
ar
X

iv
:0

70
8.

11
85

v1
  [

m
at

h-
ph

] 
 8

 A
ug

 2
00

7

Weighted-L∞ and pointwise space-time decay estimates

for wave equations with potentials and initial data

of low regularity

Nikodem Szpak

MPI für Gravitationsphysik, Albert-Einstein-Institut
Am Mühlenberg 1, 14476 Golm, Germany

(Dated: August 8, 2007)

Abstract
We prove weighted-L∞ and pointwise space-time decay estimates for weak solutions of a class of

wave equations with time-independent potentials and subject to initial data, both of low regularity,

satisfying given decay bounds at infinity. The rate of their decay depends on the asymptotic

behaviour of the potential and of the data. The technique is robust enough to treat also more

regular solutions and provides decay estimates for arbitrary derivatives, provided the potential and

the data have sufficient regularity, but it is restricted to potentials of bounded strength (such that

−∆ − |V | has no negative eigenvalues).

I. INTRODUCTION

We study a class of wave equations of the form

�u + V u := ∂2
t u − ∆u + V (x)u = 0 (1)

where u := u(t, x) : R+ × R
3 → R and V (x) is a real potential which does not depend on

time. We are interested in weak solutions to the initial value problem

u(0, x) = f(x), ∂tu(0, x) = g(x) (2)

with data (f, g) of low regularity satisfying either some weighted-L∞ or pointwise bounds.
We prove a decay estimate in two versions: in stronger, we show a pointwise decay

|u(t, x)| ≤ C

(1 + |t + |x||)(1 + |t − |x||)p−1
∀(t, x) ∈ R+ × R

3 (3)

with some p > 2 provided the potential V and the initial data f,∇f, g are continuous and
satisfy pointwise bounds

|V (x)| ≤ V0

(1 + |x|)k
, k > 2 (4)

with |V0| < C−1
p,k (the value of Cp,k will be specified later) and

|f(x)| ≤ f0

(1 + |x|)m−1
, |∇f(x)| ≤ f1

(1 + |x|)m
, |g(x)| ≤ g0

(1 + |x|)m
, m > 3. (5)

In the weaker version, all pointwise bounds need to hold only almost everywhere and so we
prove a weighted-L∞ space-time decay estimate

‖(1 + |t + |x||)(1 + |t − |x||)p−1u(t, x)‖L∞(R+×R3) < ∞ (6)
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with some p > 2 provided

V0 := ‖(1 + | · |)kV ‖L∞(R3) < C−1
p,k < ∞, k > 2 (7)

(the value of Cp,k will be specified later) and

f0 := ‖(1 + | · |)m−1f‖L∞(R3) < ∞, f1 := ‖(1 + | · |)m∇f‖L∞(R3) < ∞,

g0 := ‖(1 + | · |)mg‖L∞(R3) < ∞, m > 3. (8)

For both kinds of initial data, u ∈ L1
loc(R

1+3) represents a weak solution of the wave
equation (1) in the following sense: for any test function ϕ ∈ C∞(R1+3)
∫

dt

∫
d3x (� + V )ϕ(t, x) u(t, x) = −

∫
d3x ∂tϕ(0, x) f(x) +

∫
d3x ϕ(0, x) g(x). (9)

The initial data f,∇f and g have just sufficient spatial decay to have finite energy
and we show by functional analytic methods (sec. IV) that this energy stays finite during
the evolution what guarantees uniqueness of the weak solutions. It follows that the first
derivatives ∂tu,∇u ∈ L2 ⊂ L1

loc and hence exist in the weak sense. The second derivatives
exist only as distributions, although �u = −V u ∈ L∞ ⊂ L1

loc. Therefore, we work in a
subset of the energy space.

There is, in principle, no essential problem with rising the regularity of the solution u
provided f, g and V are more regular and their derivatives have proper decay at infinity.

Indeed, for (f, g) ∈ Cn+1(R3) × Cn(R3) and V ∈ Cn(R3) the solution u ∈ Cn(R
1+3

+ ) and for
n ≥ 2 it becomes classical. In a separate section (sec. VI) we demonstrate robustness of our
technique and show how to obtain estimates for derivatives, provided more assumptions on
the initial data and the potential are given. We also easily reproduce the result of Strauss
and Tsutaya [1] in the case n = 2.

The technique of proving these estimates relies essentially on the Duhamel integral rep-
resentation formula for solutions of the free wave equation with a source and non-vanishing
initial data. In order for the Duhamel formula to be applicable we need that the functions
f,∇f and g are Lebesgue integrable over all or almost all spheres in R

3. Therefore, we
first choose continuous data and potential, which guarantee the integrability over spheres
everywhere. Next, we switch to less regular L∞-spaces where we have integrability over
spheres only almost everywhere what, with some additional work regarding the measures of
(null) space and space-time subsets, is still sufficient to complete the proof. It seems to be
difficult to further generalize the decay theorem by weakening the assumptions and still use
the same technique of proof based on the Duhamel representation.

Our motivation for proving these estimates comes mainly from the analysis of nonlinear
wave equations, where decay proofs rely on the corresponding results for the linearized
equations. We have been also inspired by several nonrigorous approaches to the problem
of long-time decay and by numerical observations which consistently show that initial data
of compact support (or of enough rapid decay) in presence of a potential V (x) ∼ |x|−k

(|x| ≫ 1) evolve to late-time tails of the form u(t, x) ∼ t−k for big t and fixed x. This has
been first explained by Ching et al. [2, 3] who approximated the Green’s function or later by
Hod [4] who used some series expansion, while both arguments were non-rigorous. Strauss
and Tsutaya gave in [1] a rigorous proof of the decay estimate for classical solutions, i.e.
which are twice continuously differentiable, using the Duhamel representation formula. We
found the regularity conditions not crucial for controlling the decay of the solution itself and
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dropped the differentiability conditions for both the data and the potential, thus extending
the technique to weak solutions. By a careful analysis of well-posedness and uniqueness of
solutions in the weighted L∞ space, involving proofs of measurability and local integrability
combined with functional analytic approach to uniqueness, we were able to prove the same
decay estimates (without or with control of the derivatives) and energy conservation for
rough solutions. This setting covers various cases of cut-off potentials or cut-off initial data
often discussed in the context of specific approximations or in numerical calculations which
were not covered by the existing literature.

Strategy of proof

We introduce the following notation for solutions of the wave equations. Let IV be a
linear map from the space of initial data to the space of solutions of the wave equation
(1)-(2), so that u = IV (f, g). For wave equations with a source term and null initial data

�u + V u = F, u(0, x) = 0, ∂tu(0, x) = 0, (10)

let’s denote the solutions by u = LV (F ), where LV is a linear map from the space of source
functions to the space of solutions to the above problem. Due to linearity, the solution u
of a wave equation with source F and non-vanishing initial data f, g is a sum of these two
contributions

u = LV (F ) + IV (f, g). (11)

The method we use for proving decay of solutions in presence of a potential is to treat the
potential term as a source term. If we put the term V u in (1) on the r.h.s

�u = −V u, (12)

we get a pseudo-free wave equation with a source term F ≡ −V u. Hence, the solution must
satisfy

u = IV (f, g) = L0(−V u) + I0(f, g), (13)

where the difficulty is that u appears on both sides. By introducing a weighted space-time
norm ‖χ·‖ (either standard or essential supremum), with some weight χ(t, x) (to be specified
later), we are able to bound the terms containing u on both sides of the previous equation
in such a way that

‖χu‖ ≤ δ(V )‖χu‖ + C(f, g). (14)

Then if δ(V ) < 1 we arrive at

‖χu‖ <
C(f, g)

1 − δ(V )
=: C̃(f, g, V ). (15)

In the case of pointwise bounds the ‖χ · ‖ norm is a standard weighted supremum norm,
which implies a pointwise decay estimate

|u(t, x)| ≤ C̃(f, g, V )

|χ(t, x)| . (16)

In the case of L∞ norms, this inequality holds almost everywhere.
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The condition δ(V ) < 1 presents a bound on the strength of the potential |V | and is
a necessary assumption restricting the theorem. Although such a bound is not expected
for non-negative potentials1 the reason for the restriction of |V | is that the technique of
proof does not distinguish between negative and positive potentials. Therefore, everything
what can be proved, must hold for negative potentials of the given strength |V |. Yet,
negative potentials may have bound states (i.e. eigenfunctions of −∆ + V ) which may grow
exponentially in time, thus destroying the decay. Hence, the condition |V (x)| ≤ V0/〈x〉k with
k > 2 and V0 small enough must in fact avoid bound states. Indeed, this can be observed
here, at least for spherically symmetric potentials where several bounds on the number of
bound states are well-known [6, Th. XIII.9], e.g. the Bargmann’s bound

N ≤
∫ ∞

0

r|V (r)|dr ≤ V0

(k − 1)(k − 2)
(17)

or the Calogero’s bound

N ≤ 2

π

∫ ∞

0

√
|V (r)|dr ≤ 2

π

√
V0

(k − 2)
. (18)

We get N = 0 if N < 1, i.e. if V0 < (k − 1)(k − 2) or V0 < π2

16
(k − 2)2. The bound, which

appears in our proofs V0 < C−1
p,k , although far from optimal, guarantees these conditions.

We make an effort to estimate the numerical value of the constant Cp,k since in some
applications the potential appears with a given value of V0 which is not (arbitrarily) small,
e.g. waves propagating in the Schwarzschild geometry give rise to an effective potential.
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II. MAIN RESULTS

Definitions

We denote by R+ := (0,∞) and its closure by R+ := [0,∞). Analogously, we denote by

R
1+3
+ := R+ × R

3 and by R
1+3

+ := R+ × R
3.

We denote by S(x, t) a sphere in R
3 with the center x and radius t, i.e. S(x, t) := {y ∈

R
3 : |y − x| = t}, and by K(x, t) a (past-)cone in R

1+3
+ with the center at point (t, x), i.e.

K(x, t) := {(s, y) ∈ R
1+3
+ : |y−x| = t−s}. The corresponding Lebesgue measures on S(x, t)

1 There still does not exist an analogous decay theorem, there is only strong numerical evidence. In [5]

some weaker decay is proved for arbitrarily strong positive potentials.

