1ϕ

∂x0∂xj1
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄

)





∏

p6=1

∥

∥

∥

∥

∂jp

∂xjp
X

∥

∥

∥

∥

L∞(x)





+

∥

∥

∥

∥

∂i

∂xi
▽φ (X, ξ)

∥

∥

∥

∥

L∞(x)

(

∫ ξ

0

[

∂∂j1ϕ

∂x0∂xj1
(s̄)

]

0,α,(x)

ds̄

)





∏

p6=1

∥

∥

∥

∥

∂jp

∂xjp
X

∥

∥

∥

∥

L∞(x)





+
∑

2≤m≤i

∥

∥

∥

∥

∂i

∂xi
▽φ (X, ξ)

∥

∥

∥

∥

L∞(x)

(

∫ ξ

0

∥

∥

∥

∥

∂∂j1ϕ

∂x0∂xj1
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄

)(

[

∂jm

∂xjm
X

]

0,α,(x)

)





∏

p6=m,1

∥

∥

∥

∥

∂jp

∂xjp
X

∥

∥

∥

∥

L∞(x)





≤
C ‖φ‖Yℓ,α

(ξ + 1)
i+N−1+α

ξα

tα

C ‖φ‖Yℓ,α

tj1

C ‖φ‖Yℓ,α
ξ

tj2
· ... ·

C ‖φ‖Yℓ,α
ξ

tji

+
C ‖φ‖Yℓ,α

(ξ + 1)i+N−1

C ‖φ‖Yℓ,α

tj1+α

C ‖φ‖Yℓ,α
ξ

tj2
· ... ·

C ‖φ‖Yℓ,α
ξ

tji

+
C ‖φ‖Yℓ,α

(ξ + 1)
i+N−1

C ‖φ‖Yℓ,α

tj1

C ‖φ‖Yℓ,α
ξ

tjm+α

C ‖φ‖Yℓ,α
ξ

tj2
· ... ·

C ‖φ‖Yℓ,α
ξ

tji

≤
C ‖φ‖Yℓ,α

(ξ + 1)
N
tℓ+α

.

Thus we obtain
∥

∥

∥

∥

∂ℓG

∂xℓ
(ξ)

∥

∥

∥

∥

L∞(x)

≤
C ‖φ‖Yℓ,α

tℓ (ξ + 1)
N

+
C ‖φ‖Yℓ,α

(ξ + 1)
N

∫ ξ

0

∥

∥

∥

∥

∂ℓ+1ϕ

∂xℓ∂x0
(s̄)

∥

∥

∥

∥

L∞(x)

ds̄

[

∂ℓ+1G

∂xℓ∂x0
(ξ)

]

0,α,(x)

≤
C ‖φ‖Yℓ,α

tℓ+α (ξ + 1)
N

+
C ‖φ‖Yℓ,α

(ξ + 1)
N

∫ ξ

0

[

∂ℓ+1ϕ

∂xℓ∂x0
(s̄)

]

0,α,(x)

ds̄.

This completes the proof.
We now prove Proposition 4.

Proof of Proposition 4. Taking ∂ℓ

∂xℓ of ϕ and using (2.12), we get

∂ℓϕ

∂xℓ
(ξ) = −

∫ t

s

∂ℓG

∂xℓ
(ξ) dξ +

1

t

∫ t

0

ξ
∂ℓG

∂xℓ
(ξ) dξ.

|||·||| will denote a generic norm (or seminorm) that will be assumed to take
the specific values ‖·‖L∞ , [·]0,α . Then
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓϕ

∂xℓ
(ξ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

∫ t

s

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓG

∂xℓ
(ξ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dξ+
1

t

∫ t

0

ξ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓG

∂xℓ
(ξ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dξ ≤ 2

∫ t

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓG

∂xℓ
(ξ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dξ,

(2.43)
where we used ξ

t ≤ 1. Suppose that the induction hypothesis (2.35)-(2.36) is
satisfied. By Lemma 12, we then have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓG

∂xℓ
(ξ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
C ‖φ‖Yℓ,α

(ξ + 1)
N−1

{
1

tγ
+ sup

0≤s≤t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓϕ

∂xℓ
(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

}, (2.44)

23



where

γ =

{

ℓ, if |||·||| = ‖·‖L∞ ,
ℓ+ α, if |||·||| = [·]0,α

. (2.45)

Putting (2.44) into (2.43) yields

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓϕ

∂xℓ
(ξ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ C ‖φ‖Yℓ,α

(

∫ t

0

dξ

(ξ + 1)
N−1

)

{
1

tγ
+ sup

0≤s≤t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓϕ

∂xℓ
(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

} ≤ C ‖φ‖Yℓ,α
{

1

tγ
+ sup

0≤s≤t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓϕ

∂xℓ
(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

}.

