
IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 27 (2010) 055005 (80pp) doi:10.1088/0264-9381/27/5/055005

Manifestly gauge-invariant general relativistic
perturbation theory: I. Foundations

K Giesel1, S Hofmann2,3, T Thiemann1,2 and O Winkler2

1 MPI f. Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Potsdam,
Germany
2 Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N2 L 2Y5,
Canada
3 NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden

E-mail: gieskri@aei.mpg.de, stefan@nordita.org, thiemann@aei.mpg.de,
tthiemann@perimeterinstitute.ca and owinkler@perimeterinstitute.ca

Received 29 August 2009, in final form 7 January 2010
Published 11 February 2010
Online at stacks.iop.org/CQG/27/055005

Abstract
Linear cosmological perturbation theory is pivotal to a theoretical
understanding of current cosmological experimental data provided e.g. by
cosmic microwave anisotropy probes. A key issue in that theory is to extract
the gauge-invariant degrees of freedom which allow unambiguous comparison
between theory and experiment. When one goes beyond first (linear) order,
the task of writing the Einstein equations expanded to nth order in terms of
quantities that are gauge-invariant up to terms of higher orders becomes highly
non-trivial and cumbersome. This fact has prevented progress for instance
on the issue of the stability of linear perturbation theory and is a subject of
current debate in the literature. In this series of papers we circumvent these
difficulties by passing to a manifestly gauge-invariant framework. In other
words, we only perturb gauge-invariant, i.e. measurable quantities, rather than
gauge variant ones. Thus, gauge invariance is preserved non-perturbatively
while we construct the perturbation theory for the equations of motion for
the gauge-invariant observables to all orders. In this first paper we develop
the general framework which is based on a seminal paper due to Brown and
Kuchař as well as the relational formalism due to Rovelli. In the second,
companion, paper we apply our general theory to FRW cosmologies and derive
the deviations from the standard treatment in linear order. As it turns out, these
deviations are negligible in the late universe, thus our theory is in agreement
with the standard treatment. However, the real strength of our formalism is that
it admits a straightforward and unambiguous, gauge-invariant generalization
to higher orders. This will also allow us to settle the stability issue in a future
publication.
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1. Introduction

General relativity is our best theory for gravitational physics and, so far, has stood the test
of time and experiments. Its complicated, highly nonlinear equations of motion, however,
mean that the calculation of many gravitational processes of interest has to rely on the use of
approximations. One important class of such approximations is given by perturbation theory,
where, generally speaking, one perturbs quantities of interest, such as the metric and matter
degrees of freedom around an exact, known solution which, typically, displays a high degree
of symmetry.

It is well known that perturbation techniques in general relativity pose challenges above
and beyond those typically associated with them in other areas of physics, such as stability,
convergence issues, etc. The reason is that general relativity is a gauge theory, the gauge
group being the diffeomorphism group Diff(M) of the spacetime manifold M. As a result, all
metric and matter variables transform non-trivially under gauge transformations. This creates
the problem of differentiating between (physical) perturbations of a given variable and the
effect of a gauge transformation on the latter. The obvious solution to this situation would
be to calculate only with observables and perturb those. It has proved extremely difficult,
however, to find observables in the full theory, with the exception of a few special situations,
such as for asymptotically flat spacetimes. As a way out of this conundrum, one usually
resorts to calculating in a specific gauge, carefully ensuring that all calculated quantities are
gauge-independent. Alternatively, one tries to construct quantities that are observables up to
a certain order. In the cosmological standard model this has been successfully done in linear
order and forms an integral part of the modern lore of cosmology. In fact, there have been
attempts to extend this even to second order and beyond, see, e.g., [1–4]. The sheer complexity
of those calculations, however, shows that there is a natural limit to how far that approach can
be pushed. Furthermore, it is not clear whether it will succeed for other backgrounds, such as
a black hole spacetime, etc.

This clearly makes the search for a more general framework for perturbation theory
of observable quantities highly desirable. Another motivation comes from the prospects of
developing perturbation methods for non-perturbative quantum gravity approaches, such as
loop quantum gravity [5]. It is clear that the standard methods mentioned earlier will be
extremely difficult, if not impossible to implement.

This paper, the first in a series dedicated to this challenge, lays the foundations at the level
of the full theory. Subsequent papers will deal with simplified cases of particular interest, such
as perturbations around an FRW background.

After this brief overview of the motivations behind our paper, let us now discuss some
of these issues in more detail. The crucial ingredient in our undertaking is the construction
of observables for the full theory. To that end let us first recall the counting of the true
degrees of freedom of general relativity: the temporal–temporal as well as the temporal–
spatial components of the Einstein equations do not contain temporal derivatives of four
metric functions (known as lapse and shift). Thus, in the Lagrangian picture, these four sets of
equations can be used, in principle, in order to eliminate the temporal–temporal and temporal–
spatial components of the metric in terms of the spatial–spatial components4. In addition,

4 In the Hamiltonian picture, these equations relate canonical momenta to canonical configuration coordinates. There
are four additional (so-called primary) constraints which impose that the momenta conjugate to lapse and shift vanish
which leaves only two independent momenta. These eight constraints are of the first class type in Dirac’s terminology
[6].
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diffeomorphism gauge invariance displays four additional degrees of freedom as pure gauge5.
This is why general relativity in vacuum (without matter) has only two true (configuration)
degrees of freedom (gravitons).

In the canonical picture, the ten equations split into four plus six equations. The
four equations are the aforementioned constraints which canonically generate spacetime
diffeomorphisms, that is, gauge transformations. The other six equations are canonically
generated by a canonical ‘Hamiltonian’ which is actually a linear combination of these
constraints, and thus also generates gauge transformations and even is constrained to vanish. It
is customary not to call it a Hamiltonian but rather a Hamiltonian constraint. The interpretation
of Einstein’s equations as evolution equations is therefore unconvincing. Instead, the correct
interpretation seems to be that they actually describe the flow of unphysical degrees of freedom
under gauge transformations. Thus we contend that their primary use is to extract the true
degrees of freedom in the way described below. These true degrees of freedom are gauge
invariant and thus have trivial evolution with respect to the canonical Hamiltonian (constraint).
This is the famous problem of time of general relativity [8]: there is no true Hamiltonian, only
a Hamiltonian constraint and the observable quantities do not move under its flow. Nothing
seems to move, everything is frozen, in obvious contradiction to our experience. This begs, of
course, the question of what determines the time evolution of the true physical observables.

In [9] a possible answer was proposed. Namely, it was shown that the problem of time can
be resolved without affecting the interpretation of Einstein’s equations as evolution equations
by adding certain matter to the system. The method for doing this is based on Rovelli’s
relational formalism [10], which was recently extended considerably by Dittrich [11], as
well as on the Brown–Kuchař mechanism [12]. This necessarily uses a canonical approach.
Furthermore, it was shown in [9] that this in one stroke provides the true degrees of freedom and
provides us with a true (physical) Hamiltonian which generates a non-trivial evolution of the
gauge-invariant degrees of freedom. Remarkably, these evolution equations look very similar
to Einstein’s equations for the type of matter considered. The type of matter originally used in
[9] was chosen somewhat ad hoc and guided more by mathematical convenience rather than
physical arguments6. Furthermore, it seems desirable to find the optimal matter which would
minimally affect the standard interpretation of Einstein’s equations as evolution equations
while increasing the number of true degrees of freedom by four. As it turns out, there is a
natural candidate, which we will use for our purposes: pressure free dust as introduced in the
seminal paper by Brown and Kuchař [12] cited before. The dust particles fill time and space;
they are present everywhere and at every instant of time. They follow geodesics with respect
to the dynamical four-metric under consideration. However, they only interact gravitationally,
not with the other matter and not with itself. The dust serves as a dynamical reference frame
solving Einstein’s hole problem [13]. It can be used to build gauge-invariant versions of all
the other degrees of freedom. In [14, 15] up to linear order gauge-invariant Hamiltonian
perturbation theory is discussed for cosmological and spherically symmetric backgrounds
respectively. However, in both cases no additional matter is introduced to construct gauge-
invariant quantities but for this purpose certain metric components are used.

The dust supplies the physically meaningless spacetime coordinates with a dynamical field
interpretation and thus solves the ‘problem of time’ of general relativity as outlined above.
This is its only purpose. For every non-dust variable in the usual formalism without dust
there is unique gauge-invariant substitute in our theory. Once these observables, that is gauge-

5 In the Hamiltonian picture, the eight constraints canonically generate gauge transformations which displays eight
out of ten configuration variables as pure gauge.
6 Also, apart from cosmological settings, the consequences of the deviations of these evolution equations from
Einstein’s equations was not analysed.
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invariant matter and geometry modes, have been constructed as complicated aggregates made
out of the non-gauge-invariant matter, geometry and dust modes, the dust itself completely
disappears from the screen. The observable matter and geometry modes are now no longer
subject to constraints; rather, the constraints are replaced by conservation laws of a gauge-
invariant energy–momentum density. This energy–momentum density is the only trace that
the dust leaves on the system; it can be arbitrarily small but must not vanish in order that the
dust fulfils its role as a material reference frame of ‘clocks and rods’. The evolution equations
of the observables is generated by a physical Hamiltonian which is simply the spatial integral
of the energy density. These evolution equations, under proper field identifications, can be
mapped exactly to the six of the Einstein equations for the unobservable matter and geometry
modes without dust, up to modifications proportional to the energy–momentum density. Thus
again the influence of the dust can be tuned away arbitrarily and so it plays a perfect role
as a ‘test observer’. It is interesting that in contrast to [12] the dust must be a ‘phantom
dust’, for the same reason that the phantom scalars appeared in [9]: if we use usual dust as
in [12], then the physical Hamiltonian would come out negative definite rather than positive
definite. Or equivalently, physical time would run backwards rather than forward. Note that
general relativistic energy conditions for the gauge-invariant energy–momentum tensor are not
violated because it does not contain the dust variables and it is the dust free and gauge-invariant
energy–momentum tensor that the positive physical Hamiltonian generates. Hence, while the
energy conditions for the phantom dust species are violated at the gauge variant level, at the
gauge-invariant level there is no problem because the dust has disappeared. Note also that
even at the gauge variant level the energy conditions for the total energy–momentum tensor
are still satisfied if there is sufficient additional, observable matter present.

Based on these constructions we will develop a general relativistic perturbation theory in
this series of papers. In the current work we treat the case of a general background; in the
follow-up papers we discuss special cases of particular interest.

The plan of this paper is as follows.
In section 2 we review the seminal work of Brown and Kuchař [12]. We start from

their Lagrangian (with opposite sign in order to get phantom dust) and then perform the
Legendre transform. This leads to second class constraints which were not discussed in [12]
and which we solve in appendix A. After having solved the second class constraints the further
analysis agrees with [12]. The Brown–Kuchař mechanism can now be applied to the dust plus
geometry plus other matter system and enables us to rewrite the four initial value constraints
of general relativity in an equivalent way such that these constraints are not only mutually
Poisson commuting but also that the system deparametrizes. That is, they can be solved for
the four dust momentum densities, and the Hamiltonian densities to which they are equal no
longer depend on the dust variables.

In section 3 we pass to the gauge-invariant observables and the physical Hamiltonian.
In situations such as ours where the system deparametrizes, the general framework of
[11] drastically simplifies and one readily obtains the Dirac observables and the physical
Hamiltonian. Due to general properties of the relational approach, the Poisson algebra among
the observables remains simple. More precisely, for every gauge variant non-dust variable
we obtain a gauge-invariant analogue and the gauge variant and gauge-invariant observables
satisfy the same Poisson algebra. This is also proved for part of the gauge invariance by
independent methods in appendix B. The physical time evolution of these observables is
generated by a unique, positive Hamiltonian.

In section 4 we derive the equations of motion generated by the physical Hamiltonian for
the physical configuration and momentum observables. We also derive the second order in
time equations of motion for the configuration observables. Interestingly, these equations can
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be seen of almost precisely the usual form that they have in the canonical approach [22] if one
identifies lapse and shift with certain functions of the canonical variables. Hence we obtain a
dynamical lapse and shift. The system of evolution equations is supplemented by four sets of
conservation laws which follow from the mutual commutativity of the constraints. They play
a role quite similar to the initial value constraints for the system without dust written in gauge
variant variables but now the constraint functions do not vanish but rather are constants of the
motion.

In section 5 we treat the case of asymptotically flat spacetimes and derive the necessary
boundary terms to make the Hamiltonian functionally differentiable in that case. Not
surprisingly, the boundary term is just the ADM Hamiltonian. However, while in the
usual formalism the bulk term is a linear combination of constraints, in our formalism
the bulk term does not vanish on the constraint surface; it represents the total dust
energy.

In appendix C we perform the inverse Legendre transform from the physical Hamiltonian
to an action. This cannot be done in closed form; however, we can write the transform in the
form of a fix point equation which can be treated iteratively. The zeroth iteration precisely
becomes the Einstein–Hilbert action for geometry and non-dust matter. Including higher
orders generates a more complicated ‘effective’ action which contains arbitrarily high spatial
derivatives of the gauge-invariant variables but only first time derivatives.

In section 6 we perturb the equations of motion about a general exact solution to first
order, both in the first time derivative order form and in the second time derivative order form.
Note that our perturbations are fully gauge invariant. In appendix D we show that one can get
the second time derivative equation of motion for the perturbations in two equivalent ways:
perturbing the second time derivative equations of motion to first order or deriving the second
time order equation from the perturbations to first order of the first time order equations. This
is an important check when one derives the equations of motion for the perturbations on a
general background and the second avenue is easier at linear order. However, the first avenue
is more economic at higher orders. In appendix E we show that the equations of motion up to
nth order are generated by the physical Hamiltonian expanded up to (n+ 1)st order. Moreover,
we show that the invariants expanded to nth order remain constants of the motion under the
(n + 1)st-order Hamiltonian up to terms of at least order n + 1. This is important in order to
actually derive the second time derivative equations of motion because we can drop otherwise
complicated expressions.

In section 8 we compare our new approach to general-relativistic perturbation theory with
some other approaches that can be found in the literature.

Finally, in section 9 we conclude and discuss the implications and open problems raised
by the present paper.

In appendix F we ask the question whether the qualitative conclusions of the present paper
are generic or whether they are special for the dust we chose. In order to test this question we
sketch the repetition of the analysis carried out for the phantom dust for the phantom scalar
field of [9]. It seems that qualitatively not much changes, although the dust comes closer
than the phantom scalar to reproducing Einstein’s equations of motion. This indicates that
the Brown–Kuchař mechanism generically leads to equations of motion for gauge-invariant
observables which completely resemble the equations of motion of their gauge variant counter
parts.

Appendix G contains more details concerning some calculations in section 7.
Appendix H derives the connection between our manifestly gauge-invariant formalism

and a corresponding gauge fixed version of it.
Finally, our rather involved notation is listed, for the convenience of the reader, as follows.
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Notation

As a rule of thumb, gauge non-invariant quantities are denoted by lowercase letters, and gauge-
invariant quantities by capital letters. The only exceptions from this rule are the dust fields
T , Sj , ρ,Wj , their conjugate momenta P,Pj , I, I

j and their associated primary constraints
Zj ,Z,Zj which however disappear in the final picture. Partially gauge-invariant quantities
(with respect to spatial diffeomorphisms) carry a tilde. Background quantities carry a bar.
Our signature convention is that of relativists, that is, mostly plus.

Symbol Meaning
GN Newton constant
κ = 16πGN gravitational coupling constant
λ scalar coupling constant
� cosmological constant
M spacetime manifold
X spatial manifold
T dust time manifold
S dust space manifold
μ, ν, ρ, . . . = 0, . . . , 3 tensor indices on M
a, b, c, . . . = 1, 2, 3 tensor indices on X
i, j, k, . . . = 1, 2, 3 tensor indices on S
Xμ coordinates on M
xa coordinates on X
σ j coordinates on S
t foliation parameter
τ dust time coordinate
Y

μ
t one parameter family of embeddings X → M

Xt = Yt (X ) leaves of the foliation
gμν metric on M
qab (pullback) metric on X
q̃ij (pullback) metric on S
Qij Dirac observable associated with qab

pab momentum conjugate to qab

p̃ij momentum conjugate to q̃ij

Pij momentum conjugate to Qij

ζ scalar field on M
ξ scalar field on X
ξ̃ pullback scalar field on S
� Dirac observable associated with ξ

π momentum conjugate to ξ

π̃ momentum conjugate to ξ̃


 momentum conjugate to �

v potential of ζ, ξ, ξ̃ , �

T dust time field on X
T̃ dust time field on S
Sj dust space fields on X
ρ dust energy density on M,X
Wj dust Lagrange multiplier field on M,X

6
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Symbol Meaning
U = −dT + Wj dSj dust deformation covector field on M
J = det(∂S/∂x) dust field spatial density on X
P momentum conjugate to T

P̃ momentum conjugate to T̃

Pj momentum conjugate to Sj

I momentum conjugate to ρ

Ij momentum conjugate to Wj

Zj , Z, Zj dust primary constraints on X
μj , μ, μj dust primary constraint Lagrange multipliers onX
ϕ diffeomorphism of X
nμ unit normal of spacelike hypersurface on M
n coordinate lapse function on X
na coordinate shift function on X
p momentum conjugate to n
pa momentum conjugate to na

z, za primary constraint for lapse, shift
ν, νa lapse and shift primary constraint Lagrange multipliers
φ, ψ, B, E MFB scalars on X ,S
Sa, Fa MFB transversal vectors on X
Sj , Fj MFB transversal vectors on S
hab MFB transverse tracefree tensor on X
hjk MFB transverse tracefree tensor on S
�, � linear gauge-invariant completions of φ,ψ

Va linear gauge-invariant completions of Fa

Vj linear gauge-invariant completions of Fj

ctot
a total spatial diffeomorphism constraint on X

ctot
j = Sa

j ctot
a total spatial diffeomorphism constraint on X

ctot total Hamiltonian constraint on X
ca non-dust contribution to spatial diffeomorphism constraint on X
cj = Sa

j ca non-dust contribution to spatial diffeomorphism constraint on X
c̃j non-dust contribution to spatial diffeomorphism constraint on S
Cj �= c̃j momentum density: Dirac observable associated with c̃j

c non-dust contribution to Hamiltonian constraint on X
c̃ non-dust contribution to Hamiltonian constraint on S
C �= c̃ Dirac observable associated with c̃

h energy density on X
h̃ energy density on S
H = h̃ energy density: Dirac observable associated with h̃

hj = ctot
j − Pj auxiliary density on X

ε numerical energy density on S
εj numerical momentum density on S
H = ∫S d3σH physical Hamiltonian, energy
L Lagrange density associated with H
L = ∫S d3σL physical Lagrangian
Vjk velocity associated with Qjk

ϒ velocity associated with �

N = C/H dynamical lapse function on S

7



Class. Quantum Grav. 27 (2010) 055005 K Giesel et al

Symbol Meaning
Nj = −Cj/H dynamical shift function on S
Nj = QjkNk dynamical shift function on S
∇μ gμν compatible covariant differential on M
Da qab compatible covariant differential on X
D̃j q̃jk compatible covariant differential on S
Dj Qjk compatible covariant differential on S
Q̄jk background spatial metric
P̄ jk background momentum conjugate to Q̄jk

�̄ background scalar field

̄ background momentum conjugate to �̄

ρ̄ = 1
2λ

[ ˙̄�
2

+ v(�̄)] background scalar energy density

p̄ = 1
2λ

[ ˙̄�
2 − v(�̄)] background scalar pressure

Gjkmn = Qj(mQn)k − 1
2 QjkQmn physical DeWitt bimetric

[G−1]jkmn = Qj(mQn)k − QjkQmn inverse physical DeWitt bimetric

Ḡjkmn = δj (mδn)k − 1
2 δjkδmn flat background DeWitt bimetric

[Ḡ−1]jkmn = δj (mδn)k − δjkδmn] inverse flat background DeWitt bimetric

2. The Brown–Kuchař formalism

In this section we review those elements of the Brown–Kuchař formalism [12] that are most
relevant to us. Furthermore, we present an explicit constraint analysis for the system where
gravity is coupled to a generic scalar field and the Brown–Kuchař dust, based on a canonical
analysis using the full arsenal of Dirac’s algorithm for constrained Hamiltonian systems.

For concreteness, we employ dust to deparametrize a system consisting of a generic
scalar field ζ on a four-dimensional hyperbolic spacetime (M, g). The corresponding action,
Sgeo + Smatter, is given by the Einstein–Hilbert action

Sgeo = 1

κ

∫
M

d4X
√

|det(g)|[R(4) + 2�] (2.1)

where κ ≡ 16πGN , with GN denoting Newton’s constant, R(4) is the Ricci scalar of g and �

denotes the cosmological constant, and the scalar field action

Smatter = 1

2λ

∫
M

d4X
√

det(g)|[−gμνζ,μζ,ν − v(ζ )] (2.2)

with λ denoting a coupling constant allowing for a dimensionless ζ and v is a potential term.

2.1. Lagrangian analysis

In their seminal paper [12] Brown and Kuchař introduced the following dust action7:

Sdust = −1

2

∫
M

d4X
√

|det(g)|ρ[gμνUμUν + 1]. (2.3)

Here, g denotes the four-metric on the spacetime manifold M. The dust velocity field is
defined by U = −dT + Wj dSj (j ∈ 1, 2, 3). The action Sdust is a functional of the fields

7 A classical particle interpretation of this action will be given in section 2.4.
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ρ, gμν, T , Sj ,Wj .8 The physical interpretation of the action will now be given in a series of
steps.

First of all, the energy momentum of the dust reads

T dust
μν = − 2√|det(g)|

δSdust

δgμν
= ρUμUν − ρ

2
gμν[gλσUλUσ + 1]. (2.4)

By the Euler–Lagrange equation for ρ,

δSdust

δρ
= gλσUλUσ + 1 = 0, (2.5)

the second term in (2.4) vanishes on shell. Hence, U is unit timelike on shell. Compared with
the energy–momentum tensor of a perfect fluid with energy density ρ, pressure p and unit
(timelike) velocity field U

T pf
μν = ρUμUν + p(gμν + UμUν) (2.6)

shows that the action (2.3) gives an energy–momentum tensor for a perfect fluid with vanishing
pressure.

For ρ �= 0, variation with respect to Wj yields an equation equivalent to

LUSj = 0 (2.7)

where L denotes the Lie derivative. Hence, the fields Sj are constant along the integral curves
of U. Equation (2.7) implies

LUT = UμT,μ = Uμ
[
T,μ − WjS

j
,μ

] = −UμUμ = +1 (2.8)

so that T defines proper time along the dust flow lines.
Variation with respect to T results in

∂μ[ρ
√

|det(g)|Uμ] =
√

|det(g)|∇μ[ρUμ] = 0 (2.9)

while variation with respect to Sj gives

∂μ[ρ
√

|det(g)|UμWj ] =
√

|det(g)|∇μ[ρUμWj ] = 0. (2.10)

Using (2.9), (2.10) reduces to (assuming ρ �= 0)

∇UWj = 0. (2.11)

Thus, ∇UUμ = 0, and, as a consequence, the integral curves of U are affinely parametrized
geodesics. The physical interpretation of the fields T , Sj is complete: the vector field U is
geodesic with proper time T, and each integral curve is completely determined by a constant
value of Sj. This determines a dynamical foliation of M, with leaves characterized by constant
values of T. A given integral curve intersects each leave at the same value of Sj.

2.2. Hamiltonian analysis

In this section we derive the constraints that restrict the phase space of the system of a generic
scalar field on a spacetime (M, g), extended by the Brown–Kuchař dust. The reader not
interested in the details of the derivation, which uses the full arsenal of Dirac’s algorithm for
constrained systems, may directly refer to the result (2.32)–(2.34).

We assume (M, g) to be globally hyperbolic in order to guarantee a well-posed initial
value problem. As a consequence, M is diffeomorphic to R ×X , where X is a three-manifold
of arbitrary topology. The spacelike leaves Xt of the corresponding foliation are obtained
as images of a one parameter family of embeddings t �→ Yt , see e.g. [22] for more details
and our notation table for ranges of indices, etc. The timelike unit normals to the leaves
may be written9 as nμ = [Yμ

,t − naY
μ
,a

]/
n, where n, na are called lapse and shift functions,

8 Here, T , Sj have dimension of length, Wj is dimensionless and, thus, ρ has dimension length−4. The notation used
here is suggestive: T stands for time, Sj for space and ρ for dust energy density.
9 We have written Y (t, x) ≡ Yt (x).
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respectively. Throughout, nμ is assumed to be future oriented with respect to the parameter t,
which requires n > 0.

The three-metric on X is the pullback of the spacetime metric under the embeddings, that
is, qab(x, t) = Y

μ
,aY

ν
,bgμν . Denoting the inverse of qab by qab it is not difficult to see that

gμν = −nμnν + qab Yμ
,aY

ν
,b. (2.12)

It follows that the dust action can be written as

Sdust = −1

2

∫
R

dt

∫
X

d3x
√

det(q)nρ
(−U 2

n + qabUaUb + 1
)

(2.13)

with Un ≡ nμUμ,Ua ≡ Y
μ
,aUμ.

The form (2.13) is useful to derive the momentum fields canonically conjugate to T , Sj ,
respectively, as

P := δSdust

δT,t

= −
√

det(q)ρUn

(2.14)
Pj := δSdust

δS
j
,t

=
√

det(q)ρUnWj .

The second relation in (2.14) shows that the Legendre transform is singular, and we obtain the
primary constraint (Zwangsbedingung)

Zj := Pj + WjP = 0. (2.15)

Additional primary constraints arise when we compute the momenta conjugate to ρ and Wj:

I := Z := δSdust

δρ,t

= 0

(2.16)
I j := Zj := δSdust

δWj,t

= 0.

Considering the total action S ≡ Sgeo+Smatter+Sdust, further primary constraints follow from the
calculation of the canonical momentum fields conjugate to lapse and shift n, na , respectively,

p := z := δS

δn,t

= 0

(2.17)
pa := za := δS

δna
,t

= 0.

The primary constraints signify the fact that we cannot solve for the velocities{
S

j
,t , ρ,t ,Wj ,t , n,t , n

a
,t

}
, respectively, in terms of the momenta and configuration variables.

Therefore, all primary constraints must be included in the canonical action, together with
appropriate Lagrange multipliers {μj , μ,μj , ν, νa}, in order to reproduce the Euler–Lagrange
equations.

It is straightforward to solve for T,t and ζ,t , qab ,t . For instance,

T,t = nTn + naT,a = n
[−Un + WjS

j
n

]
+ naT,a = n

1

ρ

P√
det(q)

+ S
j
,tWj + na

[
T,a − WjS

j
,a

]
.

(2.18)

How to eliminate the velocities of the scalar field and the three-metric is well known, e.g.
[22], and will not be repeated here.

10
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The resulting Hamiltonian constraint for the extended system, ctot ≡ cgeo + cmatter + cdust,
is explicitly given by

κcgeo = 1√
det(q)

[
qacqbd − 1

2
qabqcd

]
pabpcd −

√
det(q)R(3) + 2�

√
det(q)

λcmatter = 1

2

[
π2

√
det(q)

+
√

det(q)(qabξ,aξ,b + v(ξ))

]
(2.19)

cdust = 1

2

[
P 2/ρ√
det(q)

+
√

det(q)ρ(qabUaUb + 1)

]
with Ua ≡ −T,a + WjS

j
,a . The spatial diffeomorphism constraints for the extended system,

ctot
a ≡ c

geo
a + cmatter

a + cdust
a , are explicitly given by

κcgeo
a = −2qacDbp

bc

λcmatter
a = πξ,a (2.20)

cdust
a = P

[
T,a − WjS

j
,a

]
.

The total action in canonical form reads

S =
∫

R

dt

∫
X

d3x

(
PT,t + PjS

j
,t + Iρ,t + I jWj,t + pn,t + pan

a
,t +

1

κ
pabqab,t +

1

λ
πξ,t

)
−
∫

R

dtHprimary (2.21)

with pab denoting the momentum field conjugate to qab, ξ denoting the pullback of ζ to
X , π denoting its canonical momentum and D the covariant differential compatible with
qab. Furthermore, the Hamiltonian and spatial diffeomorphism constraints, together with the
primary constraints, entered the definition of the primary Hamiltonian

Hprimary ≡
∫
X

d3x hprimary (2.22)

via the density

hprimary ≡ μjZj + μZ + μjZ
j + νz + νaza + nctot + nactot

a . (2.23)

Consistency requires that the constraint surface, defined by the primary constraints (2.15),
(2.16) and (2.17), is stable under the action of Hprimary. In order to to check this, we summarize
the only non-vanishing elementary Poisson brackets10:

{pab(x), qcd(y)} = κ δa
(cδ

b
d) δ(x, y)

{π(x), ξ(y)} = λδ(x, y)

{P(x), T (y)} = δ(x, y)

{Pj (x), Sk(y)} = δk
j δ(x, y)

(2.24)
{I (x), ρ(y)} = δ(x, y)

{I j (x),Wk(y)} = δ
j

k δ(x, y)

{p(x), n(y)} = δ(x, y)

{pa(x), nb(y)} = δb
aδ(x, y).

10 Note that n, na, Wj , ρ, Sj are not Lagrange multipliers at this point; they are canonical coordinates just like the
other fields.
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The primary constraints transform under the action of the primary Hamiltonian Hprimary

as follows:

z,t = {Hprimary, p} = −ctot

za,t = {Hprimary, pa} = −ctot
a

Z,t = {Hprimary, I } = n

2

[
− P 2/ρ2

√
det(q)

+
√

det(q)(qabUaUb + 1)

]
≡ c̃ (2.25)

Z
j
,t = {Hprimary, I

j } = −μjP − nρ
√

det(q)qabUaS
j

,b + PSj
,an

a

Zj,t = {Hprimary, Pj + WjP } = μjP −
(

na − nρ
√

det(q)

P
qabUb

)
PWj,a.

Consistency demands that (2.25) must vanish. Indeed, the last two equations in (2.25) involve
the Lagrange multipliers μj , μj , respectively, and can be solved for them, since the system
of equations has maximal rank. However, the first three equations in (2.25) do not involve
Lagrange multipliers. Hence, they represent secondary constraints. According to Dirac’s
algorithm, the secondary constraints in equation (2.25) force us to reiterate the stability
analysis, i.e. to calculate the action of Hprimary on the secondary constraints. A lengthy
calculation presented in appendix A shows that the secondary constraints are stable under the
Hamiltonian flow generated by Hprimary. In other words, no tertiary constraints arise in the
stability analysis for the secondary constraints. However, the action of Hprimary on c̃ involves
the Lagrange multipliers μj , μj , μ, and can be solved for μ.

The final set of constraints is given by
{
ctot, ctot

a , c̃, Zj , Z
j , Z, za, z

}
and it remains to

classify them into first and second class, respectively. Obviously,

{Zj(x), Zk(y)} = Pδ
j

k δ(x, y)
(2.26)

{Z(x), c̃(y)} = nP 2

ρ3
√

det(q)
δ(x, y)

does not vanish on the constraint surface defined by the final set of constraints; hence they are
of second class. Next, since n appears at most linearly in the constraints, while na does not
appear at all, it follows immediately that z, za are of first class. Further, consider the linear
combination of constraints

c̃tot
a ≡ Iρ,a + I jWj,a + PT,a + PjS

j
,a + pn,a + L	npa + ca

= ctot
a + Zρ,a + ZjWj,a + ZjS

j
,a + zn,a + L	nza (2.27)

where

ca ≡ cgeo
a + cmatter

a (2.28)

is the non-dust contribution to the spatial diffeomorphism constraint ctot
a . Since all

constraints are scalar or covector densities of weight one and c̃tot
a is the generator of spatial

diffeomorphisms, it follows that c̃tot
a is first class. Finally, we consider the linear combination

c̃tot ≡ ctot + αjZj + αjZ
j + αZ (2.29)

and determine the phase space functions αj , αj , α such that c̃tot has vanishing Poisson brackets
with Zj ,Z

j , Z up to terms proportional to Zj ,Z
j , Z. Then, c̃tot is first class, as well. See

appendix A for details.
In the final step we should calculate the Dirac bracket [6, 18] {f, g}∗ for phase space

functions f, g. It differs from the Poisson bracket {f, g} by linear combinations of terms
of the form {f,Zj (x)}{g,Zk(y)} and {f,Z(x)}{g, c̃(y)} (and terms with f, g interchanged).
Fortunately, the Dirac bracket agrees with the Poisson bracket on functions f, g which only

12
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involve {T , Sj , qab, n, na} and their conjugate momenta {P,Pj , P
ab, p, pa} on which we

focus our attention in what follows. Using the Dirac bracket, the second class constraints can
be solved strongly:

Zj = 0 ⇔ Wj = −Pj/P

Zj = 0 ⇔ I j = 0
(2.30)

Z = 0 ⇔ I = 0

c̃ = 0 ⇔ ρ2 = P 2

det(q)
(qabUaUb + 1)−1.

From the last equation in (2.30) we find

ρ = ε
P√

det(q)
(
√

qabUaUb + 1)−1, (2.31)

with ε = ±1. We may also partially reduce the phase space subject to (2.30) by setting
z = za = 0 and treating n, na as Lagrange multipliers, since they are pure gauge. Then, we
are left with two constraints

ctot = c + cdust

(2.32)
ctot
a = ca + cdust

a

where

c ≡ cgeo + cmatter (2.33)

and

cdust = εP
√

qabUaUb + 1
(2.34)

cdust
a = PT,a + PjS

j
,a.

Equations (2.32)–(2.34) are the main result of this subsection. They represent the final
constraints that restrict the phase space of the system consisting of a generic scalar field on
(M, g), extended by dust. The form of the dust Hamiltonian and spatial diffeomorphism
constraints

{
cdust , cdust

a

}
, respectively, is of paramount importance for utilizing dust as a

deparametrizing system, as we will explain in the next section.

2.3. The Brown–Kuchař mechanism for dust

In the previous section we have shown that the canonical formulation of a classical system,
originally described by general relativity and a generic scalar field theory, then extended
by a specific dust model, results in a phase space subject to the Hamiltonian and spatial
diffeomorphism constraints (2.32)–(2.34). The primary Hamiltonian, after having solved the
second class constraints, is a linear combination of those final first class constraints (2.32)–
(2.34) and, thus, is constrained to vanish. This holds, in general, independently of the matter
content, and is a direct consequence of the underlying spacetime diffeomorphism invariance.

Now, observable quantities are special phase space functions, distinguished by their
invariance under gauge transformations. In other words, their Poisson brackets with the
constraints must vanish when the constraints hold. In particular, they have vanishing Poisson
brackets with the primary Hamiltonian Hprimary on the constraint surface. This is one of the
many facets of the problem of time: observable quantities do not move with respect to the
primary Hamiltonian, because the latter generates gauge transformations rather than physical
evolution. It follows that physical evolution must be generated by a true Hamiltonian (not
constrained to vanish, but still gauge invariant).

13
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In this section we address the questions how to construct a true Hamiltonian from a given
Hamiltonian constraint, and, how to construct observable quantities (gauge-invariant phase
space functions).

2.3.1. Deparametrization: general theory. The manifest gauge-invariant construction of a
true Hamiltonian, generating physical evolution as opposed to mere gauge transformations,
becomes particularly simple when the original system under consideration can be extended to
a system with constraints in deparametrized form.

Consider first a general system subject to first class constraints cI. The set of canonical
pairs on phase space split into two sets of canonical pairs (qa, pa) and (T I , πI ), respectively,
such that the constraints can be solved, at least locally in phase space, for the πI . In other
words,

cI = 0 ⇔ c̃I = πI + hI (T
J ; qa, pa) = 0. (2.35)

Note that, in general, the functions hI do depend on the TJ. The first class property guarantees
that the c̃I are mutually Poisson commuting [32].

A system that deparametrizes allows us to split the set of canonical pairs into two sets
of canonical pairs such that (1) equation (2.35) holds globally on phase space11, and (2) the
functions hI are independent of the TJ.

Property (2) implies that the functions hI are gauge invariant. Hence, any linear
combination of the hI that is bounded from below is a suitable candidate for a true Hamiltonian
in the following sense: let c̃τ ≡ τ I c̃I be such a linear combination, with real coefficients τ I

in the range of TI, and consider for any phase space function f the expression

Of (τ) ≡
[ ∞∑

n=0

1

n!
{c̃τ , f }(n)

]
τ I →(τ−T )I

. (2.36)

Here12, the iterated Poisson bracket is inductively defined by {c̃τ , f }(0) = f, {c̃τ , f }(n+1) =
{c̃τ , {c̃τ , f }(n)}. Then, Of (τ) is an observable quantity. More precisely, it is a gauge-invariant
extension of the phase space function f . Furthermore, physical time translations of Of (τ)

are generated by the functions hI:

∂Of (τ)

∂τ I
= {hI ,Of (τ)} (2.37)

provided that f only13 depends on (qa, pa).
The observable quantities Of (τ) can also be interpreted from the point of view of choosing

a physical gauge. Indeed, Of (τ) can be interpreted as representing the value of f in the gauge
T I = τ I .

2.3.2. Deparametrization: scalar fields. The Brown–Kuchař mechanism relies on the
observation that free scalar fields lead to deparametrization of general relativity, as we sketch
below (see [9] for a detailed discussion).

A free scalar field contributes to the spatial diffeomorphism constraint a term of the form

cscalar
a = πφ,a (2.38)

11 This is not the case for Klein–Gordon fields and many other scalar field theories with a canonical action that is at
least quadratic in the πI .
12 Note that the substitution of the phase space independent numbers τ I by the phase space dependent combination
(τ − T )I is performed only after the series has been calculated.
13 This is no restriction since the πI can be expressed in terms of the (qa, pa) (using (2.35)), and the TI are pure
gauge.
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and to the Hamiltonian constraint a function of π2 and qabφ,aφ,b, in the absence of a potential.
On the constraint surface, defined by the spatial diffeomorphism constraint, we have the
identity

qabφ,aφ,b = qabcscalar
a cscalar

b

π2
= qabcacb

π2
(2.39)

with ca denoting the contribution to the total spatial diffeomorphism constraint that is
independent of the free scalar field. Substitution of (2.39) into the total Hamiltonian and
spatial diffeomorphism constraints yields the same constraint surface and gauge flow than
before. In other words, the constraints with the substitution (2.39) are equivalent to the
original ones. However, the new total Hamiltonian constraint does no longer depend on the
free scalar field φ. Therefore, at least locally in phase space, we can solve the new total
Hamiltonian constraint for the momentum field π and write locally

c̃tot(x) = π(x) + h(x) (2.40)

where the scalar density h of weight one is independent of π, φ and, typically, positive definite,
see [9] for details.

As mentioned above, the constraint (2.40) and h(x) are mutually Poisson commuting,
which guarantees that the physical Hamiltonian

H :=
∫
X

d3x h(x) (2.41)

is observable (it has vanishing Poisson brackets with the spatial diffeomorphism constraint,
because h has density weight one).

This is as much as the general theory goes. There are two remaining caveats: first of
all, the construction is only local in phase space. Secondly, the construction based on a
single free scalar field requires phase space functions that are already invariant under spatial
diffeomorphisms. Only those can be completed to fully gauge-invariant quantities14.

2.3.3. Deparametrization: dust. Dust described by the action (2.3) does not entirely fit into
the classification scheme given in [9] and sketched in the last section. It is not simply based
on four free scalar fields T , Sj , but in addition leads to second class constraints. However, it
has a clear interpretation as a system of test observers in geodesic motion, and circumvents
the remaining caveats mentioned at the end of the last subsection as we will see.

Recall the final form of the Hamiltonian constraint (2.32)–(2.32) derived in the previous
section:

ctot = c + εP
√

1 + qabUaUb (2.42)

with Ua = −T,a + WjS
j
,a . Solving the second class constraint Zj = 0 for Wj, we find

Ua = −cdust
a

/
P . Inserting the first class spatial diffeomorphism constraint ctot

a = ca + cdust
a ,

we arrive at the equivalent Hamiltonian constraint

ctot ′ = c + εP

√
1 +

qabcacb

P 2
, (2.43)

which is already independent of T , Sj and Pj, but still not of the form c̃tot = P + h, as required
for a system that deparametrizes.

14 This can be circumvented by employing e.g. three more free scalars but this would be somewhat ad hoc.
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2.3.4. Deparametrization for dust: sign issues. In order to bring (2.43) into the form
c̃tot = P + h, we have to solve a quadratic equation. Each root describes only one sheet of the
constraint surface, unless the sign of P is somehow fixed. As we argue below, this freedom
will be fixed by our interpretation of the dust system as a physical reference system.

Recall that P = −ρ
√

det(q)Un and Uμ T,μ = 1, Uμ S
j
,μ = 0. In accordance with our

interpretation, we identify T with proper time along the dust flow lines. Thus, U is timelike
and future pointing; hence Un < 0. It follows that sgn(P ) = sgn(ρ), so ε = 1 in (2.31).

In [12] the authors assume ρ > 0, as it is appropriate for observable dust15. In our case,
however, the dust serves only as a tool to deparametrize the system and is, by construction,
only pure gauge. Therefore, we relax the restriction ρ > 0, when solving (2.43) for P:

P 2 = c2 − qabcacb. (2.44)

The right-hand side of (2.44) is constrained to be non-negative, albeit it is not manifestly
non-negative. But this causes no problem, since it is sufficient to analyse the system in an
arbitrarily small neighbourhood of the constraint surface, where c2 − qabcacb � 0. Then,

c̃tot = P − sgn(P )h, h =
√

c2 − qabcacb (2.45)

is the general solution, globally defined on (the physically interesting portion of) the full phase
space. However, c̃tot is not yet of the form required by a successful deparametrization, because
of the sign function which also renders the constraint non-differentiable.

In order to utilize dust for deparametrization, the choice P < 0 is required. Before
presenting reasons for this choice, we stress again that the dust itself is not observable. There
are three related arguments for the choice of P < 0:

(1) Dynamics. The deparametrization mechanism supplies us with a physical Hamiltonian
of the form

H =
∫
X

d3x h. (2.46)

In the case where dust is chosen as the clock of the system, the variation of the physical
Hamiltonian is given by

δH =
∫
X

d3x

(
c

h
δc − qab cb

h
δca +

1

2h
qacqbdcccd δqab

)
. (2.47)

For P �= 0, then h �= 0 (in a sufficiently small neighbourhood of the constraint surface).
Hence, the coefficients of the variations on the right-hand side of (2.47) are non-singular.
Moreover, for P �= 0, also c �= 0, as we see from (2.43). In fact, using sgn(c) = −sgn(P )

(from (2.43)) in a neighbourhood of the constraint surface,

c

h
= −sgn(P )

√
1 + qab

ca

h

cb

h
(2.48)

has absolute value no less than 1.
Let us now compare (2.47) with the differential of the primary Hamiltonian constraint

in the absence of dust:

Hprimary =
∫
X

d3x(nc + naca), (2.49)

15 This would be required by the usual energy conditions if the dust is the only observable matter. However, note that
only the total energy momentum is subject to the energy conditions, not the individual contributions from various
matter species.
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which is given by (lapse and shift functions are considered as Lagrange multipliers, i.e.
are phase space independent)

dHprimary =
∫
X

d3x(ndc + nadca). (2.50)

Comparison between (2.47) and (2.50) reveals that the differentials coincide, up to the
additional term proportional to δqab, provided we identify n := c/h as dynamical lapse
and na := −qabcb/h as dynamical shift. This is promising in our aim to derive physical
equations of motions for observable quantities which nevertheless come close to the usual
Einstein equations for gauge-dependent quantities. However, in the standard framework
the lapse function is always positive, guaranteeing that the normal vector field is future
oriented. This fact is correctly reflected in our framework only if P < 0.

(2) Kinematics. The identification n ≡ c/h and na ≡ −qabcb/h can also be motivated
as follows. Consider a spacetime diffeomorphism defined by Xμ �→ (τ, σ j ) :=
(T (X), Sj (X)) =: Yμ(X) and let (τ, σ j ) → Zμ(τ, σ ) be its inverse. We can define
a dynamical foliation of M by T (X) = τ = const hypersurfaces. The leaves Sτ of that
foliation are the images of S (which is the range of the Sj) under the map Z at constant τ .
Using the identity

δμ
ν = Zμ

,τ T,ν + Z
μ

,j Sj
,ν (2.51)

and Uμ T,μ = 1, Uμ S
j
,μ = 0, we find Uμ = Zμ

,τ . Thus, as expected, the foliation is
generated by the vector field U = ∂/∂τ , which is unit timelike.

It is useful to decompose the deformation vector field U with respect to the arbitrary
coordinate foliation that we used before:

Uμ = gμνUν = −nμUn + Xμ
,aq

abUb. (2.52)

From (2.13) and (2.31) with ε = 1 we find Un = −
√

1 + qabUaUb. Next,

Ua = −cdust
a

P
= ca

P
. (2.53)

On the other hand, n ≡ c/h = sgn(P )Un and na ≡ −ca/h = −sgn(P ) Ua . Therefore,
(2.52) can be written as

Uμ = −sgn(P )
(
nnμ + Xμ

,an
a
)
. (2.54)

Hence, the sign for which n is positive yields the correct decomposition of the deformation
vector field U in terms of lapse and shift. This calculation also reveals the geometrical
origin of the identification n ≡ c/h and na ≡ −qabcb/h.

As a side remark, the identity −n2 + qabnanb = −1 is an immediate consequence
of the normalization of the deformation vector field, gμνU

μUν = −1. That is, the
deformation vector field is timelike, future oriented and normalized, but not normal to the
leaves of the foliation that it defines.

(3) Stability and flat spacetime limit. Of course, we could choose P > 0 and use −h instead
of h in order to obtain equations of motion. However, in that case the physical Hamiltonian
would be unbounded from below, leading to an unstable theory. Alternatively, we could
stick to +h for the equations of motion, but then the τ evolution would run backwards.

Moreover, since ctot = c + P
√

1 + qabUaUb = 0 on the constraint surface, we would
have c < 0 for P > 0. Since c = cgeo +cmatter and cmatter > 0, this would enforce cgeo < 0.
Hence, flat space would not be a solution.

As a side remark, for ca/h � 1 and P < 0, h ≈ c, while h ≈ −c for P > 0. Thus,
the physical Hamiltonian density, with respect to dust as a physical reference system,
approximates the standard model Hamiltonian density cmatter only for P < 0.
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We emphasize again that the dust used for deparametrization is not observable, and should
not be confused with observable matter. It solely provides a dynamical reference frame.

2.4. Dust interpretation

In this section we derive a physical interpretation of the Brown–Kuchař action based on the
geodesic motion of otherwise free particles [12].

Consider first the action for a single relativistic particle with mass m on a background g:

Sm = −m

∫
R

ds

√
−gμνẊμẊν. (2.55)

The momentum conjugate to the configuration variable Xμ is given by

Pμ = δSm

δẊμ
= m

gμνẊ
ν√

−gρσ ẊρẊσ

, (2.56)

rendering the Legendre transformation singular. This is a consequence of the reparametrization
invariance of the action (2.55). Hence, the system exhibits no physical Hamiltonian, but instead
a primary Hamiltonian constraint enforcing the mass shell condition:

C = 1

2m
(m2 + gμνPμPν). (2.57)

Let us proceed to the canonical formulation. In terms of the embeddings X ≡ Yt (x), the
particle trajectory reads X(s) = Yt(s)(x(s)), so that

Ẋ(s) = ṫ (s)Y,t + ẋa(s)Y,a (2.58)

where the overdot refers to differentiation with respect to the trajectory parameter s. The
momenta are then given by

pa ≡ Yμ
,aPμ = m√

−gρσ ẊρẊσ

qab(ṫn
b + ẋb)

(2.59)
pt ≡ Y

μ
,t Pμ = m√

−gρσ ẊρẊσ

(ṫgtt + qab nbẋa)

where gtt = −n2 + qabn
anb. We can only eliminate the spatial velocities ẋa . To do this set

A ≡ gtaẋ
a = qabn

bẋa and B ≡ qabẋ
aẋb. Then,

w ≡ gμνẊ
μẊν = gtt ṫ

2 + 2Aṫ + B. (2.60)

On the other hand,

− w

m2
qabpapb = B + 2Aṫ + qabn

anbṫ2. (2.61)

Substituting w from (2.60) and collecting coefficients of A,B, ṫ2 yields

0 = B + 2Aṫ + ṫ2 gtt
qabpapb

m2 + qabn
anb

1 + qabpapb

m2

= w +
ṫ2n2

1 + qabpapb

m2

. (2.62)

Now we can solve the first equation in (2.59) for ẋa:

ẋa = ṫ

(
−na ±

√
1 +

qabpapb

m2

)
. (2.63)
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Inserting this into the second equation in (2.59) leads to a constraint of the form C ≡ ps + h:

C = ps − napa ± n
√

m2 + qabpapb (2.64)

while the canonical Hamiltonian is obtained from the Lagrangian in (2.55) as

Hcanon = PμẊμ − L = ṫC. (2.65)

Since the constraint (2.64) is in deparametrized form, the phase space can easily be reduced,
leading to the reduced action

Sreduced =
∫

ds(paẋ
a − h). (2.66)

We extend this phase space by adding a canonical pair (τ,m) and consider the extended action

Sextended =
∫

ds(mτ̇ + paẋ
a − h) (2.67)

where the particle mass m is now considered as a dynamical variable. The equations of motion
for m, τ give ṁ = 0 and τ̇ = ṫ

√−w. Thus, the mass is constant and τ is the proper time (in
the gauge s = t).

We generalize our results now to the case of many particles. More precisely, let S be a
label set and consider a relativistic particle for each label σ ∈ S. This amounts to providing
each variable appearing in the extended action with a corresponding label, i.e. xa

σ , pσ
a , τσ ,mσ ,

and the total action for those particles is then just the sum over the corresponding actions
Sσ

extended:

Sextended =
∑
σ∈S

Sσ
extended. (2.68)

Next we consider the limit in which S becomes a three-manifold, with the labels σ

becoming coordinates on this manifold. In this limit, we introduce the following fields:

T̃ (σ ) ≡ τσ

P̃ (σ ) d3σ ≡ mσ

S̃a(σ ) ≡ xa
σ

p̃a(σ ) d3σ ≡ pa(xσ ) (2.69)

ñ(σ ) ≡ n(xσ )

ña(σ ) ≡ na(xσ )

q̃ab(σ ) ≡ qab(xσ ).

Then, in the specified limit, the extended action (2.68) becomes

Sextended =
∫

dt

∫
d3σ
( ˙̃T P̃ + ˙̃S

a
P̃a + ñaP̃a ∓ ñ

√
P̃ 2 + q̃abP̃aP̃b

)
. (2.70)

Finally, we perform a canonical transformation: instead of the fields S̃a(σ ) with
values in X , we would like to consider the inverse fields Sj (x) with values in S, that is
Sj (S̃(σ )) = σ j , S̃a(S(x)) = xa . This is at the same time a diffeomorphism and we can
transform the other fields as well. For instance (T is a scalar and P is a scalar density),

T (x) = T̃ (S(x)) =
∫
S

d3σ δ(x, S̃(σ ))| det(∂S̃/∂σ )|T̃ (σ )

P (x) = P̃

|det(∂S̃/∂σ )| (S(x)) =
∫
S

d3σ δ(x, S̃(σ ))P̃ (σ ) (2.71)

Sj (x) =
∫
S

d3σ σ jδ(x, S̃(σ ))| det(∂S̃/∂σ )|.
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Calculating the time derivatives and performing integrations by parts, we find∫
S

d3σ ˙̃T P̃ =
∫
X

d3x(Ṫ P − Ṡj Sa
j PT,a) (2.72)

with Sa
j denoting the inverse of the matrix S

j
,a . Using

˙̃S
a
(σ ) = − [Ṡj Sa

j

]
S(x)=σ

(2.73)

and defining Pj (x) implicitly through

P̃a = −
[

PT,a + PjS
j
,a

|det(∂S/∂x)|

]
S(x)=σ

(2.74)

we find that Sextended precisely turns into the dust action on X with the second class constraints
eliminated16.

3. Relational observables and physical Hamiltonian

In this section we present an explicit prescription for constructing gauge-invariant completions
of arbitrary phase space functions. The construction is non-perturbative and technically
involved, but the physical picture behind it will become crystal clear. Furthermore, the formal
expressions are only required to establish certain properties of the construction, but are not
required for the calculation of physical properties. This is a great strength of the relational
formalism.

Let us summarize the situation. After having solved the second class constraints and
having identified lapse and shift fields as Lagrange multipliers, we are left with the following
canonical pairs:

(qab, p
ab), (ξ, π), (T , P ), (Sj , Pj ), (3.1)

subject to the following first class constraints:

ctot
a = ca + cdust

a , cdust
a = PT,a + PjS

j
,a

(3.2)
ctot = c + cdust, cdust = −

√
P 2 + qabcdust

a cdust
b

where ca, c are independent of the dust variables {T , P, Sj , Pj }. We already used P < 0.
As explained in section 2.3, we aim at deparametrization of the theory and therefore solve

(3.2) for the dust momenta, leading to the equivalent form of the constraints

c̃tot = P + h, h =
√

c2 − qabcacb
(3.3)

c̃tot
j = Pj + hj , hj = Sa

j (−hT,a + ca)

with Sa
j Sk

,a = δk
j , S

a
j S

j

,b = δa
b ; hence Sa

j is the inverse of S
j
,a (assuming, as before, that

S : X → S is a diffeomorphism). These constraints are mutually Poisson commuting17.
However, only c̃tot is in deparametrized form (i.e. h is independent of T , Sj ), but c̃tot

j is not.

16 The metric field has to be pulled back by the dynamical spatial diffeomorphism, as well. For details, see the next
section.
17 One can either prove this by direct calculation, or one uses the following simple argument: the Poisson bracket
between the constraints must be proportional to a linear combination of constraints, because the constraint algebra is
first class. Since the constraints are linear in the dust momenta, the result of the Poisson bracket calculation no longer
depends on them. Therefore, the coefficients of proportionality must vanish.
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In particular, we can only conclude that the h(x) are mutually Poisson commuting. Still, this
will be enough for our purposes18.

Following the works [9–11], we describe the construction of fully gauge-invariant
completions of phase space functions. Consider the smeared constraint

Kβ ≡
∫
X

d3x
[
β(x)ctot(x) + βj (x)ctot

j (x)
]

(3.4)

where β(x), βj (x) are phase space independent smearing functions in the range of
T (x), Sj (x). Under a gauge transformation generated by this constraint, an arbitrary phase
space function f is mapped to

αβ(f ) ≡
∞∑

n=0

1

n!
{Kβ, f }(n). (3.5)

The fully gauge-invariant completion of f is given by

Of [τ, σ ] ≡ [αβ(f )] β→τ−T

βj →σ j −Sj

. (3.6)

Here, the functions τ(x), σ j (x) are also in the range of T (x), Sj (x), respectively19. It is
important to first calculate the Poisson brackets appearing in (3.5) with the phase space
independent functions β, βj , and afterwards to replace them with the phase space dependent
functions τ −T , σ j −Sj , respectively. This connection can be established based on the gauge
transformation properties of T , Sj : αβ(T ) = T + β, αβ(Sj ) = Sj + βj . Hence,

Of [τ, σ ] ≡ [αβ(f )] αβ(T )=τ

αβ(Sj )=σ j

. (3.7)

Indeed, (3.7) motivates the following interpretation: Of [τ, σ ] is the gauge-invariant
completion of f , which in the gauge T = τ, Sj = σ j takes the value f . This is not the
only interpretation we entertain a different one below.

For the purpose of this paper it suffices to consider the infinite series appearing in the
gauge-invariant completions as expressions useful for formal manipulations. There is no need
to actually calculate these series for any physical problem.

Further important properties [17, 32] of the completion are

{Of [τ, σ ],Of ′[τ, σ ]} = {Of [τ, σ ],Of ′ [τ, σ ]}∗ = O{f,f ′}∗[τ, σ ] (3.8)

Of +f ′[τ, σ ] = Of [τ, σ ] + Of ′[τ, σ ], Of ·f ′[τ, σ ] = Of [τ, σ ] · Of ′[τ, σ ]. (3.9)

Here, {·, ·}∗ is the Dirac bracket20 [6] associated with the constraints and the gauge fixing
functions T , Sj . Relations (3.8) and (3.9) show that the map f �→ Of [τ, σ ] is a Poisson
homomorphism of the algebra of functions on phase space with pointwise multiplication,
equipped with the Dirac bracket21 as the Poisson structure.

18 In what follows we will drop the tilde in noting the constraints for notational simplicity.
19 We denote the functional dependence of (3.6) on the functions τ(x), σ j (x) by square brackets. Below we show that
it is sufficient to choose those functions to be constant and replace the square brackets by round ones for notational
convenience.
20 For completeness, we note the definition of the Dirac bracket:

{f, f ′}∗ ≡ {f, f ′} −
∫
X

d3x

3∑
μ=0

[{f, ctot
μ (x)}{f ′, Sμ(x)} − {f ′, ctot

μ (x)}{f, Sμ(x)}] (3.10)

where ctot
0 ≡ ctot, S0 := T . The Dirac bracket is antisymmetric and {f, ctot

μ (x)}∗ = {f, Sμ(x)}∗ = 0 everywhere. This
follows from the fact that ctot

μ (x) and Sμ(x) are mutually Poisson commuting, and that {ctot
μ (x), Sν(y)} = δ(x, y)δν

μ.
21 The Dirac bracket coincides with the Poisson bracket on gauge-invariant functions. It is degenerate, since it
annihilates constraints and gauge fixing functions. Hence, it defines only a Poisson structure, but not a symplectic
structure on the full phase space.
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In particular, for a general functional f = f [qab(x), P ab(x), ξ(x), π(x), T (x),

P (x), Sj (x), Pj (x)] the following useful identity holds:

Of = f
[
Oqab(x), OP ab(x), Oξ(x),Oπ(x),OT (x),OP(x),OSj (x), OPj (x)

]
(τ, σ ). (3.11)

This has important consequences: (3.11) ensures that it suffices to know the completions of
the elementary phase space variables. In fact, we are only interested in those functions that
are independent of the dust variables {T , Sj , P, Pj }. The reason for this is that, first of all,
P,Pj are expressible in terms of all other variables on the constraint surface. Alternatively,
since the constraints are mutually Poisson commuting, we have

OP(x) = Octot(x) + Oh(x) = ctot(x) + Oh(x), OPj (x) = Octot
j (x) + Ohj (x) = ctot

j (x) + Ohj (x).

(3.12)

Hence, these functions are known once we know the completion of the remaining variables.
Secondly,

OT (x)[τ, σ ] = τ(x), OSj (x)[τ, σ ] = σ j (x) (3.13)

are phase space independent. Thus, the only interesting variables to consider are
{qab, P

ab, ξ, π}.
In what follows we consider only dust-independent functions f . For those (3.8) simplifies

to

{Of [τ, σ ],Of ′[τ, σ ]} = O{f,f ′}[τ, σ ]. (3.14)

Equations (3.9) and (3.8) imply that f �→ Of [τ, σ ] is a Poisson automorphism of the Poisson
subalgebra of functions that do not depend on the dust variables with the ordinary Poisson
bracket as the Poisson structure. This will be absolutely crucial for all what follows.

Further useful properties of the completion are

Of [τ, σ ] = O
(2)

O
(1)
f [σ ]

[τ ] (3.15)

where (recall (3.4), (3.5) and (3.6))

O
(1)
f [σ ] = [αβ(f )] β→0

βj →σ j −Sj

(3.16)
O

(2)
f [τ ] = [αβ(f )] β→τ−T

βj →0
.

This follows from the fact that the constraints are mutually Poisson commuting and
{ctot(x), Sj (y)} = 0. The important consequence of (3.15) is that we can accomplish
full gauge invariance in two stages: we establish first invariance under the action of the
spatial diffeomorphism constraint, and afterwards achieve invariance with respect to gauge
transformations generated by the Hamiltonian constraint. This holds even under more general
circumstances [11], i.e. when the constraints cannot be deparametrized.

3.1. Implementing spatial diffeomorphism invariance

Keeping the physical interpretation of the completion in mind, the map f �→ O
(1)
f [σ ] can

be worked out explicitly. In the first stage of the construction, the corresponding smeared
constraint reads

Kβ =
∫
X

d3x βj (x) ctot
j (x). (3.17)
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Given a phase space function f , its completion O
(1)
f with respect to gauge transformations

generated by Kβ becomes

O
(1)
f [σ ] =

∞∑
n=0

1

n!
[{Kβ, f }(n)]βj →σ j −Sj

= f +
∞∑

n=1

1

n!

∫
X

d3x1[σ j1(x1) − Sj1(x1)] . . .

∫
X

d3xn [σ jn(xn) − Sjn(xn)]

× {ctot
j1

(x1),
{
ctot
j2

(x2), . . . ,
{
ctot
jn

(xn), f
}
. . .
}}

. (3.18)

Let us begin with f = ξ(x). We claim that

{Kβ, ξ(x)}(n) = [βj1 . . . βjn vj1 . . . vjn
· ξ
]
(x) (3.19)

where vj is the vector field defined by

vj · ξ(x) := Sa
j (x) ξ,a(x). (3.20)

In fact the vectors vj are mutually commuting:

[vj , vk] = Sa
j Sb

k,a∂b − j ↔ k

= −Sa
j Sb

l S
l
,caS

c
k∂b − j ↔ k

= −Sa
j Sb

l S
l
,acS

c
k∂b − j ↔ k

= Sa
j Sb

l,cS
l
,aS

c
k∂b − j ↔ k

= Sb
j,cS

c
k∂b − j ↔ k

= Sa
k Sb

j,a∂b − j ↔ k

= 0. (3.21)

To prove (3.19) by induction over n we need{
Kβ, Sa

j (x)
} = −Sa

k (x)
{
Kβ, Sk

,b(x)
}
Sb

j (x) = −Sa
k (x)βk

,b(x)Sb
j (x) = −[vj · βk]Sa

k . (3.22)

For n = 1 we have

{Kβ, ξ(x)}(1) = [βjSa
j ξ,a

]
(x) = βjvj · ξ, (3.23)

which coincides with (3.19). Suppose that (3.19) is correct up to n; then

{Kβ, ξ}(n+1) = βj1 . . . βjn
{
Kβ, vj1 . . . vjn

· ξ
}

= βj1 . . . βjn

[
vj1 . . . vjn

· {Kβ, ξ} +
n∑

l=1

vj1 . . . vjl−1

{
Kβ, Sa

jl

}
∂avjl+1 . . . vjn

· ξ

]

= βj1 . . . βjn

[
vj1 . . . vjn

· βjn+1vjn+1 · ξ −
n∑

l=1

vj1 . . . vjl−1 [vjl
βjn+1 ]vjn+1vjl+1 . . . vjn

· ξ

]

= βj1 . . . βjn

[
vj1 . . . vjn

· βjn+1vjn+1 · ξ −
n∑

l=1

vj1 . . . vjl−1 [vjl
βjn+1 ]vjl+1 . . . vjn+1 · ξ

]
= βj1 . . . βjn

[
vj1 . . . vjn

· βjn+1vjn+1 · ξ − (vj1 . . . vjn
βjn+1 − βjn+1vj1 . . . vjn

)
vjn+1 · ξ

]
= βj1 . . . βjn+1 vj1 . . . vjn+1 · ξ. (3.24)

where we used commutativity of the vj and the Leibniz rule.
It follows that

O
(1)

ξ(x)[σ ] = ξ(x) +
∞∑

n=1

1

n!
[σ j1(x) − Sj1(x)] . . . [σ jn(x) − Sjn(x)] vj1 . . . vjn

· ξ(x). (3.25)
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Using vj · Sk = δk
j and commutativity of the vj, we find with βj := σ j − Sj that

vk · O
(1)

ξ(x)[σ ] = vk · ξ +
∞∑

n=1

[
1

(n − 1)!
[vk · βj ]βj1 . . . βjn−1 vjvj1 . . . vjn−1 · ξ

+
1

n!
βj1 . . . βjn vkvj1 . . . vjn

· ξ

]

= vk · ξ +
[
vk · βj

]
vj · ξ +

∞∑
n=1

1

n!
βj1 . . . βjn

× [[vk · βj ]vjvj1 . . . vjn
· ξ + vkvj1 . . . vjn

· ξ
]

=
∞∑

n=0

1

(n)!
βj1 . . . βjn [vk · σ j ]vjvj1 . . . vjn

· ξ. (3.26)

The interpretation of (3.25) becomes clear for the choice σ j (x) = σ j = const, for which
(3.26) vanishes identically. In other words, the completion O

(1)

ξ(x)[σ ] does not depend on x

at all. Hence, for this choice of σ j , we are free to choose x in O
(1)

ξ(x)[σ ] in order to simplify
(3.25). Since (3.25) is a power expansion in (σ j (x) − Sj )(x), and Sj is a diffeomorphism, we
choose x = xσ , with xσ being the unique solution of Sj (x) = σ j . Then22,

O
(1)

ξ(x)(σ ) = ξ(xσ ) = [ξ(x)]Sj (x)=σ j . (3.27)

The completion O
(1)

ξ(x)(σ ) of ξ(x) has also a simple integral representation:

O
(1)

ξ(x)(σ ) =
∫
X

d3x|det(∂S(x)/∂x)|δ(S(x), σ )ξ(x). (3.28)

The significance of choosing σ j = const is the following: clearly, the choice σ j (x) =
const is not in the range of Sj (x), which is supposed to be a diffeomorphism. Thus, the
interpretation of O

(1)
f (σ ) as the value of f in the gauge Sj = σ j is obsolete. However, given a

function σ j (x), instead of solving Sj (x) = σ j (x) for the values of the function Sj for all x, we
could solve it for x, while keeping the function Sj arbitrary. This is the appropriate interpretation
of O

(1)
f (σ ). This is possible because O

(1)
f [σ ] is (at least formally) gauge invariant, whether

or not Sj = σ j is a good choice of gauge. It is fully sufficient to do this because, as shown
in [12] and as we will show in appendix B, the partially reduced phase space (with respect to
the spatial diffeomorphism constraint) is completely determined by the O

(1)
f (σ ); hence, the

O
(1)
f [σ ] must be hugely redundant.

We can now compute the spatially diffeomorphism invariant extensions for the remaining
phase space variables without any additional effort, by switching first to variables which are
spatial scalars on X , using J := det(∂S/∂x), which we assume to be positive (orientation
preserving diffeomorphism):

(ξ, π/J ), (T , P/J ),
(
qjk ≡ qabS

a
j Sb

k , p
jk ≡ Sj

,aS
k
,bp

ab/J
)
. (3.29)

The image of these quantities, evaluated at x, under the completion O
(1)
f (σ ) simply consists in

replacing x by xσ , where xσ solves Sj (x) = σ j , just as in (3.27). The scalars (3.29) on X are
the pullbacks of the original tensor (densities) under the diffeomorphism σ �→ xσ evaluated
at σ . Thus, they are tensor (densities) of the same type, but live now on the dust space
manifold S.

22 We switched to the notation O
(1)
f (σ ) to indicate the choice σ j (x) = σ j = const.
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This statement sounds contradictory because of the following subtlety: we have e.g. the
three quantities P(x), P̃ (x) = P(x)/J (x), P̃ (σ ) = P̃ (xσ ). On X , P (x) is a scalar density
while P̃ (x) is a scalar. Pulling back P(x) to S = S(X ) by the diffeomorphism σ �→ S−1(σ )

results in P̃ (σ ). But pulling back P̃ (x) back to S results in the same quantity P̃ (σ ). Since
a diffeomorphism does not change the density weight, we would get the contradiction that
P̃ (σ ) has both density weights zero and one on S. The resolution of the puzzle is that what
determines the density weight of P(x) on X is its transformation behaviour under canonical
transformations generated by the total spatial diffeomorphism constraint ctot

a = cdust
a + ca

where cdust
a , ca are the dust and non-dust contributions respectively. After the reduction of

ctot
a , what determines the density weight of P̃ (σ ) on S is its transformation behaviour under(
[ca + PT,a]Sa

j

/
J
)
(xσ ) = c̃j (σ ) + P̃ (σ )T̃,j (σ ) and this shows that P̃ (σ ) has density weight

one23.
We will denote the images under f �→ O

(1)
f (σ ) by

(ξ̃ (σ ), π̃(σ )), (T̃ (σ ), P̃ (σ )), (q̃ij (σ )p̃ij (σ )). (3.30)

In appendix B we show that the quantities (3.30) can also be obtained through symplectic
reduction which is an alternative method to show that the pairs in (3.30) are conjugate and as
it was done in [12].

3.2. Implementing invariance with respect to the Hamiltonian constraint

Having completed the elementary phase space variables with respect to the spatial
diffeomorphism constraint, it remains to render those variables invariant under the action
of the Hamiltonian constraint. This amounts to calculating the image of those variables under
the map f �→ O

(2)
f [σ ], for any f in (3.30). For f independent of T , P , the completion of f

with respect to the Hamiltonian constraint is given by

O
(2)
f [τ ] =

∞∑
n=0

1

n!
{h[τ ], f }(n) , h[τ ] =

∫
X

d3x(τ(x) − T (x))h(x). (3.31)

Only if we choose τ(x) = τ = const, (3.31) is invariant under diffeomorphisms. Hence we
choose τ(x) = τ = const, which allows us to rewrite (3.31) entirely in terms of the variables
(3.30). As a reminder of this choice, we denote the completion by O

(2)
f (τ ). In this case (3.31)

can be written as

O
(2)
f (τ ) =

∞∑
n=0

1

n!
{h̃(τ ), f }(n), h̃(τ ) =

∫
S

d3σ(τ − T̃ (σ ))h̃(σ ) (3.32)

with h̃(σ ) denoting the image of h(x) under the replacement24 of {ξ(x), π(x), qab(x), pab(x)}
by {ξ̃ (σ ), π̃(σ ), q̃jk(σ ), p̃jk(σ )}, respectively. Explicitly, denoting

c̃(σ ) ≡
[

c(x)

J (x)

]
S(x)=σ

c̃j (σ ) ≡
[
cj (x)

J (x)

]
S(x)=σ

, (3.33)

where, as before, cj (x) = Sa
j (x) ca(x), we find

h̃(σ ) =
√

c̃2 − q̃jk c̃j c̃k(σ ). (3.34)

23 In order to avoid confusion of the reader we mention that any quantity f on X which has positive density
weight is mapped to zero under f �→ O

(1)
f (σ ). Let us again consider the example f = P . We have

P̃ (σ ) = P(xσ ) det(∂S−1(σ )/∂σ ) which is perfectly finite. However by the Poisson automorphism formula
O

(1)
P (x) = O

(1)

J (x) P̃ (x)
= O

(1)
J (x) P̃ (σ ) = det(∂σ/∂x) P̃ (σ ) = 0 since σ = const.

24 The proof of this statement is based on the fact that the replacement corresponds to a diffeomorphism and that h(τ)

is the integral of a scalar density of weight on, for τ = const.
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It is easy to see that

d

dτ
O

(2)
f (τ ) = {H,O

(2)
f (τ )

}
(3.35)

with

H :=
∫
S

d3σ h̃(σ ) (3.36)

is the physical Hamiltonian (not Hamiltonian density) of the deparametrized system.
We denote the fully gauge-invariant completions of the Hamiltonian constraint, the spatial

diffeomorphism constraints25 and the physical Hamilton density, respectively, as

C(τ, σ ) ≡ O
(2)

c̃(σ )(τ )Cj (τ, σ ) ≡ O
(2)

c̃j (σ )(τ ),
(3.37)

H(τ, σ ) ≡ O
(2)

h̃(σ )
(τ ).

It is worth emphasizing again that H(τ, σ ) is the physical energy density associated with the
physical Hamiltonian when the dust fields are considered as clocks of the system. The fully
gauge-invariant completions of the phase space variables for matter and gravity are denoted
by

�(τ, σ ) ≡ O
(2)

ξ̃ (σ )
(τ ) 
(τ, σ ) ≡ O

(2)

π̃(σ )(τ ),
(3.38)

Qij (τ, σ ) ≡ O
(2)

q̃ij (σ )(τ ) P ij (τ, σ ) ≡ O
(2)

p̃ij (σ )
(τ ).

The matter scalar field �(τ, σ ) and its conjugate momentum 
(τ, σ ) are observable quantities
since gauge invariant. The same applies to the three-metric Qij (τ, σ ) and its canonical
momentum field P ij (τ, σ ). Moreover, the completion is non-perturbative, i.e. full non-Abelian
gauge invariance has been accomplished.

3.3. Constants of the physical motion

In the previous section we successfully constructed fully gauge-invariant quantities for a
specific deparametrizing system. In some sense, the construction frees the true degrees of
freedom from the constraints, replacing them by conservation laws which govern the physical
motion of observable quantities. Indeed, we have the following first integrals of physical
motion (conservation laws):

d

dτ
Cj (τ, σ ) = 0,

d

dτ
H(τ, σ ) = 0. (3.39)

These equations express invariance under the physical evolution generated by H, as opposed
to gauge invariance. The functions Cj ,H , representing physical three-momentum and energy,
are already gauge invariant.

We proceed with the proof of (3.39). Recall that the original constraints ctot(x), ctot
j (x)

are mutually Poisson commuting. Using (3.3), this means, in particular,

{ctot(x), ctot(y)} = {P(x) + h(x), P (y) + h(y)} = {h(x), h(y)} = 0 (3.40)

where we used that the P(x) are mutually Poisson commuting and that h(x) is independent
of the dust variables. Next, consider the smeared spatial diffeomorphism generator

c(u) ≡
∫
X

d3x ua(x)ca(x). (3.41)

25 Explicit expression for the constraints in terms of the fully gauge-invariant phase space variables are given in the
next section, see (3.56).
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The smeared constraint acts on h(y) as it should,

{c(u), h(y)} = [uah],a(y) (3.42)

or, after functional differentiation with respect to the smearing functions ua:

{ca(x), h(y)} = ∂ya (δ(x, y)h(y)). (3.43)

This follows from the properties of ca, generating spatial diffeomorphisms on the matter
and gravity variables, and h, being a scalar density of weight one and only depending on
the non-dust variables. Furthermore, the spatial diffeomorphisms form an algebra with
{c(u), c(u′)} = c([u′, u]). From this follows again by functional differentiation

{ca(x), cb(y)} = [∂ybδ(x, y)]ca(y) − [∂xa δ(y, x)]cb(x). (3.44)

Let us investigate the implications of (3.40)–(3.44) for

h̃(σ ) =
[

h(x)

J (x)

]
S(x)=σ

=
∫
X

d3x δ (S(x), σ ) h(x)

(3.45)

c̃j (σ ) =
[
ca(x)Sa

j (x)

J (x)

]
S(x)=σ

=
∫
X

d3x δ (S(x), σ ) Sa
j (x)ca(x).

First of all,

{h̃(σ ), h̃(σ ′)} =
∫
X

d3x

∫
X

d3y δ(S(x), σ )δ(S(y), σ ′){h(x), h(y)} = 0 (3.46)

where we used that the Sj (x) are mutually commuting, as well as with the h(y). Second,
denoting the pullback of the smeared diffeomorphism generator with c̃(ũ) for some smearing
functions ũj (σ ), we have

{c̃(ũ), h̃(σ ′)} =
∫
S

d3σ ũj (σ )

∫
X

d3x

∫
X

d3y δ(S(x), σ )δ(S(y), σ ′)Sa
j (x){ca(x), h(y)}

=
∫
S

d3σ ũj (σ )

∫
X

d3x

∫
X

d3y δ(S(x), σ )δ(S(y), σ ′)Sa
j (x)∂ya (δ(x, y)h(y))

= −
∫
S

d3σ ũj (σ )

∫
X

d3x δ (S(x), σ ) [∂xa δ(S(x), σ ′)]Sa
j (x)h(x)

= −
∫
S

d3σ ũj (σ )

∫
X

d3x δ (S(x), σ ) [∂σ̃ k δ(σ̃ , σ ′)]σ̃=S(x)S
k
,a(x)Sa

j (x)h(x)

= −
∫
S

d3σ ũj (σ )

∫
S

d3σ1 δ (σ1, σ )
[
∂
σ

j

1
δ
(
σ1, σ

′)] [ h(x)

J (x)

]
S(x)=σ1

= −
∫
S

d3σ1 ũj (σ1)[δ(σ1, σ
′)]

,σ
j

1
h̃(σ1)

=
∫
S

d3σ1[ũj (σ1)h̃(σ1)],σ j

1
δ(σ1, σ

′)

= [ũj (σ ′)h̃(σ ′)],σ ′j . (3.47)

The last implication follows from

c̃(ũ) = c(uS), ua
S(x) = Sa

j (x)ũj (S(x)) (3.48)

where the vector fields uS are phase space dependent (they depend on S) and using the fact
that the Sj (x) and ca(y) are mutually Poisson commuting. Then,
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{c̃(ũ), c̃(ũ′)} = c([u′
S, uS])

=
∫
X

d3x
[
u′b

S (x)ua
S,b(x) − ub

S(x)u′a
S,b(x)

]
ca(x)

=
∫
X

d3x Sb
j (x)
[
ũ′j (S(x))

(
Sa

k (x)Sl
,b(x) ũk

,l(S(x))

− Sa
l (x)Sl

,cb(x)Sc
k (x)ũk(S(x))

)− ũj (S(x))
(
Sa

k (x)ũ′k
,l (S(x))

− Sa
l (x)Sl

,cb(x)Sc
k (x)ũ′k(S(x))

)]
ca(x)

=
∫
X

d3x
[
ũ′j (S(x))ũk

,j (S(x)) − ũj (S(x))ũ′k
,j (S(x))

]
ca(x)Sa

k (x)

=
∫
S

d3σ

∫
X

d3x δ(S(x), σ )
[
ũ′j (σ )ũk

,j (σ ) − ũj (σ )ũ′k
,j (σ )
]
ca(x)Sa

k (x)

= c̃([ũ′, ũ]). (3.49)

Hence, equations (3.40)–(3.44) are exactly reproduced by (3.46), (3.47) and (3.49).
We can now easily finish the proof of (3.39). In (3.32) we introduced h̃(τ ). From (3.46)

it follows that

{h̃(τ ), h̃(σ )} = 0. (3.50)

This implies in particular that

h̃(σ ) = H(σ) = O
(2)

h̃(σ )
(τ ) (3.51)

is already an observable quantity26. Hence, from the definition of H and (3.46) we find
{H, h̃(σ )} = 0. Furthermore,

{H, Cj (τ, σ )} = {O(2)
H (τ ),O

(2)

c̃j (σ )(τ )
} = O

(2)

{H,c̃j (σ )}(τ ) = 0. (3.52)

Alternatively, a more direct way to understand this result is to make use of the series
representation (3.32) and of

h̃(τ ) = τH − h̃[T̃ ]h̃[T̃ ] =
∫
S

d3σ T̃ (σ )h̃(σ ). (3.53)

Since the Hamiltonian vector fields X1, X2 of H and h̃[T̃ ], respectively, are commuting, we
may write for (3.32)

Cj(σ, τ ) = exp(τX1 − X2) · c̃j (σ ) = exp(−X2) · [exp(τX1) · c̃j (σ )]

= exp(−X2) · c̃j (σ ) =
∞∑

n=0

(−1)n

n!
{h̃[T̃ ], σ̃j (σ )}(n), (3.54)

which is clearly τ -independent.
We end this section by giving an explicit expressions for the physical Hamiltonian in

terms of purely gauge-invariant quantities:

H(σ) =
√

C(τ, σ )2 − Qjk(τ, σ ) Cj (σ ) Ck(σ ). (3.55)

Note that C,Qjk are not independent of the physical time τ . Of course, C(τ, σ ), Cj (σ )

are obtained from c̃(σ ), c̃j (σ ) simply by replacing everywhere the functional dependence on

26 Note, however, although H(σ) = h̃(σ ), this is not true for the corresponding spatial diffeomorphism constraints,
c̃j (σ ) �= Cj (σ )!
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{ξ̃ (σ ), π̃(σ ), q̃jk(σ ), pjk(σ )} by that on {�(τ, σ ),
(τ, σ ),Qjk(τ, σ ), P jk(τ, σ )}. In greater
detail,

Cj(σ ) = [−2Qjk(DkP
kl) + 
(Dj�)](τ, σ )

C(τ, σ ) = 1

κ

[
1√

det(Q)

(
QjmQkn − 1

2
QjkQmn

)
P jkP mn

−
√

det(Q)R(3)[Q] + 2�
√

det(Q)

]
(τ, σ )

+
1

2λ

[

2

√
det(Q)

+
√

det(Q)(Qjk (Dj�) (Dk�) + v(�))

]
(τ, σ )

≡ Cgeo(τ, σ ) + Cmatter(τ, σ ) (3.56)

with Dj denoting the covariant differential compatible with Qjk.

4. Physical equations of motion

In this section27 we derive the physical evolution of the gauge-invariant functions
{�,
,Qjk, P

jk}, generated by the true Hamiltonian H, in the first-order (Hamilton) and
second-order (Lagrange) formulation. In other words, we study the true evolution of matter
degrees of freedom and gravity with respect to the physical reference system (dust).

4.1. First-order (Hamiltonian) formulation

For a generic observable F, we denote28 its τ -derivative simply by an overdot, Ḟ . Then,

Ḟ = {H, F } =
∫
S

d3σ {H(σ), F }

=
∫
S

d3σ
1

H(σ)

(
C(σ) {C(σ), F } − Qjk(σ )Ck(σ ){Cj(σ ), F }

+
1

2
Qim(σ)Cm(σ)Qjn(σ )Cn(σ ){Qij (σ ), F }

)
. (4.1)

Let us introduce dynamical shift and dynamical lapse fields by

Nj ≡ −Cj/H N ≡ C/H =
√

1 + QjkNjNk. (4.2)

Note that Nj is a constant of the physical motion, but neither are N nor Nj = QjkNk . Then
(4.1) can be rewritten in the familiar looking form

Ḟ =
∫
S

d3σ

(
N(σ){C(σ), F } + Nj(σ ){Cj(σ ), F } +

1

2
H(σ)Ni(σ )Nj (σ ){Qij (σ ), F }

)
. (4.3)

The first two terms in (4.3) are exactly the same as those in the gauge variant derivation of the
equation of motion, derived with respect the primary Hamiltonian

Hprimary(N, 	N) =
∫
S

d3σ(N(σ)C(σ) + Nj(σ )Cj (σ )). (4.4)

Here, N,Nj are viewed as phase space independent functions. The third term in (4.3), on the
other hand, is a genuine correction to the gauge variant formalism. However, it enters only in
27 For the purposes of this section we assume that X and, equivalently, S have no boundary. In order to allow for
more general topologies, we consider boundary terms in the next section. The calculations of the present section are
not affected by the presence of such a boundary term, because it only cancels the boundary term that would appear
in the calculation of this section.
28 Furthermore, for notational ease we drop the dependence on (τ, σ ) when no confusions can arise.
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the physical evolution equation of Pjk. Hence,

�̇ = N√
det(Q)


 + L 	N�


̇ = ∂j

[
N
√

det(Q) Qjk�,k

]− N

2

√
det(Q)v′(�) + L 	N


Q̇jk = 2N√
det(Q)

GjkmnP
mn + (L 	NQ)jk

Ṗ jk = N

[
− Qmn√

det Q
(2P jmP kn − P jkP mn) +

κ

2
QjkC

−
√

det QQjk
(

2� +
κ

2λ

(
�,m�,m + v(�)

)) ]
+
√

det Q[G−1]jkmn ((DmDnN) − NRmn[Q]) +
κ

2λ
N
√

det Q �,j�,k

− κ

2
HQjmQknNmNn + (L 	NP )jk (4.5)

with L 	N denoting the Lie derivative29 with respect to the vector field 	N with components
Nj = QjkNk , and we have defined the DeWitt metric on symmetric tensors as

Gjkmn ≡ 1
2 (QjmQnk + QjnQmk − QjkQmn), (4.6)

which has the inverse

[G−1]jkmn = 1
2 (QjmQnk + QjnQmk − 2QjkQmn), (4.7)

that is Gjkmn[G−1]nmpq = δ
p

(j δ
q

k). The Ricci tensor of Q is denoted by Rjk[Q] and
C = Cgeo + Cmatter denotes the split of the Hamiltonian constraint (with the dust reference
system excluded) into gravitational30 and matter contribution, as shown explicitly in (3.56).

It is already evident that the dust model we utilized as a physical reference system has the
great advantage that, remarkably, equations (4.5) are almost exactly of the same form as the
corresponding equations in the gauge variant formalism, the only difference being the last term
on the right-hand side of the physical evolution equation for Ṗ jk . In other words, introducing
a physical reference system must necessarily lead to corrections compared to gauge fixing,
because the physical reference system will communicate via gravitational interaction with the
original system under consideration. In the sense described above, the dust reference system
creates only a minimal modification—it is the minimal extension of the original gravity–matter
system that extracts the true degrees of freedom and allows for their physical evolution.

The other difference is that instead of having constraints imposed on the phase space
variables, C = Cj = 0, now the dynamics of the true degrees of freedom is subject to
conservation laws Ḣ = Ċj = 0. Thus, in solving (4.5) we may prescribe arbitrary functions
ε(σ ), εj (σ ) which play the role of the (constant in τ -time) energy and momentum density,
respectively. The substitution31 H = ε, Cj = −εj will be crucial in what follows. In fact,
in order to derive the second order equations of motion, �̇, Q̇jk in (4.5) has to be solved for

,P jk . Without the conservation laws, this would be impossible, since 
,P jk enter the

29 For the explicit calculation of the Lie derivative it is important to note that 
 , P jk are tensor densities of weight
one in dust space.
30 Note that we have included a cosmological constant term +2

√
det(q))� in Cgeo.

31 The letter ε is chosen to indicate that these values are small, appropriate for test clocks and rods. In this way it can
be guaranteed that the dust, although gravitationally coupled with the original system, will not alter the dynamics of
the original system in an uncontrolled fashion.
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expressions for H,C,Cj in a non-trivial way, i.e. solving for them would lead to algebraic
equations of higher than fourth order. The substitution will also be crucial for the derivation
of the effective Lagrangian, by the inverse Legendre transform, corresponding to H, see
appendix C.

4.2. Second-order (Lagrangian) formulation

In this section we will use the first-order (Hamiltonian) equations of motion and derive the
corresponding second-order (Lagrangian) equations of motion for the configuration variables
� and Qjk, respectively. We will sketch the main steps of these calculations in section 4.3.
The reader who is just interested in the results should skip this section and go directly to
section 4.4 where the final equations are summarized.

4.3. Derivation of the second-order equations of motion

In this section we want to derive the second-order equations of motion for � and Qjk,
respectively. These second-order equations will be functions of the configuration variables
�,Qjk and their corresponding velocities �̇, Q̇jk , respectively. This can be achieved by
solving for the conjugate momenta 
 and Pjk in terms of their corresponding velocities �̇

and Q̇jk via the equation of motion. The relation between the conjugate momenta and their
velocities is given through the first-order Hamiltonian equations which were displayed in the
last section in equation (4.5).

We begin with the matter equation for �. First, we have to take the time derivative of the
first-order equation for � given in equation (4.5). This yields

�̈ =
[

Ṅ√
det Q

− N
(
√

det Q)̇

det Q

]

 +

N√
det Q


̇ + L 	̇N� + L 	N�̇. (4.8)

As discussed in section 3.3, the shift vector Nj := −Cj/H is a constant of motion since

Ċj = Ḣ = 0. Therefore for the Lie derivative with respect to 	̇N the only non-vanishing
contribution is the one including Q̇ij ,

(L 	̇N�) = (QijNj )
˙�,i = Q̇ijNj�,i . (4.9)

We will use this result later on, but for now we will work with the compact form of the
Lie derivatives as written in equation (4.8). Solving for 
 in terms of �̇ we get from
equation (4.5)


(�, �̇,Qjk) =
√

det Q

N
(�̇ − L 	N�) (4.10)

and thus have expressed 
 as a function of the velocity �̇. In order to stress that 
 has
to be understood as a function of �̇, we have explicitly written the function’s arguments in
this section. Note that strictly speaking 
 also appears in N = √1 + QjkCjCk/H 2 and
Nj = −QjkCk/H . However, Cj and H are treated as constants of motion as discussed before.
The same applies to Pjk below. Next we insert this result into equation (4.5), obtaining


̇(�, �̇) = [N
√

det(Q) Qjk�,k],j − N

2

√
det(Q) v′(�) + L 	N

(√
det Q

N

(
�̇ − L 	N�

))
= [N

√
det(Q) Qjk�,k],j − N

2

√
det(Q)v′(�) + (�̇ − L 	N�)

(
L 	N

√
det Q

N

)
+

√
det Q

N
(L 	N(�̇ − L 	N�)). (4.11)
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The final second-order equation of motion for � can be derived by inserting equations (4.10)
and (4.11) into equation (4.8). The result is

�̈ =
[
Ṅ

N
− (

√
det Q)̇√
det Q

+
N√

det Q

(
L 	N

√
det Q

N

)]
(�̇ − L 	N�)

+ Qjk�,k

[
N√

det Q
[N
√

det Q],j

]
+ N2

[
�� + [Qjk],j�,k − 1

2
v′(�)

]
+ 2(L 	N�̇) + (L 	̇N�) − (L 	N(L 	N�)). (4.12)

The same procedure has to be repeated for the gravitational equations now. Applying another
time derivative to the first-order equation of Qjk in equation (4.5) yields

Q̈jk =
(

2

[
Ṅ√

det Q
− N

(
√

det Q)̇

det Q

]
Gjkmn +

2N√
det Q

Ġjkmn

)
P mn +

2N√
det Q

GjkmnṖ
mn

+(L 	̇NQ)jk + (L 	NQ̇)jk. (4.13)

In order to solve for Pjk in terms of Q̇jk we use the inverse of the tensor Gjkmn denoted by
[G−1]jkmn and defined in equation (4.7). This results in

P jk(Qjk, Q̇jk) =
√

det Q

2N
[G−1]jkmn(Q̇mn − (L 	NQ)mn). (4.14)

Since the equation for Ṗ jk in (4.5) contains C which includes the geometry as well as the
matter part of the Hamiltonian constraint (see equation (3.56) for its explicit definition), it
is a function of the variables Qjk, P

jk,� and 
. This was different for 
 where its time
derivative involved the matter momentum only. Thus, in order to express Ṗ jk as a function
of configuration variables and velocities, we use equations (4.10) and (4.14) and replace the
momenta occurring in Ṗ jk . Rewriting Cgeo by means of the DeWitt bimetric Gjkmn we get

Cgeo = 1

κ

[
1√

det Q
GjkmnP

jkP mn +
√

det Q(2� − R)

]
. (4.15)

Using the relation in equation (4.14) and the fact that Gjkmn[G−1]jkrs = δr
(mδs

n), we obtain

Cgeo(Qjk, Q̇jk) = 1

κ

[√
det Q

4N2
[G−1]jkmn(Q̇jk − (L 	NQ)jk)(Q̇mn − (L 	NQ)mn)

+
√

det Q(2� − R)

]
. (4.16)

For the matter part of the Hamiltonian constraint we obtain by means of equation (4.10)

Cmatter(�, �̇,Qjk) = 1

2λ

[√
det Q

N2
(�̇ − L 	N�)2 +

√
det Q(Qjk�,j�,k + v(�))

]
. (4.17)

There are two other terms in Ṗ jk which include the conjugate momenta Pjk. One is the first
term on the right-hand side of equation (4.5) being quadratic in Pjk and the second is the Lie
derivative of Pjk. Reinserting into those terms the relation shown in equation (4.14), we end
up with the following expression for Ṗ jk as a function of configuration and velocity variables:

Ṗ jk(Qjk, Q̇jk, �, �̇) = −
√

det Q

2N
Qmn

(
[G−1]jmrs[G−1]kntu − 1

2
[G−1]mnrs[G−1]jktu

)
×(Q̇rs − (L 	NQ)rs)(Q̇tu − (L 	NQ)tu)

+ N
[κ

2
Qjk C −

√
det Q Qjk

(
2� +

κ

2λ
(�m�m + v(�))

)]
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+
√

det Q[G−1]jkmn ((DmDnN) − NRmn[Q]) +
κ

2λ
N
√

det Q �,j�,k

+

(
(L 	N

√
det Q

2N
)[G−1]jkmn +

√
det Q

2N
(L 	N [G−1])jkmn

)
(Q̇mn − (L 	NQ)mn)

+ ((L 	NQ̇)mn − (L 	N(L 	NQ))mn)

√
det Q

2N
[G−1]jkmn − κ

2
HQjmQknNmNn.

(4.18)

Next we insert the expressions for Pjk and Ṗ jk in equations (4.14) and (4.18), respectively,
into equation (4.13) for Q̈jk . Keeping in mind that GjkmnQ

mn = −1/2Qjk , we end up with

Q̈jk =
[
Ṅ

N
− (

√
det Q)̇√
det Q

+
N√

det Q

(
L 	N

√
det Q

N

)]
(Q̇jk − (L 	NQ)jk)

− (Q̇rs − (L 	NQ)rs)Gjkmn[
[Ġ−1]mnrs + (L[G−1])mnrs + Qtu(Q̇vw − (L 	NQ)vw)

×
(

[G−1]mtrs[G−1]nuvw − 1

2
[G−1]mnvw[G−1]turs

)]

−Qjk

[
N2κ

2
√

det Q
C − N2

(
2� +

κ

2λ
v(�)
)]

+ N2
[κ
λ

�,j�,k − 2Rjk

]
+ 2N(DjDkN) − NHκ√

det Q
GjkmnN

mNn

+ 2(L 	NQ̇)jk + (L 	̇NQ)jk − (L 	N(L 	NQ))jk. (4.19)

Here we used that Ġjkmn[G1−]mnrs = −Gjkmn[Ġ−1]jkrs which follows from
(Gjkmn[G−1]mnrs )̇ = 0 and

2N√
det Q

Gjkmn

[
−N
√

det Q Qmn κ

2λ
�,r�,r + N

√
det Q

κ

2λ
�,m�,n

]
= 2N√

det Q

[
+

N
√

det Q κ

4λ
Qjk�

,r�,r +
N

√
det Q κ

2λ
�,j�,k − N

√
det Qκ

4λ
Qjk�

,r�,r

]
= N2 κ

λ
�,j�,k. (4.20)

A straightforward, but tedious calculation shows that the second term on the right-hand side
of the equation for Q̈jk simplifies greatly:

−(Q̇rs − (L 	NQ)rs)Gjkmn

[
[Ġ−1]mnrs + (L[G−1])mnrs + Qtu(Q̇vw − (L 	NQ)vw)

×([G−1]mtrs[G−1]nuvw − 1
2 [G−1]mnvw[G−1]turs

)]
= Qmn(Q̇mj − (L 	NQ)mj )(Q̇nk − (L 	NQ)nk). (4.21)

Consequently, the final form for the second-order equation of motion for Qjk is given by

Q̈jk =
[
Ṅ

N
− (

√
det Q)̇√
det Q

+
N√

det Q

(
L 	N

√
det Q

N

)]
(Q̇jk − (L 	NQ)jk)

+ Qmn(Q̇mj − (L 	NQ)mj )(Q̇nk − (L 	NQ)nk)

+ Qjk

[
− N2κ

2
√

det Q
C + N2

(
2� +

κ

2λ
v(�)
)]
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+ N2
[κ
λ

�,j�,k − 2Rjk

]
+ 2N(DkDkN)

+ 2(L 	NQ̇)jk + (L 	̇NQ)jk − (L 	N(L 	NQ))jk − NHκ√
det Q

GjkmnN
mNn. (4.22)

This finishes our derivation of the (general) second-order equation of motion for � and Qjk,
respectively.

4.4. Summary of second-order equations of motion

The second-order equations of motion for the (manifestly) gauge-invariant matter scalar field
� and the (manifestly) gauge-invariant three-metric Qjk have the following form:

�̈ =
[
Ṅ

N
− (

√
det Q)̇√
det Q

+
N√

det Q

(
L 	N

√
det Q

N

)]
(�̇ − L 	N�)

+ Qjk�,k

[
N√

det Q
[N
√

det Q],j

]
+ N2

[
�� + [Qjk],j�,k − 1

2
v′(�)

]
+ 2(L 	N�̇) + (L 	̇N�) − (L 	N(L 	N�)) (4.23)

and

Q̈jk =
[
Ṅ

N
− (

√
det Q)̇√
det Q

+
N√

det Q

(
L 	N

√
det Q

N

)](
Q̇jk − (L 	NQ

)
jk

)
+ Qmn(Q̇mj − (L 	NQ)mj )(Q̇nk − (L 	NQ)nk)

+ Qjk

[
− N2κ

2
√

det Q
C + N2

(
2� +

κ

2λ
v(�)
)]

+ N2
[κ
λ

�,j�,k − 2Rjk

]
+ 2N(DjDkN)

+ 2(L 	NQ̇)jk + (L 	̇NQ)jk − (L 	N(L 	NQ))jk − NHκ√
det Q

GjkmnN
mNn. (4.24)

The term C = Cgeo + Cmatter occurring in the equation for Q̈jk has to be understood as a
function of configuration and velocity variables and is explicitly given by

Cgeo = 1

κ

[√
det Q

4N2
[G−1]jkmn(Q̇jk − (L 	NQ)jk)(Q̇mn − (L 	NQ)mn) +

√
det Q(2� − R)

]
Cmatter = 1

2λ

[√
det Q

N2
(�̇ − L 	N�)2 +

√
det Q(Qjk�,j�,k + v(�))

]
. (4.25)

Apart from the fact that we have a dynamical lapse function given by N = C/H , as well
as a dynamical shift vector defined as Nj = −Cj/H , the only deviation from the standard
Einstein equations in canonical form is the last term on the right-hand side of equation (4.24).
This term, being quadratic in Nj and therefore quadratic in Cj = C

geo
j + Cmatter

j , vanishes for
instance when FRW spacetimes are considered. In our companion paper [16], we specialize
these equations precisely to this context and show that the equations above reproduce the
correct FRW equations.

5. Physical Hamiltonian, boundary term and ADM Hamiltonian

As long as the dust space S (and therefore X ) has no boundary, H is functionally differentiable,
which we always assumed so far. However, for more general topologies we are forced to
consider boundary conditions. In this section we show how to deal with asymptotically flat
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boundary conditions for illustrative purposes. More general situations can be considered
analogously.

Recall [33] that asymptotically flat initial data are subject to the following boundary
conditions:

qab(x) = δab +
fab(�)

r
+ O(r−2), pab(x) = gab(�)

r
+ O(r−3),

ξ(x) = f (�)

r2
+ O(r−3), π(x) = g(�)

r2
+ O(r−3).

(5.1)

Here, xa is an asymptotic coordinate system, r2 ≡ δabx
axb and � denotes the angular

dependence of the unit vector xa/r (on the asymptotic sphere). The functions fab, f, gab, g

are assumed to be smooth. Moreover, fab is an even function under reflection at spatial
infinity on the sphere, while gab is odd (f, g do not underly parity restrictions). Note
that these boundary conditions directly translate into analogous ones for the substitutions
Qjk ↔ qab, P

jk ↔ pab,� ↔ ξ,
 ↔ π , because switching from X to S is just a
diffeomorphism.

The part of the differential of H that gives rise to a boundary term is

δboundaryH =
∫
S

d3σ [NδboundaryC + NjδboundaryCj ], (5.2)

which coincides precisely with the boundary terms produced by the canonical Hamiltonian32

Hcanonical =
∫
X

d3x[nc + naca] (5.3)

without dust. Here, the lapse and shift functions n, na are Lagrange multiplier rather than
dynamical quantities like N,Nj . Therefore, the usual boundary terms [33] can be adopted
once the asymptotic behaviour of the dynamical lapse and shift functions N,Nj have been
determined, which, in turn, is completely specified by Nj because Nj = QjkNk,N =√

1 + QjkNjNk . The scalar field contribution to C,Cj decays as 1/r4; thus, it is sufficient
to consider the geometrical contribution. C

geo
j = −2DkP

k
j decays as 1/r3 and is even

asymptotically. The term quadratic in Pjk and the term quadratic in the Christoffel symbols
in Cgeo decay as 1/r4, while the term linear in the Cristoffel symbols decays as 1/r3 and is
even. We conclude that Nj = −Cj

H
(with H = √C2 − QjkCjCk) is asymptotically constant

and even. The same is true for N, which is anyway bounded from below by unity. The usual
computation [18, 33] yields

δboundaryH = −δB ′(N) − δ 	B ′( 	N ′)

κδB ′(N) =
∫

S2

√
det(Q)QjkQmn[(DjN) dSkδ(Qmn − δmn) − (DmN) dSnδ(Qjk − δjk)]

+
∫

S2

√
det(Q)QjkN

[−dSj δ�
m
mk + Skδ�

k
jk

]
κδ 	B ′( 	N) = 2

∫
S2

dSj NkδP
j

k , (5.4)

where dSj = xj/r d�, with d� the volume element of S2. The prime is to indicate that,
contrary to what the notation suggests, the terms shown are, a priori, not total differentials. In
the usual formalism they are, because lapse and shift functions are Lagrange multipliers and
do not depend on phase space. Here, however, they are dynamical and we must worry about
the variation δNj .

32 With the substitutions S ↔ X , Qjk ↔ qab, P
jk ↔ pab, � ↔ ξ,
 ↔ π implied.

35



Class. