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EXISTENCE OF A SOLUTION TO A VECTOR-VALUED

GINZBURG-LANDAU EQUATION WITH A THREE WELL POTENTIAL

MARIEL SAEZ TRUMPER

Abstract. In this paper we prove existence of a vector-valued solution uǫ to

−∆u +
∇uW (u)

2
= 0

u(r cos θ, r sin θ) → ci for θ ∈ [θi−1, θi],

where W : R
2 → R is non-negative function that attains its minimum 0 at {ci}

3
i=1 and the

angles θi are determined by the function W . This solution is an energy minimizer.

1. Introduction

In this paper we establish existence of a vector-valued solution u : R
2 → R

2 to the
following elliptic problem:

−∆u+
∇uW (u)

2
= 0(1)

u(r cos θ, r sin θ) → ci for θ ∈ [θi−1, θi].(2)

where W : R
2 → R is positive function with three local minima. A similar result was

proved by P.Sternberg in [17] in the case that W has two minima. Moreover, Bronsard, Gui
and Schatzman ([5]) proved existence of solution to (1)-(2) when W is equivariant by the
symmetry group of the equilateral triangle.

Our interest in this problem is originated in some models of three-boundary motion.
Material scientists working on transition have found that the motion of grain boundaries
is governed by its local mean curvature (see [12],[13] for example). These models naturally
arise as the singular limit of the parabolic Ginzburg-Landau equation (see [1]). The relation
between grain boundaries motion and the parabolic Ginzburg Landau equation can be
described as follows: consider a positive potential W : Ω ⊂ R

n → R with a finite number of
minima {ci}mi=i. Let uǫ : R

n → R
n be a solution to

(3)
∂uǫ

∂t
− ∆uǫ +

∇uW (uǫ)

2ǫ2
= 0.

As ǫ → 0 the solutions uǫ will converge almost everywhere to one of the constants ci (see
[9], [15]). For every t, this creates a partition of Ω =

⋃m
i=1 Ωi(t), where Ωi(t) = {x ∈

Ω : uǫ(x, t) → ci as ǫ → 0}. The interface between these sets correspond to the grain
boundaries evolving under its curvature. When n = 2 and m = 3 the solution will describe
a “three-phase” boundary motion that might present “triple- points”, namely points where
these 3 boundaries meet. Bronsard and Reitich [6] predicted that at a triple point solutions
to (3) will behave like a solution to (1)-(2) after rescaling. However, the existence of such
solution has not been established before and this is the main goal of this paper. More
specifically we prove that
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2 M. SAEZ TRUMPER

Theorem 1.1. Let W : R
2 → R be a C3 function that satisfy

(1) W has only three local minima c1, c2 and c3 and W (ci) = 0;

(2) the matrix ∂2W (u)
∂ui∂uj

is positive definite at {ci}3
i=1, that is the minima are nondegerate;

(3) there exist positive constants K1,K2 and m, and a number p ≥ 2 such that

K1|u|p ≤W (u) ≤ K2|u|p for |u| ≥ m;

(4) V (r, θ) := W (u+ r(cos θ, sin θ)) = r2 +O(r3) for r sufficiently small and u = ci for
some i ∈ {1, 2, 3}, where r and θ are local polar coordinates.

Define
(4)

Γ(ζ1, ζ2) = inf

{
∫ 1

0
W

1

2 (γ(λ))|γ′(λ)|dλ : γ ∈ C1([0, 1],R2), γ(0) = ζ1 and γ(1) = ζ2

}

Consider {αi}3
i=1 ∈ [0, 2π) such that

(5)
sinα1

Γ(c2, c3)
=

sinα2

Γ(c1, c3)
=

sinα3

Γ(c1, c2)
.

Then for θi ∈ [0, 2π) such that αi = θi+1 − θi there is a solution v to (1)-(2). Moreover, for

G(w) =

∫

R2

(|Dw|2 +W (w) − |Dφ|2 −W (φ))dx,

where φ is an appropriate function satisfying (2), we have

G(v) = inf{G(w) : w ∈ V},

for V =
{

w ∈ C1 :
∫

R2 |Dw −Dφ|dx,
∫

R2 |w − φ|dx <∞
}

.

Equation (1) can be also related to the elliptic version of (3) in the following way: Let u
be a solution to (1) and consider R > 0. Define

uR(x) = u
( x

R

)

,

then uR satisfies

−∆uR +
R2∇uW (uR)

2
= 0.

Hence for ǫ = 1
R

, the function uR satisfies

(6) − ∆uR +
∇uW (uR)

2ǫ2
= 0.

As R → ∞ we have that the corresponding limiting solution to (6) will capture the
behavior of u at infinity. Equation (6), know as the Ginzburg-Landau equation, has been
largely studied (see for example [4] and [14]). This motivates us to analyze in Section 3
some existing results for (6) that will provide useful information for our problem. Namely,
we prove that the rescaled uR converge to u0 in the L1 norm in the unit ball.Section 4
improves the bounds obtained in Section 3. Finally, Theorem 1.1 is proved in Section 5.
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2. Definitions and preliminary lemmas

In this section we are going to define some objects that we will use in this paper. We are
also going to restate some lemmas that had been proven before in the literature.

We start with basic definitions. Let BR be the open ball centered at 0 of radius R.
Define the function gi : R

2 → R for any p ∈ R
2 as

(7) gi(p) = Γ(ci, p)

Where the function Γ is defined by (4). Notice that Γ can be regarded as degenerate distance
function. Hence gi represents the distance (with respect to the distance function Γ) to the
critical point ci.

The following lemma follows directly from the analogous result proved by P.Sternberg in
[17]:

Lemma 2.1. Let W satisfy conditions (2)-(4) of Theorem 1.1. Then for every u ∈ R
2,

there exists a curve γiu : [−1, 1] → R
2 such that γiu(−1) = ci, γ

i
u(1) = u and

(8) gi(u) =

∫ 1

−1

√

W (γiu(t)) |
(

γiu
)′

(t)|dt

The function gi is Lipschitz continuous and satisfies

(9) |Dgi(u)| =
√

W (u) a.e.

Moreover, there exist curves βij : (−∞,∞) → (−1, 1) such that the curves defined by

ζij(τ) = γicj (βij(τ))

satisfy

(10) 2gi(cj) =

∫ ∞

−∞
W (ζij) + |ζ ′|2dτ,

(11) lim
τ→−∞

ζij(τ) = ci, lim
τ→∞

ζij(τ) = cj ,

where these limits are attained at an exponential rate.
It also holds that the curves ζij satisfy

(12) ζ ′′ij(λ) +
∇W (ζij(λ))

2
= 0.

Remark 2.1. The last assertion in Lemma 2.1 is not stated in [17], but, as specified by
Sternberg, follows from the proof in this paper.

As mentioned before, we want to relate equation (1)-(2) with the following equation on
the unit ball:

−∆uǫ +
∇uW (uǫ)

ǫ2
= 0 for x ∈ B1(13)

u|∂B1
(x) = φǫ(x).(14)

Notice that weak solutions to this equation can be regarded as critical points of

(15) Iǫ(u) =

{ ∫

B1
ǫ|Du|2 + 1

ǫ
W (u)dy if u ∈ H1(B1) and u|∂B1

(x) = φǫ(x)

∞ otherwise.

where u : B1 → R
2, φǫ : ∂B1 → R

2.
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Since we look for solutions uǫ to (13), that are obtained by rescaling the solution u to
(1)-(2), we expect the limit as ǫ→ 0 to capture the behavior at infinity given by (2). That
is, we want to show that it is possible to obtain as the limit of the functions uǫ the function

(16) u0(r cos θ, r sin θ) = ci for θ ∈ (θi−1, θi),

where αi = θi − θi−1 satisfy (5). Without loss of generality we are going to assume that
θ0 = 0 and θ3 = 2π.

In order to study the limit of the functions uǫ we define the following limit functional
(that we will show corresponds to the Γ-limit of the functionals Iǫ):

(17) I0(u) =















∑3
i,j=1 Γ(ci, cj)H1 (∂B1

Ωi(u)
⋂

∂B1
Ωi+1(u)) if gi(u) ∈ BV (B1)

+
∑3

i,j=1 Γ(ci, cj)H1 ((∂Ωj(u)
⋂

∂B1) \ Φi) and u ∈ {ci}3
i=0

∞ otherwise,

where Ωi(u) = {x ∈ B1 : u(x) = ci}, φ0(x) = limǫ→0 φǫ(x), Φi = {x ∈ ∂B1 : φ0(x) = ci}
and H1 is the one dimensional Hausdorff measure.

In order to prove Theorem 1.1 we are interested in a φ0 that represents the boundary
condition of u0 (defined by (16)), hence we are going to define φ0 = u0 almost everywhere.
We also need that φǫ → φ0 as ǫ → 0. Therefore we will define functions φǫ with this
property. Moreover, we will choose φǫ such that they approximate the solutions uǫ(x) for
every x ∈ B1 (we will make this statement more precise in section 4). Functions φǫ are going
to be defined such that they are constant equal to some ci away from an ǫ-neighborhood of
the lines with slope tan θi and that near the lines are equal to the corresponding ζij . More

precisely, we consider a smooth function η : R
2 → R such that η(x) ≡ 1 when |x| ≤ 1

2 and
η(x) ≡ 0 for |x| ≥ 1, the distance

di(x) = d(x,Li),

where Li is the line through the origin with slope tan θi and a partition of unity {ηi}6
i=1

associated to the family of intervals {Aj}6
j=1, where

A2i = (θi − δ, θi + δ)

A2i+1 =

(

θi +
δ

2
, θi+1 −

δ

2

)

,

that is ηj(x) ≥ 0, ηj(x) ≡ 0 for x 6∈ Aj and
∑

j ηj(x) = 1 for every x. Now we define

(18) φ(x) = (1 − η(x))

(

η5(θ)c3 + η6(θ)ζ31(d0(x)) +
2
∑

i=1

(η2i(θ)ζii+1(di(x)) + η2i−1(θ)ci)

)

and

(19) φǫ(x) = φ
(x

ǫ

)

.

Notice that since Li is a line we have that di
(

x
ǫ

)

= di(x)
ǫ

.
Under these definitions we have that

φǫ → φ0 uniformly in B1

and
φ0 = u0 a.e.
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Now we state some technical lemmas. The first one was originally proven in [16]:

Lemma 2.2. Let uǫ(x) ∈ C2 satisfy (13)-(14), where W : R
2 → R is a function in C2

bounded below, with a finite number of critical points (that we label as {ci}), such that
W (v) → ∞ as |v| → ∞ and such that the Hessian of W (u) is positive definite for |u| ≥ K

for some real number K. Suppose that the functions φi are uniformly bounded. Then there
is a constant C depending only on uniform bounds over φǫ and W , but not on ǫ, such that

sup |uǫ| ≤ C.
Proof:
Consider vǫ(x) = W (uǫ)(x); then

−∆vǫ = −
∑

i

(∇uW (uǫ) · (uǫ)xi
)xi

= −(W ′′(uǫ)Duǫ) ·Duǫ −∇uW (uǫ) · ∆uǫ
where W ′′ denotes the Hessian matrix of W and the dot product between two 2×2 matrices
is the standard dot product in R

4. Since uǫ satisfies (13), this becomes

(20) − ∆vǫ +
|W ′(uǫ)|2

2ǫ2
+ (W ′′(uǫ)Du) ·Duǫ = 0.

If the maximum is attained at the boundary, then it is bounded by the maximum of
φǫ(x).

Suppose that vǫ has an interior maximum at x0 and |uǫ(x0)| ≥ K. Since x0 is a maximum
for vǫ, it holds that ∆vǫ(x0) ≤ 0. We also have by hypothesis that W ′′(u) is positive definite
for |u| ≥ K, hence

−∆vǫ +
|DuW (uǫ)|2

ǫ2
+ (W ′′(uǫ)Duǫ) ·Duǫ ≥ 0.

The inequality is strict (which contradicts (20)) unless

|DuW (uǫ)|2
ǫ2

= (W ′′(uǫ)Duǫ) ·Duǫ = 0.

If ∇uW (uǫ(x0)) = 0, we would have uǫ(x0) = ci for some i, therefore W (uǫ(x, t)) ≤W (ci).
From this we conclude that |u| ≤ max{K, ci,maxx∈∂B1

φǫ(x)}, which finishes the proof.
�

We will also use Lemma A.1 and Lemma A.2 in [3]. We restate them here without proof:

Lemma 2.3. Assume that u satisfies

−∆u = f on Ω ⊂ R
n

Then

(21) |Du(x)|2 ≤ C

(

‖f‖L∞(Ω)‖u‖L∞(Ω) +
1

dist2(x, ∂Ω)
‖u‖2

L∞(Ω)

)

∀x ∈ Ω,

where C is a constant depending only on n.

