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Abstract
The construction of optimal template banks for matched-filtering searches
is an example of the sphere covering problem. For parameter spaces with
constant-coefficient metrics a (near-) optimal template bank is achieved by
the A∗

n lattice, which is the best lattice covering in dimensions n � 5, and
is close to the best covering known for dimensions n � 16. Generally, this
provides a substantially more efficient covering than the simpler hyper-cubic
lattice. We present an algorithm for generating lattice template banks for
constant-coefficient metrics and we illustrate its implementation by generating
A∗

n template banks in n = 2, 3, 4 dimensions.

PACS numbers: 95.85.Sz, 95.75.Pq, 95.75.−z

1. Introduction

The detection of gravitational waves (GWs) in the noisy data of detectors ideally requires
the knowledge of the signal waveform, in order to coherently correlate the data with the
expected signal by matched filtering. Depending on the type of astrophysical sources
considered, however, one typically only knows a parametrized family of possible waveforms
(or approximations thereof). The unknown parameters of these waveforms could be, for
example, the frequency and sky position of spinning neutron stars or the masses and spins
of inspiralling compact binary systems. Parameter spaces of such wide-parameter searches
typically have between one and four dimensions, depending on computational constraints and
the amount of astrophysical information available to constrain the search space a priori. In
the case of GWs from general binary systems, however, the number of dimensions of the
parameter space could be as large as 17.

Obviously, one can only search a finite subset of points in this parameter space, and this
subset constitutes the ‘template bank’. The templates must cover the parameter space, i.e., they
must be placed densely enough that no signal in this space can lose more than a certain fraction
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of its power (called mismatch) at the closest template. However, coherently correlating the
data with every template is computationally expensive and increases the expected number of
statistical false-alarm candidates. An optimal template bank therefore consists of the smallest
possible number of templates that still guarantees that the worst-case mismatch does not
exceed a given limit.

It was realized early on that a geometric approach is very useful to construct template
banks, in particular the introduction of a parameter-space metric [3, 11] based on the mismatch.
This provides a natural measure of distance in parameter space and allows one to ‘correctly’
place templates, in the sense that the maximal mismatch is not exceeded. Less attention,
however, was devoted to the problem of optimally placing templates once the metric is known.
Early works have sometimes used a hyper-cubic template grid for illustrative purposes [11]
or the problem was incorrectly referred to as a ‘sphere packing problem’ [5, 12]. We see in
the following that constructing an optimal template bank is an instance of the sphere covering
problem, which is somewhat ‘dual’ to the sphere packing problem. The full solution to the
sphere covering problem in Euclidean space is only known in n = 2 dimensions, partial
solutions (restricted to lattices) are known in n � 5 dimensions, while an optimal solution
for higher dimensions is unknown (cf [8, 14]). The main motivation of the present work is to
develop a general method for constructing efficient template banks in dimensions n � 17 by
using the known results about Euclidean sphere covering.

Previous related work on template banks includes studies to optimally cover non-flat
two-dimensional parameter spaces arising in searches for GWs from inspiralling compact
binary systems [2, 4]. An interesting algorithm for constructing a hexagonal (A∗

2) template
bank for 2D inspiral searches was described recently in [7]. Various codes exist within
the LIGO Scientific Collaboration to generate hyper-cubic lattices (LALCreateFlatMesh()
[10]), two-dimensional grids for non-constant metrics (LALCreateTwoDMesh() [10]) and a
three-dimensional template bank based on the bcc-lattice (LALInspiralSpinBank() [10]),
which is being used in a search for spinning binary inspirals on LIGO Data [1].