4



and K(x, t) we denote by dσ(y) with y ∈ S(x, t) and dκ(s, y) with (s, y) ∈ R×R
3 ∩K(x, t),

respectively.
We introduce a frequently used short hand

〈x〉 := 1 + |x|. (19)

We remind that the space L∞(Rn) consists of Lebesgue measurable functions on R
n having

finite L∞ norm which is defined as

‖h‖L∞ := ess-sup
x∈Rn

|h(x)| ≡ inf{M : |h(x)| ≤ M a.e. on R
n}. (20)

Here a.e. on R
n means almost everywhere on R

n in the sense that it does not hold at most
on a set of measure zero in R

n with the standard Lebesgue measure on R
n. For bounded

functions h(x) and H(t, x) we will use the notation

‖h‖∞ := sup
x∈R3

|h(x)| and ‖H‖∞ := sup
(t,x)∈R

1+3

+

|H(t, x)| (21)

identical in both cases if it does not lead to confusion (otherwise we will use the symbol sup
explicitly). We define weighted-L∞ spaces for measurable functions defined on space (R3)

or space-time (R
1+3

+ )

h ∈ L∞
µ ⇔ ‖h‖L∞

µ
:= ‖〈·〉µh‖L∞(R3) < ∞, (22)

H ∈ L∞
r,p ⇔ ‖H‖L∞

r,p
:= ‖〈t + |x|〉r〈t − |x|〉p−rH(t, x)‖L∞

t (R+)L∞
x (R3) < ∞. (23)

The content of the last definition is that H(t, x) decays like 1/tr along the lightcone and
like 1/tp or 1/|x|p at timelike or spatial infinity, respectively. We will mainly consider spaces
L∞

1,p. We define some constants used throughout the article

cp := 1/2(p − 2), (24)

C(1)
p := max

(
9

2(p − 2)
, 4

)
, C(2)

p := max

(
3

p − 1
, 5

)
, (25)

Cm := max(C(1)
m , C(2)

m ) = max

(
9

2(m − 2)
, 5

)
, (26)

Cp,q :=
3

2

6q−1

(q − 2)
max(2/(p − 1), 3). (27)

Theorems

First, existence and uniqueness of weak solutions is proved together with conservation
of the energy. The theorem provides also L2–bounds on ∇u(t) and ∂tu(t) which are not
contained in the following decay theorems (because the derivatives there are considered only
to exist in the distributional sense) and implies that in fact the first derivatives exist in the
weak sense.
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Theorem 1 (Existence and uniqueness). With the assumptions of either Theorem 2a or
2b the (weak) solution u of the wave equation (1)-(2) is unique, belongs to C0(R+, H1) ∩
C1(R+, L2) and gives rise to a conserved energy

E[u(t)] := 〈∇u(t),∇u(t)〉+ 〈u(t), V u(t)〉 + 〈∂tu(t), ∂tu(t)〉
= E[u(0)] = 〈∇f,∇f〉 + 〈f, V f〉 + 〈g, g〉. (28)

Moreover, ∇u(t), ∂tu(t) ∈ L2 for all t ∈ R+ what implies that the first derivatives exist in a
weak sense, i.e. ∇u(t), ∂tu(t) ∈ L1

loc
for all t ∈ R+.

The case when additionally V ≥ 0 is somewhat simpler to treat and Thoe [7] has given a
complete spectral theory including explicit representation of the evolution operator in action
on the generalized eigenfunctions. It provides conservation of energy, but it does not seem
to be of a big advantage when proving decay estimates of the type we are interested in.

It is important to note that for continuous potentials there is no need of using such
sophisticated tools like functional analysis for proving uniqueness of classical solutions. In
this case the standard energy inequality is sufficient. Indeed, note first that V ∈ C2 is enough
to guarantee the regularity of classical solutions u ∈ C2 and by differentiation of the free
energy E0(t) := ‖∇u‖2

L2 + ‖u̇‖2
L2 with respect to time one obtains easily

dE0(t)

dt
≤ 2V0E0(t), (29)

what implies E0(t) ≤ E0(0) exp(2V0t). This, together with the bound ‖u(t)‖L2 ≤ ‖u(0)‖L2 +∫ t

0
‖u̇(t′)‖L2 dt′, gives bounds on (u(t), u̇(t)) ∈ H1 × L2 in terms of the initial data. By the

density argument these bounds remain true in case V, u ∈ C0 (with weak derivatives and finite
energy initial data), what guarantees uniqueness of solutions in C0(R+, H1) ∩ C1(R+, L2).
Unfortunately, this technique cannot be extended to the case of weighted L∞ spaces, because
Cn are not dense in L∞.

We state the results regarding the continuous pointwise and weighted-L∞ estimates sep-
arately. The first theorem contains a pointwise estimate for weak solutions which are only
continuous and presents a generalization of the theorem of Strauss et al. [1] for classical
solutions (twice continuously differentiable).

Theorem 2a (Decay in C0). Let (f, g) ∈ C1(R3) × C0(R3) and V ∈ C0(R3). If for some
k > 2

|V (x)| ≤ V0

〈x〉k ∀x ∈ R
3 with V0 < C−1

p,k < ∞ (30)

and for some m > 3

|f(x)| ≤ f0

〈x〉m−1
, |∇f(x)| ≤ f1

〈x〉m , |g(x)| ≤ g0

〈x〉m , ∀x ∈ R
3 (31)

then the wave equation (1) with the initial data (2) has a unique weak solution u ∈ C0(R
1+3

+ )
which satisfies

|u(t, x)| ≤ C

〈t + |x|〉〈t − |x|〉p−1
, ∀(t, x) ∈ R

1+3

+ (32)

with p := min(k, m − 1) and

C :=
Cm(f0 + f1 + g0)

1 − Cp,kV0
. (33)
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The condition |f(x)| ≤ f0/〈x〉m−1 can be replaced by a weaker |f(x)| → 0 as |x| → ∞.
The pointwise estimate follows then from integration of |∇f(x)| ≤ f1/〈x〉m from infinity to
x along the radial direction. Therefore, it holds f0 ≤ f1/(m 2m).

The second theorem generalizes the estimate further to weak solutions which belong only
to a weighted-L∞ space. This seems to be the widest space compatible with the assumptions
of spatial decay of the initial data and the potential.

Theorem 2b (Decay in L∞
1,p). If for some k > 2

V0 := ‖V ‖L∞

k
< C−1

p,k < ∞, (34)

and for some m > 3

f0 := ‖f‖L∞

m−1
< ∞ f1 := ‖∇f‖L∞

m
< ∞ g0 := ‖g‖L∞

m
< ∞ (35)

then the wave equation (1) with the initial data (2) has a unique weak solution which satisfies

‖u‖L∞

1,p
≤ C, (36)

with p := min(k, m − 1) and

C :=
Cm(f0 + f1 + g0)

1 − Cp,kV0

. (37)

Note that the estimates of Theorem 2a or 2b

|u(t, x)| ≤ C

〈t + |x|〉〈t− |x|〉p−1
≤ C(t)

〈x〉p , a.e. for x ∈ R
3, ∀t ∈ R+ (38)

for p > 2 and some C(t) < ∞ for all t ∈ R+ imply u(t) ∈ L2 for all t ≥ 0.
Then, in a straightforward way we can prove the following, useful for further applications,

Corollary 1 (Decay in presence of a source). Let the initial data satisfy

f0 := ‖f‖L∞

m−1
< ∞, f1 := ‖∇f‖L∞

m
< ∞, g0 := ‖g‖L∞

m
< ∞ (39)

with m > 3, the potential satisfy

V0 := ‖V ‖L∞

k
< C−1

p,k < ∞ (40)

with k > 2 and the source F ∈ L∞
1,r satisfy for some q > 2 and 1 < r ≤ q

F0 := ‖〈x〉qF‖L∞

1,r
< ∞. (41)

Then there exists a weak solution u(t, x) of the wave equation with potential and source terms

�u + V u = F, u(0, x) = f(x), ∂tu(0, x) = g(x) (42)

and initial data u(0, x) = f(x), ∂tu(0, x) = g(x) which satisfies

‖u‖L∞

1,p
≤ Cm(f0 + f1 + g0) + Cr,qF0

1 − Cp,kV0
. (43)

for p := min(k, m − 1, r).

If additionally (f, g) ∈ C1(R3)∩C0(R3), V ∈ C0(R3) and F ∈ C0(R
1+3

+ ) then u ∈ C0(R
1+3

+ )
and the same estimates hold pointwise2.

2 i.e. everywhere, instead of almost everywhere.
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Corollary 2 (Decay of derivatives). The weak solution of the wave equation (1) with the
initial data (2) satisfies

u, |∇u|, |∇2u|, ∂tu, ∂2
t u ∈ L∞

1,p (44)

with p := min(k, m − 1) provided

f, |∇f |, |∇2f |, |∇3f |, g, |∇g|, |∇2g| ∈ L∞
m , m > 3 (45)

V, |∇V |, |∇2V | ∈ L∞
k , k > 2 and ‖V ‖L∞

k
< C−1

p,k < ∞. (46)

If additionally (f, g) ∈ C3(R3)∩C2(R3) and V ∈ C2(R3) then u ∈ C2(R
1+3

+ ) and the estimates
hold pointwise2.

Here, we have introduced notation |∇nh| :=
∑3

a1,...,an=1 |∂a1
...∂an

h|. This is the same result

(in the u ∈ C2 case) which was obtained by Strauss and Tsutaya in [1].

III. BASIC ESTIMATES

The first lemma estimates an integral appearing in the Duhamel representation formula
containing initial data. It was proved in somewhat different form by many authors [1, 8, 9],
but here we prove only a simplified version, which is needed for our goals. Actually, this
estimate can be still improved by one power of 〈t − |x|〉, what better applies to long range
initial data, which are not of our main interest.

Lemma 1. For t > 0, p > 2 and

I :=
1

4π

∫

S(x,t)

dσ(y)

〈y〉p (47)

it holds

I ≤ cp
t

|x|〈t − |x|〉p−2
. (48)

Moreover, for p > 2

1

4πt

∫

S(x,t)

dσ(y)

〈y〉p ≤ C
(1)
p

〈t + |x|〉〈t − |x|〉p−2
(49)

and for p > 3

1

4πt2

∫

S(x,t)

dσ(y)

〈y〉p−1
≤ C

(2)
p

〈t + |x|〉〈t − |x|〉p−2
. (50)

The next lemma estimates an integral appearing in the representation formula containing
a source term. We follow the proof of Georgiev et al. [5]. Similar calculation has been done
by Strauss et al. in [1] and earlier by John [9].

Lemma 2. For t > 0, x ∈ R
3 and

I :=
1

4π

∫

K(x,t)

dκ(s, y)

(t − s)〈y〉q〈s + |y|〉〈s− |y|〉p−1
(51)

for q > 2 and q ≥ p > 1 it holds

|I| ≤ Cp,q

〈t + |x|〉〈t − |x|〉p−1
. (52)
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Next, we prove the general representation formula for distributional and weak solutions.