Lemma 2.4. Assume that u satisfies

−∆u = f on Ω ⊂ R
n

u = 0 on ∂Ω



6 M. SAEZ TRUMPER

where Ω is a smooth bounded domain. Then it holds

(22) ‖Du‖2
L∞(Ω) ≤ C‖f‖L∞(Ω)‖u‖L∞(Ω)

where C is a constant depending only on Ω.

3. Convergence in L1

In this section we show the following result

Proposition 3.1. Let u0 be defined by (16). For φǫ defined by (15) there exists a sequence
of minimizers uǫ of Iǫ, such that Iǫ(uǫ) → I0(u0) and uǫ → u0 in L1.

As stated in [18], when considering the Neumman boundary condition problem, Proposi-
tion 3.1 follows from results in [2], [10] and [18]. In what follows we are going to state these
results and point out the necessary modifications in our setting.

Theorem 3.1. ([18]) Let u0 defined by (16) and Ci = {x ∈ Ω : u0(x) = ci}. Consider a
domain Ω and partition (E,F,G) of Ω.Define

F(E,F,G) = Γ(c1, c2)H1(∂ΩE
⋂

∂ΩG) + Γ(c1, c3)H1(∂ΩE
⋂

∂ΩF )

+ Γ(c3, c2)H1(∂ΩF
⋂

∂ΩG).

Then the partition formed by C1, C2 and C3 is an isolated local minimizer of F , that is

(23) F(C1, C2, C3) = minF(E,F,G)

taken over all the partitions (E,F,G) of Ω satisfying the condition

(24) |C1∆E| + |C2∆F | + |C3∆G| ≤ δ,

where δ is some small positive number.

Remark 3.1. The proof of Lemma 3.1 in [18] implies that this δ can be uniformly chosen
for balls of all radii.

Theorem 3.2. (Theorem 2.5 in [2]) Let

(25) Ĩǫ,Ω(u) =

{ ∫

Ω ǫ|Du|2 + 1
ǫ
W (u)dy if u ∈ H1(Ω) and

∫

Ω u(x)dx = m

∞ otherwise.

and
(26)

Ĩ0,Ω(u) =







∑3
i,j=1 Γ(ci, cj)H1 (∂B1

Ωi(u)
⋂

∂B1
Ωj(u)) if gi(u) ∈ BV (Ω) for i ∈ {1, 2, 3},

W (u(x)) = 0 a.e. and
∫

Ω u(x)dx = m

∞ otherwise

It holds for every ǫh → 0 that

• For every uǫh → u in L1(Ω) we have that Ĩ0(u) ≤ lim infh→∞ Ĩǫh(uǫh)

• There is uǫh → u in L1(Ω) such that Ĩ0(u) ≥ lim suph→∞ Ĩǫh(uǫh)
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Proposition 3.2. ( Proposition 2.2 in [2]) The function gi is locally Lipschitz-continuous.
Moreover, if u ∈ H1(Ω)

⋃

L∞(Ω), then gi(u) ∈W 1,1(Ω) and the following inequality holds:

(27)

∫

Ω
|D(gi(u))|dx ≤

∫

Ω

√

W (u)|Du|dx.

Remark 3.2. Following the proof of Theorem 3.2 in [2] it is easy to see that the restriction
∫

Ω u(x)dx = m, imposed by Baldo in his work, can be removed from Theorem 3.2 without
modifying the proof.

Theorem 3.3. [10] Suppose that a sequence of functionals {Iǫ} and a functional I0 satis-
fying the following conditions:

(1) if vǫ → v0 in L1(Ω) as ǫ→ 0, then lim inf Iǫ(vǫ) ≥ I0(v0);
(2) for any v0 ∈ L1(Ω) there is a family {ρǫ}ǫ>0 with ρǫ → v0 in L1(Ω) and Iǫ(ρǫ) →

I0(v0);
(3) any family {vǫ}ǫ>0 such that Iǫ(vǫ) ≤ C <∞ for all ǫ > 0 is compact in L1(Ω);
(4) there exits an isolated L1-local minimizer u0 of I0; that is, I0(u0) < I0(v) whenever

0 < ‖u0 − v‖L1(Ω) ≤ δ for some δ > 0.

Then there exits an ǫ0 > 0 and a family {uǫ} for ǫ < ǫ0 such that uǫ is an L1-local
minimizer of Iǫ and uǫ → u0 in L1(Ω)

Theorem 3.1 establishes that u0 is a local minimizer for Ĩ0 (condition 4 of Theorem

3.3). Theorem 3.2 establish conditions 1 and 2 of Theorem 3.3 for Ĩǫ (defined by (25)) and

Ĩ0(defined by (26)) . We need to show that these theorems imply that these conditions also
hold for Iǫ and I0. In addition we need to prove that condition 3 holds.

Lemma 3.1. Theorem 3.1 implies that u0 is a local minimizer for I0.

Proof:
Let Ci = {x ∈ B1 : u0(x) = ci} and for any v let Ωi(v) = {x ∈ B1 : v(x) = ci}. Consider

δ for B1 as is Theorem 3.1. We are going to show by contradiction that for every v such
that v(x) ∈ {ci}3

i=1 almost everywhere and

|C1∆Ω1(v)| + |C2∆Ω2(v)| + |C3∆Ω3(v)| ≤ δ

holds that
I0(u) ≤ I0(v).

Suppose that there is a v such that

(28) |C1∆Ω1(v)| + |C2∆Ω2(v)| + |C3∆Ω3(v)| ≤ δ

and

(29) I0(u) > I0(v).

Consider σ > 0 and B1+σ. Define

Iσǫ (u) = Ĩǫ,B1+σ .

Notice first that u0 is well defined for every x ∈ R
2. In particular is well defined for every

x ∈ B1+σ for any σ > 0. Define

(30) vσ(x) =

{

v(x) if x ∈ B̄1

u0(x) if x ∈ B1+σ \B1
.
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Let
C̃i = {x ∈ B1+σ : u0(x) = ci}

Ω̃i(v) = {x ∈ B1+σ : vσ(x) = ci}.
By definition (30) and (28) we also have

(31) |C̃1∆Ω̃1(v
σ)| + |C̃2∆Ω̃2(v

σ)| + |C̃3∆Ω̃3(v
σ)| ≤ δ.

Notice that every subset on the boundary that does not agree with u0 becomes an interior
boundary term for vσ in B1+σ. By definition we have that

Iσ0 (vσ) = I0(v
σ) + σ

3
∑

i,j=1

Γ(ci, cj)

and

Iσ0 (u0) = I0(u0) + σ

3
∑

i,j=1

Γ(ci, cj).

Inequality (29) implies that

(32) Iσ0 (vσ) < Iσ0 (u0),

which together with (31) contradicts the local minimality of u0 given by Theorem 3.1. �

In what follows, we are going to show that Theorem 3.2 and Proposition 3.2 imply
conditions 1 and 2 of Theorem 3.3 for the functionals defined by (15) -(17).

Recall that φǫ is given by (18), φ0 = limǫ→0 φǫ and φ0 = u0 a.e.

Proof of condition 1:

Let

(33) vǫ → v0 in L1.

As in the proof of Lemma 3.1, consider σ > 0 and define

(34) Iσǫ (u) = Ĩǫ,B1+σ(u),

(35) vσǫ (x) =

{

vǫ(x) if x ∈ B̄1

φǫ(x) if x ∈ B1+σ \B1
.

and

(36) vσ0 (x) =

{

v0(x) if x ∈ B̄1

φ0(x) if x ∈ B1+σ \B1
.

Notice that again the boundary portions of v0 that do not agree with φ0 become interior
boundaries of v0

σ. Hence, as before, if Iσ0 (v0) 6= ∞ we have that

(37) Iσ0 (v0) = I0(v0) + σ

3
∑

i,j=1

Γ(ci, cj).

Using (33) and definitions (35) and (36) we have that

vσǫ → vσ0 in L1.

Theorem 3.2 and Remark 3.2 imply that

(38) Iσ0 (vσ0 ) ≤ lim inf
ǫ→0

Iσǫ (vσǫ ).
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We can explicitly compute that

(39) Ĩǫ,B1+σ\B1
(φǫ) → σ

3
∑

i,j=1

Γ(ci, cj).

Since

(40) Iσǫ (vǫ) = Iǫ(vǫ) + Ĩǫ,B1+σ\B1
(φǫ),

equation (39) implies that

Iσǫ (vǫ) → ∞ if and only if Iǫ(vǫ) → ∞.

We can assume that lim infǫ→0 Iǫ(vǫ) < ∞ (otherwise the result is trivial). Equations
(37), (38), (40) and (39) imply that

I0(v0) + σ

3
∑

i,j=1

Γ(ci, cj) =Iσ0 (v0)

≤ lim inf
ǫ→0

Iσǫ (vσǫ )

= lim inf
ǫ→0

Iǫ(vǫ) + σ

3
∑

i,j=1

Γ(ci, cj).

This implies

I0(v0) ≤ lim inf
ǫ→0

Iǫ(vǫ),
which proves the result. �

Proof of condition 2:

The proof of condition 2 follows directly from the proof in [2] of the equivalent statement.
Hence, we are going to follow Baldo’s proof, use some of his constructions and point out
the necessary modifications in our setting.

As in the proof of condition 1, let Iσǫ be defined by (34), that is

Iσǫ (u) = Ĩǫ,B1+σ(u).

Consider v0 ∈ {ci}3
i=1, such that I0(v0) < ∞ (otherwise the result is trivial). As before,

we extend the domain to B1+σ, for some σ > 0, and we extend v0 by φ0 outside the unit
ball. We label this extension as vσ0 .

Let ρσǫ be the sequence of functions given by Theorem 3.2 that satisfy ρσǫ → vσ0 in L1 and
Iσǫ (ρǫ) → Iσ0 (vσ0 ).

We can write v0 =
∑3

i=1 ci1Ωi
. The functions ρσǫ constructed by Baldo in [2] are uniformly

bounded functions such that ǫ- near the boundaries ∂Ωi

⋂

∂Ωj

⋂

B1+σ are equal to the
geodesic ζij , in the interior of Ωi, ρ

σ
ǫ approaches ci uniformly. In particular, we have that

ρǫ → v0 almost everywhere and it is uniformly bounded. By dominated convergence theorem
we have that the restriction of ρσǫ to B1, that we will label as ρǫ, converges to v0 in the L1

norm.
As in the proof of 1, we have

(41) Iσ0 (vσ0 ) = I0(v0) + σ

3
∑

i,j=1

Γ(ci, cj).
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By the definitions of Iσǫ , Iǫ , ρσǫ and ρǫ, for every σ > 0 holds that

(42) Iσǫ (ρσǫ ) ≥ Iǫ(ρǫ).
Combining (41), (42) and Theorem 3.2 we have

I0(v0) + σ

3
∑

i,j=1

Γ(ci, cj) = Iσ0 (vσ0 )

= lim
ǫ→0

Iσǫ (ρσǫ )

≥ lim
ǫ→0

Iǫ(ρǫ).

Taking σ → 0 follows that

I0(v0) ≥ lim
ǫ→0

Iǫ(ρǫ).

Combining this equation and Condition 1 (that we proved above) we conclude that

I0(v0) = lim
ǫ→0

Iǫ(ρǫ),

that finishes the proof. �

Proof of condition 3:
We will follow the proof in [17]. Suppose that Iǫ(vǫ) ≤ C <∞ for some family {vǫ}ǫ>0.
Define

hǫ(x) = g1(vǫ(x)).

Proposition 3.2 implies that
∫

B1

|Dhǫ(x)|dx ≤
∫

B1

√

W (u)|Du|dx

≤ǫ
∫

B1

|Du|2dx+
1

ǫ

∫

B1

W (u)dx

≤C.
Hypothesis 4 of Theorem 1.1 implies that vǫ are uniformly bounded in Lp(B1) for some

p. Hence, hǫ are uniformly bounded in L1(B1) and

‖hǫ‖BV (B1) ≤ C.

Since bounded sequences in BV are compact in L1([7]), there is a subsequence hǫ con-
vergent to h0 in L1. This function h0 takes the form

h0(x) =







0 if x ∈ C1

g1(c2) if x ∈ C2

g1(c3) if x ∈ C3.

Since c1 is the only value x such that g1(x) = 0 and g1 is continuous, we have that there
is a subsequence {uǫj} that converges in measure to c1 on C1. The uniform bounds in Lp

imply that {uǫj} converge on C1 also in the L1 norm. The proof can be finished by repeating
the same argument for g2 and g3. �

Directly Theorem 3.3 we conclude the following corollary:

Corollary 3.1. Let u0 be defined as in Theorem 3.3. Then there is a subsequence of the
family {uǫ} that converges point-wise almost everywhere to u0.
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4. Uniform Convergence

In this section we focus on improving the convergence bounds proved in the previous
section. Namely we show

Theorem 4.1. Fix 0 < α < 1. Let 0 < σ ≤ ǫ1−α then for every m > 0 there is a constant
C (that might depend on α and m) such that

•
sup

|x|≥ǫα
|uǫ − φǫ| ≤ Cǫm.

•
sup

|x|≤ ǫα

2

∣

∣

∣uǫ(x) − uσ

(σx

ǫ

)∣

∣

∣ ≤ Cǫm.

In order to prove this Theorem we are going to consider a family of parabolic equations,
that we describe below. To simplify the notation, let

vǫ(x) = uǫ(ǫx) and,

uǫσ(x) = uσ

(σx

ǫ

)

.

Consider a positive function η : R → R such that η(x) = 0 for |x| ≤ 1
2 and η(x) = 1 for

|x| ≥ 1. Fix α > 0 and E = 2ǫα − ǫ2m+4−α > 1 ≥ α then define for y ∈ R
2 the function

ηα(y) = η

(

ǫ

2E
|y| + 1 − ǫα

2E

)

.

Notice that the function ηα(y) satisfies ηα(y) = 0 for |y| ≤ ǫα−1 − E
ǫ

and ηα(x) = 1 for

|y| ≥ ǫα−1. Moreover, defining

ηǫα(y) = ηα

(y

ǫ

)

it satisfies ηǫα (y) = 0 for |y| ≤ ǫα − E (where E is defined as above) and ηǫα (y) = 1 for
|y| ≥ ǫα.

We will denote by HΩ the heat Kernel in Ω ⊂ R
2. A more detailed description and some

properties of the Heat Kernel can be found in the Appendix.
Let Q = (0, 1]× (0, 1]× [0, 1]. Define for ~q = (ǫ, σ, α) ∈ Q such that σ ≤ ǫ1−α the function

v~q(y) = ηα(y)φ(y) + (1 − ηα(y))vσ(y).

For ~q as above consider the functional

F~q(h, ψ) =

∫ t

0

∫

B 1
ǫ

HB 1
ǫ

(x, y, t− s)
(

∇uW (h+ v~q)(y, s) + ∆v~q
)

dyds

+

∫

B 1
ǫ

HB 1
ǫ

(x, y, t)ψ(y)dy.

Notice that fixed points of this functional are solutions to the equation

∂h

∂t
− ∆h+

∇uW (h+ v~q)

2
= ∆v~q in B 1

ǫ
(43)

h(x, t) = 0 on ∂B 1

ǫ
(44)

h(x, 0) = ψ(x).(45)

More specifically, for this equation we can show:
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Theorem 4.2. Fix a uniformly bounded continuous function ψǫ and ~q ∈ Q where ~q =
(ǫ, σ, α) the functional F~q(·, ψ) : C → C has a unique fixed point that we label h~q,ψ. Moreover,
for K > 0 and functions w~q satisfying |w~q| ≤ K there is a constant M (that depends on
K), such that for every T ≥ 0 holds

sup
B 1

ǫ
×[T,T+ 2α

M ]
|w~q − h~q,ψ| ≤

1

1 − α



2 sup
B 1

ǫ
×[T,T+ 2α

M ]
|F~q(w~q, ψ) − w~q|

(46) + sup
x∈B 1

ǫ

|w~q − h~q,ψ|(x, T )



 .

We postpone the proof to the Appendix.

Now we can devote ourselves to prove the main estimate that we use to show Lemma 4.1:

Lemma 4.1. Fix K > 0. Consider the sequences of continuous functions ψn, wn satisfying
sup |ψn|, sup |wn| ≤ K. Then for any sequences ~qn ∈ Q and Tn > 0 holds either

(1) limn→∞ supB 1
ǫ
×[0,Tn] |wn − h~qn,ψn

| → 0, or

(2) there is a constant C, independent of ~qn and Tn such that

sup
B 1

ǫ
×[0,Tn]

|wn − h~qn,ψn
| ≤ C sup

B 1
ǫ
×[0,Tn]

|F~qn(wn, ψn) −wn|.

Remark 4.1. Notice that in Lemma 4.1 is it possible to choose Tn = ∞ for every n.

Proof. Consider sequences of continuous functions ψn, wn ∈ C satisfying sup |ψn|, sup |wn| ≤
K and ~qn ∈ Q. Suppose that neither (1) nor (2) hold. Then there are subsequences such
that

(47) lim
n→∞

sup
B 1

ǫ
×[0,Tn]

|wn − h~qn,ψn
| 6→ 0 and,

(48) sup
B 1

ǫ
×[0,Tn]

|wn − h~qn,ψn
| = n sup

B 1
ǫ
×[0,Tn]

|F~qn(wn, ψn) − wn|.

The a priori bounds shown in Lemma 2.2 and the boundedness hypothesis imply that
there is a constant independent of n such that |wn − h~qn,ψn

| ≤ C. Then, (48) implies

(49) sup
B 1

ǫ
×[0,Tn]

|F~qn(wn, ψn) − wn| → 0.

Applying inequality (46) recursively we have that for every 0 ≤ T <∞ there is a constant
that depends on T (but independent of ~qn) such that

(50) sup
B 1

ǫ
×[0,T ]

|wn − h~qn,ψn
| ≤ C(T ) sup

B 1
ǫ
×[0,T ]

|F~qn(wn, ψn) − wn|.

Therefore if the Tn are bounded, case (2) holds trivially, which contradicts (48). Hence we
assume Tn → ∞. We show that in this case

lim
n→∞

sup
B 1

ǫ
×[0,Tn]

|wn − h~qn,ψn
| → 0,
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contradicting a (47). Let

τ = {(Sn)n∈N : 0 ≤ Sn ≤ Tn, lim
n→∞

sup
B 1

ǫ
×[0,Sn]

|wn − h~qn,ψn
| → 0}.

For the set of sequences in R+ we consider the topology defined by the basis of open sets
given by Bσ((Sn)n∈N) = {(S̃n)n∈N : S̃n ≥ 0 and supn∈N |Sn − S̃n| ≤ σ} for any σ > 0.
Notice that in particular inequality (50) implies that τ is a non-empty set, since at least
Sn = infn Tn ∈ τ .
Claim: τ is open

Consider (Sn)n ∈ τ. Let S̃n = min{Sn + 2α
M
, Tn}. Using inequality (46) we have

sup
B 1

ǫ
×[Sn,S̃n]

|wn−h~qn,ψn
| ≤ 1

1 − α



2 sup
B 1

ǫ
×[Sn,S̃n]

|F~qn(wn, ψn) − wn| + sup
x∈B 1

ǫ

|wn − h~qn,ψn
|(x, Sn)



 .

Since S̃n ≤ Tn and Sn ∈ τ , taking n→ ∞ we have that

lim
n→∞

sup
B 1

ǫ
×[Sn,S̃n]

|wn − h~qn,ψn
| = 0,

and B 2α
M

⋂

τ ⊂ τ . Hence τ is open.

Claim: τ is closed
Suppose that Sk = (Skn)n ∈ τ satisfy Sk → S̃ = (S̃n)n as k → ∞. By the definition

of the topology we have that there is a k0 such that for every n ∈ N and k ≥ k0 holds
|Skn − S̃n| ≤ 2α

M
. Using inequality (46)

sup
B 1

ǫ
×[S

k0
n ,S̃n]

|wn−h~qn,ψn
| ≤ 1

1 − α






2 sup
B 1

ǫ
×[S

k0
n ,S̃n]

|F~qn(wn, ψn) −wn| + sup
x∈B 1

ǫ

|wn − h~qn,ψn
|(x, Sk0n )






.

Using that (Sk0n )n ∈ τ and (49), when n→ ∞ we have

lim
n→∞

sup
B 1

ǫ
×[0,S̃n]

|wn−h~qn,ψn
| = max











sup
B 1

ǫ
×[0,S

k0
n ]

|wn − h~qn,ψn
|, sup
B 1

ǫ
×[S

k0
n ,S̃n]

|wn − h~qn,ψn
|











→ 0.

Therefore S̃ ∈ τ and τ is closed.

Since τ is open, closed and non-empty we conclude that τ = {(Sn)n∈N : 0 ≤ Sn ≤ Tn}.
In particular (Tn)n ∈ τ , which contradicts (47) and proves the Lemma. �

Notice that for every ǫ > 0

sup
B 1

ǫ
×[0, T

ǫ2
]

∣

∣h~q,ψǫ
ǫ
(x, t) − wǫ(x, t)

∣

∣ = sup
B1×[0,T ]

∣

∣

∣

∣

h~q,ψǫ
ǫ

(

x

ǫ
,
t

ǫ2

)

− wǫ

(

x

ǫ
,
t

ǫ2

)∣

∣

∣

∣

.

Therefore, Lemma 4.1 implies that given a K > 0 any sequences ψǫ, wǫ : B1 × [0,∞) → R
2

satisfying |ψǫ, wǫ| ≤ K, by defining wǫǫ(x, t) = wǫ(ǫx, ǫ
2t) and ψǫǫ(x, t) = ψǫ(ǫx, ǫ

2t), we have
either

(1) supB1×[0,T ]

∣

∣h~q,ψǫ
ǫ

(

x
ǫ
, t
ǫ2

)

− wǫ(x, t)
∣

∣→ 0 or
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(2) there is a constant C, independent of ǫ, σ and T such that

sup
B1×[0,T ]

∣

∣

∣

∣

h~q,ψǫ
ǫ

(

y

ǫ
,
t

ǫ2

)

− wǫ(x, t)

∣

∣

∣

∣

≤ C sup
B 1

ǫ
×

h

0, T

ǫ2

i

|F~q(wǫǫ, ψǫǫ) − wǫǫ|,

where ~q = (ǫ, σ, α).

Let us rewrite F~q(w
ǫ
ǫ, ψ

ǫ
ǫ) − wǫǫ in a more convenient way. We start by setting k~q(x, t) =

h~q
(

x
ǫ
, y
ǫ2

)

. Notice that for (x, t) ∈ B1 × [0, T ] we have G~q(wǫ, ψǫ)(x, t) = F~q(w
ǫ
ǫ, ψǫ)

(

x
ǫ
, t
ǫ2

)

is the solution to the parabolic problem:

∂G~q(wǫ, ψǫ)

∂t
− ∆G~q(wǫ, ψǫ) +

∇uW (wǫ + u~q)

2ǫ2
= ∆u~q in B1 × [0, T ]

G~q(wǫ, ψǫ)(x, t) = 0 on ∂B1

G~q(wǫ, ψǫ)(x, 0) = ψǫ(x).

Then, it must hold

G~q(wǫ, ψǫ)(x, t) =

∫ t

0

∫

B1

HB1
(x, y, t− s)

(∇uW (wǫ + u~q)(y, s)

ǫ2

+ ∆u~q(y)
)

dyds +

∫

B1

HB1
(x, y, t)ψǫ(y)dy.

Moreover, notice that for any wǫ satisfying wǫ(x, t) = 0 for |x| = 1 we can write

w(x, t) =

∫ t

0

∫

B1

HB1
(x, y, t− s)Pwǫdyds+

∫

B1

HB1
(x, y, t)wǫ(y, 0)dy.

This implies that

sup
B 1

ǫ
×

h

0, T

ǫ2

i

|F~q(wǫǫ, wǫ) − wǫǫ| = sup
B1×[0,T ]

|G~q(wǫ) − wǫ|

= sup
B1×[0,T ]

∣

∣

∣

∣

∫ t

0

∫

B1

HB1
(x, y, t− s)

(∇uW (wǫ + u~q)(y, s)

ǫ2

+ ∆u~q(y) − Pwǫ(y, s)
)

dyds+

∫

B1

HB1
(x, y, t) (ψǫ(y) − wǫ(y, 0)) dy

∣

∣

∣

∣

.