2. Template-based searches and parameter-space metric

A wide class of searches for GWs can be characterized as template based, in the sense that one
searches for signals belonging to a family of waveforms s(t; λ), which depend on a vector of
parameters {λ}i = λi . The strain x(t) measured by a detector contains (usually dominating)
noise n(t) in addition to possible weak GW signals s(t; λs), i.e., x(t) = n(t) + s(t; λs).
One typically constructs a detection statistic, F(λ; x) say, namely a scalar characterizing the
probability of a signal with parameters λ being present in the data x(t). Due to the random
noise fluctuations n(t) in the data, the detection statistic is a random variable, and generally
(assumingF is unbiased) its expectation valueF(λ; λs) ≡ E[F(λ; x)] has a (local) maximum
at the location of the signal λ = λs, i.e.,

∂F(λ; λs)

∂λ

∣∣∣∣∣
λ=λs

= 0. (1)

Taylor-expanding the expected detection-statistic F in small offsets �λ = λ − λs around the
signal location λs therefore reads

F(λ; λs) = F(λs; λs) +
1

2

∂2F(λ; λs)

∂λi∂λj

∣∣∣∣∣
λs

�λi�λj + O(�λ3), (2)



Efficient lattice covering of flat parameter spaces S483

where the matrix of second derivatives of F is negative definite. Here and in the following
we use automatic summation over repeated parameter indices i, j, . . . . We can introduce a
mismatch m, which characterizes the fractional loss in the expected value of the detection
statistic, F , at a parameter-space point λ, with respect to the signal location λs, namely

m(λ; λs) ≡ F(λs; λs) − F(λ; λs)

F(λs; λs)
. (3)

Using the local expansion (2), we find

m(λ; λs) = gij (λs)�λi�λj + O(�λ3), (4)

where we defined the positive-definite metric tensor gij ≡ − 1
2∂i∂jF and ∂i ≡ ∂/∂λi .

When searching a parameter space P(λi, gij ), we need to compute the detection statistic
F(x; λξ ) for a discrete set of templates λξ ∈ P. Generally, one can distinguish two different
approaches to this problem: one is a random sampling of P using Markov-chain Monte Carlo
(MCMC) algorithms (e.g. see [6, 9]), and the other consists of constructing a template bank
T ≡ {λξ } ⊂ P that covers the whole of P, in the sense that no point λ ∈ P exceeds a given
maximal mismatch mmax to its closest template λξ ∈ T, i.e.,

max
λ∈P

min
λξ ∈T

m(λ; λξ ) � mmax. (5)

Here, we focus on the construction of optimal template banks, namely those satisfying (5)
with the smallest possible number of templates λξ . In the local metric approximation (4),
each template λξ covers a region Bξ of parameter space, namely

Bξ = {λ ∈ P : gij (λξ )�λi�λj � mmax,�λ ≡ λ − λξ }, (6)

which is a sphere of radius R = √
mmax in the metric space P(λi, gij ). We can therefore

reformulate the definition of an optimal template bank as the set of (overlapping) spheres of
covering radius R which cover the whole of P in the sense of (5) with the smallest number
of spheres. This is known as the sphere covering problem [8], not to be confused with the
somewhat dual sphere packing problem, which seeks to pack the largest number of non-
overlapping ‘hard’ spheres into a given volume.

3. The Euclidean sphere covering problem

In this section, we summarize the current status of the sphere covering problem as far as
relevant for the construction of optimal template banks. There has been impressive progress in
the study of the covering problem in recent years, e.g. see [8] for a general overview and [14]
for a more recent update. Unfortunately, all of these studies are restricted to Euclidean spaces
E

n, while the metric parameter spaces of GW searches are often curved. In the following,
we will therefore make the assumption that P(λi, gij ) can be treated as at least approximately
flat or can be broken into smaller pieces that can be treated as nearly flat. If the curvature of
the metric is too strong, i.e., if the curvature radius is comparable to the covering radius, it
will be difficult to make use of the Euclidean covering problem, and a different approach such
as a stochastic template bank or an MCMC sampling might be more effective. We further
assume that we have found a coordinate system of P such that the metric components are
(approximately) constant, i.e., gij (λ) ≈ constij , and for simplicity of notation we assume
in this section (without loss of generality) that we have chosen coordinates xi in which the
constant-coefficient metric is Cartesian, i.e., P = E

n(xi, δij ).
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FP1
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FP2

R

Figure 1. Hexagonal lattice (A∗
2) illustrating a two-dimensional lattice covering. The shaded

areas are different choices of fundamental regions for the lattice. FP1 and FP2 are fundamental
polytopes (9) associated with different choices of lattice basis, WS is the Wigner–Seitz cell (11)
and R is the covering radius.