Lemma 3. For any distributions f, g ∈ D′(R3) and F ∈ D′(R1+3) supported on R
1+3

+ the
formula

v(t, x) = ∂t

∫

R3

δ(t − |x − y|)
4πt

f(y)d3y +

∫

R3

δ(t − |x − y|)
4πt

g(y)d3y

+

∫

R+

ds

∫

R3

d3y
δ(t − s − |x − y|)

4π(t − s)
F (s, y)

(53)

defines a distribution v ∈ D′(R1+3) supported on R
1+3

+ which satisfies the wave equation

�v = F, v(0, x) = f(x), ∂tv(0, x) = g(x) (54)

in the weak sense, i.e. for any test function ϕ ∈ C∞
0 (R1+3)

∫
dt

∫
d3x �ϕ(t, x) v(t, x) = −

∫
d3x ∂tϕ(0, x) f(x) +

∫
d3x ϕ(0, x) g(x)

+

∫

R

dt

∫
d3x ϕ(t, x) F (t, x).

(55)

If f, g, F are ordinary functions (i.e. regular distributions) or in L1
loc

and v ∈ L1
loc

is defined

almost everywhere in R
1+3

+ by the Duhamel’s formula

v(t, x) =
1

4π

∫

S(x,t)

g(y)

t
dσ(y) +

1

4π

∫

S(x,t)

(y − x) · ∇f(y) + f(y)

t2
dσ(y)

+
1

4π

∫

K(x,t)

F (s, y)

t − s
dκ(s, y).

(56)

then v is a weak solution, in the sense specified above, of the wave equation (54).

The following lemma, an estimate for solutions to the free wave equation with prescribed
initial data, has been proved by Strauss et al. [1] for classical solutions, i.e. for (f, g) ∈
C3(R3) × C2(R3) leading to u ∈ C2(R

1+3

+ ). We weaken the assumptions to (f, g) ∈ C1(R3) ×
C0(R3) and obtain u ∈ C0(R

1+3

+ ).

Lemma 4a. Let the data (f, g) ∈ C1(R3) × C0(R3) and satisfy

|f(x)| ≤ f0

〈x〉m−1
, |∇f(x)| ≤ f1

〈x〉m , |g(x)| ≤ g0

〈x〉m , ∀x ∈ R
3 (57)

for some m > 3. Then there exists a unique weak solution v(t, x) = I0(f, g) of the free wave
equation

�v = 0, v(0, x) = f(x), ∂tv(0, x) = g(x). (58)

Moreover, it is continuous in (t, x) ∈ R
1+3

+ and satisfies

|v(t, x)| ≤ C(f, g)

〈t + |x|〉〈t − |x|〉m−2
∀(t, x) ∈ R

1+3

+ , (59)

where C(f, g) := Cm · (g0 + f1 + f0).
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As next, we further weaken the assumptions to ∇f, g ∈ L∞
m and f ∈ L∞

m−1, i.e. to
weighted L∞(R3) spaces.

Lemma 4b. Let the data (f, g) ∈ L∞
m−1 × L∞

m with m > 3 satisfy

f0 := ‖f‖L∞

m−1
< ∞, f1 := ‖∇f‖L∞

m
< ∞, g0 := ‖g‖L∞

m
< ∞. (60)

Then there exists a unique weak solution v(t, x) = I0(f, g) of the free wave equation

�v = 0, v(0, x) = f(x), ∂tv(0, x) = g(x) (61)

which satisfies
‖v‖L∞

1,m−1
≤ C(f, g) := Cm · (g0 + f1 + f0). (62)

The following lemma, an estimate for solutions to the wave equation with source, has been

proved by Strauss et al. [1] and Asakura [8] for classical solutions, i.e. for F ∈ C2(R
1+3

+ )

leading to u ∈ C2(R
1+3

+ ). We weaken the assumption to F ∈ C0(R
1+3

+ ) and obtain u ∈
C0(R

1+3

+ ).

Lemma 5a. Let the source F ∈ C0(R
1+3

+ ) and satisfy for some q > 2 and 1 < p ≤ q

|F (t, x)| ≤ F0

〈t + |x|〉〈t − |x|〉p−1〈x〉q ∀(t, x) ∈ R
1+3

+ . (63)

Then there exists a weak solution v(t, x) = L0(F ) of the free wave equation with source

�v = F, (64)

and null initial data v(0, x) = 0, ∂tv(0, x) = 0. Moreover, it is continuous in (t, x) ∈ R
1+3

+

and satisfies

|v(t, x)| ≤ Cp,qF0

〈t + |x|〉〈t − |x|〉p−1
∀(t, x) ∈ R

1+3

+ . (65)

As next, we weaken the assumption to F ∈ 〈x〉−qL∞
1,p, i.e. a weighted L∞(R

1+3

+ ) space.

Lemma 5b. Let the source F satisfy for some q > 2 and 1 < p ≤ q

F0 := ‖〈x〉qF‖L∞

1,p
< ∞. (66)

Then there exists a weak solution v(t, x) = L0(F ) of the free wave equation with source

�v = F, (67)

and null initial data v(0, x) = 0, ∂tv(0, x) = 0. Moreover, it satisfies

‖v‖L∞

1,p
≤ Cp,qF0. (68)
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IV. EXISTENCE AND UNIQUENESS IN THE ENERGY SPACE

For the free wave equation with V ≡ 0 it is well known that the homogeneous Sobolev
spaces Ḣs(R3) × Ḣs−1(R3) have the property that the evolution operator W (t) generating
the solution (u(t), ∂tu(t)) = W (t)(f, g) of the free wave equation is unitary and the norm
defines a naturally conserved energy

Es[u(t)] := ‖u‖2
Ḣs + ‖∂tu‖2

Ḣs−1 (69)

with the case s = 1 of our special interest

E0[u(t)] :=

∫ (
|∇u|2 + |∂tu|2

)
d3x. (70)

This is no more true in presence of the potential V . Yet, if the potential satisfies some
weakness conditions we show that there exist perturbed homogeneous Sobolev spaces
Ḣs(R3) × Ḣs−1(R3) in which the evolution is unitary.

We start from the observation that initial data (f, g) satisfying the decay bounds (31) or
(35) of Theorem 2a or 2b, respectively,

|f(x)| ≤ f0

〈x〉m−1
, |∇f(x)| ≤ f1

〈x〉m , |g(x)| ≤ g0

〈x〉m , m > 3, (71)

holding either everywhere or almost everywhere in R
3, belong to the following spaces: X0 :=

Ḣ1 ×L2 (the free energy space), X1 := H1 ×L2 and XE := Ḣs ×Ḣs−1 (defined below) with
s = 1, which we will call the (true) energy space for the problem at hand. In the following
we will prove that if the potential satisfies the bound (30) or (34) of Theorem 2a or 2b,
respectively,

|V (x)| ≤ V0

〈x〉k k > 2, (72)

again everywhere or almost everywhere in R
3, then there always exists a unique solution

(u, u̇) ∈ C(R+, X0), C(R+, X1) or C(R+, XE) of the wave equation (1) for any initial data
(f, g) ∈ X0, X1 or XE, respectively, but only in the true energy space XE the evolution is
unitary and the corresponding energy conserved when V 6= 0.

In dimension n = 3 the bounds (71) and (72) imply

f,∇f, g ∈ L2 and V ∈ L2. (73)

Moreover, from (72) with k > 2 follows

|V (x)| ≤ V0

(1 + |x|)2
≤ V0

|x|2 (74)

and with 〈·, ·〉, being the standard scalar product in L2, we have for any h ∈ H1

|〈h, V h〉| =

∣∣∣∣
∫

V (x)|h(x)|2d3x

∣∣∣∣ ≤ V0

∫ |h(x)|2
|x|2 d3x ≤ 4V0

∫
|∇h|2d3x = 4V0‖∇h‖2

L2 (75)

by Hardy’s inequality for n = 3. For any h ∈ L2 we have

|〈h, V h〉| =

∣∣∣∣
∫

V (x)|h(x)|2d3x

∣∣∣∣ ≤ ‖V ‖L∞‖h‖2
L2 ≤ V0 ‖h‖2

L2. (76)

11



For the classical solutions u ∈ C2(R
1+3

+ ) we know that the energy, defined by

E[u(t)] :=

∫ (
|∇u|2 + |∂tu|2 + V |u|2

)
d3x, (77)

is conserved in evolution, what can be proved by differentiation with respect to time. This
technique does not work for weak solutions, for which the derivatives exist only as distribu-
tions. For our rough data (f, g) we have from (76)

|E[u(0)]| =

∣∣∣∣
∫ (

|∇f |2 + |g|2 + V |f |2
)
d3x

∣∣∣∣ ≤ ‖∇f‖2
L2 + ‖g‖2

L2 + V0 ‖f‖2
L2 < ∞. (78)

This energy is positive definite for potentials which are weak enough3 and satisfy V0 < 1
4
,

what follows from (75) and

‖∇f‖2
L2 + 〈f, V f〉 ≥ ‖∇f‖2

L2 − 4V0

∫
|∇f |2d3x = (1 − 4V0)‖∇f‖2

L2 ≥ 0. (79)

In this section we will show that there is a unique evolution in the space of solutions with
finite energy.

First, consider A := −∆ + V defined on C∞
0 (R3). For V ∈ L∞ ∩ L2, what is guaranteed

by (72), the operator A is essentially self-adjoint on C∞
0 (R3) and has a unique self-adjoint

extension (which we denote for simplicity again by A) to D(A) = D(−∆) = {f ∈ L2 : ∆f ∈
L2} = H2 (see e.g. [10, Th. X.15]).

For f ∈ H2 we can partially integrate and find as in (79) that

〈f, Af〉 = 〈f,−∆f〉 + 〈f, V f〉 = ‖∇f‖2
L2 + 〈f, V f〉 ≥ (1 − 4V0)‖∇f‖2

L2 ≥ 0. (80)

Moreover, we have, again by Hardy’s inequality,

〈f, Af〉 = ‖∇f‖2
L2 + 〈f, V f〉 ≥ 1

4

∫ |f(x)|2
|x|2 d3x +

∫
|V (x)| |f(x)|2 d3x

≥
∫ [

1

4|x|2 − V0

|x|2
]
|f(x)|2 d3x ≥ δ

∫ |f(x)|2
|x|2 d3x

(81)

where δ := 1
4
− V0 > 0. Then, 〈f, Af〉 = 0 implies

∫ |f(x)|2

|x|2
d3x = 0 and hence |f(x)| = 0

(a.e. on R
3). This shows that A is positive definite. Then, according to [11], A has a unique

positive definite self-adjoint square root B := A1/2 with D(B) = {f ∈ L2 : Bf ∈ L2} ⊃
D(A). In spirit of the spectral theorem we can define positive self-adjoint As/2 for any s ≥ 0.