Therefore for every uniformly bounded sequences ψǫ, wǫ : B1 → R
2 holds either

(1) supB1×[0,T ]

∣

∣k~q,ψǫ
ǫ
(x, t) − wǫ(x, t)

∣

∣→ 0 or

(2) there is a constant C, independent of ǫ, σ and T such that

sup
B1×[0,T ]

∣

∣k~q,ψǫ
(x, t) − wǫ(x, t)

∣

∣ ≤ C sup
B 1

ǫ
×[0,T ]

|G~q(wǫ, ψǫ) − wǫ|,

where ~q = (ǫ, σ, α).
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Now we can devote ourselves to prove Theorem 4.1. We divide the proof in to two steps.
We first consider solutions to the equation

Pk +
∇uW (k + u~q)

2ǫ2
= ∆u~q in B 1

ǫ
(51)

k(x, t) = 0 on ∂B 1

ǫ
(52)

k(x, 0) = 0.(53)

where Pk = ∂k
∂t

−∆k. In order to simplify the notation we will simply denote this solution
by kǫ (instead of k~q,u~q

) and show that

lim
ǫ→0

sup
B1×[0,∞]

|kǫ(x, t)| = 0.

Then we conclude the proof of Lemma 4.1 by showing that for every fixed ǫ there is a
sequence 0 < tn ր ∞ satisfying

lim
n→∞

sup
B1

|kǫ(x, tn) − uǫ + u~q| = 0.

Lemma 4.2. Let kǫ be the solution to (51)-(52)-(53). Then limǫ→0 supB1×[0,∞] |kǫ(x, t)| =
0.

Proof. Suppose that

sup
B1×[0,∞)

|kǫ| 6→ 0.

Lemma 4.1 implies that

sup
B1×[0,∞)

|kǫ| ≤ C sup
B1×[0,∞)

|Ḡ~q(0, 0)|.

Set Sǫ = supB1×[0,∞) |Ḡ~q(0, 0)| (possibly infinity). Fix δ > 0 and notice that, by definition

of supremum, there is a tǫ such that supx∈B1
|G~q(0, 0)(x, tǫ)| − Sǫ| ≤ δ (or when Sǫ = ∞

pick tǫ such that supx∈B1
|G~q(0, 0)(x, tǫ)| ≥ δ−1).

We will show that, independently of δ, holds supx∈B1
|G~q(0, 0)|(x, tǫ) → 0 as ǫ→ 0 (notice

that this immediately contradicts Sǫ = ∞). Fix T > 0. We find separately bounds for t ≤ T

and t ≥ T .
Let

I1(x, t) =

∫ t

0

∫

{|x|≥ǫα}
HB1

(x, y, t− s)

∣

∣

∣

∣

−∇uW (φǫ)

ǫ2
+ ∆φǫ

∣

∣

∣

∣

dyds

I2(x, t) =

∫ t

0

∫

{ǫα−E≤|x|≤ǫα}
HB1

(x, y, t− s)

∣

∣

∣

∣

−∇uW (u~q)

ǫ2
+ ηǫα∆φǫ

+ ∆(ηǫα) (hǫσ − φǫ) + ∇(ηǫα) ·D (uǫσ − φǫ)| dyds

Notice that for |x| ≤ ǫα − E

−∇uW (u~q)

ǫ2
+ ∆u~q =

−∇uW (uǫσ)

ǫ2
+ ∆uǫσ = 0.

Hence, the definition of G~q(0, 0)(x, t) implies

|G~q(0, 0)|(x, t) ≤ I1(x, t) + I2(x, t).

Now we are going to find bound over each of these integrals.
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• Bounds over I1:
Since ǫ < ǫα (when ǫ < 1) we have that for every |x| ≥ ǫα the function η(x) ≡ 0

and for such x

∆φǫ(x) =
1

ǫ2

(

ǫ2∆η6 ζ31

(

d0

(x

ǫ

))

+ η6ζ
′′
31

(

d0

(x

ǫ

))

+ 2ǫ∇η6 · ∇d0

(x

ǫ

)

ζ ′6
(

d0

(x

ǫ

))

+ ǫ2∆η5ci

+

3
∑

i=1

ǫ2∆η2iζii+1

(

di

(x

ǫ

))

+ η2iζ
′′
ii+1

(

di

(x

ǫ

))

+2ǫ∇η2i · ∇di
(x

ǫ

)

ζ ′ii+1

(

di

(x

ǫ

))

+ ǫ2∆η2i−1ci

)

.

Since the functions ηj depend only on the angle θ we have that

∆ηj =
η′′j
r2

and

|∇ηj | ≤|η′j |.
In particular for |x| ≥ ǫα

|∆ηj | ≤
4|η′′j |
ǫ2α

and

|∇ηj | ≤|η′j |.
Recall that for θ ∈

[

θi − δ
2 , θi +

δ
2

]

we have η2i ≡ 1 and ηj ≡ 0 for every j 6= 2i.
Then

(54)
∇uW (φǫ)

ǫ2
+ ∆φǫ = 0 for θ ∈

[

θi −
δ

2
, θi +

δ

2

]

.

Now we need to find bounds for θ ∈
[

θi +
δ
2 , θi+1 − δ

]

. Notice first that

|∆η(θ)| =

∣

∣

∣

∣

η′′(θ)
r2

∣

∣

∣

∣

≤ K

r2
≤ K

ǫ2α
for |x| ≥ ǫα(55)

|∇η| =

∣

∣

∣

∣

η′

r

∣

∣

∣

∣

≤ K

r
≤ K

ǫα
for |x| ≥ ǫα.(56)

Notice also that only
η2i, η2i−1 6= 0

and
η2i + η2i−1 = 1.

Hence

∆φǫ =
1

ǫ2

(

ǫ2∆η2i(θ)ζii+1

(

di

(x

ǫ

))

+ η2i(θ)ζ
′′
ii+1

(

di

(x

ǫ

))

+2ǫ∇η2i(θ) · ∇di
(x

ǫ

)

ζ ′ii+1

(

di

(x

ǫ

))

+ ǫ2∆η2i−1(θ)ci

)

= ∆η2i(θ)
(

ζii+1

(

di

(x

ǫ

))

− ci

)

+ η2i(θ)
−∇uW (ζii+1)

ǫ2

(

di

(x

ǫ

))

+2
1

ǫ
∇η2i(θ) · ∇di

(x

ǫ

)

ζ ′ii+1

(

di

(x

ǫ

))

.
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Using Lemma 2.1 we have that there are constants K, c > 0 such that

(57)

∣

∣

∣

∣

∇uW (φǫ)

ǫ2
+ ∆φǫ

∣

∣

∣

∣

≤ K
e−c

di
ǫ

ǫ2
for |x| ≥ ǫα and θ ∈

[

θi +
δ

2
, θi+1 −

δ

2

]

.

Furthermore, for |x| > ǫα and θ ∈
[

θi +
δ
2 , θi+1 − δ

2

]

we have

|di| ≥ ǫα sin δ.

Hence,

(58)

∣

∣

∣

∣

∇uW (φǫ)

ǫ2
+ ∆φǫ

∣

∣

∣

∣

≤ K
e−c

ǫα
sin δ
ǫ

ǫ2
for |x| > ǫα and θ ∈

[

θi +
δ

2
, θi+1 −

δ

2

]

.

Now we consider the two cases described earlier:
(1) Suppose that t ≤ T . Equations (54) and (58) imply

I1(x, t) ≤ K
e−c

ǫα
sin δ
ǫ

ǫ2

∫ t

0

∫

{|x|≥ǫα}
HB1

(x, y, t− s)dyds.

Using Lemma 6.1 we have

(59) I1 ≤ K
e−c

ǫα
sin δ
ǫ

ǫ2
.

(2) Suppose that t ≥ T

Let

fǫ =

∣

∣

∣

∣

∇uW (φǫ)

ǫ2
+ ∆φǫ

∣

∣

∣

∣

and fix δ > 0. Now we divide I1 in the three following integrals:

I11 =

∫ t−δ

0

∫

{|y|≥ǫα}
T

{|x−y|≤
√

t−s
t

}
HB1

(x, y, t− s)fǫ(y, s)dyds,

I12 =

∫ t−δ

0

∫

{|y|≥ǫα}T{|x−y|≥
√

t−s
t

}
HB1

(x, y, t− s)fǫ(y, s)dyds,

I13 =

∫ δ

t−δ

∫

{|y|≥ǫα}
HB1

(x, y, t− s)fǫ(y, s)dyds.

Then

I1 = I11 + I12 + I13.

By Lemma 6.1 we have that |HB1
(x, y, t− s)| ≤ C

(t−s) , then

I11 ≤ C

∫ t−δ

0

sup|y|≥α fǫ
(t− s)

(t− s)

t2
πds =

sup|y|≥α fǫ
t2

(t− δ) ≤ C
e−c

di
ǫ

tǫ2
.

For |x− y| ≥
√
t−s
t

we have |HB1
(x, y, t− s)| = O

(

[

1
t

]−∞)
. In particular there

is a constant C such that |HB1
(x, y, t− s)| ≤ C

t
, then

I12 ≤
∫ t−δ

0

C

t

∫

B1

fǫ(y)dy ≤ t
C

t

∫

B1

fǫ(y)dy ≤ C
e−c

di
ǫ

ǫ2
.
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Finally, using Lemma 6.1 we have

I13 ≤ δ sup fǫ ≤ C
e−c

di
ǫ

ǫ2
.

Combining the previous estimates we obtain

(60) I1 ≤ C
e−c

di
ǫ

ǫ2

• Bounds over I2:
Using the definitions of u~q, φǫ and Lemmas 6.2-2.3 we have

∣

∣

∣

∣

−∇uW (u~q)

ǫ2
+ ηǫα∆φǫ

∣

∣

∣

∣

≤ C

ǫ2

|∆(ηǫα) (hǫσ − φǫ) | ≤
C

E2

|∇(ηǫα) ·D (uǫσ − φǫ)| ≤
C

Eǫ
.

Hence:
(1) For t ≤ T

I2 ≤ C

∫ t

0

∫

ǫα−E≤|x|≤ǫα
H(x, y, t− s)

(

1

ǫ2
+

1

E2
+

1

Eǫ

)

dyds

Theorem 6.1 implies that for t − s ≥ ǫm+2 there is a constant C independent
of x, y such that |H(x, y, t − s)| ≤ C

ǫm+2 . Moreover, by definition ǫα ≤ E =

ǫα(2 − ǫ2m+4) ≤ 2ǫα. Hence

I2 ≤
∫ t−ǫm+2

0

∫

ǫα−E≤|x|≤ǫα

C

ǫm+2

(

1

ǫ2
+

1

ǫ2α
+

1

ǫ1+α

)

dyds

+

∫ t

t−ǫm+2

∫

ǫα−E≤|x|≤ǫα
HB1

(x, y, t− s)
1

ǫ2

(

1 + ǫ2−2α + ǫ1−α
)

dyds.

≤ C

ǫm+4

∫ t−ǫm+2

0

(

1 + ǫ2−2α + ǫ1−α
)

π(ǫ2α − (ǫα − E)2)ds

+
C

ǫ2

∫ t

t−ǫm+2

∫

B1

H(x, y, t− s)dyds.

Using that t ≤ T , Lemma 6.1 and the definition of E we conclude

I2 ≤ C

ǫm+4
E(2ǫα − E) +

C

ǫ2
ǫm+2

(61) ≤ C

ǫm+4
ǫαǫ2m+4−α + Cǫm ≤ Cǫm.

(2) For t ≥ T

The previous estimates show that the integrand of I2 can be bounded by C
ǫ2

.
Dividing up the integral as we did for I1 we obtain
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I2 ≤
∫ t−ǫm+2

0

∫

{ǫα−E≤|y|≤ǫα}T{|x−y|≤
√

t−s
t

}
HB1

(x, y, t− s)
C

ǫ2
dyds

+

∫ t−ǫm+2

0

∫

{ǫα−E≤|y|≤ǫα }
T

{|x−y|≥
√

t−s
t

}
HB1

(x, y, t− s)
C

ǫ2
dyds

+

∫ t

t−ǫm+2

∫

{ǫα−E≤|y|≤ǫα}
HB1

(x, y, t− s)
C

ǫ2
dyds.

Using Hölder’s inequality in the first integral for p < 2 we get

I2 ≤
∫ t−ǫm+2

0

(

∫

{ǫα−E≤|y|≤ǫα}

C

ǫ2p
dy

) 1

p
(

∫

{|x−y|≤
√

t−s
t

}
Hq
B1

(x, y, t− s)dy

) 1

q

ds

+

∫ t−ǫm+2

0

∫

{ǫα−E≤|y|≤ǫα }
T

{|x−y|≥
√

t−s
t

}
HB1

(x, y, t− s)
1

ǫ2
dyds+ C

ǫm+2

ǫ2
.

