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We present results from a study of Type I critical phenomena in the dynamics of general rela-
tivistic boson stars in spherical symmetry. The boson stars are modelled with a minimally coupled,
massive complex field (with no explicit self-interaction), and are driven to the threshold of black
hole formation via their gravitational interaction with an initially imploding pulse of massless scalar
field. Using a distinct coordinate system, we reproduce previous results [1, 2], including the scaling
of the lifetime of near-critical configurations, as well as the fact that such configurations are well
described as perturbed, one-mode-unstable boson stars. In addition, we make a detailed study of
the long-time evolution of marginally subcritical configurations. Contrary to previous claims [1, 2],
we find that the end state in such cases does not involve dispersal of the bulk of the boson star
field to large radial distances, but instead can be generically described by a stable boson star ex-
ecuting large amplitude oscillations. Furthermore we show that these oscillations can be largely
identified as excitations of the fundamental mode associated with the final boson star, as computed
in perturbation theory.

I. INTRODUCTION

Over the past decade or so, intricate and unexpected
phenomena related to black holes have been discovered
through the detailed numerical study of various mod-
els for gravitational collapse, starting with one of the
authors’ investigation of the spherically symmetric col-
lapse of a massless scalar field [3]. These studies gen-
erally concern the threshold of black hole formation (a
concept described below), and the phenomena observed
near threshold are collectively called (black hole) critical
phenomena, since they share many of the features asso-
ciated with critical phenomena in statistical mechanical
systems. The study of critical phenomena continues to be
an active area of research in numerical relativity, and we
refer the interested reader to the review article by Gund-
lach [4] for full details on the subject. Here we will simply
summarize some key points that are most germane to the
work described in this paper.

To understand black hole critical phenomena, one must
understand the notion of the “threshold of black hole for-
mation”. The basic idea is to consider families of solu-
tions of the coupled dynamical equations for the grav-
itational field and the matter field that is undergoing
collapse (a complex scalar field, φ, in our case). Since
we are considering a dynamical problem, and since we
assume that the overall dynamics is uniquely determined
by the initial conditions, we can view the families as be-
ing parametrized by the initial conditions—variations in
one or more of the parameters that fix the initial values
will then generate various solution families. We also em-
phasize that we are considering collapse problems. This
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means that we will generically be studying the dynamics
of systems that have length scales comparable to their
Schwarzschild radii, for at least some period of time dur-

ing the dynamical evolution. We also note that we will
often take advantage of the complete freedom we have
as numerical experimentalists to choose initial conditions
that lead to collapse, but which may be highly unlikely
to occur in an astrophysical setting.

We now focus attention on single parameter families of
data, so that the specification of the initial data is fixed
up to the value of the family parameter, p. We will gener-
ally view p as a non-linear control parameter that will be
used to govern how strong the gravitational field becomes
in the subsequent evolution of the initial data, and in par-
ticular, whether a black hole forms or not. Specifically,
we will always demand that any one-parameter family of
solutions has the following properties:

1. For sufficiently small values of p the dynamics re-
main regular for all time, and no black hole forms.

2. For sufficiently large values of p, complete gravi-
tational collapse sets in at some point during the
dynamical development of the initial data, and a
black hole forms.

From the point of view of simulation, it turns out to be
a relatively easy task for many models of collapse to con-
struct such families, and then to identify two specific pa-
rameter values, p− (p+) which do not (do) lead to black
hole formation. Once such a “bracket” [p−, p+] has been
found, it is straightforward in principle to use a technique
such as binary search to hone in on a critical parameter

value, p⋆, such that all solutions with p < p⋆ (p > p⋆) do
not (do) contain black holes. A solution corresponding
to p = p⋆ thus sits at the threshold of black hole forma-
tion, and is known as a critical solution. It should be
emphasized that underlying the existence of critical so-
lutions are the facts that (1) the end states (infinite-time
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behaviour) corresponding to properties 1 and 2 above are
distinct (a spacetime containing a black hole vs a space-
time not containing a black hole) and (2) the process
characterizing the black hole threshold (i.e. gravitational
collapse) is unstable. We also note that we will term evo-
lutions with p < p⋆ subcritical, while those with p > p⋆

will be called supercritical.

Having discussed the basic concepts underlying black
hole critical phenomena, we now briefly describe the fea-
tures of critical collapse that are most relevant to the
research described below.

First, critical solutions do exist for all matter models
that have been studied to date, and for any given matter
model, almost certainly constitute discrete sets. In fact,
for some models, there may be only one critical solution,
and we therefore have a form of universality.

Second, critical solutions tend to have additional sym-
metry beyond that which has been adopted in the speci-
fication of the model (e.g. we will impose spherical sym-
metry in our calculations).

Third, the critical solutions known thus far, and the
black hole thresholds associated with them, come in two
broad classes. The first, dubbed Type I, is characterized
by static or periodic critical solutions (i.e. the additional
symmetry is a continuous or discrete time-translational
symmetry), and by the fact that the black hole mass just
above threshold is finite (i.e. so that there is a minimum
black hole mass that can be formed from the collapse).
The second class, called Type II, is characterized by con-
tinuously or discretely self-similar critical solutions (i.e.
the additional symmetry is a continuous or discrete scal-
ing symmetry), and by the fact that the black hole mass
just above threshold is infinitesimal (i.e. so that there is
no minimum for the black hole mass that can be formed).
The nomenclature Type I and Type II is by analogy with
first and second order phase transitions in statistical me-
chanics, with the black hole mass viewed as an order
parameter.

Fourth, solutions close to criticality exhibit various
scaling laws. For example, in the case of Type I col-
lapse, where the critical solution is an unstable, time-
independent (or periodic) compact object, the amount
of time, τ , that the dynamically evolved configuration is
well approximated by the critical solution per se satisfies
a scaling law of the form

τ(p) ∼ −γ ln |p− p⋆| , (1)

where γ is a universal exponent in the sense of not de-
pending on which particular family of initial data is used
to generate the critical solution, and ∼ indicates that the
relation (1) is expected to hold in the limit p→ p⋆.

Fifth, and finally, much insight into critical phenomena
comes from the observation that although unstable, crit-
ical solutions tend to be minimally unstable, in the sense
that they tend to have only a few, and perhaps only one,
unstable modes in perturbation theory. In fact, if one
assumes that a Type I solution, for example, has only a

single unstable mode, then the growth factor (Lyapunov
exponent) associated with that mode can be immediately
related to the scaling exponent γ defined by (1).

In this paper we will be exclusively concerned with
Type I critical phenomena, where the threshold solutions
will generally turn out to be unstable boson stars. Pre-
vious work relevant to ours includes studies by Hawley
[1] and Hawley & Choptuik [2] of boson stars in spher-
ically symmetry. We extend this work and show that,
contrary to previous claims [1, 2] that subcritical solu-
tions disperse most of the original mass of the boson star
to large distances—the late time behaviour of subcritical
evolution is characterized by oscillation about a stable
boson star solution. We also apply a linear perturba-
tion analysis similar to that in [1, 2] and confirm that
the observed oscillation modes agree with the fundamen-
tal modes given by perturbation theory. (We use a code
kindly provided by S. Hawley [5] to generate the frequen-
cies from the perturbation analysis.)