We recall that the homogeneous Ḣs and inhomogeneous Hs Sobolev spaces are defined
as completions of C∞

0 w.r.t the norms

‖h‖Ḣs := ‖(−∆)s/2h‖L2 and ‖h‖2
Hs :=

s∑

k=0

‖h‖2
Ḣk =

s∑

k=0

‖(−∆)k/2h‖2
L2 , (82)

respectively, and have the property Ḣ0∩Ḣs = Hs. In order to use the standard construction
of a unitary evolution given by the self-adjoint generator A we define perturbed homogeneous

3 It is also positive for all V (x) ≥ 0, but here we are interested only in bounds of the form (72)
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Ḣs and inhomogeneous Hs Sobolev spaces as completions of C∞
0 w.r.t the norms (in case A

is positive but not positive definite ‖ · ‖Ḣs are only seminorms)

‖h‖Ḣs := ‖As/2h‖L2 and ‖h‖2
Hs :=

s∑

k=0

‖h‖2
Ḣk =

s∑

k=0

‖Ak/2h‖2
L2 . (83)

for s ∈ N. In our situation A is positive definite, so ‖ · ‖Ḣs and ‖ · ‖Hs are norms and Ḣs

and Hs are (complete) Banach spaces.
Now we relate Ḣ1 to energy. Consider any f ∈ C∞

0 (R3) for that we can partially integrate

‖f‖2
Ḣ1 = 〈A1/2f, A1/2f〉 = 〈f, Af〉

= 〈f,−∆f〉 + 〈f, V f〉 = 〈∇f,∇f〉 + 〈f, V f〉 =: ‖f‖2
YE

.
(84)

The last expression defines what we will call “partial energy” norm (its norm properties
are inherited from ‖ · ‖Ḣ1). If we define the “partial energy” space YE by completion of

C∞
0 (R3) w.r.t. this norm then the spaces YE and Ḣ1 are identical, because both are defined

as completions of C∞
0 (R3) w.r.t. to the norms which coincide4 on the whole C∞

0 (R3). Hence,
YE ≡ Ḣ1 (see also [12] for similar considerations).

We can now define the energy space5 as XE := YE × L2 = Ḣ1 × L2 or equivalently as a
completion of C∞

0 (R3) w.r.t. the norm

‖(f, g)‖2
XE

:= ‖∇f‖2
L2 + 〈f, V f〉 + ‖g‖2

L2 = ‖f‖2
Ḣ1 + ‖g‖2

L2. (85)

XE is a Hilbert space with the scalar product

〈(f1, g1)|(f2, g2)〉XE
:= 〈A1/2f1, A

1/2f2〉 + 〈g1, g2〉, (fi, gi) ∈ Ḣ1 × L2, (86)

what follows from the fact that every Banach space Ḣs can be made to a Hilbert space
equipped with the scalar product

〈·, ·〉Ḣs := 〈As/2·, As/2·〉L2. (87)

We enhance the facts that A and B are self-adjoint on L2 with the domains D(A) = H2 ⊂ L2

and D(B) = H1 ⊂ L2, respectively, by the observation that B defined on Ḣ1 is self-adjoint
with DḢ1(B) = Ḣ1 ∩ Ḣ2 ⊂ Ḣ1.

For more flexibility in the applications we also relate the homogeneous and inhomogeneous
Sobolev spaces. For s = 0 we trivially have Ḣ0 = Ḣ0. From (75) and (79) it follows

0 ≤ (1 − 4V0)‖∇h‖2
L2 ≤ ‖∇h‖2

L2 + 〈h, V h〉 ≤ (1 + 4V0)‖∇h‖2
L2 , (88)

4 More precisely, the completions are defined by Cauchy sequences in C∞

0 (R3) w.r.t. the given norms. Since

both norms are equal on C∞

0 (R3), the Cauchy sequences w.r.t. to the two norms are identical.
5 We choose Cartesian products instead of direct sums in order to avoid confusion with norms. A direct

sum of Banach spaces induces a norm and a direct sum of Hilbert spaces induces an inner product, which

in turn induces a norm, but these two norms are different. Since we treat the same spaces as Banach

and Hilbert we use rather Cartesian products and specify the norms explicitly every time we define a new

space.
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what means that there exist constants C1, C2 > 0 such that C1‖h‖Ḣ1 ≤ ‖h‖YE
≤ C2‖h‖Ḣ1,

hence the norms in Ḣ1 and YE are equivalent and Ḣ1 = YE as sets. Since YE ≡ Ḣ1 we
have Ḣ1 = Ḣ1 as sets with equivalent norms. The same is also true for the inhomogeneous
spaces, namely H1 = H1 as sets with equivalent norms.

Furthermore, since ‖V h‖L2 ≤ V0‖h‖L2 we have on the one hand that h ∈ L2 ∩ Ḣ2 implies
‖Ah‖L2 ≤ ‖ − ∆h‖L2 + V0‖h‖L2 < ∞ and hence h ∈ Ḣ2. On the other hand, h ∈ L2 ∩ Ḣ2

implies ‖ − ∆h‖L2 ≤ ‖Ah‖L2 + V0‖h‖L2 < ∞ and hence h ∈ Ḣ2. That gives H2 = H2.
Now, we are ready to formulate and prove global existence, uniqueness and energy con-

servation for solutions of the wave equation in the energy space XE.

Theorem 1’. Assume the potential V satisfies the bound (72) with V0 < 1
4
.

a) For all initial data (f, g) ∈ Ḣ1×L2 there exists a unique weak solution u ∈ C0(R+, Ḣ1)∩
C1(R+, L2) of the wave equation (1). Moreover, the energy defined by the norm in XE is
constant in time

‖(u(t), ∂tu(t))‖2
XE

= 〈∇u(t),∇u(t)〉+ 〈u(t), V u(t)〉 + 〈∂tu(t), ∂tu(t)〉
= 〈∇f,∇f〉 + 〈f, V f〉 + 〈g, g〉. (89)

b) Initial data (f, g) ∈ Ḣ1×L2 or H1×L2 give rise to a unique solution u ∈ C0(R+, Ḣ1)∩
C1(R+, L2) or C0(R+, H1) ∩ C1(R+, L2), respectively, but the corresponding norms are not
conserved in evolution.

Proof. a) In order to prove existence of a unique (weak) solution in XE = Ḣ1 × L2 we take
advantage of the functional analysis in Hilbert spaces. We show that the evolution in XE

is generated by a self-adjoint operator M and use the famous theorem of Stone to show
that there exists a unique strongly continuous group of unitary operators W (t) defining the
evolution of u. Unitarity of W (t) guarantees conservation of the norm in X, which represents
the energy of u(t).

First, we write the wave equation (1) as

− d2

dt2
u = Au = (−∆ + V (x))u. (90)

A with D(A) = H2 is self-adjoint on the Hilbert space Z := L2 and positive definite when
the bound (72) is satisfied with V0 < 1

4
(cf. (79)). Its unique positive definite square root

B := A1/2 is self-adjoint with DZ(B) = H1 ⊂ Z on the same Hilbert space Z = L2. On the
Hilbert space Y := Ḣ1 with the scalar product 〈·, ·〉Y := 〈B·, B·〉Z the operator B is again
self-adjoint with DY (B) = Ḣ1 ∩ Ḣ2 ⊂ Y .

Next, the wave equation (90) can be written as a system of first order differential
equations in time on XZZ := DZ(B) × Z = H1 × L2 with 〈(f1, g1), (f2, g2)〉XZZ

:=
〈f1, f2〉Z + 〈Bf1, Bf2〉Z + 〈g1, g2〉Z

d

dt
U(t) = −iMU(t), U(0) =

(
f
g

)
(91)

with

U(t) :=

(
u(t)
u̇(t)

)
∈ XZZ and M := i

(
0 1

−A 0

)
. (92)
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M generates a strongly continuous semigroup WZZ(t) on XZZ which solves the above ini-
tial value problem, but M is not self-adjoint on XZZ (not even symmetric) and hence
WZZ(t) is not unitary on XZZ . Therefore, we consider now a completion XY Z of XZZ in the
norm ‖(f1, g1)‖2

XY Z
:= ‖Bf1‖2

Z + ‖g1‖2
Z = ‖f1‖2

Y + ‖g1‖2
Z equipped with the scalar product

〈(f1, g1), (f2, g2)〉XY Z
:= 〈Bf1, Bf2〉Z + 〈g1, g2〉Z = 〈f1, f2〉Y + 〈g1, g2〉Z . It turns out that

XY Z = Y × Z = Ḣ1 × L2 = XE. Then the closure of M with D(M) = D(A) × DZ(B) =
H2 ×H1 is self-adjoint on XE (see [13, Lem.7.7] for a general proof or [7] for the case V ≥ 0
treated more explicitly) and generates a strongly continuous unitary group W (t) on XE

given by the unique extension of

W (t) :=

(
cos(tB) B−1 sin(tB)

−B sin(tB) cos(tB)

)
(93)

to XE (see also [10, sec. X.13] or [14, sec. 6.2] for similar considerations). Such W (t) defines
a strongly continuous evolution in XE

U(t) = W (t)U(0) = W (t)

(
f
g

)
. (94)

Thus, we have U = (u, u̇) ∈ C0(R+, Ḣ1×L2) or, in other words, u ∈ C0(R+, Ḣ1)∩C1(R+, L2).
From the unitarity of W (t) we get ‖U(t)‖XE

= ‖U(0)‖XE
what expressed in u(t) reads

‖u(t)‖2
Ḣ1 + ‖u̇(t)‖2

L2 = ‖f‖2
Ḣ1 + ‖g‖2

L2. (95)

Since the above norm in Ḣ1 × L2 is equal to the energy norm ‖ · ‖2
XE

we get the energy
conservation (89).

b) Conservation of energy in XE implies that the solution also belongs to the free energy
space X0 = Ḣ1 × L2

E0[u(t)] = ‖∇u(t)‖2
L2 + ‖∂tu(t)‖2

L2 ≤ C1E[u(t)] = C1E[u(0)] < ∞ (96)

with C1 := (1 − 4V0)
−1 > 1 what follows from (79) and V0 < 1

4
(for V ≥ 0 the same holds

with C1 = 1). Moreover, by (75),

E0[u(t)] ≤ C1E[u(0)] ≤ C2E0[u(0)]. (97)

Summarizing this, there is a continuous (but not unitary) evolution (f, g) ∈ Ḣ1 × L2 →
(u(t), ∂tu(t)) ∈ Ḣ1 × L2 for all t > 0.