As before, Theorem 6.1 implies |HB1
| ≤ C

t−s and that for |x − y| ≥ t−s
t

holds

HB1
(x, y, t− s) = O((1

t
)−∞), therefore

I2 ≤C
∫ t−ǫm+2

0

(

Cǫ2m+4

ǫ2p

)
1

p 1

t− s

(

t− s

t2

) 1

q

ds+

∫ t−ǫm+2

0

∫

{ǫα−E≤|y|≤ǫα }

C

t

ǫ2m+4

ǫ2
+ C

ǫm+2

ǫ2

≤C
(

ǫ2m+4−2p
)

1

p
t

1

q − ǫ
m+2

q

t
2

q

+ t
C

t
ǫ2m+2 +Cǫm.

Therefore, for t ≥ T and p < 2 holds

(62) I2(x, t) ≤ C

(

ǫ
2m+4−2p

p

T
1

q

+ ǫ2 + ǫ2

)

≤ Cǫ2

Now we can conclude the result of Lemma by combining (59), (60), (61) and (62). We
conclude that

sup
B1×[0,∞)

|kǫ| ≤ C
e−c

ǫα
sin δ
ǫ

ǫ2
+ Cǫm ≤ Cǫm,

where C depends on α and m. This implies the desired Lemma. �

To finish the proof of Theorem 4.1 we need the following Lemma

Lemma 4.3. Fix ǫ > 0 and let kǫ be the solution (51)- (52) -(53). Then, there is a sequence
of times tn ր ∞ such that

lim
n→∞

sup
B1

|kǫ(x, tn) − uǫ + u~q| = 0

Proof. Lemma 6.3 in the appendix shows that for every t > 0 there is a constant C such
that |Dkǫ(x, t)| ≤ C

ǫ
. Similarly, by taking derivatives on the equation, we can find bounds

over the second and third space derivatives (this bounds will depend on ǫ). Since ǫ is
fixed, using Arzela-Ascoli’s Theorem we conclude for every sequence tn ր ∞ there is a
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subsequence kǫ(x, tn) that converges in C2. Let us denote this limit by k∞ǫ (x) and the
convergent subsequence {tn}n∈N as before.

We will show that k∞ǫ (x) satisfies

(63) ∆k∞ǫ (x) =
∇uW (k∞ǫ + u~q)

ǫ2
− ∆u~q for x ∈ B1

(64) k∞ǫ |∂B1
= 0.

First we need to show that for every τ > 0 the sequence kǫ(x, tn + τ) also converges in
C2 to k∞ǫ (x). Define

J (t) =

∫

B1

( |∇kǫ|2
2

+
W (kǫ + u~q)

ǫ2
+ kǫ · ∆u~q

)

dx.

Using Theorem 6.2 and the definition of u~q it is easy to see that J (t) is bounded below
for every t. Moreover, taking time derivative we have

dJ
dt

=

∫

B1

(

∇kǫ · ∇(kǫ)t +
∇W (kǫ + u~q)

ǫ2
· (kǫ)t + ∆u~q · (kǫ)t

)

dx

=

∫

B1

(

−∆kǫ +
∇W (kǫ + u~q)

ǫ2
+ ∆u~q

)

· (kǫ)tdx

= −
∫

B1

|(kǫ)t|2dx.

Therefore J is bounded below and decreasing, hence it converges. Moreover for every fixed
τ > 0

∫ tn+τ

tn

∫

B1

|kǫ|2t ds = J (tn) − J (tn + τ) → 0.

Since for every fixed x we can write kǫ(x, tn + τ) − kǫ(x, tn) =
∫ tn+τ
tn

(kǫ)tds, we have that

∫

B1

|kǫ(x, tn+τ)−kǫ(x, tn)|dx ≤
∫ tn+τ

tn

∫

B1

|(kǫ)t|dxds ≤ C

(∫ tn+τ

tn

∫

B1

|(kǫ)t|2dxds
)

1

2

→ 0 as n→ ∞.

Hence kǫ(x, tn + τ) − kǫ(x, tn) converges to 0 almost everywhere. Let us show that this
convergence is also uniform. Suppose that supx∈B1

|kǫ(x, tn + τ)− kǫ(x, tn)| 6→ 0 as n→ ∞.
Then there is a δ > 0 and a subsequence of times such that

(65) sup
x∈B1

|kǫ(x, tn + τ) − kǫ(x, tn)| ≥ δ.

As before, there is subsequence of these {tn} that converges uniformly. Since it converges
almost everywhere to 0, the uniform limit must be 0 contradicting (65).

Since J (tn)−J (tn+ τ) → 0, from the definition for J and the previous estimate we can
see that

∫

B1

(|∇kǫ|2(x, tn) − |∇kǫ|2(x, tn + τ))dx → 0 as n→ ∞.

As above we can conclude that this convergence is almost everywhere and therefore uniform.
Standard parabolic estimates imply that also kǫ(x, tn + τ) − kǫ(x, tn) in the C2 norm.
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Now we can prove that k∞ǫ is a solution to the elliptic equation (63). Since kǫ solves
equation (51)-(53)-(52), we have that for any ϕ ∈ C∞(B1)

∫

B1

(kǫ(y, tn + 1) − kǫ(y, tn))ϕ(y)dy =

∫ tn+1

tn

∫

B1

(

∆kǫ(y, tn + τ) − ∇uW (k∞ǫ )

ǫ2
(y, tn + τ) − ∆u~q

)

ϕ(y)dydτ,

Letting n→ ∞ we get
∫

B1

(

∆k∞ǫ − ∇uW (k∞ǫ )

ǫ2
− ∆u~q

)

ϕ(y)dy = 0

Moreover, since for every t holds kǫ(x, t)|∂B1
= 0 it must hold k∞ǫ |∂B1

= 0. Uniqueness of
solution implies that necessarily k∞ǫ ≡ uǫ − u~q, which proves the Lemma. �

Now the proof of Theorem 4.1 is direct

Proof of Theorem 4.1
Fix ǫ > 0 and m > 0. Consider tn as in Lemma 4.3, then

sup
B1

|uǫ − u~q| ≤ sup
B1

|uǫ(x) − u~q − kǫ(x, tn)| + sup
B1×[0,∞)

|kǫ(x, t)|

≤ sup
B1

|uǫ(x) − u~q − kǫ(x, tn)| +Cǫm.

Taking tn → ∞ we have

sup
B1

|uǫ − u~q| ≤ Cǫm.

Recalling the definition of u~q we have the result. �

It is easy to see that the size of the inner ball in Theorem 4.1 (that is the ball where
uǫ(x) − uσ

(

σx
ǫ

)

converges to 0) can be extended. Namely, we let

ũ~q(y) = η̃ǫα(y)φǫ(y) + (1 − η̃ǫα(y))uσ(y),

where η̃ : R → R is a positive function such that η̃(x) = 0 for |x| ≤ 1 and η̃(x) = 2 for
|x| ≥ 1 and

η̃ǫα(y) = η̃

(

1

2Ẽ
|y| + 2 − 2ǫα

2Ẽ

)

,

with Ẽ = 4ǫα − ǫ2m+4−α. As before, α > 0.
Notice that

ũ~q(x) =

{

φǫ(x) for |x| ≥ 2ǫα

uσ
(

σx
ǫ

)

for |x| ≤ 2ǫα − E
.

Hence, following the proof of Theorem 4.1, but changing u~q for ũ~q we have

Corollary 4.1. Fix 0 < α < 1. Let 0 < σ ≤ 2ǫ1−α. Then for every m > 0 there is a
constant C (that might depend on α and m) such that

•
sup

|x|≥2ǫα
|uǫ − φǫ| ≤ Cǫm.

•
sup

|x|≤ǫα

∣

∣

∣
uǫ(x) − uσ

(σx

ǫ

)∣

∣

∣
≤ Cǫm.
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Using Lemma 2.4 we can also prove

Corollary 4.2. Fix 0 < α < 1. Let 0 < σ ≤ 2ǫ1−α. Then for every m > 0 there is a
constant C (that might depend on α and m) such that

•
sup

|x|≥ǫα
|Duǫ −Dφǫ| ≤ Cǫm.

•
sup

|x|≤ǫα

∣

∣

∣
Duǫ(x) −

σ

ǫ
Duσ

(σx

ǫ

)∣

∣

∣
≤ Cǫm.

Proof. First we prove the first inequality of the corollary. We consider the function uǫ − φǫ
in the domain B1 \B ǫ

2
. Then

∆(uǫ − φǫ) =
∇W (uǫ) −∇W (φǫ)

ǫ2
− ∆φǫ +

∇W (φǫ)

ǫ2
.

Using Lemma 2.3 we have for every x ∈ B1− ǫα

2

\Bǫα

|D(uǫ − φǫ)|2(x) ≤C



 sup
|x|≥ ǫα

2

|uǫ − φǫ| sup
|x|≥ ǫα

2

∣

∣

∣

∣

∇W (uǫ) −∇W (φǫ)

ǫ2
− ∆φǫ +

∇W (φǫ)

ǫ2

∣

∣

∣

∣

+
1

ǫα
sup

|x|≥ ǫα

2

|uǫ − φǫ|2




≤C





M

ǫ2
sup

|x|≥ ǫα

2

|uǫ − φǫ|2 + |uǫ − φǫ| sup
|x|≥ ǫα

2

∣

∣

∣

∣

−∆φǫ +
∇W (φǫ)

ǫ2

∣

∣

∣

∣

+
1

ǫα
sup

|x|≥ ǫα

2

|uǫ − φǫ|2


 .

Using Theorem 4.1 and the estimates for
∣

∣

∣−∆φǫ + ∇W (φǫ)
ǫ2

∣

∣

∣ in its proof we have for m > 0

a constant C (that depends on m and α) such that

|D(uǫ − φǫ)|2(x) ≤ Cǫm,

for x ∈ B1− ǫα

2

\ Bǫα . In order to find bounds for x ∈ B1 \ B1− ǫα

2

we consider a smooth

function η such that η(x) ≡ 1 for x ≥ 3
4 and η ≡ 0 for x ≤ 1

2 . Then η(uǫ − φ) satisfies

∆(η(uǫ − φ)) = ∆η(uǫ − φ) + ∇η∇(uǫ − φ) + η

(∇W (uǫ) −∇W (φǫ)

ǫ2
− ∆φǫ +

∇W (φǫ)

ǫ2

)

.

Lemma 2.4, Theorem 4.1 and the previous estimates imply that

|D(η(uǫ − φ))|2(x) = |D(uǫ − φ)|2(x) ≤ Cǫm for
3

4
≤ |x| ≤ 1,

finishing the proof of the first inequality.
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Now we need to prove the second inequality. Let uǫσ(x) = uσ
(

σx
ǫ

)

. To prove the second
estimate we consider uǫ(x) − uǫσ(x) in B 3ǫα

2

. Since

∆(uǫ − uǫσ) =
∇W (uǫ) −∇W (uǫσ)

ǫ2
,

Lemma 2.3 implies for every x ∈ Bǫα

|D(uǫ − uǫσ)|2 ≤C



 sup
|x|≤ ǫα

2

|uǫ − uǫσ| sup
|x|≤ ǫα

2

∣

∣

∣

∣

∇W (uǫ) −∇W (uǫσ)

ǫ2

∣

∣

∣

∣

+
1

ǫα
sup

|x|≤ ǫα

2

|uǫ − uǫσ|2




≤C
(

1

ǫ2
+

1

ǫα

)

sup
|x|≤ ǫα

2

|uǫ − uǫσ|2

Corollary 4.1 implies that for every m > 0 there is a constant C such that

|D(uǫ − uǫσ)|2 ≤ Cǫm,

which finishes the proof. �

5. Proof of Theorem 1.1

Let

(66) vǫ(x) = uǫ(ǫx).

It holds

−∆vǫ + ∇uW (vǫ) = 0 for x ∈ B 1

ǫ
(67)

vǫ(x) = φ(x) for x ∈ ∂B 1

ǫ
.(68)

We define the following sequence of continuous function ṽǫ : R
2 → R

2

(69) ṽǫ(x) =

{

uǫ(ǫx) for |x| ≤ 1
ǫ

φ(x) if |x| ≥ 1
ǫ

.

We will divide the proof of Theorem 1.1 into two different theorems. First we prove

Theorem 5.1. There is a subsequence of ṽǫ such that ṽǫ → v uniformly on compact sets
as ǫ→ 0 and v satisfies

(70) − ∆v + ∇uW (v) = 0 for x ∈ R
2

(71) lim
|x|→∞

|v(x) − φ(x)| = 0.

Proof. We will use the following strategy to prove the Theorem

(1) Using the results of Section 4, we show that ṽǫ is a Cauchy sequence. Therefore, ṽǫ
has a uniform limit v.

(2) Using the definition of ṽǫ and the first step we show that the limit v satisfies (71).
(3) Finally, by representing vǫ via Green’s formula and taking limits, we conclude that

v satisfies (70).