The outline of the rest of this paper is as follows:
in Section II we describe the mathematical formulation
for our numerical simulations, which includes II A: the
model for the boson stars, and II B: the initial value prob-
lem. In Section III we present results of our simulations:
in III A we present the setup of numerical experiments,
in III B the Type I character of the critical solutions is
demonstrated, III C contains a discussion of the end state
of subcritical evolutions and is followed by some pertur-
bation analysis in III D. Section IV summarizes our find-
ings, while the finite difference approximations used and
our convergence testing of our implementations of them,
are given in Appendices A and B respectively.

In what follows we base our work in the context of clas-
sical field theory, and we choose units in whichG = c = 1.
In addition, without loss of generality, we restrict our-
selves to the case where the particle mass, m, associated
with the complex scalar field satisfies m = 1.

II. MATHEMATICAL FORMULATION

A. The model

Our model for boson stars involves a self-gravitating
massive complex scalar field, φ = φ1 + iφ2, minimally
coupled to gravity as given by general relativity. (Note
that we do not make the complex scalar field explicitly
self-interacting—in the literature, the stationary config-
urations in this case are sometimes called “mini” bo-
son stars.) An additional, massless real scalar field, φ3,
also minimally coupled to gravity, is used to dynamically
“perturb” the boson star. The interaction between the
massive complex scalar field and the massless real scalar
field is thus through the gravitational field alone. The
whole system can be described by the action
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S =

∫

d4x
√−g

[

R

16π
− 1

2

(

∇µφ∇µφ
∗ +m2φφ∗

)

− 1

2
∇µφ3∇µφ3

]

, (2)

where R is the spacetime Ricci scalar and m is the mass
of the bosonic particle. Variations of the action with re-
spect to the metric, gµν , the complex scalar field, φ, and
the real scalar field, φ3, yield the equations of motion,
which are the Einstein equation, the Klein-Gordon equa-
tion and the wave equation, respectively:

Rµν − 1

2
gµνR = 8πTµν , (3)

∇µ∇µφ−m2φ = 0 , (4)

and

∇µ∇µφ3 = 0 , (5)

where

Tµν = T φ
µν + T φ3

µν , (6)

T φ
µν ≡ 1

2
[(∇µφ∇νφ

∗ + ∇νφ∇µφ
∗)

−gµν

(

∇αφ∇αφ
∗ +m2|φ|2

)]

, (7)

T φ3

µν = ∇µφ3∇νφ3 −
1

2
gµν ∇αφ3∇αφ3 . (8)

Equations (3)–(8) completely determine the dynamics
of our system (up to coordinate transformations), once
appropriate initial conditions and boundary conditions
are specified.

To study the system numerically, we adopt the stan-
dard “3+1” ADM formalism [6, 7]. Since we restrict our-
selves to spherically symmetry the metric can be written
in a much simpler form than in the generic case. Here
we use maximal-isotropic coordinates, which is a differ-
ent system than that used in [1, 2]. We note in passing
that although the accuracy of finite difference calcula-
tions in any given coordinate system can in principle be
estimated using intrinsic means (e.g. convergence tests),
we feel that it is nonetheless useful to reproduce the cal-
culations of [1, 2] in a distinct coordinate system.

In maximal-isotropic coordinates, the line element can
be written as:

ds2 =
(

−α2 + ψ4β2
)

dt2 + 2ψ4β dt dr

+ ψ4
(

dr2 + r2dΩ2
)

, (9)

where α, β and ψ are the lapse function, r-component
of the shift vector and the conformal factor respectively,
and all are functions of t and r. We further define new
variables to transform the Klein Gordon and wave equa-
tions into a first order (in time) system:

Φi ≡ φ′i , (10)

Πi ≡
ψ2

α

(

φ̇i − βφ′i

)

, (11)

where i = 1, 2 or 3, ′ ≡ ∂/∂r and ˙≡ ∂/∂t. As with the
geometric variables, φi. Φi and Πi are functions of t and
r alone.

With these definitions, the Hamiltonian constraint and
momentum constraints are given by [8]

3

ψ5

d

dr3

(

r2
dψ

dr

)

+
3

16
Kr

r
2 =

− π

(

∑3
i=1

(

Φ2
i + Π2

i

)

ψ4
+m2

2
∑

i=1

φi
2

)

, (12)

Kr
r

′ + 3
(rψ2)′

rψ2
Kr

r = −8π

ψ2

(

3
∑

i=1

ΠiΦi

)

, (13)

and the Klein-Gordon and wave equations become

φ̇i =
α

ψ2
Πi + βΦi , (14)

Φ̇i =

(

βΦi +
α

ψ2
Πi

)′

, (15)

Π̇i =
3

ψ4

d

dr3

[

r2ψ4

(

βΠi +
α

ψ2
Φi

)]

− αψ2m2φi (1 − δi3)

−
(

αKr
r + 2β

(rψ2)′

rψ2

)

Πi . (16)

In addition to equations (12)–(16), we need to de-
termine the lapse function and shift component using
our specific coordinate choices. The maximal condition,
which maximizes the 3-volume of the t = const. slices, is
given by K ≡ Ki

i = 0. This is implemented by choosing
initial data so that K(0, r) ≡ 0 and then demanding that

K̇(t, r) = 0 . (17)

for all t and r.
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This leads to the following linear ODE for α(t, r),
which must be solved at each instant in time in order
to maintain the maximal condition [8]:

α′′ +
2

rψ2

d

dr2
(

r2ψ2
)

α′

+

(

4πm2ψ4
2
∑

i=1

φ2
i − 8π

3
∑

i=1

Π2
i −

3

2
(ψ2Kr

r)
2

)

α

= 0 . (18)

The isotropic condition, which is implicit in the cho-
sen form of the metric (9), demands that the 3-metric of
each t = const. hypersurface be conformally flat. This re-
quirement leads to the following ODE for the shift vector
component, β(t, r):

r

(

β

r

)′

=
3

2
αKr

r . (19)

Equations (12)–(19) constitute a complete set of dif-
ferential equations governing our model. Note that our
approach is an instance of so-called fully constrained evo-
lution, wherein all of the geometric variables—ψ andKr

r

in this case—are computed at each time step using con-
straint equations. To completely fix a solution—given
initial data—we also must impose regularity and bound-
ary conditions at r = 0 and r → ∞ respectively.

Regularity at the origin, r = 0, requires

ψ′(t, 0) = 0 , (20)

Kr
r(t, 0) = 0 , (21)

α′(t, 0) = 0 , (22)

φ′i(t, 0) = 0 , (23)

Π′
i(t, 0) = 0 , (24)

whereas the outer boundary conditions are

lim
r→∞

ψ(t, r) = 1 +
C(t)

r
+O(r−2) , (25)

lim
r→∞

α(t, r) = lim
r→∞

2

ψ(t, r)
− 1

= 1 − 2C(t)

r
+O(r−2) , (26)

lim
r→∞

β(t, r) =
D(t)

r
+O(r−2) , (27)

and

Φ̇i + Φ′
i +

Φi

r
= 0 , (28)

Π̇i + Π′
i +

Πi

r
= 0 , (29)

for some functions C(t) and D(t). The last two of these
equations are approximate Sommerfeld conditions that
assume that as r → ∞, the three scalar field compo-
nents, φi, are purely outgoing with amplitudes decaying
as 1/r. For given initial data, eqs. (12)–(29) now com-
pletely determine our system.

For diagnostic purposes, we also define the mass aspect
function

M(t, r) ≡
(

ψ2r

2

)3

Kr
r

2 − 2ψ′r2 (ψ + rψ′) , (30)

which is equal to the ADM mass in any vacuum region
exterior to the support of matter.

In addition, although ψ and Kr
r are ultimately deter-

mined from the constraint equations, the following evo-
lution equations are used for providing initial estimates
for the iterative constraint-solving process.

ψ̇ = −1

2
αψKr

r +

(

ψ2β
)′

2ψ
, (31)

˙Kr
r = βKr ′

r − 2α

(rψ2)2
+

2

r2ψ6

[

αr
(

rψ2
)′
]′

+ 8πm2α|φ|2 . (32)

Full details of our finite differencing scheme are given
in App. A.

B. The initial value problem

The primitive object in our model problem is a
(ground-state) boson star, represented by a configura-
tion of massive complex scalar field, centred at the origin.
Ideally one would like a “star” to be described by a lo-
calized, time-independent matter source that generates
an everywhere regular (i.e. non-singular) gravitational
field. However, for the case of a complex scalar field, it
can be shown that such regular, time-independent con-
figurations do not exist [9]. Despite this fact, since the
stress-energy tensor (7) depends only on the modulus of
the scalar field (and the gradients of the modulus), one
can construct scalar field configurations with harmonic
time-dependence that produce time-independent metrics.
Specifically, we adopt the following ansatz for boson stars
in spherical symmetry:
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φ(t, r) = φ0(r) e
−iωt , (33)

and then demand that the spacetime be static, i.e. we
demand that the metric admits a timelike Killing vector
field, χ, which is orthogonal to the t = const. surfaces.
Adapting coordinate time to the timelike Killing vector
field, we have

β = 0 , (34)

for all time t. Additionally, we have that the time deriva-
tives of any of the geometrical variables identically van-
ish. It then follows immediately that [8]

Kr
r = 0 . (35)

As is necessary for the consistency of the ansatz (33),
the isotropic condition for β (19) is automatically satis-
fied, and we are left with geometrical variables α(0, r),
ψ(0, r) and φ0(r) that need to be determined from the
maximal slicing condition (18), the Hamiltonian con-
straint (12) and the Klein-Gordon equation (16), respec-
tively:

ψ′ = Ψ , (36)

Ψ′ = −2Ψ

r
− π

[

ψΦ2 + ψ5

(

ω2

α2
+m2

)

φ2

]

, (37)

φ′ = Φ , (38)

Φ′ = −
(

2

r
+
A

α
+

2Ψ

ψ

)

Φ + ψ4

(

m2 − ω2

α2

)

φ , (39)

α′ = A , (40)

A′ = −2

(

1

r
+

Ψ

ψ

)

A+ 4πψ4α

(

2ω2

α2
−m2

)

φ2 .(41)

Here, in order to simplify notation, we have dropped
the subscript “0”, making the identifications φ(r) ≡
φ0(r) and Φ(r) ≡ φ′(r) ≡ φ′0(r). We have also intro-
duced auxiliary variables Ψ(r) ≡ ψ′(r) and A(r) ≡ α′(r)
in order to cast the above system of nonlinear ODEs in a
canonical first-order form. We assert that for any given
value of φ(0) ≡ φ0(0), the system (36)-(41) constitutes an
eigenvalue problem with eigenvalue ω = ω(φ(0)). That
is, for any specific value of φ(0) (which one can loosely
view as being related to the central density of the star),
a solution of (33) that satisfies the appropriate regularity
and boundary conditions will only exist for some specific
value of ω. The system (36)–(41) must be supplemented
by boundary conditions, some of which are naturally ap-
plied at r = 0, with the rest naturally set at r = ∞. In
particular, regularity at r = 0 implies

Ψ(0) = 0 , (42)

Φ(0) = 0 , (43)

A(0) = 0 , (44)

while at the outer boundary, we have

lim
r→∞

ψ(r) = 1 − C

r
, (45)

lim
r→∞

φ(r) ≈ 0 , (46)

lim
r→∞

α(r) =
2

ψ
− 1 . (47)

Here the second condition follows from the expectation
that φ should decay exponentially [10] as r → 0.

We further note that due to the homogeneity and lin-
earity of the slicing equation, we can always arbitrarily
(and conveniently) choose the central value of the lapse
via

α(0) = 1 , (48)

and then, after integration of (36)-(41), can rescale α
and ω simultaneously to satisfy the true outer boundary
condition, (47), for α:

α(r) −→ c α(r) , (49)

ω(r) −→ c ω(r) . (50)

where c is given by

c =
2/ψ(rmax) − 1

α(rmax)
, (51)

and rmax is the radial coordinate of the outer boundary
of the computational domain.

As mentioned above, any solution of (36)-(41) can be
conveniently labelled by the central value of the modulus
of the scalar field, φ0(0) = φ(0). For any given value
of φ0(0), we must then determine the eigenvalue, ω, and
in the current case of maximal-isotropic coordinates, the
central value of the conformal factor ψ(0), so that all of
the boundary conditions are satisfied. In principle, we
can compute pairs [ω, ψ(0)] as a function of φ0(0) using
a two-parameter “shooting” technique [11, 12].

Alternatively, in some cases we generate boson star ini-
tial data in maximal-isotropic coordinates by first con-
structing the stars in so-called polar-areal coordinates,
and then performing a coordinate transformation on the
resulting solution.

Polar-areal coordinates, which have seen widespread
use in spherically symmetric computations in numerical
relativity, can be viewed as the generalization of the usual
Schwarzschild coordinates to time-dependent, spherically
symmetric spacetimes. As with maximal slicing, the slic-
ing condition in this case—known as polar slicing—is ex-
pressed as a condition on the mean extrinsic curvature:

K = Kr
r . (52)

Since in general we have K = Ki
i = Kr

r + 2Kθ
θ, this

condition is implemented by requiring

Kθ
θ(t, r) = K̇θ

θ(t, r) = 0 , (53)
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for all t and r.

The spatial coordinates are fixed by demanding that
the coordinate r measure proper surface area (i.e. that it
be an areal coordinate). It can be shown that this choice
of r, together with polar slicing, further imply that β ≡ 0,
so that the line element becomes

ds2 = −α2dt2 + a2dr2 + r2dΩ2 . (54)

As before, to construct star-like solutions, we adopt the
time-harmonic ansatz (33) for the complex scalar field,
adapt the time coordinate to the timelike Killing vector
field, and require the spacetime to be static. We again
find that the extrinsic curvature tensor vanishes identi-
cally (so that, for static data, the slicing is polar as well
as maximal), and that the momentum constraint (13) is
automatically satisfied.

Again, considering the Hamiltonian constraint, the
Klein-Gordon equation, and the slicing condition

˙Kθ
θ = 0 , (55)

at t = 0, we have (dropping the subscript 0’s as before):

a′ =
1

2

{

a

r

(

1 − a2
)

+ 4πra

[

φ2a2

(

m2 +
ω2

α2

)

+ Φ2

]}

, (56)

α′ =
α

2

{

a2 − 1

r

+ 4πr

[

a2φ2

(

ω2

α2
−m2

)

+ Φ2

]}

, (57)

φ′ = Φ , (58)

Φ′ = −
(

1 + a2 − 4πr2a2m2φ2
) Φ

r

−
(

ω2

α2
−m2

)

φa2 . (59)

In this case, the regularity conditions are

a(0) = 1 , (60)

Φ(0) = 0 , (61)

while the outer boundary conditions are

lim
r→∞

φ(r) ≈ 0 , (62)

lim
r→∞

α(r) =
1

a(r)
. (63)

As before, we can convert the last condition to an inner

condition on α by taking advantage of the linearity and
homogeneity of the slicing equation. Specifically, we can
again choose α(0) = 1, and then after integration of (56)–
(59) simultaneously rescale α(r) as well as the eigenvalue,
ω, so that (63) is satisfied.

We again consider the family of boson star solutions
parametrized by the central value of the modulus of the
scalar field, φ0(0). In this case, given a value of φ0(0),
and using the conditions a(0) = 1, α(0) = 1, Φ(0) =
0, we need only adjust the eigenvalue ω itself in order
to generate a solution with the appropriate asymptotic
behaviour (i.e. so that limr→∞ φ(r) = 0). This is a classic
1-parameter shooting problem, which is comparatively
easier than the 2-parameter shooting method described
above.

Once we have computed a solution in areal coordinates,
we can perform a coordinate transformation from areal
coordinates to isotropic coordinates [13, 14] (recall that
the maximal and polar slices coincide for the static case).
Essentially this amounts to solving an ODE of the form

r |R=Rmax
=

[

(

1 +
√
a

2

)2
R

a

]

R=Rmax

,

dr

dR
= a

r

R
. (64)

We emphasize that (36)–(41) or (56)–(59) are used for
generating initial data describing a spacetime that has
no matter content other than a single boson star. To
“perturb” a given boson star, and, in particular, to drive
the star to the threshold of black hole formation, we im-
plode a (spherical) shell of massless scalar field onto it.
Specifically, we choose initial data for the massless field
of the following “gaussian” form:

φ3(0, r) = A3 exp

[

−
(

r − r0
σ

)2
]

, (65)

where A3, r0 and σ are adjustable parameters, control-
ling the overall amplitude, position and width, respec-
tively, of the imploding gaussian wave packet. To en-
sure that the massless field is almost purely in-going
at the initial time, we specify the “conjugate” variable

Π3 ≡ ψ2/α
(

φ̇3 − βφ3
′
)

as follows:

Π3(0, r) = −
(

Φ3(0, r) +
φ3(0, r)

r

)

. (66)

In all of our studies described below, we have fixed r0
and σ in (65) to r0 = 40 and σ = 5. This ensures that
the support of the massless field is well separated from
that of the complex field (i.e. from any of the boson stars
per se that we study) at the initial time.

Once the complex scalar field, φ, and the real scalar
field, φ3, are known, the initial data for the functions
ψ(0, r), Kr

r(0, r), α(0, r) and β(0, r) are computed by
solving the Hamiltonian constraint (12), the momen-
tum constraint (13), the slicing condition (18), and the
isotropic condition (19) respectively.
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III. RESULTS

A. Setup of numerical experiments

The PDEs solved in the simulations discussed here are
those listed in the previous section. We also provide a
summary of the equations of motion of the system, the
boundary conditions, and details of the finite difference
approximation used in App. A. Additionally, results of
convergence tests of our code are discussed in App. B.

In order to study critical behaviour in the model we
start with initial data for the complex field that repre-
sents a boson star on the stable branch (i.e. a star with
a central scalar field value φ0(0) . 0.08, using our units
and conventions). We generally choose a configuration
that is reasonably relativistic, i.e. with φ0(0) bounded
away from 0, but not too close to the instability point,
φ(0) ≈ 0.08.

Details of the initial data setup were described in the
previous section. Typical evolution of such initial data
proceeds as follows. Once we have fixed the boson star
configuration, we complete the specification of the mass-
less scalar field initial data by fixing the overall ampli-
tude factor, A3, and then evolve the system. Initially,
the shell of massless scalar field implodes towards r = 0
at the speed of light, while the boson star “sits” in its
static state centered at the origin. As the in-going mass-
less shell reaches the region of space occupied by the
boson star, its contribution to the overall gravitational
field tends to compress the boson star to a higher mean
density and smaller radius. The massless field passes
through the origin and then “explodes” outward, even-
tually propagating off the computational domain. De-
pending on the strength of the perturbation from the
massless field, we find that the compressed boson star ei-
ther relaxes to something resembling a stable boson star
with large-amplitude oscillations, or collapses to form a
black hole. Thus by adjusting the massless scalar am-
plitude factor, A3—which we generically use as the ad-
justable parameter, p, in our study of critical behaviour
in the model—we can tune the evolution to the thresh-
old of black hole formation. In practice we use a bisec-
tion search to refine our estimate of the critical value,
A⋆

3, and can carry the search to machine precision, so
that ∆A3/A3 ∼ 10−15 using standard 8-byte floating-
point arithmetic. Unless otherwise specified, the com-
putations described below have been performed with a
spatial mesh spacing ∆r = 50/1024 ≈ 0.049, a Courant
factor ∆t/∆r = 0.3, and the coefficient of Kreiss-Oliger
dissipation, ǫd = 0.5 (see App. A for the definition of ǫd).

We note that our numerical calculations generate en-
tire families of critical solutions, fundamentally reflecting
the fact that there is a continuum of one-mode unstable
boson star configurations (see Fig. 3). In addition, for
any fixed initial boson star state, the specifics of the ob-
served threshold solution will depend on the details of
the “perturbing” scalar field. This last fact is, however,
irrelevant to the conclusions that we draw from our study.

In the following section we discuss results from detailed
studies of black hole threshold solutions generated from
several distinct initial boson star states. Table I summa-
rizes the values of φ0(0) that were used, the approximate
values of A3 required to generate a critical solution, the
location, rmax, of the outer boundary of the computa-
tional domain, and the figures that display results asso-
ciated with the respective calculations. Since we will not
dwell on this point below, we note that all of our calcula-
tions confirm the basic picture previously reported that
the black holes that form just above threshold in this
type of collapse generically have finite mass (i.e. that the
critical transition is Type I).

B. Critical phenomena

We start by examining results from a critically per-
turbed boson star having an unperturbed central field
value φ0(0) = 0.05. As just described, the critical mass-
less amplitude factor, A⋆

3 ∼ 0.0032, was determined by
performing a bisection search on A3, to roughly machine
precision. (Recall that each iteration in this search in-
volves the solution of the time-dependent PDEs for the
model for a specific value of A3, with all other parame-
ters held fixed, and the criterion by which we adjust the
bisection bracket is whether or not the simulation results
in black hole formation.)

A series of snapshots of ∂M(t, r)/∂r (where M(t, r)
is the mass aspect function) for a marginally subcritical
evolution is shown in Fig. 1. Full analysis of the results of
this simulation indicate that the boson star enters what
we identify as the critical state at t ≈ 130, and remains in
that state until t ≈ 510. It is worth noting that the boson
star actually completes its collapse into a more compact
configuration well after the real scalar field has dispersed
from the boson star region. We also note that the amount
of time, τ , spent in the critical state—τ ≈ 380 in this
case—is a function of how closely the control parameter
has been tuned to criticality. Specifically, we expect τ
to be linear in ln |A3 −A⋆

3| (see (1)), and we will display
evidence for this type of scaling below.

Fig. 2 shows the time evolution of the central modu-
lus of the complex scalar field for marginally subcritical
evolutions generated from boson star initial states with
φ0(0) = 0.035, 0.04 and 0.05. From the figure we can see
that in all three cases the perturbed stars enter an ex-
cited, critical state at t ≈ 100 and remain in that state for
a finite time which is a function of φ0(0) (i.e. of the initial
state). Additionally, at least for the cases φ0(0) = 0.035,
φ0(0) = 0.04, the figure provides evidence that follow-
ing the critical evolution phase, the excited stars relax to
states characterized by large amplitude oscillations of the
complex field. This behaviour will be examined in more
detail below. Finally, also apparent in the plot are the
smaller-amplitude oscillations that occur during the pe-
riods of critical evolution. Previous work [1, 2] indicated
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Fig. φ0 A⋆
3 rmax

1 0.05 0.0032 50

2, 3 0.035, 0.04, 0.05 0.00471, 0.00342, 0.00316 50

4 0.02, 0.035, 0.04, 0.05 0.00915, 0.00471, 0.00342, 0.00316 50

5 0.04 0.00342 200

6 0.035, 0.04, 0.05 0.0083, 0.0061, 0.0031 100

7, 8 0.04 0.00342, 0.00603, 0.00623, 0.00632 50, 100, 200, 400

TABLE I: Summary of parameters used to generate the results displayed in Figs. 1-8. Listed for each distinct computation or
numerical experiment are the relevant figure numbers, central amplitude of the complex field, φ0(0), the overall massless scalar
amplitude factor, A⋆

3 (see 65), that generates a marginally-critical solution, and the maximum radial coordinate, rmax, of the
computational domain. Other parameters defining the massless scalar initial profile (65) are held fixed at r0 = 40, σ = 5 for
all simulations. Other numerical parameters are chosen to be ∆r = 50/1024 ≈ 0.049, ∆t/∆r = 0.3 and ǫd = 0.5, and are also
fixed for the calculations discussed here.

that these oscillations can be interpreted as excitations
of the (stable) first harmonic mode of the unstable boson
star that is acting as the critical solution—the unstable
fundamental mode is the one that determines whether
or not the configuration will evolve to a black hole. Al-
though we have not studied this matter in any detail,
we assume that the same picture holds for our current
calculations.

The results from our simulations of critically perturbed
boson stars are thus in agreement with the previous stud-
ies [1, 2] which identified the critical states as excited (pri-
marily in the first harmonic mode), unstable boson stars.
Following that work we display in Fig. 3 an approximate
correspondence between the initial boson stars and the
critical solutions. The solid line traces the one-parameter
family of static boson stars (parameterized as usual by
φ0(0)), where we have defined the radius, R, of a boson
star so that M(R) = 0.99M(∞) = 0.99MADM. The
triangles indicate the initial stable boson star configura-
tions, the squares indicate our best estimate of the cor-
responding unstable critical boson star states, and each
arrow schematically depicts the transition between the
two states that is induced by the perturbing scalar field.
We note that to identify which unstable boson star is act-
ing as the critical solution—which is equivalent to iden-
tifying an effective value of φ0(0)—we time average the
central modulus of the complex field, |φ(t, 0)| during the
period of critical evolution. In addition, in accord with
previous results, we observe that in all cases the mass of
the unstable critical state is larger than that of the pro-
genitor boson star, indicating that a significant amount
of mass-energy is extracted from the massless scalar field
through its purely gravitational interaction with the com-
plex field.

As discussed previously, for both subcritical and su-
percritical simulations, the closer one tunes A3 to the
critical value A⋆

3, the longer the perturbed star will per-
sist in the critical state. Specifically, we observe scaling
of the lifetime, τ , of the critical evolution of the form

τ(A3) ∼ −γ ln |A3 −A⋆
3| , (67)

where we define the lifetime to be the lapse of coordinate
time from the start of the evolution, t = 0, to the time of
first detection of an apparent horizon, and where γ is a
scaling exponent that depends on which of the infinitely
many one-mode unstable boson stars acts as the criti-
cal solution in the particular scenario being simulated.
We note that the details of the definition of τ are not
important to the determination of γ in (67) since γ ac-
tually measures the differential in lifetime with respect
to changes in A3 −A⋆

3, and this differential is insensitive
to precisely how we define τ , at least as A3 → A⋆

3. In
addition, we note that in using coordinate time in our
definition of the scaling relationship (67), we are defining
the scaling with respect to proper time at spatial infin-
ity. Another choice—arguably more natural—would be
to define τ in terms of the proper time measured by an
observer at rest at r = 0 (central proper time). Since
the critical solutions are nearly static, the relation be-
tween these two different definitions of time would be a
specific factor for each distinct value of φ0(0), and would
thus lead to a φ0(0)-dependent “renormalization” of the
scaling exponents, γ.

Fig. 4 shows measured scaling laws from supercritical
evolutions of perturbed boson stars defined by φ0(0) =
0.02, 0.035, 0.04 and 0.05. It is clear from these plots
that, at least as A3 → A⋆

3, we have lifetime scaling
of the form (67). Estimated values of γ—computed
from linear least-squares fits to the plotted data—are
γ = 8.1, 11, 14, 17 for φ0(0) = 0.02, 0.035, 0.04, 0.05, re-
spectively. We note that according to the now stan-
dard picture of critical collapse (see for example [4]),
each value of γ can be identified with the reciprocal Lya-
punov exponent (i.e. growth factors) of the single unsta-
ble mode associated with the corresponding critical solu-
tion. Again, the reason that we observe different values
of γ for different choices of initial boson star (different
values of φ0(0)) is that distinct critical solutions are be-
ing generated in the various cases. That is, we cannot
expect universality (with respect to initial data) in this
case because the model admits an entire family of one-
mode unstable solutions that sit at the threshold of black
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FIG. 1: Critical evolution of a perturbed boson star with
φ0(0) = 0.05 and mass, MADM = 0.62 (using our units and
conventions). This figure shows the time development of con-
tributions to ∂M/∂r from the complex (solid line) and real
(dashed line) scalar fields. Note that the temporal spacing
between successive snapshots is not constant—the time in-
stants displayed have been chosen to illustrate the key fea-
tures of the near-critical evolution. Also note that we have
multiplied the value of ∂M/∂r for the real scalar field by a
factor of 8 to aid in the visualization of that field’s dynam-
ics. The evolution begins with a stable boson star centered
at the origin, and an in-going gaussian pulse (shell) of mass-
less, real scalar field that is used to perturb the star. The
overall amplitude factor, A3, of the initial real scalar field
profile (see (65)), is the control parameter for generating the
one-parameter family of solutions that interpolates through
the black hole threshold. For the calculation shown here, A3

has been tuned to a critical value A⋆

3 ≈ 0.0032 via a bisection
search (and with a fractional precision of ≈ 10−15). The other
parameters defining the gaussian initial profile of the massless
field are r0 = 40 and σ = 5. The snapshots show that the real
scalar field enters the region containing the bulk of boson star
at t ≈ 22, implodes through the origin at t ≈ 45, leaves the
boson star region at t ≈ 70, and, finally, completely disperses
from the computational domain at t ≈ 100. The boson star
enters the critical state at roughly the same time that the real
field leaves the domain, and remains in that state for a period
of time which is long compared to the crossing time of the
massless field. At t ≈ 510, the boson star begins to depart
significantly from the critical state.

hole formation.