In case when additionally f ∈ L2 we get u(t) ∈ L2 for all t ∈ R+, because

‖u(t)‖L2 =

∥∥∥∥u(0) +

∫ t

0

∂tu(t′)dt′
∥∥∥∥

L2

≤ ‖f‖L2 +

∫ t

0

‖∂tu(t′)‖L2dt′

≤ ‖f‖L2 +

∫ t

0

√
E[u(t)]dt′ ≤ ‖f‖L2 +

√
E[u(0)] t < ∞ ∀t > 0,

(98)

and a continuous evolution (f, g) ∈ H1 × L2 → (u(t), ∂tu(t)) ∈ H1 × L2 for all t > 0.
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Theorem 1

Proof. In (73)-(78) we have shown that the assumptions of Theorem 2a or 2b imply finiteness
of the energy of initial data E[u(0)] < ∞. Since by (85)

‖f‖2
Ḣ1 + ‖g‖2

L2 = E[u(0)] < ∞, (99)

we have (f, g) ∈ Ḣ1 × L2. The condition V0 < C−1
p,k implies V0 < 1

4
for any p > 1, k > 2. So

we can apply Theorem 1’ a) and obtain a unique solution u ∈ C0(R+, Ḣ1)∩C1(R+, L2) with
conserved energy

E[u(t)] = ‖(u(t), ∂tu(t))‖2
XE

= 〈∇f,∇f〉 + 〈f, V f〉 + 〈g, g〉 = E[u(0)]. (100)

Since the assumptions of Theorem 2a or 2b imply also (f, g) ∈ H1×L2 we have by Theorem
1’ b) that u ∈ C0(R+, H1) ∩ C1(R+, L2).

This gives u(t),∇u(t), ∂tu(t) ∈ L2 for all t ∈ R+ what implies u(t),∇u(t), ∂tu(t) ∈ L1
loc

for all t ∈ R+, i.e. existence of the first derivatives in the weak sense, because for any
compact set Ω ⊂ R

3 and h ≡ u(t),∇u(t) or ∂tu(t) Hölder’s inequality gives

∫

Ω

|h| dµ ≤
(∫

Ω

1 dµ

)1/2

·
(∫

Ω

|h|2 dµ

)1/2

≤ µ(Ω)1/2 · ‖h‖L2(Ω) < ∞. (101)

The last step is to show that such constructed u ∈ C0(R+, H1) ∩ C1(R+, L2) really solves
the equation (1). Indeed, it solves the equation in the distributional sense (see [15, Th. 3.2]
for a more detailed discussion). Since additionally u ∈ L1

loc it solves (1) in the weak sense
(9).

V. PROOFS OF THE ESTIMATES

Lemma 1

Proof. For t > 0 we have

I =
1

4π

∫

S(x,t)

dσ(y)

f(|y|) =
1

4π

∫

S(0,1)

t2dσ(ω)

f(|x + tω|) =
t2

4π

∫

S(0,1)

dσ(ω)

f(|x + tω|) (102)

Using the fact that |ω| = 1 and introducing the angle θ between x and ω we get

|x + tω|2 = |x|2 + t2|ω|2 + 2t(xω) = |x|2 + t2 + 2t|x| cos θ (103)

hence in polar coordinates (θ, φ)

I =
t2

4π

∫ π

0

dθ sin θ

∫ 2π

0

dφ
1

f(
√
|x|2 + t2 + 2t|x| cos θ)

=
t2

2

∫ +1

−1

dχ
1

f(
√
|x|2 + t2 + 2t|x|χ)

,

(104)
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where we substituted χ := cos θ. Now, changing variables λ2 := |x|2 + t2 + 2t|x|χ and
λdλ = t|x|dχ we get

I =
t2

2

∫ t+|x|

|t−|x||

λdλ

t|x|f(λ)
=

t

2|x|

∫ t+|x|

|t−|x||

λdλ

f(λ)
. (105)

Next, choosing f(λ) = 〈x〉p = (1 + λ)p and p > 2 we have

I =
t

2|x|

∫ t+|x|

|t−|x||

λdλ

(1 + λ)p
. (106)

This simple integral can be evaluated exactly for p − 2 > 0 and then estimated

I =
t

2|x|
−1

(p − 2)

1

(1 + λ)p−2

[
1 − p − 2

(p − 1)(1 + λ)

]∣∣∣∣
|t+|x||

|t−|x||

=
t

2|x|

[
1

(p − 2)(1 + |t − |x||)p−2
− 1

(p − 2)(1 + |t + |x||)p−2

+
1

(p − 1)(1 + |t + |x||)p−1
− 1

(p − 1)(1 + |t − |x||)p−1

︸ ︷︷ ︸
≤0

]

≤ t

2(p − 2)|x|
1

〈t − |x|〉p−2
.

(107)

It gives the estimate (48) with cp := 1/2(p − 2).
We proceed further in two ways: for q > 2, on the one hand we have from (107)

1

4πt

∫

S(x,t)

dσ(y)

〈y〉q ≤ cp

|x|〈t − |x|〉q−2
. (108)

and the other hand, taking the supremum out of the integral, we find

1

4πt

∫

S(x,t)

dσ(y)

〈y〉q ≤ 1

4πt

(
sup

|y−x|=t

1

〈y〉q

)∫

S(x,t)

dσ(y) =
1

4πt

4πt2

〈t − |x|〉q =
t

〈t − |x|〉q . (109)

Combining both inequalities (108), (109) for q = p > 2 we get

1

4πt

∫

S(x,t)

dσ(y)

〈y〉p ≤ 1

〈t − |x|〉p−2
min

(
2 cp

2|x| ,
t

〈t − |x|〉2
)

. (110)

By little algebra it can be shown that

2 cp

2|x| ≤
9 cp

〈t + |x|〉 for |x| ≥ t

4
, |x| ≥ 1

4
(111)

t

〈t − |x|〉2 ≤ 4

〈t + |x|〉 for |x| ≤ t

4
, t ≥ 1 (112)

t

〈t − |x|〉2 ≤
9
4

〈t + |x|〉 for |x| ≤ 1

4
, t ≤ 1. (113)
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Therefore, for p > 2

1

4πt

∫

S(x,t)

dσ(y)

〈y〉p ≤ C
(1)
p

〈t + |x|〉〈t − |x|〉p−2
(114)

where

C(1)
p := max

(
9 cp, 4,

9

4

)
= max

(
9

2(p − 2)
, 4

)
. (115)

Now, combining inequalities (108), (109) for q = p − 1 > 2 we get

1

4πt2

∫

S(x,t)

dσ(y)

〈y〉p−1
≤ 1

〈t − |x|〉p−3
min

(
2cp−1

2|x|t ,
1

〈t − |x|〉2
)

. (116)

By some more algebra it can be shown that

for
1

2
≤ |x|

t
≤ 2 and |x|, t ≥ 1 :

2 cp−1

2|x|t ≤ 6 cp−1

〈t − |x|〉〈t + |x|〉 , (117)

for
|x|
t

≥ 2 or
|x|
t

≤ 1

2
:

1

〈t − |x|〉2 ≤ 5

〈t − |x|〉〈t + |x|〉 , (118)

for |x|, t ≤ 2 :
1

〈t − |x|〉2 ≤ 5

〈t − |x|〉〈t + |x|〉 . (119)

So we have

min

(
2cp−1

2|x|t ,
1

〈t − |x|〉2
)

≤ max(6 cp−1, 5, 5)

〈t − |x|〉〈t + |x|〉 . (120)

So we finally get for p > 3

1

4πt2

∫

S(x,t)

dσ(y)

〈y〉p−1
≤ C

(2)
p

〈t + |x|〉〈t− |x|〉p−2
(121)

where

C(2)
p := max(6 cp−1, 5) = max

(
3

p − 1
, 5

)
. (122)

Lemma 2

For completeness we cite the proof after Georgiev et al. [5].

Proof. For t > 0 and the continuous integrand in I we use a version of Fubini’s theorem and
split the integration over the cone K(x, t) into integrations over time and over spheres

I =
1

4π

∫ t

0

ds

∫

S(x,t−s)

dσ(y)
1

(t − s)〈y〉q〈s + |y|〉〈s− |y|〉p−1
. (123)
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For integration over the spheres S(x, t − s) we use lemma 1 and obtain

I =
1

2|x|

∫ t

0

ds

∫ t−s+|x|

|t−s−|x||

dλ
λ

〈λ〉q〈s + λ〉〈s − λ〉p−1

=
1

2|x|

∫ t

0

ds

∫ t−s+|x|

|t−s−|x||

dλ
1

(1 + λ)q−1(1 + s + λ)(1 + |s − λ|)p−1
.

(124)

One can estimate the integrand for q ≥ p

1

(1 + λ)q−1(1 + s + λ)(1 + |s − λ|)p−1
≤ 3q−1

(1 + s + λ)p

(
1

(1 + |s − λ|)q−1
+

1

(1 + λ)q−1

)

(125)
because for 0 ≤ s ≤ 2λ it is smaller than the first term and for s ≥ 2λ smaller than the
second one (see [5] or [1] for more details). Now, changing variables α := λ+s and β := λ−s,
we get for q > 2

I ≤ 3q−1

2|x|

∫ t+|x|

|t−|x||

dα

(1 + α)p

∫ +∞

−∞

dβ




1

(1 + |β|)q−1
+

1
(
1 + |α+β|

2

)q−1




≤ 3q−1

2|x|
2q−1

q − 2
(1 + 21−q)︸ ︷︷ ︸

≤3/2

∫ t+|x|

|t−|x||

dα

(1 + α)p
.

(126)

The last integral can be estimated either by taking supremum of the integrand or by inte-
grating it explicitly

J :=
1

2|x|

∫ t+|x|

|t−|x||

dα

(1 + α)p
≤
{

(1 + |t − |x||)−p−1

(2(p − 1)|x|)−1(1 + |t − |x||)−p =
1

〈t − |x|〉p−1

{
〈t − |x|〉−1

(2(p − 1)|x|)−1 .