Now we start with the proof of each of these steps:
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(1) {ṽǫ} is a Cauchy sequence in the sup norm.
Consider δ > 0 and take 0 < σ < ǫ < 1. We will show that there is an ǫ0 such

that for every 0 < σ < ǫ < ǫ0

|ṽǫ(x) − ṽσ(x)| ≤ δ for every x ∈ R
2.

• If |x| ≤ ǫ−
1

2 :
By definition of ṽǫ and uǫ we have that

ṽǫ(x) − ṽσ(x) = uǫ(ǫx) − ṽσ

(ǫx

ǫ

)

.

Since σ < ǫ < ǫ
1

2 , Corollary 4.1 implies that there is a ǫ0 such that for every
ǫ < ǫ0

(72) |ṽǫ(x) − ṽσ(x)| ≤ δ for |x| ≤ ǫ−
1

2 .

• If |x| ≥ ǫ−
1

2 and |x| ≥ σ−
1

2 :
By definition we have that

φ(x) = φǫ(ǫx) = φσ(σx).

This implies

(73) |ṽǫ(x) − ṽσ(x)| ≤ |ṽǫ(x) − φǫ(ǫx)| + |φσ(σx) − ṽσ(x)|.
If |x| ≥ ǫ−1, by definition ṽǫ(x) = φǫ(ǫx), hence

(74) |ṽǫ(x) − φǫ(ǫx)| = 0.

For ǫ−
1

2 ≤ |x| ≤ ǫ−1, by definition ṽǫ(x) = uǫ(ǫx). It also holds that

|ǫx| ≥ ǫǫ−
1

2 . Therefore, Theorem 4.1 implies that there is an ǫ1 such that for
every ǫ < ǫ1

(75) |ṽǫ(x) − φǫ(ǫx)| ≤
δ

2
.

Combining (74) and (75) we have that for ǫ < ǫ1

(76) |ṽǫ(x) − φǫ(ǫx)| ≤
δ

2
for |x| ≥ ǫ−

1

2 and t < T.

Since σ < ǫ < ǫ1 it also holds that

(77) |ṽσ(x) − φσ(σx)| ≤
δ

2
for |x| ≥ σ−

1

2 .

Equations (73), (76)and (77) imply that

(78) |ṽǫ(x) − ṽσ(x)| ≤ δ for |x| ≥ ǫ−
1

2 , |x| ≥ σ−
1

2 .

• If ǫ−
1

2 ≤ |x| ≤ σ−
1

2 :
Let σ̃ = 1

|x|2 . As before,

φ(x) = φǫ(ǫx) = φσ̃(σ̃x).

Then, we have

|ṽǫ(x) − ṽσ(x)| ≤ |ṽǫ(x) − φǫ(ǫx)| + |φσ̃(σ̃x) − uσ̃(σ̃x)|

(79) +

∣

∣

∣

∣

uσ̃(σ̃x) − ṽσ

(

σ̃x

σ̃

)∣

∣

∣

∣

.



GINZBURG-LANDAU EQUATION WITH A THREE WELL POTENTIAL 25

As before if |x| ≥ ǫ−1, by definition

(80) |ṽǫ(x) − φǫ(ǫx)| = 0.

If ǫ−
1

2 ≤ |x| ≤ ǫ−1, by definition ṽǫ(x) = uǫ(ǫx). Hence, Theorem 4.1 implies
that there is a ǫ2 such that for every ǫ < ǫ2

(81) |ṽǫ(x) − φǫ(ǫx)| ≤
δ

3
.

Combining (80) and (81) we have for ǫ < ǫ2

(82) |ṽǫ(x) − φǫ(ǫx)| ≤
δ

3
for ǫ−

1

2 ≤ |x| ≤ σ−
1

2 .

By the definition of σ̃ we have that |σ̃x| = 1
|x| = σ̃

1

2 and σ̃ ≤ ǫ. Hence, using

Theorem 4.1 for σ̃ ≤ ǫ < ǫ2 we have

(83) |φσ̃(σ̃x) − uσ̃(σ̃x)| ≤
δ

3
for ǫ−

1

2 ≤ |x| ≤ σ−
1

2 .

Finally, as |σ̃x| = σ̃
1

2 and σ ≤ σ̃ ≤ σ̃
1

2 , Corollary 4.1 implies that there is a ǫ3
such that

(84)

∣

∣

∣

∣

uσ̃(σ̃x) − ṽσ

(

σ̃x

σ̃

)∣

∣

∣

∣

≤ δ

3
for ǫ−

1

2 ≤ |x| ≤ σ−
1

2 .

Equations (82), (83) and (84) imply that

(85) |ṽǫ(x) − ṽσ(x)| ≤ δ for ǫ−
1

2 ≤ |x| ≤ σ−
1

2 .

Combining equations (72), (78) and (85) we conclude that ṽǫ : R
2 → R

2 is a
Cauchy sequence in the sup norm, hence there is a continuous function v(x) such
that ṽǫ → v uniformly in R

2 as ǫ→ 0.

(2) v satisfies (71): Consider any sequence of points xn such that |xn| → ∞. Showing
that limn→∞ |v(xn) − φ(xn)| = 0 is equivalent to (71). Let ǫn = 1

|xn| . Then for any

β > 0 the definition of ṽǫn implies:

|v(xn) − φ(xn)| =|v(xn) − ṽǫn(xn)|
≤ sup

R2

|v(x) − ṽǫn(x)|

Taking n→ ∞, step (1) implies that

lim
n→∞

|v(xn) − φ(xn)| → 0,

which finishes the proof.

(3) v satisfies (70)
Let us fix a ball of radius ρ in R

2.
In every fixed ball Bρ we can use Green’s formula to represent vǫ. We have for

ǫ ≤ 1
ρ

that

vǫ(x) = −
∫

∂Bρ

vǫ(y)
∂G

∂ν
(x, y)dS(y) +

∫

Bρ

∇uW (vǫ)(y)G(x, y)dy
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Since in Bρ we have vǫ → v uniformly as ǫ→ 0, the function v satisfies

v(x) = −
∫

∂Bρ

v(y)
∂G

∂ν
(x, y)dS(y) +

∫

Bρ

∇uW (v)(y)G(x, y)dy.

Hence,

−∆v + ∇uW (v) = 0 for x ∈ Bρ.
Since this is true for arbitrary x and ρ we have that v satisfies (70) for every

x ∈ R
2, which concludes the proof of the Theorem.

�

Now we finish the Proof of Theorem 1.1 by showing

Theorem 5.2. Let

V =

{

w ∈ C1 :

∫

R2

|Dw −Dφ|dx,
∫

R2

|w − φ|dx <∞
}

.

Define the energy functional

(86) G(w) =

{ ∫

R2

(

|Dw|2 +W (w) − |Dφ|2 −W (φ)
)

dy if w ∈ V
∞ otherwise.

The energy G is bounded below and the solution v described by Theorem 5.1 minimizes
G. That is

G(v) = inf
w∈C1

G(w).

Proof. Define

(87) G̃ǫ(w) =

{

∫

B
ǫ−1

|Dw|2 +W (w)dy if w ∈ H1(Bǫ−1) and w|∂Bǫ−1
(x) = φǫ(x)

∞ otherwise.

and consider vǫ as in the previous Theorem. We will divide the proof of Theorem 5.2 into
the following steps:

(1) vǫ is a minimizer for G̃ǫ among wǫ ∈ H1 (Bǫ−1). This implies that vǫ minimizes

Gǫ(w) = G̃ǫ(w) − G̃ǫ(φ) in the same class of functions.
(2) The sequence Gǫ(vǫ) is convergent.
(3) v ∈ V.
(4) For every w in V there is a sequence wǫ such that w ∈ H1(Bǫ−1), w|∂Bǫ−1

(x) = φǫ(x)

and Gǫ(wǫ) → G(w).
(5) Gǫ(vǫ) → G(v).
(6) Conclude the result using the previous steps.

Proof of Step (1): Notice first that for every wǫ ∈ H1 (Bǫ−1) satisfying wǫ|∂Bǫ−1
= φ(x)

holds that wǫǫ(x) = wǫ(ǫx) ∈ H1(B1) and wǫǫ|∂B1
= φǫ(x). Recall that uǫ is a minimizer for

Iǫ(defined by (15)), that is for every wǫǫ ∈ H1(B1) satisfying wǫǫ|∂B1
= φǫ(x) holds

Iǫ(uǫ) ≤ Iǫ(wǫǫ).
Dividing by ǫ and changing variables holds

1

ǫ
Iǫ(uǫ) =

∫

B 1
ǫ

(

|Dvǫ|2 +W (vǫ)
)

dy ≤ 1

ǫ
Iǫ(wǫǫ) =

∫

B 1
ǫ

(

|Dwǫ|2 +W (wǫ)
)

dy,
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or equivalently

G̃ǫ(vǫ) ≤ G̃ǫ(wǫ), for every wǫ ∈ H1
(

B 1

ǫ

)

.

By subtracting G̃ǫ(φ) we get

Gǫ(vǫ) ≤ Gǫ(wǫ), for every wǫ ∈ H1
(

B 1

ǫ

)

.

Proof of Step (2): Fix 0 < ǫ < σ. We need to study separately two cases: σ ≥ √
ǫ and

σ <
√
ǫ.

• σ ≥ √
ǫ

|Gǫ(vǫ) −Gσ(vσ)| ≤

∣

∣

∣

∣

∣

∣

∫

B 1
ǫ
\B 1

σ

(

|Dvǫ|2 − |Dφ|2 +W (vǫ) −W (φ)
)

dx

+

∫

B 1
σ

(

|Dvǫ|2 − |Dvσ|2 +W (vǫ) −W (vσ)
)

dx

∣

∣

∣

∣

∣

∣

≤
∫

B 1
ǫ
\B 1√

ǫ

(∣

∣|Dvǫ|2 − |Dφ|2
∣

∣+ |W (vǫ) −W (φ)|
)

dx

+

∫

B 1√
ǫ

\B 1
σ

(∣

∣

∣
|Dvǫ|2 − |Dv√ǫ|2

∣

∣

∣
+
∣

∣

∣
W (vǫ) −W (v√ǫ)

∣

∣

∣

)

dx

+

∫

B 1√
ǫ

\B 1
σ

(∣

∣

∣
|Dv√ǫ|2 − |Dφ|2

∣

∣

∣
+
∣

∣

∣
W (v√ǫ) −W (φ)

∣

∣

∣

)

dx

+

∫

B 1
σ

(∣

∣|Dvǫ|2 − |Dvσ|2
∣

∣+ |W (vǫ) −W (vσ)|
)

dx.

Let uǫσ(x) = vσ
(

x
ǫ

)

. Changing variables we have

|Gǫ(vǫ) −Gσ(vσ)| ≤
∫

B1\B√
ǫ

(

∣

∣|Duǫ|2 − |Dφǫ|2
∣

∣+

∣

∣

∣

∣

W (uǫ) −W (φǫ)

ǫ2

∣

∣

∣

∣

)

dx

+

∫

B√
ǫ\B ǫ

σ

(

∣

∣

∣

∣

|Duǫ|2 −
∣

∣

∣Duǫ√ǫ

∣

∣

∣

2
∣

∣

∣

∣

+

∣

∣

∣

∣

∣

W (uǫ) −W (uǫ√
ǫ
)

ǫ2

∣

∣

∣

∣

∣

)

dx

+

∫

B1\B√
ǫ

σ

(

∣

∣

∣|Du√ǫ|2 − |Dφ√ǫ|2
∣

∣

∣+

∣

∣

∣

∣

W (u√ǫ) −W (φ√ǫ)

ǫ

∣

∣

∣

∣

)

dx

+

∫

B ǫ
σ

(

∣

∣|Duǫ|2 − |Duǫσ|2
∣

∣+

∣

∣

∣

∣

W (uǫ) −W (uσ)

ǫ2

∣

∣

∣

∣

)

dx

Notice that since σ ≥ √
ǫ we have that ǫ

σ
≤ √

ǫ. Then using Theorem 4.1 and
Corollaries 4.1 and 4.2 we have that for every m there is a constant, that depends
on m, such that

(88) |Gǫ(vǫ) −Gσ(vσ)| ≤ Cǫm.
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• σ ≤ √
ǫ

|Gǫ(vǫ) −Gσ(vσ)| ≤
∫

B 1
ǫ
\B 1

σ

(∣

∣|Dvǫ|2 − |Dφ|2
∣

∣+ |W (vǫ) −W (φ)|
)

dx

+

∫

B 1
σ

(∣

∣|Dvǫ|2 − |Dvσ|2
∣

∣+ |W (vǫ) −W (vσ)|
)

dx

≤
∫

B 1
ǫ
\B 1

σ

(∣

∣|Dvǫ|2 − |Dφ|2
∣

∣+ |W (vǫ) −W (φ)|
)

dx

+

∫

B 1
σ
\B 1√

ǫ

(∣

∣|Dvǫ|2 − |Dφ|2
∣

∣+ |W (vǫ) −W (φ)|
)

dx

+

∫

B 1
σ
\B 1√

ǫ

(∣

∣|Dφ|2 − |Dvσ|2
∣

∣+ |W (vσ) −W (φ)|
)

dx

+

∫

B 1√
ǫ

(∣

∣|Dvǫ|2 − |Dvσ|2
∣

∣+ |W (vǫ) −W (vσ)|
)

dx.