C. Final Fate of Subcritical Evolutions

In previous work on the problem of critically perturbed
spherically symmetric boson stars [1, 2], it was conjec-

FIG. 2: Time evolution of the central value of the scalar field
modulus for subcritical evolution of perturbed boson stars.
The figure shows the time evolution of |φ(t, 0)| for marginally
subcritical evolutions generated from boson star initial states
with φ0(0) = 0.035, 0.04 and 0.05. See the text for a descrip-
tion of key features of this plot.

tured that the end state of subcritical evolution was char-
acterized by dispersal of the boson star to large distances
(relative to the size of the initial, stable star). This con-
jecture was at least partially influenced by the behaviour
observed, for example, in the collapse of a massless scalar
field [3], where subcritical evolutions do involve complete
dispersal of the field. However, another key reason for
what we claim is a misidentification of the true subcriti-
cal end-state, was that the simulations described in [1, 2]
simply were not carried out for sufficient coordinate time
to observe the nature of the late-time dynamics. Our
current simulations strongly suggest that subcritical evo-
lutions lead to a “relaxation” of the critically perturbed
state to something that approximates a boson star (not
necessarily the original star) undergoing large amplitude
oscillations. As argued in the next subsection, these os-
cillations can largely be identified with the fundamental
perturbative mode associated with the final boson star
state. The numerical evidence also suggests that, at least
in many cases, these oscillating configurations eventually
re-collapse and form black holes; a “prompt” re-collapse
can be seen in the φ0(0) = 0.05 data in Fig. 2.

Fig. 5 displays the long-time behaviour of
maxr(2M(t, r)/r), |φ(t, 0)| and ψ(t, 0) for a near-
critically perturbed boson star (φ0(0) = 0.04, A⋆

3 ≈
0.00342) for rmax = 200 (with mesh spacing
∆r = 200/4096 ≈ 0.049). Note that this is a sub-

critical evolution, so that a black hole does not form.
As shown in more detail in previous figures, the boson
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FIG. 3: Transition of perturbed boson stars in critical evolu-
tions. The solid curve shows the parametric mass vs radius
plot of static boson stars (curve parameter φ0(0) increasing
from right to left), where we have defined the stellar radius,
R, so that M(R) = 0.99M(∞) = 0.99MADM. Triangles la-
bel the initial configurations, squares show the corresponding
critical solutions (identified as one-mode-unstable boson stars
with oscillations that are largely in the fundamental mode),
and the dashed arrows represent schematically the transition
between the initial and critical states. See the text for more
details.

star enters a critical state (well approximated by an
unstable boson star) shortly after the real scalar field
leaves the computational domain (t ≈ 100). While in the
critical state, the star oscillates with what we assume is
the frequency of the first harmonic, as computed from
perturbation theory using the unstable boson star state
as the background (see [1, 2]). At t ≈ 300 the star
begins to evolve away from the more compact critical
configuration, decreases in central density, expands in
size, and starts to pulsate with a different frequency.
Although at late time the oscillation amplitudes are
much larger than those seen in the critical phase of
evolution, we will show in the following section that
the oscillations can nonetheless be largely attributed
to excitations of the fundamental perturbative mode
associated with the final boson star state.

Fig. 6 shows the long-time behaviour of the modulus
of the central value of scalar field, |φ(t, 0)|, for initial
configurations with φ0(0) = 0.035, 0.04 and 0.05, with
rmax = 100, but with ∆r maintained at 50/1024 as in
Fig. 5. Again, we use A3 to tune the evolution of the bo-
son stars to criticality and the figure shows a marginally
subcritical evolution. In general, the computed value of
A⋆

3 is a function of rmax, as is the specific stable boson
star to which the critical evolution relaxes. However, the

FIG. 4: Measured lifetime scaling laws for critically perturbed
boson stars. This figure shows the measured lifetimes of vari-
ous near-critical evolutions of perturbed boson stars as a func-
tion of ln |A3−A

⋆

3|, for cases with φ(0) = 0.02, 0.035, 0.04 and
0.05. Quoted scaling exponents, γ (see (67)), are computed
from linear least-squares fits to the data. The apparent con-
vergence of the data for different φ0(0) as ln |A3 −A⋆

3| → 0 is
not significant, as it reflects calculations far from criticality
i.e. far from the ln |A3 − A⋆

3| → −∞ limit. See the text for
additional details.

results shown in the figure support our claim that an
oscillatory phase (rather than dispersal) generically fol-
lows near-critical evolution of driven boson stars in the
marginally subcritical case.

Fig. 7 shows the long time behaviour of subcritical evo-
lution of the modulus of the central scalar field value,
|φ(t, 0)|, with an initial boson star given by φ0(0) = 0.04.
Here, we vary the position of the outer edge of the
computational domain rmax, while keeping the resolu-
tion, ∆r, fixed at 50/1024 as previously. For each of
rmax = 50, 100, 200 and 400, we tune A3 to generate
a critical evolution (the specific values of A⋆

3 obtained
are listed in Table I). This set of calculations provides
evidence for the convergence of the critical solution (in-
cluding the critical value of the control parameter, A3),
as rmax → ∞ at fixed resolution. This in turn strongly
suggests that the final oscillatory states identified in sub-
critical evolutions are not artifacts of our use of a finite
computational domain.

In order to illuminate the nature of typical post-critical
oscillations, Fig. 8 shows the square of the discrete fast
Fourier transform, F [|φ(t, 0)|], of the central scalar field
modulus for the same set of simulations used to prepare
Fig. 7. The transform is taken for discrete times, tn,
satisfying 2500 . tn . 7000, a period when the boson
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FIG. 5: Long time behaviour of subcritical evolution for
φ(0, 0) = 0.04 with rmax = 200. This figure shows the long-
time behaviour of maxr(2M(t, r)/r), |φ(t, 0)| and ψ(t, 0) for
a near-critically perturbed boson star (φ0(0) = 0.04, A⋆

3 ≈
0.00342). The left side of the figure shows the evolution of
the perturbed star in its critical state (100 . t . 300), and
the evolution shortly after the star leaves its critical state.
The right side of the figure focuses on oscillations seen at
later times 1000 ≤ t ≤ 7680. These plots provides evi-
dence that the final state of subcritical evolution is charac-
terized by large amplitude oscillations about something ap-
proximating a boson star on the stable branch, rather than
dispersal of the complex field as suggested in [1, 2]. De-
tailed calculation (see Sec. III D) shows that the pulsation
frequency is approximately the fundamental mode frequency
computed from perturbation theory about a background sta-
ble boson star solution with φ0(0) = 0.023. We also note
the overall lower-frequency modulation of the post-critical os-
cillations. This effect is not yet understood, although one
possible explanation—namely that the envelope modulation
represents “beating” of the fundamental and first harmonic
modes—appears to be ruled out.

star has undergone the transition from critical evolution
to post-critical oscillation. The figure clearly shows the
convergence of the fundamental mode oscillation, as well
as a first harmonic. The next section provides a more
detailed analysis of the observed fundamental mode ex-
citations.

D. Perturbation Analysis of Subcritical Oscillations

We now proceed to an application of perturbation
theory to the oscillations seen in long-time evolutions

FIG. 6: Long time behaviour of subcritical evolution with ini-
tial configurations φ0(0) = 0.035, 0.04 and 0.05, for rmax =
100. The figures show the modulus of the central scalar
field values, |φ(t, 0)|, vs time, using the same resolution
∆r = 50/1024 used to generate the data shown in Fig. 5.
Each of the three distinct boson stars is driven to a different
critical solution, and subsequently relaxes to a different final
oscillatory state. This provides evidence that the final end
state of marginally subcritical evolution in generic driven bo-
son stars does not involve dispersal of the bulk of the complex
field to infinity.

of marginally subcritical configurations, such as those
shown in Fig. 5. Here we follow [15] and [2], and refer
the interested readers to those sources for details of the
approach that we do no include here. In particular, we
emphasize that we have not carried out the complete per-
turbation analysis ourselves, but are simply using a com-
puter code provided by Hawley [5] to analyze our current
simulations. Nonetheless, to make contact between the
perturbative and simulation results, it is useful to briefly
review the setup of the perturbative problem.