A covering can consist of any arrangement of covering spheres, but currently all the
best coverings known are lattices, and we therefore restrict the following discussion to lattice
coverings.

3.1. Basics on lattices

An n-dimensional lattice � can be defined as a discrete set of points νξ (forming an additive
group) generated by

νξ = ξ il(i), with ξ i ∈ Z, (7)

with summation over i = 1, . . . , n, and where {l(i)}ni=1 is a basis of the lattice. Note that it is
sometimes convenient to express the n basis vectors in a higher-dimensional Euclidean space,
i.e., generally we can have l(i) ∈ E

m with m � n. When writing E
n in the following we refer

to the subspace of E
m containing the n-dimensional lattice �. The m × n matrix Ma

i ≡ la(i)
is called a generator matrix of the lattice, with the columns of M holding the m components
of the n lattice basis vectors, so we can also write the lattice � as

� = {νξ : νξ = Mξ, ξ ∈ Z
n}. (8)

The n×n matrix A ≡ MTM is called the Gram matrix (where T denotes the transpose), which
is symmetric and positive definite, and Aij = l(i) · l(j) = δabl

a
(i)l

b
(j), i.e., its coefficients are

the mutual scalar products of lattice basis vectors. Each choice of lattice basis {l(i)} defines a
corresponding fundamental parallelotope (FP), namely

FP({l(i)}) ≡ {x ∈ E
n: x = θ il(i), 0 � θ i < 1}, (9)

which is illustrated in figure 1. The FP is an example of a fundamental region for the lattice,
i.e., a building block containing exactly one lattice point, which fills the whole space E

n when
repeated. There are many different choices of basis and fundamental regions for the same
lattice �, but they all have the same volume vol(�), given by

vol(�) =
√

det A, (10)

and in the case where M is a square matrix we also have vol(�) = det M . One special choice
of fundamental region is the nearest-neighbor region, often referred to as Dirichlet–Voronoi
cell by mathematicians, and more commonly known as Wigner–Seitz cell or Brillouin zone
by physicists, which is defined as

WS(�) ≡ {x ∈ E
n: ‖x − ν0‖ � ‖x − νξ‖, for all νξ ∈ �}, (11)
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where ‖x‖ = √
x ·x is the standard Euclidean norm in E

n. The vertices of the Wigner–Seitz
cell are by construction local maxima of the distance function of points in E

n from the nearest
grid point. The maximum distance of any point in E

n to the nearest point of the lattice
is called the covering radius R, which corresponds to the circumradius of WS, as seen in
figure 1.

Two lattices �1 and �2 with generator matrices M1 and M2 are equivalent if they can
be transformed into one another by a rotation, reflection and change of scale, namely if the
generator matrices satisfy

M2 = cBM1U, (12)

where c ∈ R is a scale factor, U is integer-valued det U = ±1, which accounts for different
choices of basis vectors, and B is a real orthogonal matrix, i.e., BTB = I. The associated
Gram matrices are therefore related by

A2 = c2UTA1U, (13)

and the fundamental volumes (10) of the two lattices are

vol(�2) = cnvol(�1). (14)

Let us consider as an example the two-dimensional hexagonal lattice, illustrated in figure 1.
An obvious generator matrix is

M1 =
(

1 1/2
0

√
3/2

)
, (15)

corresponding to FP1 in figure 1. However, sometimes it is more convenient to work with a
generator matrix of the form

M2 =
 1 0

−1 1
0 −1

 , (16)

which has simpler coefficients, but uses a three-dimensional representation of the two-
dimensional lattice with all lattice points lying in the plane x + y + z = 0. One can verify that
these two representations are equivalent in the sense of (12), namely with

c =
√

2, U =
(

1 0
0 −1

)
, B =

 1/
√

2 −1/
√

6

−1/
√

2 −1/
√

6
0

√
2/3

 . (17)

Such a higher-dimensional representation of the generator matrix will be useful later for the
description of the n-dimensional A∗

n lattice.

3.2. Known results on optimal sphere covering

The efficiency of a sphere covering can be characterized by its thickness � (sometimes also
referred to as the covering density), which measures the fractional amount of overlap between
the covering spheres or, equivalently, the average number of spheres covering any point in E

n.
This can be expressed as the ratio of the volume of one covering sphere to the volume of the
fundamental region of the lattice, i.e.,

� ≡ VnR
n

vol(�)
� 1, (18)
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where R is the covering radius and Vn is the volume of the unit sphere in n dimensions, namely
Vn = πn/2/
(n/2 + 1). We also use the normalized thickness or center density θ defined as

θ ≡ �

Vn

, (19)

which corresponds to the number of centers (i.e., templates) per unit volume in the case of
R = 1. Note that under a lattice transformation (12), the covering radius R obviously scales
as R2 = cR1, and we therefore see from (14) that the thickness (18) and (19) is an invariant
property of a lattice, i.e., θ2 = θ1. The covering problem consists of finding the covering with
the lowest center density θ .

Kershner showed in 1939 (see [8]) that in n = 2 dimensions the most economical
arrangement of circles covering the plane is the hexagonal lattice, which is equivalent to an
A∗

2 lattice. In dimensions n = 3, 4, 5 only the best lattice covering is known, and is given
by A∗

n in all three cases. In three dimensions, A∗
3 is also known as the body-centered-cubic

(bcc) lattice. Note that the best packing in n = 2 is also achieved by the hexagonal lattice,
but for n = 3 the face-centered cubic (fcc) lattice provides a denser packing than bcc. In
higher dimensions the best lattice coverings are currently still unknown, but the best coverings
known can be found in table 2 of [14], and [15] provides an up-to-date online version. As will
become clearer in the following, the A∗

n lattice, while no longer the ‘record holder’ for most
dimensions 5 < n � 17, is still close to the best currently known covering in all cases. In
the following, we will therefore mostly focus on the A∗

n covering. The A∗
n lattice has a center

density of

θ(A∗
n) =

√
n + 1

{
n(n + 2)

12(n + 1)

}n/2

, (20)

while for the hyper-cubic grid Z
n the Wigner–Seitz cell is a unit hypercube, so vol(Zn) = 1,

and the covering radius R = √
n/2 is half the length of the diagonal. Therefore, the center

density (19) is found as θ(Zn) = 2−nnn/2, which is dramatically worse than A∗
n in higher

dimensions, as can be seen from the thickness ratio

κ(n) ≡ θ(Zn)

θ(A∗
n)

= 3n/2

√
n + 1

(
n + 1

n + 2

)n/2
n→∞∼ 3n/2

√
ne

. (21)

There is a theoretical lower limit on the thickness of any covering, the Coxeter–Few–Rogers
(CFR) bound τn (see [8]), i.e., θn � τn/Vn, where asymptotically τn ∼ n/(e

√
e) for n → ∞.

Figure 2 shows the normalized thickness θ as a function of dimension n for the A∗
n and

hyper-cubic Z
n lattices, as well as the CFR bound and the best covering known. In table 1,

we see that in dimensions n > 5, where A∗
n has been superseded as the best covering [15],

the relative improvement γ (n) ≡ θ(best)/θ(A∗
n) in thickness is typically quite small. In

particular, for n � 16 the improvement γ (n) is typically less than 18%, while the advantage
κ(n) of A∗

n compared to the hyper-cubic grid Z
n grows large very rapidly, as seen in table 1

and figure 2. For practical simplicity we therefore propose to use A∗
n as the covering lattice of

choice.

4. Lattice covering of template spaces

4.1. Template counting

The template spaces P(λi, gij ) with constant-coefficient metrics gij only differ from the
Cartesian case of the previous section by a simple coordinate transformation. An infinitesimal
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Figure 2. Normalized covering thickness θ as a function of dimension n, for the hyper-cubic lattice
(Zn), the A∗

n lattice, the theoretical lower bound (CFR) and the best lattice coverings known.

Table 1. Thickness ratio κ(n) = θ(Zn)/A∗
n and γ (n) = θ(best)/θ(A∗

n) in dimensions n � 17.

n 2 3 4 5 6 7 8 9

κ(n) 1.3 1.9 2.8 4.3 6.8 10.9 17.7 28.9
γ (n) 1.0 1.0 1.0 1.0 0.97 0.95 0.86 0.97

n 10 11 12 13 14 15 16 17

κ(n) 47.4 78.2 130 216 359 601 1007 1692
γ (n) 0.98 0.88 0.99 0.86 0.82 0.86 1.0 0.68

parameter-space region dnλ has a volume dV measured by the metric, namely dV = √
g dnλ,

where g ≡ det gij . The volume V of a finite region of parameter space is therefore

V =
∫

P

dV = √
g

∫
P

dnλ, (22)

where we used the fact that gij is a constant-coefficient metric. The number of templates dNp

in dV is given by the inverse lattice volume, i.e.,

dNp = dV

vol(�)
. (23)

Using the relation R = √
mmax together with (18), (19), we find

dNp = θm−n/2
max dV �⇒ Np = θm−n/2

max
√

g

∫
P

dnλ, (24)

which generalizes template counting [5, 11, 12] to arbitrary lattices.

4.2. Practical implementation of lattice covering

In this section, we present a practical algorithm for generating lattices covering of given
maximal mismatch mmax. The approach described here works for any lattice generator M, but
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in practice (cf section 3.2) we will be most interested in the A∗
n lattice. The generator for A∗

n

can be expressed (cf [8]) as an (n + 1) × n matrix ,

Ma
j (A

∗
n) =



1 1 . . . 1 −n
n+1

−1 0 . . . 0 1
n+1

0 −1 . . . 0 1
n+1

...
...

...
...

...

0 0 . . . −1 1
n+1

0 0 . . . 0 1
n+1


, (25)

where the columns of M hold the n lattice basis vectors l(j) expressed in E
n+1, i.e., Ma

j = la(j),
with index conventions i, j = 1, . . . , n and a, b = 1, . . . , n+1. The volume of the fundamental
region and the covering radius for this generator are

vol(A∗
n) = 1√

n + 1
and R(A∗

n) =
√

n(n + 2)

12(n + 1)
, (26)

which yields the (normalized) thickness θ(A∗
n) given in (20). In order to generate such a lattice

in a parameter space P(λi, gij ), we need to express the generator Ma
j in the λi coordinates,

resulting in M̃i
j , say, such that the lattice of templates λξ is generated by

λi
ξ = M̃i

j ξ
j , with ξ ∈ Z

n. (27)

This coordinate transformation can be achieved in several steps:

(1) Reduce the (n + 1) × n matrix Ma
j to a full rank generator, M̂i

j say, by expressing the
lattice basis vectors in a Euclidean basis spanning the n-dimensional subspace E

n of the
lattice: a simple Gram–Schmidt procedure with respect to the Cartesian metric δab is used
on

{
la(j)

}
to generate an orthonormal basis

{
ea
(j)

}
satisfying

δabe
a
(i)e

b
(j) = δij . (28)

The full-rank generator M̂i
j is obtained from the components of the lattice vectors {la(i)} in

this orthonormal basis, namely

M̂i
j = l̂i(j) = la(j) eb

(i)δab = e(i)aM
a
j . (29)

(2) Translate the full-rank generator M̂i
j from Cartesian coordinates into the coordinate system

λi with metric gij . For this we use another Gram–Schmidt orthonormalization with respect
to the metric gij , with the lattice vectors

{̂
l
j

(i)

}
as input to find an orthonormal basis

{
d

j

(i)

}
satisfying

gij d
i
(l)d

j

(k) = δlk. (30)

This representation of an orthonormal basis in coordinates λi allows us to express the
lattice vectors in these coordinates as

l̃i(j) = l̂k(j)d
i
(k) = di

(k)M̂
k
j . (31)

(3) Scale the generator to the desired covering radius R = √
mmax, and with (26) we find

M̃i
j = √

mmax

√
12(n + 1)

n(n + 2)
l̃i(j), (32)

which is a generator (27) for an A∗
n template lattice with maximal mismatch mmax.

This algorithm has been implemented in XLALFindCoveringGenerator() in LAL [10],
and some tests of this code are presented in the following section.
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Figure 3. Left panel: hexagonal (A∗
2) lattice covering in coordinates {x, y} with metric

gij = [1, 0.4; 0.4, 0.5]. Right panel: histogram of measured distances
√

m in a Monte Carlo
sampling of 100 000 points from an A∗

n covering in n = 2, 3, 4 dimensions, using non-Cartesian
metrics gij . The nominal covering radius in all three cases was R = √

mmax = 0.2.

4.3. Tests of the implementation

In order to illustrate and test the implementation of this algorithm, we generate an A∗
n lattice

in dimensions n = 2, 3, 4, respectively, with a maximal mismatch of mmax = 0.04, i.e., a
covering radius of R = 0.2. For generality we use a non-Cartesian metric gij 
= δij , as
illustrated in the left panel of figure 3. We picked 100 000 points λ ∈ P(λi, gij ) at random and
computed their mismatch m (using the metric) to the nearest template λξ , which is a way of
measuring the maximal mismatch of a template bank. The distribution of measured mismatch
distances

√
m is plotted on the right-hand panel of figure 3, and we see that the mismatches

are bounded by
√

mmax = 0.2, satisfying (5). We can also measure the (normalized) thickness
θ of the template bank, namely from the number of templates Np in the covered parameter
space �λn, we find using (24)

θ = Rn

√
g

Np

�λn
. (33)

These measured values of the thickness are found to agree to within 0.2% with the theoretical
values (20) in all three cases n = 2, 3, 4. The generated template banks in this example have
Np ∼ O(104) templates, and the error can most likely be attributed to boundary effects.

5. Discussion

Possible applications of this algorithm for GW searches can be found in template-based
searches, such as for inspiralling compact binary systems and for ‘continuous waves’, which
in ground-based detectors refers mostly to signals from spinning neutron stars, and in the
case of LISA includes white dwarf binaries, supermassive black hole binaries and extreme-
mass ratio inspirals. The benefit of using this approach depends sensitively on the number
of parameter-space dimensions, but can be estimated from table 1 at least in comparison to
hypercubic grids.

However, the applicability of the lattice covering algorithm presented here is restricted
to explicitly flat parameter spaces, which limits its usefulness to cases where we can find a
coordinate system in which the parameter-space metric is (at least) approximately constant.
The orbital metric approximation [13] for continuous GWs can be shown to be flat (work in
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progress) and would therefore be a natural case where this lattice covering could be used to
greatest effect. One difficulty in this case, however, stems from the fact that the corresponding
metric is found to be highly ill-conditioned, which results in the lattice-construction algorithm
to fail due to numerical problems. One therefore needs to analytically ‘factor out’ this near
degeneracy of the metric before this lattice-covering procedure can be safely applied. More
work is also required to deal with non-trivial parameter-space boundaries, which complicates
the n-dimensional filling algorithm.
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