Let uǫσ(x) = vσ
(

x
ǫ

)

. Changing variables we have

|Gǫ(vǫ) −Gσ(vσ)| ≤
∫

B1\B√
ǫ

(

∣

∣|Duǫ|2 − |Dφǫ|2
∣

∣+

∣

∣

∣

∣

W (uǫ) −W (φǫ)

ǫ2

∣

∣

∣

∣

)

dx

+

∫

B1\B σ√
ǫ

(

∣

∣|Duσ|2 − |Dφσ|2
∣

∣+

∣

∣

∣

∣

W (uσ) −W (φσ)

σ2

∣

∣

∣

∣

)

dx

+

∫

B√
ǫ

(

∣

∣|Duǫ|2 − |Duǫσ|2
∣

∣+

∣

∣

∣

∣

W (uǫ) −W (uǫσ)

ǫ2

∣

∣

∣

∣

)

dx.

Since σ > ǫ, we have that σ√
ǫ
≥ √

σ. Then, Theorem 4.1 and Corollaries 4.1 and 4.2

we have that for every m there is a constant, that depend on m, such that

(89) |Gǫ(vǫ) −Gσ(vσ)| ≤ C(ǫm + σm).

We conclude from (88) and (89) that there is a constant C such that

|Gǫ(vǫ) −Gσ(vσ)| ≤ C(ǫ+ σ).

Therefore Gǫ(vǫ) is a Cauchy sequence of real numbers, thus convergent.

Proof of Step (3): Following the same method of the previous step we can prove the the
sequences

∫

B 1
ǫ

|Dvǫ −Dφ| and
∫

B 1
ǫ

|vǫ − φ| are Cauchy sequences and therefore uniformly

bounded. Fatou’s Lemma implies that
∫

R2

|Dv −Dφ|dx ≤
∫

B 1
ǫ

|Dvǫ −Dφ|dx <∞,

∫

R2

|v − φ| ≤
∫

B 1
ǫ

|vǫ − φ|dx <∞.

That is v ∈ V.
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Proof of Step (4): Consider a smooth function η satisfying η(x) = 1 for |x| ≤ 1
2 and

η(x) = 0 for |x| ≥ 1. Define

wǫ(x) = η(ǫx)w(x) + (1 − η(ǫx))φ.

Then

|Gǫ(wǫ) −G(w)| =

∣

∣

∣

∣

∣

∣

∫

R2\B 1
2ǫ

(

|Dw|2 − |Dφ|2 +W (w) −W (φ)
)

dx

−
∫

B 1
ǫ
\B 1

2ǫ

(

|ηDw + (1 − η)Dφ+Dη(w − φ)|2 − |Dφ|2
)

dx

+W (η(ǫx)w(x) + (1 − η(ǫx))φ) −W (φ)) dx|

≤C

∣

∣

∣

∣

∣

∣

∫

R2\B 1
2ǫ

(|Dw −Dφ| + |w − φ|) dx

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫

B 1
ǫ
\B 1

2ǫ

(|ηDw + (1 − η)Dφ+Dη(w − φ) −Dφ|

+C|η(ǫx)|w − φ|) dx
∣

∣

∣

≤C

∣

∣

∣

∣

∣

∣

∫

R2\B 1
2ǫ

(|Dw −Dφ| + |w − φ|) dx

∣

∣

∣

∣

∣

∣

.

Since w ∈ V we have
lim
ǫ→0

|Gǫ(wǫ) −G(w)| = 0.

Proof of Step (5)
The previous step implies there is a ṽǫ such that

Gǫ(ṽǫ) → G(v).

Since vǫ is a minimizer we have that

Gǫ(vǫ) ≤ Gǫ(ṽǫ).

Taking limits when ǫ→ 0 we have

lim
ǫ→0

G(vǫ) ≤ G(v).

In particular, G(v) is bounded below. Fatou’s Lemma allow us to conclude the other
inequality

G(v) ≤ lim
ǫ→0

G(vǫ).

Proof of Step (6) Consider w ∈ V, then take wǫ as in step (4). Then the minimality of
vǫ implies

Gǫ(vǫ) ≤ G(wǫ).

Taking limits as ǫ→ 0 we conclude that

G(v) ≤ G(w),

which finishes the proof. �
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6. Appendix

In this appendix we present a collection of technical results used above.
We start by stating some results about the Heat Kernel, used in Section 4. Consider a

ball B ⊂ R
2, the HB can be described as follows:

(∂t − ∆x)HB(x, y, t) =0,(90)

HB(x, y, t) =0 whenever x ∈ ∂B,(91)

lim
t→0+

HB(x, y, t) =δy(x).(92)

Hence, the solution to the equation

(∂t − ∆x)u(x, t) =f(x, t),

u(x, t) =0 whenever x ∈ ∂B,

u(x, 0) =g(x),

can be represented as

(93) u(x, t) =

∫ t

0

∫

B

HB(x, y, t− s)f(y, s)dyds+

∫

B

HB(x, y, t)g(y)dy.

We will use this representation to prove the following lemmmas. Let us define P to be the
heat operator, that is

(94) Pu = ∂tu− ∆u.

First we prove some bounds over HB :

Lemma 6.1. It holds that

•

(95) 0 ≤
∫

B

HB(x, y, t− s)dyds ≤ 1,

•

(96) 0 ≤
∫ t

s

∫

B

HB(x, y, t− s)dyds ≤ (t− s).

Proof: The proof follows by maximum principle. Notice that the single-valued function

v(x, t) =

∫

B

HB(x, y, t− s)dyds

satisfies the equation

(∂t − ∆x)v(x, t) =0,(97)

v(x, t) =0 whenever x ∈ ∂B,(98)

v(x, s) =1.(99)

Since the function 0 is a sub-solution to (97)-(98)-(99) we have that

0 ≤ v(x, t).

Similarly, the function 1 is a super-solution. Hence,

v(x, t) ≤ 1,

which proves (95). Equation (96) follows by integrating inequality (95).
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We also include without proof the following Theorem (see [8], [11] for example).

Theorem 6.1. (Theorem 3.1 in [8]) Let M be a n dimensional compact Riemannian man-
ifold with boundary. Then there is a Dirichlet heat kernel, that is a function

H ∈ C∞(M×M× (0,∞)).

satisfying (97)-(98)-(99) The smoothness of H(x, x, t) may be described as follows

H(x, x, t) = t−
n
2 (A(x, t) +B(x, t))

with A ∈ C∞(M× [0,∞)) and B is supported near the boundary, where in local coordinates

(x′, xn) ∈ U ′ × [0, δ̃) ⊂ M, U ′ ⊂ R
n−1 open, one has

B(x, t) = b

(

x′,
xn√
t
, t

)

, b ∈ C∞(u′ × R+ × [0,∞)√t)

with b(x′, ψn, t) rapidly decaying as ψn → ∞.

Now we devote ourselves to prove Theorem 4.2. We start with the following a priori
bound:

Theorem 6.2. Let h̃ǫ(x, t) : R
2 → R

2 satisfy

Ph̃ǫ +
∇uW (h̃ǫ)

2
= 0 for x ∈ B 1

ǫ
(100)

h̃ǫ(x, t)|∂B 1
ǫ

= φ(x)(101)

h̃ǫ(x, 0) = ψǫ(x),(102)

where
W : R

2 → R is a function in C2 proper, bounded below, with a finite number of critical
points, such that the Hessian of W (u) is positive definite for |u| ≥ K for some real number

K. Then if h̃ǫ(x, 0) = ψǫ(x) is bounded there is a constant C that depends only on W , φ

and ψǫ such that |h̃ǫ(x, t)| ≤ C.

Proof. Consider lǫ(x, t) = W (h̃ǫ)(x, t); then

(lǫ)t − ∆lǫ = ∇uW (h̃ǫ) · (h̃ǫ)t −
∑

i

(∇uW (h̃ǫ) · (h̃ǫ)xi
)xi

= ∇uW (h̃ǫ) · (h̃ǫ)t − (W ′′(h̃ǫ)∇h̃ǫ) · ∇h̃ǫ −∇uW (h̃ǫ) · ∆h̃ǫ
where W ′′ denotes the Hessian matrix of W . Since h̃ǫ satisfies (100), this becomes

(103) (lǫ)t − ∆lǫ +
|W ′(h̃ǫ)|2

2ǫ2
+ (W ′′(h̃ǫ)∇u) · ∇h̃ǫ = 0

We are going to find bounds over lǫ at the boundary of B1 and over its possible interior
maxima in terms of maxφ, K, W (ai) and maxW (ψ(x)).

Since h̃ǫ(x, t) = φ(x) for every |x| = 1 and φ is uniformly bounded, we have that

lǫ(x) ≤ maxW (φ(x)) for every x ∈ ∂B1.

Since W is proper this implies that there is a constant K1 such that

(104) |h̃ǫ(x)| ≤ K1 for x ∈ ∂B1

Suppose that lǫ has an interior maximum at (x0, t0) and |h̃ǫ(x0, t0)| ≥ K. Since (x0, t0) is
a maximum for lǫ, it holds that (lǫ)t(x0, t0) ≥ 0 (it is 0 if t0 < t̄ and non-negative if t0 = t̄)
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and ∆lǫ(x0, t0) ≤ 0. We also have by hypothesis that W ′′(u) is positive definite for |u| ≥ K,
hence

(lǫ)t − ∆lǫ +
|∇uW (h̃ǫ)|2

ǫ2
+ (W ′′(h̃ǫ)∇h̃ǫ) · ∇h̃ǫ ≥ 0.

The inequality is strict (which contradicts (103)) unless |∇uW (h̃ǫ)|2
ǫ2

= (W ′′(h̃ǫ)∇h̃ǫ)·∇h̃ǫ = 0.

If ∇uW (h̃ǫ(x0, t0)) = 0, we would have h̃ǫ(x0, t0) = ai for some i, therefore W (h̃ǫ(x, t)) ≤
W (ai). From this we conclude that

(105) |h̃ǫ| ≤ max{K,K1, ai,max
x∈R2

ψ(x)},

which finishes the proof �

By observing that solutions to (43)-(44)-(45) can be written as hǫ(x, t) = h̃ǫ − v~q, where

h̃ǫ is a sol to (100)-(101) -(102) we have

Corollary 6.1. Let h~q(x, t) : R
2 → R

2 (43)-(44)-(45), where

W : R
2 → R is a function in C2 proper, bounded below, with a finite number of critical

points, such that the Hessian of W (u) is positive definite for |u| ≥ K for some real number
K. Then if h~q(x, 0) = ψǫ(x) is bounded there is a constant C that depends only on W , φ,
uǫ and ψǫ such that |h~q(x, t)| ≤ C.

Proof of Theorem 4.2 Let

C[t̄1,t̄2](B) = {u : B̄ × [t̄1, t̄2] → R
2 : u is a uniformly bounded continuous function }

with the standard C0 norm.
Consider some τ ≥ 0 and define F τ~q : C[τ,τ+ 2α

M
](Bǫ−1) → C[τ,τ+ 2α

M
](Bǫ−1) by

F τ~q (u, ψτ~q )(x, t) =

∫ t

τ

∫

Bǫ−1

HB
ǫ−1

(x, y, t− s)

(−W ′(u(y, s) + v~q)

2
+ ∆v~q(y)

)

dyds

(106) +

∫

B
ǫ−1

HB
ǫ−1

(x, y, t)ψτ~q (y)dy.

Notice that for an appropriate ψτ~q solutions to (43) are not only fixed points of F τ~q , but

also of F~q. Hence, in order to prove Theorem 4.2 we will find a fixed point of F τ~q (·, ψτ~q ) in
some appropriate space.

Claim 1. If there is a constant M such that |W ′′| ≤M and ψτ~q is uniformly bounded, then

F τ~q (·, ψτ~q ) : C[τ,τ+ 2α
M

](Bǫ−1) → C[τ,τ+ 2α
M

](Bǫ−1) is well defined for each ǫ > 0. If additionally

for any given τ and α ∈ (0, 1) we have that t̄ satisfies |t̄− τ | ≤ 2α
M

, then F τ~q is a contraction

mapping with constant α in C[τ,τ+ 2α
M

](Bǫ−1).