Thus if ε0 is small enough, we obtain (2.9). In a similar way, we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓ+1ϕ

∂xℓ∂x0
(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

∫ t

s

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓ+1G

∂xℓ∂x0
(ξ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dξ +
1

t

∫ t

0

ξ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓ+1G

∂xℓ∂x0
(ξ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dξ. (2.46)

Using Lemma 12 yields

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓ+1G

∂xℓ∂x0
(ξ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
C ‖φ‖Yℓ,α

(ξ + 1)
N

{
1

tγ
+

∫ ξ

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓ+1ϕ

∂xℓ∂x0
(s̄)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ds̄}, (2.47)

where γ is as in (2.45). By putting (2.47) into (2.46) and integrating from s = 0
to s = t, we have

∫ t

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓ+1ϕ

∂xℓ∂x0
(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ds ≤ C ‖φ‖Yℓ,α

(

∫ t

0

∫ t

s

dξ

(ξ + 1)
N
ds

)

{
1

tγ
+

(∫ t

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓ+1ϕ

∂xℓ∂x0
(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ds

)

}

+ C ‖φ‖Yℓ,α

(

∫ t

0

ξdξ

(ξ + 1)N

)

{
1

tγ
+

(∫ t

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓ+1ϕ

∂xℓ∂x0
(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ds

)

}

≤ C ‖φ‖Yℓ,α
{

1

tγ
+

(∫ t

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓ+1ϕ

∂xℓ∂x0
(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ds

)

}.

Thus we obtain (2.10) provided ε0 is small. We then substitute (2.47) for (2.10)
and put s = t in (2.46) to get

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℓ+1ϕ

∂xℓ∂x0
(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
1

t

C ‖φ‖Yℓ,α

tγ

∫ t

0

ξdξ

(ξ + 1)
N

≤
C ‖φ‖Yℓ,α

tγ+1
.

Therefore the proof is complete.

2.4 Estimating the potential φ in terms of the density ρ.

The following is a standard regularity result for the Poisson equation.

Lemma 13 (Elliptic regularity theory)

‖φ‖Yk,α
≤ C ‖ρ‖Xk,α
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Proof. For any fixed t > 0 we define

ρ̃ (z, t) = (t+ 1)
N
ρ (z (t+ 1) , t)

Notice that:
∫

|ρ̃ (z)| dNz =

∫

(t+ 1)N |ρ (z (t+ 1) , t)| dNz =

∫

|ρ (x)| dNx

On the other hand

k
∑

ℓ=0

∥

∥∇ℓ
z ρ̃ (·, t)

∥

∥

L∞(RN )
= (t+ 1)

N
k
∑

ℓ=0

(t+ 1)
ℓ ∥
∥∇ℓ

xρ (·, t)
∥

∥

L∞(RN )

sup
z1,z2∈RN

∣

∣∇k
z ρ̃ (z1, t) −∇k

z ρ̃ (z2, t)
∣

∣

|z1 − z2|
α = (t+ 1)

N+k+α
sup

x1,x2∈RN

∣

∣∇k
xρ (x1, t) −∇k

xρ (x2, t)
∣

∣

|x1 − x2|
α

Then:

∫

|ρ̃ (z)| d3z+
k
∑

ℓ=0

∥

∥∇ℓ
z ρ̃ (·, t)

∥

∥

L∞(RN )
+ sup

z1,z2∈RN

∣

∣∇k
z ρ̃ (z1, t) −∇k

z ρ̃ (z2, t)
∣

∣

|z1 − z2|
α ≤ C ‖ρ‖Xk,α,

(2.48)
On the other hand, by assumption

∆xφ = ρ

We define
φ̃ (z) = (t+ 1)

N−2
φ (z (t+ 1) , t)

Then:
∆zφ̃ = ρ̃

We now claim that the following estimate holds

k+2
∑

ℓ=1

∥

∥

∥∇ℓ
zφ̃ (·, t)

∥

∥

∥

L∞(RN )
+ sup

z1,z2∈RN

∣

∣

∣∇k+2
z φ̃ (z1, t) −∇k+2

z φ̃ (z2, t)
∣

∣

∣

|z1 − z2|
α ≤ CJ

(2.49)

J ≡

[

∫

RN

|ρ̃ (z)| dNz +

k
∑

ℓ=0

∥

∥∇ℓ
zρ̃ (·, t)

∥

∥

L∞(RN )
+ sup

z1,z2∈RN

∣

∣∇k
z ρ̃ (z1, t) −∇k

z ρ̃ (z2, t)
∣

∣

|z1 − z2|
α

]

Indeed, a standard interpolation argument yields

‖ρ̃‖Lp ≤ ‖ρ̃‖
p−1

p

L∞ ‖ρ̃‖
1
p

L1 ≤ J , 1 ≤ p ≤ ∞

Using then the Calderon-Zygmund inequality it follows that:

∥

∥

∥∇2
zφ̃
∥

∥

∥

Lp
≤ C ‖ρ̃‖Lp ≤ CJ , 1 < p <∞
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Therefore, the Sobolev embedding theorem implies that

∥

∥

∥φ̃
∥

∥

∥

Lq
≤ CJ ,

N

N − 2
< q <∞

Interior estimates for the Poisson equation in Sobolev spaces give a uniform
bound on the W k+2,q norm of the restriction of φ̃ to any unit ball and hence
of the Cα norm of this restriction. Using this estimate, (2.49) follows from the
inequality