To formulate the equations for the perturbation anal-
ysis, we first rewrite the complex scalar field as

φ(t, r) = (ψ1(t, r) + iψ2(t, r)) e
−iωt , (68)

(Note that this representation is distinct from φ =
φ1 + iφ2, and the reader should be careful not to con-
fuse the ψ’s used here with the conformal metric vari-
able, ψ.) Additionally, the spacetime metric is written in
Schwarzschild-like (polar-areal) coordinates:

ds2 = −eν(t,r)dt2 + eλ(t,r)dr2

+ r2
(

dθ2 + sin2 θdϕ2
)

. (69)

We further introduce four perturbation fields,
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FIG. 7: Long time behaviour of subcritical evolution with an
initial boson star characterized by φ0(0) = 0.04, for rmax =
50, 100, 200 and 400. The figures show the modulus of the cen-
tral scalar field values, |φ(t, 0)|, vs time, with the resolution
∆r fixed at 50/1024 as in previous figures. The evolutions
are tuned to criticality for different rmax (see Table I). The
top figure shows the overall evolutions for rmax = 50, 100, 200
and 400 from t = 0 to t = 7680. The middle figure focuses on
the evolution of the perturbed boson star during the period of
near-critical evolution, 70 ≤ t ≤ 270, for the cases rmax = 200
and 400. The near coincidence of the two curves in this case
provides strong evidence for convergence of our calculations
(at fixed spatial resolution) as rmax → ∞ . The bottom figure
focuses on the late time evolution—200 ≤ t ≤ 7680—again for
rmax = 200 and 400, and provides additional support for our
claim that the final oscillatory states we observe in subcritical
evolution are not an artifact of the use of a finite computa-
tional domain.

δλ(t, r), δν(t, r), δψ1(t, r) and δψ2(t, r), which repre-
sent the perturbations about the equilibrium values
λ0(r), ν0(r), φ0(r):

λ(t, r) = λ0(r) + δλ(t, r) , (70)

ν(t, r) = ν0(r) + δν(t, r) , (71)

ψ1(t, r) = φ0(r) (1 + δψ1(t, r)) , (72)

ψ2(t, r) = φ0(r)δψ2(t, r) . (73)

With the above definitions we can write the coupled
Einstein-Klein-Gordon field equations as a set of PDEs
for the functions δλ, δν, δψ1 and δψ2. With some manip-
ulation we can then eliminate δν and δψ2 to produce a
system of two coupled second-order PDEs for δψ1 and

FIG. 8: Long time behaviour of subcritical evolution with
an initial boson star characterized by φ0(0) = 0.04, for
rmax = 50, 100, 200 and 400. The figures show the square
of the (discrete) Fourier transform F [|φ(t, 0)|], of the central
scalar field modulus, using the same calculations described
in Fig. 7. The transform is taken from a data set defined
at 691 discrete times, tn satisfying 2500 . tn . 7700, dur-
ing which time the critically perturbed boson star is in its
final oscillatory state. Again, the resolution, ∆r = 50/1024,
is the same used in previous calculations The fundamental
mode computed for the case rmax = 200 is approximately
ω ≈ 33 × 6 × 10−4 = 0.0198, in good agreement with our
perturbation-theory estimate computed in Sec. IIID. The
figure shows that the computed frequency of the fundamental
mode converges for increasing rmax. The graph also shows
evidence for at least one higher overtone which persists as
rmax → ∞. The figure inset shows the overall amplitudes of
the computed Fourier components.

δλ:

δψ1
′′ = −

(

2

r
+
ν0

′ − λ0
′

2

)

δψ1
′ − δλ′

rφ0
2 + eλ0−ν0 ¨δψ1

−
[

φ0
′

φ0

(

ν0
′ − λ0

′

2
+

1

r

)

+

(

φ0
′

φ0

)2

+
1 − rλ0

′

r2φ0
2 + eλ0−ν0ω2 − eλ0

]

δλ

+ 2eλ0

[

1 + e−ν0ω2

+ e−λ0

(

φ0
′

φ0

)2

+ rφ0φ0
′

]

δψ1 , (74)
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δλ′′ = −3

2

(

ν0
′ − λ0

′
)

δλ′ +

[

4φ0
′2 + λ0

′′

+
2

r2
− (ν0

′ − λ0
′)2

2
− 2ν0

′ + λ0
′

r

]

δλ

+eν0−ν0 δ̈λ− 4
(

2φ0φ0
′ − reλ0φ0

2
)

δψ1
′

−4

[

2φ0
′2 − reλ0φ0

2

×
(

2
φ0

′

φ0
+

2ν0
′ + λ0

′

2

)]

δψ1 . (75)

Note that these equations involve only second time
derivatives (i.e. there are no terms involving ˙δψ1 or ˙δλ),
and that they are linear in the second time derivatives.
If we thus assume a harmonic time-dependence for the
perturbed fields:

δψ1(t, r) = δψ1(r)e
iσt , (76)

δλ1(t, r) = δλ1(r)e
iσt , (77)

then the equations for the perturbations contain σ only
in the form σ2, and the sign of σ2, as computed by solv-
ing a particular mode equation, determines the stability
of that mode. (Note that the system can be shown to
be self-adjoint so that the values of σ2 must be real.)
If any of the values of σ2 are found to be negative, then
the associated perturbations will grow and the boson star
will be unstable. Moreover, as the eigenvalues form an
infinite discrete ordered sequence, examining the funda-
mental radial mode σ0

2 determines the overall stability of
any particular star with respect to radial perturbations.

In order to compare the simulation results with those
given by perturbation theory, we first observe that there
is a difference in the choice of the time coordinates used
in the two calculations. Specifically, in the perturbative
analysis [2, 15], the lapse is chosen to be unity at the
origin, so we have

σ2
∣

∣

∣

perturbative
→ σ2

α2

∣

∣

∣

simulation
.

We also note that there is a factor of 2 difference in the
definitions of Tµν used in the two calculations, and that
the definition of the complex field, φ(t, r), in the per-

turbative calculation includes a factor of
√

8π. We thus
have

φ
∣

∣

∣

perturbative
→

√
4πφ

∣

∣

∣

simulation
.

The numerical technique for obtaining the fundamen-
tal mode and first harmonic mode frequencies of boson
stars has already been described in [2] and will not be
repeated here; again, we will simply quote and use re-
sults from that study. From Fig. 5 we note that there

are 10 oscillations between t = 2553.8 and t = 5583.8,
giving a period T ≈ 333. Hence we have an oscilla-
tion frequency σ = 2π/T ≈ 0.019. The time average
of the lapse function, 〈α(t, 0)〉t, in the interval is 0.89,
and so σ2/α2 ≈ 0.00045. We also compute the time
average of φ(t, 0) in the interval, and use the resulting
value to identify the stable boson star solution about
which we perform the perturbation analysis. We find
〈φ0(t, 0)〉t ≈ 0.023 ×

√
4π = 0.0815. For a boson star

with φ0(0) = 0.0815, the perturbative calculations (see
Fig. 7 of [2]) predict σ2

0 = 0.00047, which is in reasonable
agreement with the simulation results. Hence the oscil-
lations that occur in the post-critical regime appear to
be largely fundamental mode oscillations of a final-state,
stable, boson star. We also remark that since the oscilla-
tions are of such large amplitude, it does not appear pos-
sible to precisely identify an effective background state
(i.e. an effective value of φ0(0)), so the level of agreement
in the oscillation frequencies is probably as good as one
could expect.