To prove that the function F τ~q : C[τ,τ+ 2α
M

](Bǫ−1) → C[τ,τ+ 2α
M

](Bǫ−1) is well defined we need

to show that F τ~q maps any uniformly bounded function into a uniformly bounded function,

that is for any function u that satisfies |u(x, t)| ≤ C for all (x, t) ∈ Bǫ−1 × [τ, t̄] it holds that
|F τ~q (u)(x, t)| ≤ C̄ for all (x, t) ∈ Bǫ−1 × [τ, t̄].

By continuity of W ′ we have for supBǫ−1×[τ,t̄] |u(x, t)| ≤ C that there is a some constant

C1 such that sup(x,t)∈B
ǫ−1×[τ,t̄] |W ′(u)(x, t)| ≤ C1. It also holds for constants C2 and C3
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that

|∆v~q| ≤
C2

ǫ2

and

|v~q| ≤ C3

This implies

|F τǫ (u)|(x, t)

≤ C1 + C2

ǫ2

∫ t̄

τ

∫

B
ǫ−1

HBǫ−1
(x, y, t− τ − s)dyds

+ sup
x∈B

ǫ−1

|ψτǫ (x)|
∫

B
ǫ−1

HBǫ−1
(x, y, t− τ)dy + C3

≤ (C1 + C2)(t̄− τ)

2ǫ2
+ sup
x∈B

ǫ−1

|ψτǫ |(x) + C3 = C̄ <∞,

for all (x, t). Hence F τǫ is well defined for each ǫ > 0.

Now we show that if |t̄− τ | ≤ 2α
M

, then F τǫ is a contraction mapping.
Since |W ′′| ≤M we have that

|W ′(u) −W ′(v)| ≤M |u− v|.
Then for every x ∈ Bǫ−1 and t ∈ [τ, t̄] it holds that

|F τǫ (u) − F τǫ (v)|(x, t) =

∣

∣

∣

∣

∣

∫ t

τ

∫

Bǫ−1

HB
ǫ−1

(x, y, t− s− τ)
−W ′(u(y, s)) +W ′(v(y, s))

2
dyds

∣

∣

∣

∣

∣

≤ M(t̄− τ)

2
sup

(x,t)∈Bǫ−1×[τ,t̄]
|u− v|(x, t).

Then for |t̄− τ | ≤ 2α
M

sup
(x,t)∈B

ǫ−1×[τ,t̄]
|F τǫ (u) − F τǫ (v)|(x, t) ≤ α sup

(x,t)∈B
ǫ−1×[τ,t̄]

|u− v|(x, t)

and F τ~q : Bǫ−1 × [τ, τ + 2α
M

] → Bǫ−1 × [τ, τ + 2α
M

] is a contraction with constant α.

First we will assume that |W ′′| ≤M . Fix α < 1
let

(107) τi = i
2α

M

(108) t̄i = τi+1,

(109) F τ~q = F~q,i

with i = 0, . . . , Iα, where the constant α, Iα ∈ N satisfy TM
2α ≤ Iα ≤ 2 t̄M2α . By the definition

of τi, t̄i we have that t̄Iα ≥ t̄. We will redefine t̄Iα = t̄.
By the previous claim F~q,i is contraction, hence it has a unique fixed point, hi~q. That is

(110) F~q,i(h
i
~q(x, t)) = hi~q(x, t).
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Moreover, since this this fixed point is bounded we have that F τ~q (hi~q) ∈ C1, 1
2 (Bǫ−1×(τi, τi+1].

Recursively, hi~q ∈ C∞. From (110) and Duhamel’s formula we can conclude that (43) and

(44) for t ∈ [τi, ti]. We also have

(111) hi~q(x, τi) = ψτi~q (x)

for (x, t) ∈ Bǫ−1 × (τi, t̄i).
Now define recursively ψτi

~q
(x):

(112) ψτ0
~q

(x) = ψ~q(x)

(113) ψτi
~q

(x) = hi−1
~q

(x, τi).

Then h~q(x, t) defined by

(114) h~q(x, t) = hi~q(x, t) for t ∈ [τi, t̄i]

satisfies (43) for t 6= τi. Moreover, by writing

hi+1
~q

(x, t) =

∫ t

t̄i

∫

B
ǫ−1

HB
ǫ−1

(x, y, t− t̄i − s)
−W ′(hi+1

~q
+ v~q)(y, s)

2
dyds

+

∫

Bǫ−1

HB
ǫ−1

(x, y, t− t̄i)h
i
~q(y, t̄i)dy,

standard computations show that h~q satisfies (43) for every t. Since h~q also satisfies (44)-
(45) we have that h~q is the desired solution. In particular, this implies that h~q is the fixed
point of F~q. Uniqueness follows from the fact that fixed points of contraction mappings are
unique.

In order to prove equation (46) we observe that since h~q is a fixed point of F τ~q , standard
computations imply for any function w~q

|h~q − w~q| ≤
1

1 − α
sup

Bǫ−1×[τ,τ+ 2α
M

]

|F τ~q (w~q) − w~q|

≤ 1

1 − α

(

sup
B

ǫ−1×[τ,τ+ 2α
M

]

|F τ~q (w~q) − F~qw~q| + sup
B

ǫ−1×[τ,τ+ 2α
M

]

|F~q(w~q) −w~q|
)

.

Since

P (F τ~q (w~q) − F~q(w~q)) =
∇uW (w~q)

2
− ∇uW (w~q)

2
,

and

F τ~q (w~q)(x, τ) − F~q(w~q)(x, τ) = h~q(x, τ) − F~q(w~q)(x, τ)

using Duhamel’s formula we have

F τ~q (w~q) − F~q(w~q) =

∫

Bǫ−1

HB
ǫ−1

(x, y, t− τ)(h~q(y, τ) − F~q(w~q)(y, τ))dy.

Therefore, Lemma 6.1 implies

sup
Bǫ−1×[τ,τ+ 2α

M
]

|F τ~q (w~q) − F~q(w~q)| ≤ sup
Bǫ−1

|h~q(x, τ) − F~q(w~q)|(x, τ).
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We conclude inequality (46)

|h~q − w~q| ≤
1

1 − α

(

2 sup
Bǫ−1×[τ,τ+ 2α

M
]

|F~q(w~q) − w~q| + sup
Bǫ−1

|h~q − w~q|(x, τ)
)

For the general case (that is when there is no constant M such that |W | ≤ M) we fix

K > 0. Then we replace W for a function W̃ that satisfies:

• there is an M such that |W̃ ′′| ≤M ,

• W̃ (u) = W (u) for u ≤ max{2C,K}, where C is the constant given by Theorem 6.2.

• W̃ has the same critical points as W .

Then, our previous computations imply that there is a unique solution h~q to

Ph~q +
∇uW̃ (h~q + v~q)

2
+ ∆v~q = 0

h~q(x) = 0 for every x ∈ ∂Bǫ−1

h~q(x, 0) = ψǫ(x).

Moreover for any w~q holds

|h~q − w~q| ≤
1

1 − α

(

2 sup
Bǫ−1×[τ,τ+ 2α

M
]

|F̃~q(w~q) − w~q| + sup
Bǫ−1

|h~q(x, τ) − w~q(x, τ)|,
)

where F̃~q is analogous to F~q substituting W for W̃ .
Theorem 6.2 will imply that hǫ is also a solution to (43)-(44)-(45). Moreover, for w~q

satisfying |w~q| ≤ K we will have F̃~q(w~q)−w~q = F~q(w~q)−w~q, concluding that (46) holds. �

Theorem 6.3. Let h~q be a solution to (43)-(44)-(45), then there is a constant K, indepen-
dent of ~q, such that for every x ∈ B 1

ǫ

(115) |Dk~q| ≤ K.

Proof. Recall that h~q is vector-valued. hi~q will denote the coordinate i-th of the vector

h~q and similarly
(

∇W (h~q)
)i

is the the ith coordinate of ∇W (h~q). We are going to prove

separately that for each coordinate that there is a constant Ci such that |∇hi~q| ≤ Ci.

Let f : {(x, y) : y ≥ 0} → B 1

ǫ
be defined by

(116) f(x, y) =
1

ǫ

(

x2 + y2 − 1

x2 + (y + 1)2
,

−2x

x2 + (y + 1)2

)

.

In complex number notation, we can write for z = x+ iy

f(z) =
z − i

z + i
.

Define

(117) si~q(x, y, t) = hi~q(f(x, y), t)).
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It satisfies

8

ǫ(x2 + (y + 1)2)

∂si~q

∂t
− ∆si~q = − 8

ǫ(x2 + (y + 1)2)

(

∇W (h~q)
)i

+ ∆vi for x ∈ R, y > 0

si~q(x, y, t) = 0 for y = 0 or |(x, y)| → ∞
s~q(x, y, 0) = 0.

Let P̃ be the operator defined by

P̃ u =
8

ǫ(x2 + (y + 1)2)

∂u

∂t
− ∆u

Theorem 6.2 and the definition of si~q implies that there is a constant C independent of ǫ
such that

P̃ si~q ≤
C

ǫ
.

Moreover,

∂si~q

∂y
(x, 0) = 0.

Now define

wi~q(x, y, t) = si~q(x, y, t) −
C

ǫ
(y2 + y).

Then

P̃wi~q = P̃ si~q − 2
C

ǫ
≤ 0

wi~q(x, 0, t) = 0 for every x ∈ R
2 and t > 0

wi~q(x, y, 0) < 0 for |(x, y)| → ∞ and y > 0

Also,

∂wi~q

∂y
(x, y, 0) = −C

ǫ
(2y + 1) ≤ 0.

Claim 2. The maximum of wi~q cannot be attained in the interior.

If the max is attained at some point in the interior, must hold that ∆wi~q < 0 and
∂wi

~q

∂t
≥ 0.

Hence P̃wi~q ≥ 0. Which is a contradiction and finishes the proof of the claim.

Since the maximum is attained on the boundary it must be attained at y = 0. Therefore

∂wi~q

∂y
(x, y, t) ≤ 0 for every t.

This implies that
∂si~q

∂y
(x, y, t) ≤ C

ǫ
(2y + 1).

This procedure can be repeated for −si~q, concluding that

(118)

∣

∣

∣

∣

∣

∂si~q

∂y
(x, y, t)

∣

∣

∣

∣

∣

≤ C

ǫ
(2y + 1).
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Since the inverse function of f is

f−1(w) =
1 + ǫw

1 − ǫw
,

using (117), (116) and (118) we have (in complex number notation) for any w ∈ B 1

ǫ
that

(119)
∣

∣∇hi~q(w, t) · (1 − ǫw)2
∣

∣ ≤ 2C

(

1 − ǫ2|w|2
1 + ǫ2|w|2 − ǫ(w + w̄)

+ ǫ

)

,

where w̄ is the conjugate of w.
Similarly, if we define (by performing a rotation of f):

(120) g(z) =
i

ǫ

z − i

z + i

and

(121) r(x, y, t) = h~q(g(x, y), t),

following the same method we obtain

(122)
∣

∣∇hi~q(w, t) · i(1 + iǫw)2
∣

∣ ≤ 2C

(

1 − ǫ2|w|2
1 + ǫ2|w|2 + iǫ(w − w̄)

+ ǫ

)

.

Notice for w away from 1
ǫ

and i
ǫ

holds that i(1+iǫw)2 and (1−ǫw)2 are linearly independent.

Fixing some δ small enough and considering w such that |w− i
ǫ
| ≥ δ and |w− 1

ǫ
| ≥ δ we have

that 1−ǫ2|w|2
1+ǫ2|w|2−ǫ(w+w̄)

+ ǫ and 1−ǫ2|w|2
1+ǫ2|w|2+iǫ(w−w̄)

+ ǫ are bounded above and below independent

of ǫ. Hence

(123)
∣

∣∇hi~q(w, t)
∣

∣ ≤ C for every

∣

∣

∣

∣

w − i

ǫ

∣

∣

∣

∣

≥ δ,

∣

∣

∣

∣

w − 1

ǫ

∣

∣

∣

∣

≥ δ.

Now considering rotation of f of π and 3
2π radians (that is f̃(z) = −1

ǫ
z−i
z+i and g̃(z) =

− i
ǫ
z−i
z+i) and following the same procedure we fund bounds for

∣

∣

∣∇hi~q(w, t)
∣

∣

∣ near 1
ǫ

and i
ǫ
,

concluding the proof. �
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