∥

∥

∥φ̃
∥

∥

∥

k+2,α;B 1
2

(x0)
≤ C

[

∥

∥

∥φ̃
∥

∥

∥

Cα(B1(x0))
+ ‖ρ̃‖k,α;B1(x0)

]

≤ CJ

that is just a consequence of classical interior estimates for the Poisson equation
(cf. [7]). Using the estimate (2.48) it can be concluded that

k+2
∑

ℓ=1

∥

∥

∥
∇ℓ

zφ̃ (·, t)
∥

∥

∥

L∞(RN )
+ sup

z1,z2∈RN

∣

∣

∣∇k+2
z φ̃ (z1, t) −∇k+2

z φ̃ (z2, t)
∣

∣

∣

|z1 − z2|
α ≤ C ‖ρ‖Xk,α

Using the definition of φ̃ as well as the definition of the norm ‖·‖Yk,α
as in

(2.2), it then follows that

‖φ‖Yk,α
≤ C ‖ρ‖Xk,α

and this completes the proof of the lemma.

2.5 Conservation of the L1 norm of f .

The following result is standard in the theory of the Vlasov-Poisson equation.
See for instance [8].

Lemma 14 Suppose that f (x, v, t) solves the problem (1.1), (1.2). Then:
∫

RN

∫

RN

|f (x, v, t)| dvdx =

∫

RN

∫

RN

|f0 (x, v)|dvdx , t > 0 (2.50)

2.6 The proof of Theorem 1.

We now prove our main Theorem 1. We use a continuation argument as well
as the assumptions on f0 to derive estimates for ρ and to close the argument.
More precisely, we will show that an estimate of the form

∫

|ρ (x, t)| dNx+ (t+ 1)N
k
∑

ℓ=0

(t+ 1)ℓ
∥

∥∇ℓρ (·, t)
∥

∥

L∞(RN )

+ (t+ 1)
N+k+α

sup
x,y∈RN

∣

∣∇kρ (x, t) −∇kρ (y, t)
∣

∣

|x− y|α
≤Mε0
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for 0 ≤ t ≤ t∗ implies an estimate of the form

∫

|ρ (x, t)| dNx+ (t+ 1)
N

k
∑

ℓ=0

(t+ 1)
ℓ ∥
∥∇ℓρ (·, t)

∥

∥

L∞(RN )

+ (t+ 1)
N+k+α

sup
x,y∈RN

∣

∣∇kρ (x, t) −∇kρ (y, t)
∣

∣

|x− y|
α ≤ Cε0 (2.51)

for 0 ≤ t ≤ t∗ + δ (t∗) , where δ (t∗) > 0 and C is independent of M if ε0 is small
enough. Together with a suitable local existence theorem which guarantees that
an inequality of the form (2.51) holds on some time interval [0, t1] for t1 > 0
the estimates which have been derived imply that (2.51) can be extended to
the whole time interval 0 ≤ t < ∞ and this implies Theorem 1. Notice that
this in particular yields a global existence theorem generalizing that of [3] for
N = 3. The local existence theorem can be obtained by combining the estimates
obtained in this paper with a contraction mapping argument in a straightforward
way.

Notice that the decay assumptions on f0 have not been used until now and
only the decay properties of the potential φ have been used. We now use the
decay properties of f0 for the first time in the following proof.

Proof. Suppose first that 0 ≤ t ≤ 1. Let (x0, v0) denote the starting point
for the solution of the characteristic equations reaching the point (x, v) at time
t. More precisely,

dX̄ (s)

ds
= V̄ (s) ,

dV̄ (s)

ds
= ∇φ

(

X̄ (s) , s
)

, X̄ (t) = x, V̄ (t) = v (2.52)

Notice that X̄ (s) = X̄ (s;x, v, t) , V̄ (s) = V̄ (s;x, v, t) and:

x0 = x0 (x, v, t) = X̄ (0;x, v, t) , v0 = v0 (x, v, t) = V̄ (0;x, v, t) .

Then

|v0| = |v0 (x, v, t)| ≥ |v| −

∫ t

0

|∇φ (s)| ds ≥ |v| − C ‖φ‖Yk,α
≥ |v| −

1

2
, (2.53)

if ε0 is small enough. Taking the derivative ∂ℓ

∂xℓ of the formula

ρ (x, t) =

∫

f0 (x0, v0) dv

yields, for 0 ≤ ℓ ≤ k,

∂ℓρ

∂xℓ
(x, t) =

∑

j1+...+ji=ℓ,
0≤i≤ℓ, 0≤m≤i

Cijpm

∫

∂if0
∂xi−m∂vm

(x0, v0)
∂j1v0
∂xj1

· ... ·
∂jix0

∂xji
dv,

Notice that the derivatives ∂j1v0

∂xj1
, ..., ∂ji x0

∂xji
are bounded 0 ≤ t ≤ 1 asC

(

1 + ‖φ‖Yℓ,α

)