IV. SUMMARY

We have investigated type I critical phenomena of
ground state boson stars in maximal-isotropic coordi-
nates by perturbing the stars with in-going pulses of
a real scalar field. In particular, contrary to previous
claims, we find that the end state of generic subcritical
evolution is a stable boson star executing large amplitude
oscillations, and that the oscillations can be largely un-
derstood as excitations of the fundamental normal mode
of the end-state star. For the particular example that we
examined in detail, the oscillation frequency of the post-
critical state was estimated to be σ2/α2 ≈ 0.00045, in
good agreement with the frequency of the fundamental
mode computed in perturbation theory, σ2

0 = 0.00047.
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APPENDIX A: FINITE DIFFERENCE

ALGORITHM

Here we present the details of the numerical method
used in our computations. We solve the PDEs (12)–
(19) by a finite difference method. We replace the
(t, r) continuum by a discrete lattice of grid points,
and approximate the continuum field quantities F =
{α, β, ψ,Kr

r, φi,Φi,Πi}, where i = 1, 2, 3, by a set of
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n + 1

n

j+1jj-1

center-point of scheme : jr  =  r  ,  t  =  t
n+1/2

FIG. 9: Stencil for an O(h2) Crank-Nicholson scheme for a
PDE in one space dimension and time.

grid functions Fh = {αh, βh, ψh,Krh
r , φ

h
i ,Φ

h
i ,Π

h
i } which

are solutions of the finite difference approximation (FDA)
of the PDEs. Denoting the uniform (constant) spa-
tial and temporal mesh spacings by ∆r and ∆t, respec-
tively, the finite difference grid is given by (tn, rj) where
rj = r0 + (j − 1)∆r, j = 1, · · · , Nr and tn = n∆t,

n = 0, · · · , Nt. For any grid function uh ∈ F 〈, the value
at (tn, rj) is denoted by un

j and is an approximation of
the continuum value u(tn, rj).

In discretizing evolution equations (14)−(16) we make
exclusive use of Crank-Nicholson schemes, with second
order spatial differences. The key idea of a Crank-
Nicholson method is to keep the differencing centred in
time as well as in space, and a typical stencil used for such
a scheme is illustrated in Fig. 9. The constraint equations
(12) and (13) are coupled, nonlinear, ordinary differen-
tial equations, and following O(∆r2) finite differencing
(see below) and are solved using a point-wise Newton’s
method. That is, at each grid point, (tn, rj), we solve
for the pair (ψn

j , (K
r
r)

n

j ) using Newton’s method for two

equations in two unknowns. The slicing condition (18)
is linear, so, after being discretized using second-order
finite differences, can be solved directly using a tridiag-
onal solver. Finally, once the values αn

j and Kr
r
n
j have

been computed, an O(∆r2) discretization of (19) is easily
integrated to yield the βn

j .

To aid in the presentation of the finite difference equa-
tions, it is convenient to define the following difference
operators:

∆
t

+
u

n

j
=
u

n+1

j
− u

n

j

∆t
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∆
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u
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∆
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3u
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,

and the averaging operator

µ
t

±
u

n

j
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1

2

(

u
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j
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n

j

)

,

µ
r

±
u

n
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2

(

u
n
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.

We also define µ̄
r

±
, which has the same definition as µ

r

±
,

but which has a higher precedence over other algebraic
operations, e.g.,

µ̄
r

+

(

fg2

h

)n

j

=
(µ̄

r

+
f

n

j
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r

+
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+
hn

j

.

The FDAs of the Klein-Gordon equations can then be
written as:

∆
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j
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, (A1)
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, (A2)
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where i = 1, 2, 3.

The FDA of the Hamiltonian constraint is
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and the FDA of the momentum constraint is
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Similarly, the FDAs for the maximal-isotropic conditions
are
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respectively, where r
j− 1

2

≡ (rj + rj−1)/2.

The regularity conditions are implemented as
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for all i and n. The outer boundary conditions are
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We also adopt a scheme for numerical dissipation given
by Kreiss and Oliger [16]. In other words an additional
term

µ
t

+

(

∆
t

+KO
Φi

n

j

)

is added to the right hand side of (A2), for 3 ≤ j ≤ Nr−2
(and similarly to the right hand side of (A3) for the Πi),

where ∆
t

+KO
is defined by
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. (A16)

Here, ǫd is an adjustable parameter satisfying 0 ≤ ǫd < 1,
and is typically chosen to be 0.5. We note that the addi-
tion of Kreiss-Oliger dissipation changes the truncation
error of the FDAs atO(∆t3,∆r3) and thus does not effect
the leading order error of a second order (O(∆t2,∆r2))
scheme. The dissipation is useful for damping high fre-
quency solution components that are often associated
with numerical instability.

APPENDIX B: CONVERGENCE TESTING

Here we present the results of a convergence test of the
code that evolves boson stars in spherical symmetry.

In Fig. 10 we plot the mass aspect function at the outer
boundary of the computational domain, M(t, rmax), as a
function of time, and from four computations with grid
spacings, ∆r, in a 8:4:2:1 ratio. As was the case for the
calculations discussed in the main text Sec. III, our con-
vergence study uses a pulse of massless scalar field im-
ploding onto a stable boson star So long as no scalar field
(either real or complex) propagates off the computational
grid, M(t, rmax) should be constant in time (and equal to
the ADM mass), in the limit that ∆r → 0 (with ∆t → 0
implied since λ is always held fixed as ∆r is varied).
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FIG. 10: Convergence test of the spherically symmetric code.
The estimated ADM mass, M(t, rmax), is plotted against
time, t, for four calculations using numbers of spatial grid
points, Nr, of 1025, 2049, 4097 and 8193, so that the corre-
sponding mesh spacings, ∆r, are in a 8:4:2:1 ratio. The ini-
tial data parameters for the computations are: φ0 = 0.01 for
the complex field, and A3 = 0.001, r0 = 40 and σ = 3 for
the massless field (see (65)). The mass decreases with time in
general, with a significant fluctuation at 40 ≤ t ≤ 50, when
the real scalar field is close to the origin and strongly inter-
acts with the boson star. The variation in the computed total
mass tends to vanish as we go to higher resolution. Combin-
ing results from the four calculations we find strong evidence
that the finite difference scheme is second order accurate as
expected.

In our test, the boson star has a central field value,
φ0 = 0.01, while the incoming massless scalar field pulse
is a gaussian of the form (65) with A3 = 0.001, r0 = 40
and σ = 3. The outer boundary is rmax = 300, and
we compute with Nr = 1025, 2049, 4097 and 8193. Dur-
ing the time interval 40 ≤ t ≤ 50, the real scalar
field is concentrated near the origin and interacts most
strongly with the complex field. This results in a lo-
calized fluctuation of the computed ADM mass that is
evident in the plots. However, M(t, rmax) clearly tends
to a constant value as the resolution is increased. In ad-
dition, from the differences of M(t, rmax) computed at
different resolutions (e.g. M∆r(t, rmax)−M2∆r(t, rmax),
M2∆r(t, rmax)−M4∆r(t, rmax), etc.), we find strong evi-
dence that the overall difference scheme is converging in
a second order fashion.
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