(127)
It can be easily shown that

1

2p|x| ≤
2/(p − 1)

〈t + |x|〉 for 2|x| ≥ t, 2|x| ≥ 1 (128)

1

〈t − |x|〉 ≤ 3

〈t + |x|〉 for 2|x| ≤ t, t ≥ 1 (129)

1

〈t − |x|〉 ≤ 3

〈t + |x|〉 for t, |x| ≤ 1 (130)

and hence

J ≤ max(2/(p − 1), 3)

〈t + |x|〉〈t − |x|〉p−1
. (131)

Finally, we obtain

I ≤ Cp,q

〈t + |x|〉〈t − |x|〉p−1
(132)

with

Cp,q :=
3

2

6q−1

(q − 2)
max(2/(p − 1), 3).
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Lemma 3

Proof. For any distributions f, g ∈ D′(R3) and F ∈ D′(R1+3) with support on R
1+3

+ the
representation formula (53) can be written as

v(t, x) = ∂t

∫

R

ds

∫

R3

d3y
δ(t− s − |x − y|)

4π(t − s)
δ(s)f(y) +

∫

R

ds

∫

R3

d3y
δ(t− s − |x − y|)

4π(t − s)
δ(s)g(y)

+

∫

R

ds

∫

R3

d3y
δ(t − s − |x − y|)

4π(t − s)
θ(s)F (s, y)

= ∂t

[
δ(·t − | ·x |)

4π·t
∗ δ(·t)f(·x)

]
(t, x) +

[
δ(·t − | ·x |)

4π·t
∗ δ(·t)g(·x)

]
(t, x)

+

[
δ(·t − | ·x |)

4π·t
∗ θ(·t)F

]
(t, x)

=

[
δ(·t − | ·x |)

4π·t
∗ [δ′(·t)f(·x) + δ(·t)g(·x) + θ(·t)F ]

]
(t, x),

(133)

i.e. a sum of R
1+3-convolutions of distributions δ(t)f(x), δ(t)g(x), θ(t)F (t, x) ∈ D′(R1+3)

with δ(t − |x|)/(4πt) ∈ D′(R1+3), all supported on R
1+3

+ . The formula defines again a

distribution v ∈ D′(R1+3) [16] supported on R
1+3

+ . In order to show that v solves weakly the
wave equation (54), i.e. v satisfies (55), we transform the l.h.s. of (55) for any test function
ϕ ∈ C∞

0 (R1+3)
∫

dt

∫
d3x v(t, x) �ϕ(t, x) =

=

∫
dt

∫
d3x

[
δ(·t − | ·x |)

4π·t
∗ [δ′(·t)f(·x) + δ(·t)g(·x) + θ(·t)F ]

]
(t, x) �ϕ(t, x)

=

∫
dt

∫
d3x �

[
δ(·t − | ·x |)

4π·t
∗ [δ′(·t)f(·x) + δ(·t)g(·x) + θ(·t)F ]

]
(t, x) ϕ(t, x)

=

∫
dt

∫
d3x

[
�

(
δ(·t − | ·x |)

4π·t

)
∗ [δ′(·t)f(·x) + δ(·t)g(·x) + θ(·t)F ]

]
(t, x) ϕ(t, x)

(134)

where we have first used the definition of differentiation of distributions (corresponding to
partial integration) and then the theorem on differentiation of convolutions [16]. Now, with
the well-known distributional identity

�

(
δ(t − |x|)

4πt

)
= δ(t)δ(x), (135)

we arrive at
∫

dt

∫
d3x v(t, x) �ϕ(t, x) =

=

∫
dt

∫
d3x [δ′(t)f(x) + δ(t)g(x) + θ(t)F (t, x)] ϕ(t, x)

= −
∫

d3x f(x) ∂tϕ(0, x) +

∫
d3x g(x) ϕ(0, x) +

∫

R+

dt

∫
d3x F (t, x) ϕ(t, x).

(136)
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In case when f, g and F are ordinary functions or in L1
loc, then they are also (regular)

distributions with, in general, distributional derivatives. For them the statements above
remain untouched. If additionally v ∈ L1

loc is defined almost everywhere as a function

on R
1+3

+ by the Duhamel’s formula (56), which is equivalent to (53) with only alternative
notation for the measures (δ(...) d3y → dσ(y)), then it also solves weakly the same wave
equation, i.e. its derivatives exist in the distributional sense and v ∈ L1

loc satisfies (136).

Lemma 4a

Proof. Let v(t, x) for t > 0, x ∈ R
3 be given by the formula

v(t, x) =
1

4π

∫

S(x,t)

g(y)

t
dσ(y) +

1

4π

∫

S(x,t)

(y − x) · ∇f(y) + f(y)

t2
dσ(y)

=
t

4π

∫

S(0,1)

g(x + tω) dσ(ω) +
t

4π

∫

S(0,1)

ω · ∇f(x + tω) dσ(ω)

+
1

4π

∫

S(0,1)

f(x + tω) dσ(ω).

(137)

Since g, f,∇f ∈ C0 these integrals exist for all (t, x) ∈ R
1+3
+ and are finite. Moreover, since

all three above integrands are continuous functions of (t, x) and are uniformly bounded by
g0, f1, f0 ∈ L1(S(0, 1)) for all (t, x), from continuity of Lebesgue integrals, we obtain that v
is also continuous in (t, x) ∈ R

1+3
+ . The first two integrals are bounded by 4πg0 and 4πf1,

respectively, hence limt→0+ v(t, x) = f(x) = v(0, x), so we have v ∈ C0(R
1+3

+ ). Then also
v ∈ L1

loc and from lemma 3 it follows that v solves weakly the wave equation (58).
Therefore, we are able to apply the pointwise estimates

|v(t, x)| ≤ 1

4π

∫

S(x,t)

( |g(y)|
t

+
|∇f(y)|

t
+

|f(y)|
t2

)
dσ(y)

≤ ‖〈·〉mg‖∞ + ‖〈·〉m∇f‖∞
4πt

∫

S(x,t)

dσ(y)

〈y〉m +
‖〈·〉m−1f‖∞

4πt2

∫

S(x,t)

dσ(y)

〈y〉m−1

=
g0 + f1

4πt

∫

S(x,t)

dσ(y)

〈y〉m +
f0

4πt2

∫

S(x,t)

dσ(y)

〈y〉m−1
.

(138)

From lemma 1, eq. (49) and (50), for m > 3, we finally obtain

|v(t, x)| ≤ Cm · (g0 + f1 + f0)

〈t + |x|〉〈t− |x|〉m−2
∀(t, x) ∈ R

1+3
+ (139)

with

Cm := max(C(1)
m , C(2)

m ) = max

(
9

2(m − 2)
, 5

)
. (140)

The inclusion of the boundary t = 0 is trivial, because from the bounds on the initial data
we have

|v(0, x)| = |f(x)| ≤ f0

〈|x|〉m−1
≤ Cm · (g0 + f1 + f0)

〈0 + |x|〉〈0 − |x|〉m−2
∀x ∈ R

3. (141)
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Lemma 4b

Proof. We start again, as in proof of lemma 4a, with the formula

v(t, x) =
1

4πt

∫

S(x,t)

g(y)dσ(y) +
1

4πt2

∫

S(x,t)

[(y − x) · ∇f(y) + f(y)] dσ(y) (142)

for t > 0, x ∈ R
3, but now we cannot use the pointwise estimates on f and g. We must show

that the integrals over the spheres make sense almost everywhere and that the resulting v
belongs to L∞

1,m−1.
For the moment let’s forget the function f and concentrate on the first integral only.
We can cover R

3 with spheres S(x, t) of same origin x and various radii t ∈ R+, i.e.
R

3 ∼= S(x, ·) × R+ up to one point x ∈ R
3, which itself plays no role in integration and

measurability. Since g ∈ L∞
m and ‖g‖L∞

m
= ‖〈·〉mg‖L∞ = g0 < ∞ we have |g(x)| ≤ g0/〈x〉m

a.e. on R
3. The set

A := {x : |g(x)| > g0/〈x〉m} (143)

has therefore measure zero in R
3. From a variation of Fubini’s theorem6 for sets it follows

that for almost all t ∈ R+ the measure (on the spheres S(x, t)) of A|S(x,t) is zero. In other
words, for almost all t ∈ R+ and all x ∈ R

3 it holds

|g(y)| ≤ g0/〈y〉m (144)

for almost all y ∈ S(x, t), what can be written as ‖〈·〉mg‖L∞

t (R+)L∞(S(x,t)) ≤ g0.
Since g ∈ L∞

m then also g ∈ L∞(R3) and g ∈ L1
loc(R

3). From R
3 ∼= S(x, ·) × R+ and a

variation of Fubini’s theorem6 it follows that for almost all t ∈ R+ and all x ∈ R
3 we have

g|S(x,t) ∈ L1(S(x, t)) (we skip ”local” because S(x, t) is compact in R
3), i.e.

∫
S(x,t)

|g(y)| dσ(y)

exists and is finite. Therefore, for these (t, x), using (144), we can estimate

∣∣∣∣
∫

S(x,t)

g(y) dσ(y)

∣∣∣∣ ≤
∫

S(x,t)

|g(y)| dσ(y) ≤ g0

∫

S(x,t)

dσ(y)

〈y〉m (145)

Using the estimate (49) proved in lemma 1, with m > 3, we obtain a bound for the first
term in (142) ∣∣∣∣

1

4πt

∫

S(x,t)

g(y) dσ(y)

∣∣∣∣ ≤ g0
C

(1)
m

〈t + |x|〉〈t − |x|〉m−2
(146)

for almost all t ∈ R+ and all x ∈ R
3.

We proceed analogously with the second term in (142), with m > 3, using the estimate
(50) from lemma 1 for the term containing f , and obtain

∣∣∣∣
1

4πt2

∫

S(x,t)

(y − x) · ∇f(y) dσ(y)

∣∣∣∣ ≤
1

4πt

∫

S(x,t)

|∇f(y)| dσ(y) ≤ f1
C

(1)
m

〈t + |x|〉〈t − |x|〉m−2

(147)

6 By “variation of Fubini’s theorem” we mean here the non-standard decomposition of R
3 ∼= S(x, ·)×R+. It

is equivalent to introduction of g̃x(ω, t) := g(x+ ωt) defined on S(0, 1)×R+, where the standard Fubini’s

theorem holds.
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∣∣∣∣
1

4πt2

∫

S(x,t)

f(y) dσ(y)

∣∣∣∣ ≤ f0
C

(2)
m

〈t + |x|〉〈t − |x|〉m−2
(148)

for almost all t ∈ R+ and all x ∈ R
3. The last three estimates lead to

|v(t, x)| ≤ Cm · (g0 + f1 + f0)

〈t + |x|〉〈t− |x|〉m−2
(149)

with Cm defined in (140), for almost all t ∈ R+ and all x ∈ R
3. The inclusion of the

boundary t = 0 is trivial, because v(0, x) = 0, although not necessary, since the set {0}×R
3

is of measure zero in R
1+3

+ . Thus

‖v(t, x)‖L∞

1,m−1
= ‖〈t + |x|〉〈t− |x|〉m−2v(t, x)‖

L∞(R
1+3

+ )
≤ Cm. (150)

It remains to show that v is measurable on R
1+3

+ . A product of two measurable functions
is measurable, hence g(y) as well as (y − x)∇f and f are measurable on R

3. The solution
v(t, x), given by (142), can be rewritten as

v(t, x) =

∫

S(0,1)

tg(x + tω) + tω · ∇f(x + tω) + f(x + tω)

4π
dσ(ω) (151)

where we have changed variables so that we integrate over a unit sphere around the origin.
Define h(t, x, ω) := [tg(x + tω) + tω · ∇f(x + tω) + f(x + tω)]/4π, which is measurable on
R+ ×R

3 × S(0, 1), because it involves only sums, products and compositions of measurable
functions. Then,

v(t, x) =

∫

S(0,1)

h(t, x, ω) dσ(ω), (152)

according to the theorem of Tonelli, is a measurable function of (t, x) ∈ R+ × R
3 defined

almost everywhere. Together with boundedness almost everywhere, shown in (150), we
conclude that v ∈ L∞

1,m−1.

Since v is defined by (142) almost everywhere and v ∈ L1
loc, by lemma 3, v solves weakly

the free wave equation (61).