,

as can be seen by differentiating the characteristic equations (2.52) with respect
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to x and v. It is then straightforward to see that for 0 ≤ ℓ ≤ k, using (2.3) and
(2.53) yields

∥

∥

∥

∥

∂ℓρ

∂xℓ
(t)

∥

∥

∥

∥

L∞(x)

≤ C
(

1 + ‖φ‖Yℓ,α

)

∫
∣

∣

∣

∣

∂if0
∂xi−m∂vm

(x0, v0)

∣

∣

∣

∣

dv (2.54)

≤ Cε0

(

1 + ‖φ‖Yℓ,α

)

∫

dv

(1 + |v|)K

≤ Cℓε0

(

1 + ‖φ‖Yℓ,α

)

, 0 ≤ t ≤ 1

[

∂ℓρ

∂xℓ
(t)

]

0,α,(x)

≤ Cε0

(

1 + ‖φ‖Yℓ,α

)

∫

dv

(1 + |v|)
K

(2.55)

≤ Cℓε0

(

1 + ‖φ‖Yℓ,α

)

, 0 ≤ t ≤ 1

Next we treat the case t ≥ 1. By taking ∂ℓ

∂xℓ of ρ (x, t) in (2.8), we get, for
0 ≤ ℓ ≤ k,

∂ℓρ

∂xℓ
(x, t) =

∑

j1+...+ji+p=ℓ
0≤i≤ℓ

Cijp

∫

∂if0
∂vi

(x0, V (0))

(

∂

∂x

)j1

V (0)·...·

(

∂

∂x

)ji

V (0)
∂p

∂xp

(∣

∣

∣

∣

det
∂w

∂x0

∣

∣

∣

∣

)

dx0,

where

V (0) = V (0, t, x, w (t, x, x0)) =
x− x0

t
+ ϕ (0; t, x, x0) .

By Lemma 9, Lemma 10 and the assumption (2.3), it is easy to see that for
0 ≤ ℓ ≤ k,

∣

∣

∣

∣

∂ℓρ

∂xℓ
(x, t)

∣

∣

∣

∣

≤ C
∑

j1+...+ji+p=ℓ
0≤i≤ℓ

(

1 + C ‖φ‖Yℓ,α

)

tj1+...+ji+p+N

∫
∣

∣

∣

∣

∂if0
∂vi

(x0, V (0))

∣

∣

∣

∣

dx0 (2.56)

≤
Cε0

(

1 + ‖φ‖Yℓ,α

)

tℓ+N

∫

dx0

(1 + |x0|)
K

≤
Cε0

(

1 + ‖φ‖Yℓ,α

)

tℓ+N
, t > 1

Using Lemma 8 with ℓ = k yields

[

∂kρ

∂xk
(t)

]

0,α,(x)

≤ C

(

1 + C ‖φ‖Yk,α

)

tj1+...+ji+p+N+α

∫

{

∣

∣

∣

∣

∂if0
∂vi

(x0, V (0))

∣

∣

∣

∣

+

[

∂if0
∂vi

(x0, ·)

]

0,α,(v)

}

dx0

(2.57)

≤
Cε0

(

1 + ‖φ‖Yk,α

)

tk+N+α

∫

dx0

(1 + |x0|)
K

≤
Cε0

(

1 + ‖φ‖Yk,α

)

tk+N+α
, t > 1
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On the other hand, combining (2.50) with the decay assumptions for f0 in
(2.3), it follows that

∫

|ρ (x, t)| dx ≤ Cε0 (2.58)

It then follows from (2.54)-(2.58), as well as from Lemma 13 that

‖ρ‖Xk,α
≤ Cε0 + Cε0 ‖φ‖Yk,α

≤ Cε0 + Cε0 ‖ρ‖Xk,α
.

Choosing ε0 small enough, Theorem 1 follows.

3 CONVERGENCE TO THE SELF-SIMILAR

BEHAVIOUR.

We define the following set of self-similar variables

f (x, v, t) =
1

(t+ 1)
N
g (y, v, τ) , (3.1)

φ (x, v, t) =
1

(t+ 1)N−2
Φ (y, v, τ) , (3.2)

where
y =

x

(t+ 1)
, τ = log (t+ 1) . (3.3)

A straightforward computation yields the following transformed system

gτ + (v − y) · ∇yg + e−(N−2)τ∇yΦ · ∇vg = Ng, (3.4)

∆yΦ =

∫

g (y, v, τ) dv ≡ ρ̄ (y, τ) , (3.5)

where g (x, v, 0) = g0 (x, v) = f0 (x, v) = f (x, v, 0) .

‖ρ̄‖Xk,α
= sup

t≥0

{

∫

RN

|ρ̄ (y, t)| dy +

k
∑

ℓ=0

∥

∥∇ℓρ̄ (·, t)
∥

∥

L∞(RN )
+ sup

y,y′∈RN

∣

∣∇kρ̄ (y, t) −∇kρ̄ (y′, t)
∣

∣

|y − y′|α
, 0 < α < 1

}

,

‖Φ‖Yk,α
= sup

t≥0

{

k+2
∑

ℓ=1

∥

∥∇ℓΦ (·, t)
∥

∥

L∞(RN )
+ sup

y,y′∈RN

∣

∣∇k+2Φ (y, t) −∇k+2Φ (y′, t)
∣

∣

|y − y′|α

}

.

Notice that Lemma 13 is also valid in self-similar variables

Lemma 15 (Elliptic regularity theory)

‖Φ‖Yk,α
≤ C ‖ρ̄‖Xk,α
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We reformulate Theorem 1 in self-similar variables

Theorem 16 Suppose that g0 (y, v) satisfies the following estimates

k
∑

ℓ=0

ℓ
∑

m=0

∣

∣

∣

∣

∂ℓg0
∂xm∂vℓ−m

∣

∣

∣

∣

≤
ε0

(1 + |x|)K (1 + |v|)K
,

(3.6)

k
∑

m=0

sup
x,x′∈IRN

∣

∣

∣

∂kg0

∂xm∂vk−m (x, v) − ∂kg0

∂xm∂vk−m (x′, v)
∣

∣

∣

|x− x′|
α ≤

ε0

(1 + |v|)K
, 0 < α < 1 ,

k
∑

m=0

sup
|v′−v|≤1

∣

∣

∣

∂kg0

∂xm∂vk−m (x, v) − ∂kg0

∂xm∂vk−m (x, v′)
∣

∣

∣

|v − v′|
α ≤

ε0

(1 + |x|)
K

(1 + |v|)
K
, 0 < α < 1 ,

(3.7)

where K > N and ε0 is small enough. Then there exists a corresponding solution
of the rescaled Vlasov-Poisson system with

‖ρ̄‖Xk,α
≤ Ckε0

The main theorem that we prove in this Section is the following

Theorem 17 Suppose that the assumptions of Theorem 16 are satisfied. Then,
there exist g∞ (y, y0) ∈ Ck

loc, ρ̄∞ (y) ∈ Ck
loc ∩ L

1
(

R
N
)

, Φ∞ (y) ∈ Ck+1,β
loc satis-

fying

e−Nτg (y, y0, τ) → g∞ (y, y0) , in Ck
loc (3.8)

ρ̄ (y, τ) → ρ̄∞ (y) , in Ck
loc

Φ (y, τ) → Φ∞ (y) , in Ck+1,β
loc ,

for any 0 < β < 1, as τ → ∞. Moreover, we have

‖ρ̄∞‖L1(RN ) = ‖g0‖L1(RN×RN )

and we have the following representation formulae for g∞

g∞ (y, y0) = g0 (y0, y + ω∞ (0, y, y0))

ρ̄∞ (y) =

∫

g∞ (y, y0) J∞ (y, y0) dy0 (3.9)

∆yΦ∞ (y) = ρ̄∞ (y)

as well as the limit formula, as τ → ∞

g (y, v, τ) →

∫

g∞ (y0, y) δ (v − y)J∞ (y, y0) dy0 , in D′
(

R
N × R

N
)

(3.10)
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where ω∞ (s; y, y0) is the solution of the following integral equation

ω∞ (s; y, y0) = −

∫ ∞

s

e−(N−2)ξ∇yΦ

(

y + (y0 − y) e−ξ +

∫ ξ

0

e−(ξ−η)ω∞ (η; y, y0) dη, ξ

)

dξ,

(3.11)
and where J∞ (y, y0) is given by

J∞ (y, y0) = lim
τ→∞

∣

∣

∣

∣

det

(

−IN + eτ ∂ω∞

∂y0
(τ ; y, y0)

)∣

∣

∣

∣

Remark 18 Notice that (3.8) can be read in the original set of variables as

ρ (x, t) ∼
1

tN
ρ̄∞

(

x

(t+ 1)

)

+ o

(

1

tN

)

as t→ ∞, uniformly on sets |x| ≤ Ct.

Remark 19 The function ω∞ (s; y, y0) is small for small densities. In partic-
ular the representation formula (3.9) implies that the rescaled density function
ρ̄∞ (y) approaches the one associated to the free streaming case, defined in (1.3)
if ε0 → 0. Notice that this shows that the particular profile that describes the
self-similar behaviour of the solutions depends very sensitively on the initial data
g0. This contrasts with the situation in the one-dimensional case where the lead-
ing self-similar behaviour depends only on the mass of the initial distribution
but it does not depend on any other information on the initial data g0 (cf. [4]).
However, notice that it is not possible to obtain a closed form expression for
g∞ in terms of g0 due to the fact that the function ω∞ (s; y, y0) depends on the
values of the function Φ for any t ∈ (0,∞) .

In order to prove Theorem 17, we introduce some changes of variables anal-
ogous to the ones used in the previous Section.

Suppose that the characteristics starting at y0, v0 reach the points y, v at
time τ and we regard v0 = w0 (y, y0, τ) , v = w (y, y0, τ) as functions of y, y0,
and τ and make the change of variables from v to y0 to get

dv =

∣

∣

∣

∣

det
∂w

∂y0

∣

∣

∣

∣

dy0

ρ (y, τ) =

∫

R3

g (y, v, τ) dv =

∫

eNτg0 (y0, v0) dv =

∫

eNτg0 (y0, w0 (y, y0, t))

∣

∣

∣

∣

det
∂v

∂y0

∣

∣

∣

∣

dy0.

The corresponding boundary value problem in the self similar variables (y, v, τ)
reads

dY

ds
= V − Y,

dV

ds
= e−(N−2)s∇yΦ (Y (s) , s) ,

dg

ds
= Ng

Y (τ) = y, Y (0) = y0.
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In the absence of the field, we solve

dỸ

ds
= Ṽ − Ỹ ,

dṼ

ds
= 0,

Ỹ (τ) = y, Ỹ (0) = y0,

which yields

Ṽ (s) =
y − y0e

−τ

1 − e−τ
, Ỹ (s) =

y − y0e
−τ

1 − e−τ
+

y0 − y

1 − e−τ
e−s.

As in the previous section, we formulate the above as a perturbed problem from
the free streaming one.

V ≡ Ṽ + ω, Y ≡ Ỹ + ζ,

dζ

ds
= ω − ζ,

dω

ds
= e−(N−2)s∇yΦ

(

Ỹ + ζ, s
)

,

ζ (τ) = ζ (0) = 0.

It is straightforward to see that

ω (s) = −

∫ τ

s

e−(N−2)ξ∇yΦ (Y (ξ) , ξ) dξ+
e−τ

1 − e−τ

∫ τ

0

e−(N−3)ξ
(

1 − e−ξ
)

∇yΦ (Y (ξ) , ξ) dξ,

(3.12)

ζ (s) =

∫ s

0

e−(s−ξ)ω (ξ) dξ,

where

Y (ξ) =
y − y0e

−τ

1 − e−τ
+

y0 − y

1 − e−τ
e−ξ +

∫ ξ

0

e−(ξ−η)ω (η) dη.

Along the characteristics, we have

∂v

∂y0
= −

(

1

1 − e−τ

)

e−τIN +
∂ω

∂y0
(t)

The following result provides some decay estimates for the derivatives of ω,
analogous to the ones derived in Lemma 9.

Lemma 20 There exists ε0 small such that for any τ ≥ 1 and any function Φ
satisfying

‖Φ‖Y0,α
≤ ε0,

we have
∫ τ

0

∥

∥

∥

∥

∂ω

∂y0
(s)

∥

∥

∥

∥

L∞(y)

ds ≤ C ‖Φ‖Y0,α
,

∥

∥

∥

∥

∂ω

∂y0
(τ)

∥

∥

∥

∥

L∞(y)

≤ Ce−τ ‖Φ‖Y0,α
, (3.13)

∫ τ

0

[

∂ω

∂y0
(s)

]

0,α,(y)

ds ≤ C ‖Φ‖Yℓ,α
,

[

∂ω

∂y0
(τ)

]

0,α,(y)

≤ Ce−τ ‖Φ‖Yℓ,α
. (3.14)
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Proof. The method of proof is similar to the one used in the proof of Lemma
9. We take ∂

∂y0
of (3.12) to get

∂ω

∂y0
(s) = −

∫ τ

s

e−(N−2)ξ∇2
yΦ (ξ) {

e−ξ − e−τ

1 − e−τ
+

∫ ξ

0

e−(ξ−η) ∂ω

∂y0
(η) dη}dξ

+
e−τ

1 − e−τ

∫ τ

0

e−(N−3)ξ
(

1 − e−ξ
)

∇2
yΦ (Y (ξ) , ξ) {

e−ξ − e−τ

1 − e−τ
+

∫ ξ

0

e−(ξ−η) ∂ω

∂y0
(η) dη}dξ.

Taking the L∞ (y) norm yields

∥

∥

∥

∥

∂ω

∂y0
(s)

∥

∥

∥

∥

L∞(y)

≤ C ‖Φ‖Y0,α

∫ τ

s

e−(N−2)ξ{e−ξ + e−τ +

∫ ξ

0

e−(ξ−η)

∥

∥

∥

∥

∂ω

∂y0
(η)

∥

∥

∥

∥

L∞(y)

dη}dξ

+ C ‖Φ‖Y0,α
e−τ

∫ τ

0

e−(N−3)ξ{e−ξ + e−τ +

∫ ξ

0

e−(ξ−η)

∥

∥

∥

∥

∂ω

∂y0
(η)

∥

∥

∥

∥

L∞(y)

dη}dξ.

Integrating the above inequality from s = 0 to s = τ and using e−(ξ−η) ≤ 1,
e−τ ≤ e−ξ for η ≤ ξ, ξ ≤ τ and N ≥ 3 yield

∫ τ

0

∥

∥

∥

∥

∂ω

∂y0
(s)

∥

∥

∥

∥

L∞(y)

ds ≤ C ‖Φ‖Y0,α

∫ τ

0

e−2sds+ ‖Φ‖Y0,α

(∫ τ

0

e−sds

)

(

∫ τ

0

∥

∥

∥

∥

∂ω

∂y0
(η)

∥

∥

∥

∥

L∞(y)

dη

)

+ C ‖Φ‖Y0,α
e−ττ + C ‖Φ‖Y0,α

e−ττ2

(

∫ τ

0

∥

∥

∥

∥

∂ω

∂y0
(η)

∥

∥

∥

∥

L∞(y)

dη

)

.

Thus we have
∫ τ

0

∥

∥

∥

∥

∂ω

∂y0
(s)

∥

∥

∥

∥

L∞(y)

ds ≤ C ‖Φ‖Y0,α
, (3.15)

provided ε0 is small enough. We now specialize to s = τ and use (3.15) as well
as the fact that N ≥ 3 to get

∥

∥

∥

∥

∂ω

∂y0
(τ)

∥

∥

∥

∥

L∞(y)

≤ C ‖Φ‖Y0,α
e−τ

∫ τ

0

{e−ξ +

∫ ξ

0

e−(ξ−η)

∥

∥

∥

∥

∂ω

∂y0
(η)

∥

∥

∥

∥

L∞(y)

dη}dξ

≤ C ‖Φ‖Y0,α
e−τ + C ‖Φ‖Y0,α

e−τ

∫ τ

0

∥

∥

∥

∥

∂ω

∂y0
(η)

∥

∥

∥

∥

L∞(y)

(∫ τ

η

e−(ξ−η)dξ

)

dη

≤ C ‖Φ‖Y0,α
e−τ

where we changed the order of integration. We thus obtain (3.13). Using (3.13)
we deduce (3.14) in a similar way. Thus we complete the proof.

We also obtain the following estimates for the derivative of ω with respect
to y.

Lemma 21 There exists ε0 small such that for any τ ≥ 1 and any function Φ
satisfying

‖Φ‖Y0,α
≤ ε0,
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we have

sup
0≤s≤τ

∥

∥

∥

∥

∂ω

∂y
(s)

∥

∥

∥

∥

L∞(y)

≤ C ‖Φ‖Y0,α
, sup

0≤s≤τ

[

∂ω

∂y
(s)

]

0,α,(y)

≤ C ‖Φ‖Y0,α
.

Proof. We take ∂
∂y of (3.12) to get

∂ω

∂y
(s) = −

∫ τ

s

e−(N−2)ξ∇2
yΦ (Y (ξ) , ξ) {

1 − e−ξ

1 − e−τ
+

∫ ξ

0

e−(ξ−η) ∂ω

∂y
(η) dη}dξ

+
e−τ

1 − e−τ

∫ τ

0

e−(N−3)ξ
(

1 − e−ξ
)

∇2
yΦ (Y (ξ) , ξ) {

1 − e−ξ

1 − e−τ
+

∫ ξ

0

e−(ξ−η) ∂ω

∂y
(η) dη}dξ.

Since N ≥ 3, we have

sup
0≤s≤τ

∥

∥

∥

∥

∂ω

∂y
(s)

∥

∥

∥

∥

L∞(y)

≤ C ‖Φ‖Y0,α

∫ τ

s

e−(N−2)ξ{1 +

(

sup
0≤s≤τ

∥

∥

∥

∥

∂ω

∂y
(s)

∥

∥

∥

∥

L∞(y)

)

∫ ξ

0

e−(ξ−η)dη}dξ

+ C ‖Φ‖Y0,α
e−τ

∫ τ

0

{1 +

(

sup
0≤s≤τ

∥

∥

∥

∥

∂ω

∂y
(s)

∥

∥

∥

∥

L∞(y)

)

∫ ξ

0

e−(ξ−η)dη}dξ

≤ C ‖Φ‖Y0,α
+ C ‖Φ‖Y0,α

(

sup
0≤s≤τ

∥

∥

∥

∥

∂ω

∂y
(s)

∥

∥

∥

∥

L∞(y)

)

Thus we have

sup
0≤s≤τ

∥

∥

∥

∥

∂ω

∂y
(s)

∥

∥

∥

∥

L∞(y)

≤ C ‖Φ‖Y0,α
, (3.16)

provided ε0 is small enough. In a similar manner, using (3.16) we obtain

sup
0≤s≤τ

[

∂ω

∂y
(s)

]

0,α,(y)

≤ C ‖Φ‖Y0,α

∫ τ

s

e−(N−2)ξ{1 +

(

sup
0≤s≤τ

[

∂ω

∂y
(s)

]

0,α,(y)

)

∫ ξ

0

e−(ξ−η)dη}dξ

+ C ‖Φ‖Y0,α
e−τ

∫ τ

0

{1 +

(

sup
0≤s≤τ

[

∂ω

∂y
(s)

]

0,α,(y)

)

∫ ξ

0

e−(ξ−η)dη}dξ

≤ C ‖Φ‖Y0,α
+ C ‖Φ‖Y0,α

(

sup
0≤s≤τ

[

∂ω

∂y
(s)

]

0,α,(y)

)

.

This yields the Hölder estimate of ∂ω
∂y and completes the proof.

We present the following estimates for higher-order derivatives similar to
Theorems in the previous section.

Lemma 22 Let ℓ ≥ 1 be an integer. There exists ε0 small such that for any
τ ≥ 1 and any function Φ satisfying

‖Φ‖Yℓ,α
≤ ε0,
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we have the following

sup
0≤s≤τ

∥

∥

∥

∥

∂ℓω

∂yℓ
(s)

∥

∥

∥

∥

L∞(y)

≤ C ‖Φ‖Yℓ,α
, sup

0≤s≤τ

[

∂ℓω

∂yℓ
(s)

]

0,α,(y)

≤ C ‖Φ‖Yℓ,α
,

∫ τ

0

∥

∥

∥

∥

∂ℓ+1ω

∂yℓ∂y0
(s)

∥

∥

∥

∥

L∞(y)

ds ≤ C ‖Φ‖Yℓ,α
,

∫ τ

0

[

∂ℓ+1ω

∂yℓ∂y0
(s)

]

0,α,(y)

ds ≤ C ‖Φ‖Yℓ,α
,

∥

∥

∥

∥

∂ℓ+1ω

∂yℓ∂y0
(τ)

∥

∥

∥

∥

L∞(y)

≤ Ce−τ ‖Φ‖Yℓ,α
,

[

∂ℓ+1ω

∂yℓ∂y0
(τ)

]

0,α,(y)

≤ Ce−τ ‖Φ‖Yℓ
.

As a consequence of Theorem 16, we have, for any k ≥ 0 integer and 0 <
α < 1,

‖ρ‖Ck,α(RN ) ≤ Cε0 , ‖Φ‖Ck+2,α(RN ) ≤ Cε0. (3.17)

We now study the limit behaviour of the self-similar system (3.1)-(3.3). Indeed,
the limit behaviour is asymptotically equivalent to the free streaming case.

3.1 Proof of Theorem 17.

Proof. We begin with

ω (s; y, y0, τ) = −

∫ τ

s

e−(N−2)ξ∇yΦ (Y (ξ; y, y0, τ) , ξ) dξ (3.18)

+
e−τ

1 − e−τ

∫ τ

0

e−(N−3)ξ
(

1 − e−ξ
)

∇yΦ (Y (ξ; y, y0, τ) , ξ) dξ.

By using (3.17) and by the dominated convergence theorem, as τ → ∞, in Ck+1,

ω (s; y, y0, τ) → ω (s; y, y0,∞) ≡ ω∞ (s, y, y0) .

In particular, we have, as τ → ∞, in Ck+1,

v0 (y, y0, τ) = v0 (y, v (y, y0, τ)) = Ṽ + ω (0; y, y0, τ) → y + ω∞ (0, y, y0) .

Thus, we have, as τ → ∞, in Ck
loc,

e−Nτg (y, y0, τ) = g0 (y0, v0 (y, y0, τ)) → g0 (y0, y + ω∞ (0, y, y0)) ≡ g∞ (y, y0) .

Next, since

eτ ∂v

∂y0
= −

(

1

1 − e−τ

)

IN + eτ ∂ω

∂y0
(t) ,

using Lemma 20-Lemma 22 yields, as τ → ∞, in Ck,

eNτ

∣

∣

∣

∣

det
∂v

∂y0

∣

∣

∣

∣

→ J∞ (y, y0) ≃ 1 + O (ε0) .
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We then apply the dominated convergence theorem to get, as τ → ∞, in Ck
loc,

ρ̄ (y, τ) =

∫

g0 (y0, y + ω (0; y, y0, τ)) e
Nτ det

∂v

∂y0
dy0

→

∫

g0 (y0, y + ω∞ (0, y, y0))J∞ (y, y0) dy0

≡ ρ̄∞ (y) .

Using the elliptic regularity theory from the equation

∆yΦ = ρ̄,

there exists Φ∞ (y) ∈ Ck+1,β
loc , for any 0 < β < 1, such that

∆yΦ∞ = ρ̄∞.

Taking the limit in (3.4) as τ → ∞ yields (3.8). Finally, notice that, given a
test function ψ (y, v)

∫

R3×R3

g (y, v, τ)ψ (y, v) dydv =

∫

eNτg0 (y0, v0)ψ (y, v) dydv =

∫

eNτg0 (y0, w0 (y, y0, τ))ψ (y, w (y, y0, τ)) det
∂v

∂y0
dydy0

and taking the limit τ → ∞ we obtain
∫

R3×R3

g (y, v, τ)ψ (y, v) dydv →

∫

g0 (y0, y + ω∞ (0, y, y0))ψ (y, y)J∞ (y, y0) dy0dy

which can be written in the sense of distributions as

g (y, v, τ) →

∫

g∞ (y0, y) δ (v − y)J∞ (y, y0) dy0 as τ → ∞

This yields (3.10), whence the proof is complete.
Notice that in the limit case ε0 → 0 (3.10) reduces to

g (y, v, τ) →

[∫

g∞ (y0, y) dy0

]

δ (y − v)

=

[∫

g0 (y0, y) dy0

]

δ (y − v) as τ → ∞
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