Lemma 5a

Proof. v(t, x), given for t > 0, x ∈ R
3 by the formula

v(t, x) :=
1

4π

∫

K(x,t)

F (s, y)

t − s
dκ(s, y) (153)

for F ∈ C0(R
1+3

+ ), is well-defined everywhere in (t, x) ∈ R+×R
3 = R

1+3

+ , because the integral

over a compact set K(x, t) ∈ R
1+3

+ of a continuous integrand exists and is finite. Then, using
a variation of Fubini’s theorem, we split the integration

v(t, x) :=
1

4π

∫ t

0

ds

∫

S(x,t−s)

dσ(y)
F (s, y)

t − s

=
1

4π

∫ t

0

dt

∫

S(0,1)

dσ(ω) (t − s)F (s, x + (t − s)ω).

(154)
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Now, H(t, x, s, ω) := (t−s)F (s, x+(t−s)ω)/(4π) is continuous in all variables t, x, s, ω and
for all (s, ω) ∈ [0, T ]×S(0, 1) is uniformly bounded on (t, x) ∈ [0, T ]×R

3 by |H(t, x, s, ω)| ≤
TF0 ∈ L1([0, T ] × S(0, 1)) for any T > 0. Then, by a standard theorem on Lebesgue
integration of continuous functions, the integral

v(t, x) =

∫ t

0

ds

∫

S(0,1)

dσ(ω) H(t, x, s, ω) (155)

is continuous on (t, x) ∈ [0, T ] × R
3 for any T > 0 and hence on (t, x) ∈ R

1+3

+ . (The case
t = 0 is trivially included, because limt→0+ v(t, x) = 0 = v(0, x).)

Since v is defined everywhere in R
1+3
+ and hence almost everywhere in R

1+3

+ by the above
formula, and v ∈ L1

loc, then by lemma 3 it solves weakly the wave equation (64).
Now, knowing that v(t, x) is continuous and hence finite everywhere, we can estimate

|v(t, x)| ≤ 1

4π

∫

K(x,t)

|F (s, y)|
|t − s| dκ(s, y)

≤ F0

4π

∫

K(x,t)

dκ(s, y)

〈y〉q〈s + |y|〉〈s− |y|〉p−1(t − s)

(156)

Lemma 2 gives an estimate for this double integral (integral over a cone) and we obtain a
bound

|v(t, x)| ≤ Cp,q · F0

〈t + |x|〉〈t − |x|〉p−1
(157)

which is valid for all (t, x) ∈ R
1+3
+ . This bound is also satisfied for t = 0, because v(0, x) =

0.

Lemma 5b

Proof. We have 〈x〉qF ∈ L∞
1,p then also F ∈ L∞(R

1+3

+ ) and hence F ∈ L1
loc(R

1+3

+ ). The

whole space-time R
1+3

+ can be covered by the set of cones {K(x, t) : t ∈ R+}, up to one
point (0, x) ∈ R+ × R

3, which itself plays no role in integration and measurability, i.e.

R
1+3

+
∼= C(x, ·) × R+. Then, from a variation of Fubini’s theorem7 it follows that F |K(x,t) ∈

L1(K(x, t)) (we skip ”local” because K(x, t) is compact in R
1+3

+ ) for almost all t ∈ R+ and
all x ∈ R

3. Then, of course, F (s, y) and hence F (s, y)/(t − s) is measurable on the same
cones, so the following integral over the cone

v(t, x) :=
1

4π

∫

K(x,t)

F (s, y)

t − s
dκ(s, y) (158)

exists for almost all t ∈ R+ and all x ∈ R
3.

7 By “variation of Fubini’s theorem” we mean here the non-standard decomposition of R
1+3
+

∼= C(x, ·)×R+.

It is equivalent to introduction of F̃t,x(ω, s) := F (t−s, x+ωs)) defined on S(0, 1)×[0, t], where the standard

Fubini’s theorem holds.
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As next, its value can be estimated. The condition ‖〈x〉qF (t, x)‖L∞

1,p
= F0 < ∞ means

that |F (t, x)| ≤ F0/(〈x〉q〈t + |x|〉〈t − |x|〉p−1) for all (t, x) ∈ R
1+3

+ except a set A of measure

zero in R
1+3

+ . From a variation of Fubini’s theorem7 for measurable sets and the decompo-

sition R
1+3

+
∼= K(x, ·) × R+ it follows that for almost all t ∈ R+ the measure (on the cone

K(x, t)) of A|K(x,t) is zero. It means that for almost all t ∈ R+ and all x ∈ R
3 it holds

|F (s, y)| ≤ F0/(〈y〉q〈s+ |y|〉〈s−|y|〉p−1) almost everywhere on the cone (s, y) ∈ K(x, t). For
these (t, x) we can estimate

|v(t, x)| ≤ 1

4π

∫

K(x,t)

|F (s, y)|
|t − s| dκ(s, y)

≤ F0

4π

∫

K(x,t)

dκ(s, y)

〈y〉q〈s + |y|〉〈s− |y|〉p−1(t − s)

(159)

Lemma 2 gives an estimate for this integral over the cone and we obtain a bound

|v(t, x)| ≤ Cp,q · F0

〈t + |x|〉〈t − |x|〉p−1
(160)

which is valid for almost all t ∈ R+ and all x ∈ R
3. (This bound is also trivially valid for

t = 0, because v(0, x) = 0.) Finally, it gives

‖v‖L∞

1,p
≤ Cp,qF0. (161)

In order to have v ∈ L∞
1,p it remains to show that v(t, x) is measurable on R

1+3

+ . To this end

we use again a variation of Fubini’s theorem with K(x, t) ∼= S(x, t − ·) × R+ for (158) and
those (t, x) where this integral exists and is finite, and write

v(t, x) =
1

4π

∫ t

0

dt

∫

S(0,1)

dσ(ω) (t − s)F (s, x + (t − s)ω) (162)

Since 〈x〉qF (t, x) ∈ L∞
1,p the function F (t, x) is measurable on R+×R

3. Then H(t, x, s, ω) :=

(t − s)F (s, x + (t − s)ω)/(4π) is measurable on (t, x, s, ω) ∈ R+ × R
3 × R+ × S(0, 1). From

Tonelli’s theorem we get

v(t, x) =

∫ t

0

dt

∫

S(0,1)

dσ(ω) H(t, x, s, ω) (163)

measurable on R+×R
3 = R

1+3

+ . Finally, v ∈ L1
loc and is defined almost everywhere by (158),

hence by Lemma 3 v solves weakly the wave equation (67).

Theorem 2b

Proof. Consider the following iteration scheme

un+1 := I0(f, g) − L0(V un), n = 0, 1, 2, ... and u−1 := 0. (164)
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For g,∇f ∈ L∞
m and f ∈ L∞

m−1 with m > 3 from lemma 4b we get u0 = I0(f, g) ∈ L∞
1,m−1.

Next, observe that if un ∈ L∞
1,p with some p > 1 then

‖〈x〉kV un‖L∞

1,p
≤ ‖〈x〉kV ‖L∞‖un‖L∞

1,p
= V0‖un‖L∞

1,p
< ∞ (165)

and from lemma 5b with F ≡ V un we get L0(V un) ∈ L∞
1,p when p ≤ k. Because L∞

1,p1
⊂ L∞

1,p2

when p1 ≥ p2, we get un+1 ∈ L∞
1,p with p ≤ min(m− 1, k). By induction we obtain un ∈ L∞

1,p

for every n = 0, 1, 2, ... with the optimal value p := min(m − 1, k). Then, we have

‖un+1 − un‖L∞

1,p
= ‖L0(−V (un − un−1))‖L∞

1,p
≤ Cp,k‖〈x〉kV (un − un−1)‖L∞

1,p

≤ Cp,k‖〈x〉kV ‖L∞‖un − un−1‖L∞

1,p
= Cp,kV0‖un − un−1‖L∞

1,p

(166)

again making use of lemma 5b with F ≡ −V (un−un−1) ∈ 〈x〉−kL∞
1,p. For δ := Cp,kV0 < 1 the

iteration is a contraction in Banach space L∞
1,p. A simple argument shows that the sequence

un is Cauchy. We have

‖uk+1 − uk‖L∞

1,p
≤ δk+1‖u0 − u−1‖L∞

1,p
= δk+1‖I0(f, g)‖L∞

1,p
(167)

and for n > m

‖un − um‖L∞

1,p
≤

n−m−1∑

k=0

‖um+k+1 − um+k‖L∞

1,p
≤

n−m−1∑

k=0

δk+m+1‖I0(f, g)‖L∞

1,p

≤ δm+1

1 − δ
‖I0(f, g)‖L∞

1,p

(168)

and this expression can be made arbitrarily small (< ǫ) for all n, m > M(ǫ) when δ < 1.
Since L∞

1,p is a Banach space the Cauchy sequence un has a limit u ∈ L∞
1,p with the property

u = I0(f, g) − L0(V u) (169)

and hence

‖u‖L∞

1,p
≤ ‖I0(f, g)‖L∞

1,p
+ ‖L0(V u)‖L∞

1,p
≤ Cm(f0 + f1 + g0) + Cp,kV0‖u‖L∞

1,p
. (170)

Then

‖u‖L∞

1,p
≤ Cm(f0 + f1 + g0)

1 − Cp,kV0
≡ C. (171)

Moreover, equation (169) together with lemmas 4a and 5a imply

∫
dt

∫
d3x �ϕ(t, x) u(t, x) = −

∫
d3x ∂tϕ(0, x) f(x) +

∫
d3x ϕ(0, x) g(x)

−
∫

R

dt

∫
d3x ϕ(t, x) V (x) u(t, x),

(172)

what gives equation (9). Since u ∈ L1
loc it is a weak solution to the wave equation (1).

Uniqueness is guaranteed by theorem 1.
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Theorem 2a

Proof. The condition |u(t, x)| ≤ C/(〈t + |x|〉〈t + |x|〉p−1) implies u ∈ L∞
1,p and together

with u ∈ C0(R
1+3

+ ) these two conditions are equivalent. Therefore, proof of this theorem is
analogous to the proof of theorem 2b with the only difference that continuity must be shown
separately in the iteration.

Analogously, for iteration defined by

un+1 := I0(f, g) − L0(V un), n = 0, 1, 2, ... and u−1 := 0. (173)

and (f, g) ∈ C1(R3) × C0(R3) satisfying the bounds (31), hence g,∇f ∈ L∞
m , by lemma 4a,

we get u0 = I0(f, g) ∈ L∞
1,m−1∩C0(R

1+3

+ ). Next, if un ∈ L∞
1,p∩C0(R

1+3

+ ) for some p > 2, hence

also V un ∈ C0(R
1+3

+ ), because V ∈ C0(R3), then analogously, by lemma 5a with F ≡ V un,

we get L0(V un) ∈ L∞
1,p ∩ C0(R

1+3

+ ) when p ≤ k. It implies that un+1 ∈ L∞
1,p ∩ C0(R

1+3

+ ) with

p ≤ min(m−1, k). By induction we obtain un ∈ L∞
1,p∩C0(R

1+3

+ ) for every n = 0, 1, 2, ... with
the optimal value p := min(m−1, k). Analogously, using lemma 5a with F ≡ V (un−un−1) ∈
〈x〉−kL∞

1,p ∩ C0(R
1+3

+ ) we show

‖un+1 − un‖L∞

1,p
≤ Cp,kV0‖un − un−1‖L∞

1,p
(174)

what presents a contraction in Banach space L∞
1,p ∩ C0(R

1+3

+ ). Again by full analogy, for V0

small enough, we show that the sequence un is Cauchy in Banach space L∞
1,p ∩ C0(R

1+3

+ ),

hence un has a limit u ∈ L∞
1,p ∩ C0(R

1+3

+ ) with the property

u = I0(f, g) − L0(V u). (175)

Then

‖u‖L∞

1,p
≤ Cm(f0 + f1 + g0)

1 − Cp,kV0
≡ C. (176)

Since u ∈ C0(R
1+3

+ ) the last condition implies

|u(t, x)| ≤ C

〈t + |x|〉〈t + |x|〉p−1
∀(t, x) ∈ R

1+3

+ . (177)

And also analogously, equation (175) together with lemmas 4b and 5b imply

∫
dt

∫
d3x �ϕ(t, x) u(t, x) = −

∫
d3x ∂tϕ(0, x) f(x) +

∫
d3x ϕ(0, x) g(x)

−
∫

R

dt

∫
d3x ϕ(t, x) V (x) u(t, x),

(178)

what gives equation (9). Since u ∈ L1
loc it is a weak solution to the wave equation (1).

Uniqueness is guaranteed by theorem 1.
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Corollary 1

Proof. Analogously as in proofs of the theorems above we define an iteration

un+1 := I0(f, g) − L0(V un) − L0(F ), n = 0, 1, 2, ... and u−1 := 0. (179)

From lemma 4b we get u0 = I0(f, g) ∈ L∞
1,m−1. From lemma 5b we get L0(F ) ∈ L∞

1,r.
By same argument as in previous theorems we have L0(V un) ∈ L∞

1,p with p ≤ k provided
un ∈ L∞

1,p with some p > 1. Then, by induction we obtain un ∈ L∞
1,p for every n = 0, 1, 2, ...

with the optimal value p := min(m − 1, k, r). Then, we find

‖un+1 − un‖L∞

1,p
= ‖L0(−V (un − un−1))‖L∞

1,p
≤ Cp,k‖〈x〉kV (un − un−1)‖L∞

1,p

≤ Cp,k‖〈x〉kV ‖L∞‖un − un−1‖L∞

1,p
= Cp,kV0‖un − un−1‖L∞

1,p

(180)

again making use of lemma 5b with F ≡ −V (un−un−1) ∈ 〈x〉−kL∞
1,p. For δ := Cp,kV0 < 1 the

iteration is a contraction in Banach space L∞
1,p and the sequence un is Cauchy. It converges

to the limit u ∈ L∞
1,p (Banach space) which satisfies

u = I0(f, g) − L0(V u) − L0(F ) (181)

and hence

‖u‖L∞

1,p
≤ ‖I0(f, g)‖L∞

1,p
+ ‖L0(V u)‖L∞

1,p
+ ‖L0(F )‖L∞

1,p

≤ Cp(f0 + f1 + g0) + Cp,kV0‖u‖L∞

1,p
+ Cr,qF0.

(182)

Then

‖u‖L∞

1,p
≤ Cm(f0 + f1 + g0) + Cr,qF0

1 − Cp,kV0
≡ C. (183)

To prove the continuous case one needs only to use the lemmas 4a and 5a instead of the
lemmas 4b and 5b and repeat the convergence argument from the proof of theorem 2a.

VI. DECAY ESTIMATES FOR THE DERIVATIVES

One can state the estimate given in theorem 2a or 2b in a more detailed form, namely
that the solution of (1) satisfies

‖u‖L∞

1,p
≤

Cm · (‖f‖L∞

m−1
+ ‖∇f‖L∞

m
+ ‖g‖L∞

m
)

1 − Cp,k · ‖V ‖L∞

k

(184)

when k > 2, m > 3, p := min(k, m − 1), the norms ‖f‖L∞

m−1
, ‖∇f‖L∞

m
, ‖g‖L∞

m
are finite and

‖V ‖L∞

k
< C−1

p,k < ∞.
If u is a classical solution one can differentiate the wave equation (1) with respect to time

and obtain
�∂tu + V ∂tu = 0. (185)

If u is a weak solution of (1) then this equation is also satisfied in the weak sense. The
existence of the weak solution will be guaranteed by the theorems below. It can be treated
again as equation (1) for a new variable v := ∂tu with the initial data

v(0, x) = g(x), ∂tv(0, x) = ∂2
t u(0, x) = −Af, (186)

28



where A := −∆ + V (x). Then, theorem 2a or 2b gives existence of the solution ∂tu ∈
C0(R

1+3

+ ) or ∂tu ∈ L∞
1,p′ , respectively, and the estimate

‖∂tu‖L∞

1,p′
≤

Cm · (‖g‖L∞

m′−1
+ ‖∇g‖L∞

m′
+ ‖Af‖L∞

m′
)

1 − Cp′,k′ · ‖V ‖L∞

k

. (187)

The term ‖Af‖L∞

m′
can be bounded by ‖∆f‖L∞

m′
+ ‖V f‖L∞

m′
. Analogously, one can obtain

existence and an estimate for ∂2
t u

‖∂2
t u‖L∞

1,p′′
≤

Cm · (‖Af‖L∞

m′′−1
+ ‖∇(Af)‖L∞

m′′
+ ‖Ag‖L∞

m′′
)

1 − Cp′′,k′′ · ‖V ‖L∞

k

. (188)

The term ‖∇(Af)‖L∞

m′′
can be bounded by ‖∇∆f‖L∞

m′′
+ ‖V ∇f‖L∞

m′′
+ ‖(∇V )f‖L∞

m′′
. The

three estimates can be put together when the constants m, m′, m′′ and p, p′, p′′ are related
to each other. Using the following property of the weighted L∞ norms ‖h1 · h2‖L∞

a+b
≤

‖h1‖L∞
a
· ‖h2‖L∞

b
we get for m = m′ = m′′ > 3

Corollary 2a.

u, ∂tu, ∂2
t u ∈ L∞

1,p (189)

with p := min(k, m − 1) provided

f,∇f, ∆f,∇∆f, g,∇g, ∆g ∈ L∞
m , (190)

‖V ‖L∞

k
< C−1

p,k < ∞, ‖∇V ‖L∞ < ∞. (191)

Alternatively, choosing m = m′ − 1 = m′′ − 2 > 3 we get for classical solutions especially
simple form of the assumptions

Corollary 2a’.

‖u‖L∞

1,p
, ‖∂tu‖L∞

1,p′
, ‖∂2

t u‖L∞

1,p′′
< ∞, (192)

with p := min(k, m − 1), p′ := min(k, m), p′′ := min(k, m + 1) provided (f, g) ∈ C3(R3) ×
C2(R2) with

|∇3f | ∈ L∞
m+2, |∇2g| ∈ L∞

m+2 (193)

and V ∈ C1(R3) with

‖V ‖L∞

k
< min(C−1

p,k , C
−1
p′,k, C

−1
p′′,k) < ∞, ‖∇V ‖L∞

3
< ∞. (194)

Here, we introduced a simplified notation8

|∇nh| :=
3∑

a1,...,an=1

|∂a1
...∂an

h|. (195)

Because of the regularity, the bounds on |∇3f | and |∇2g| can be integrated to give

‖f‖L∞

m−1
, ‖∇f‖L∞

m
, ‖∆f‖L∞

m+1
, ‖∇∆f‖L∞

m+2
< ∞, (196)

8 This notation simplifies the assumptions, but looses information about the decay of directional derivatives,

which is however rarely used.
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and
‖g‖L∞

m
, ‖∇g‖L∞

m+1
, ‖∆g‖L∞

m+2
< ∞. (197)

The control of spatial derivatives is more difficult, since V depends on x. Again, by
differentiation of the wave equation (1) with respect to xi we get (for weak solutions the
equation holds as well by the same argument as above)

�∂iu + V ∂iu = −(∂iV )u. (198)

This equation can be handled with Corollary 1 for v = ∂iu and F = −(∂iV )u with the initial
data v(0, x) = ∂if(x) and ∂tv(0, x) = ∂ig(x). Then,

‖∂iu‖L∞

1,p′
≤

Cm′(‖∂if‖L∞

m′−1
+ ‖∇∂if‖L∞

m′
+ ‖∂ig‖L∞

m′
) + Cp,k′‖〈x〉k′

(∂iV )u‖L∞

1,p

1 − Cp′,k‖V ‖L∞

k

. (199)

for p′ := min(k, m′ − 1, p) and m′ > 3, k, k′ > 2, k′ ≥ p > 1. The last term in the nominator
can be bounded by ‖(∂iV )‖L∞

k′
‖u‖L∞

1,p
. Analogously, an estimate for ∂i∂ku reads

‖∂i∂ku‖L∞

1,p′′
≤
[
Cm′′(‖∂i∂kf‖L∞

m′′−1
+ ‖∇∂i∂kf‖L∞

m′′
+ ‖∂i∂kg‖L∞

m′′
)

+ Cp,k′′‖(∂i∂kV )‖L∞

k′′
‖u‖L∞

1,p
+ 2Cp′,k′‖∂V ‖L∞

k′
‖∂u‖L∞

1,p′

]
/
[
1 − Cp′′,k‖V ‖L∞

k

]
(200)

for p′′ := min(k, m′′ − 1, p, p′) and m′′ > 3, k, k′, k′′ > 2, k′′ ≥ p > 1, k′ ≥ p′ > 1. We can
combine these estimates for m = m′ = m′′ > 3 and k = k′ = k′′ > 2 and get

Corollary 2b.

u, |∇u|, |∇2u| ∈ L∞
1,p (201)

with p := min(k, m − 1) provided

f ∈ L∞
m−1, |∇f |, |∇2f |, |∇3f |, g, |∇g|, |∇2g| ∈ L∞

m , (202)

V, |∇V |, |∇2V | ∈ L∞
k and ‖V ‖L∞

k
< C−1

p,k < ∞. (203)

Finally, combining corollary 2a with 2b we get corollary 2.
The same reasoning can be repeated for (f, g) ∈ C3(R3) ∩ C2(R3) and V ∈ C2(R3) which

give the classical solution u ∈ C2(R
1+3

+ ). The only difference is that one needs to use theorem
2a instead of 2b and the continuous version of corollary 1.

Higher derivatives can be treated in an analogous way.
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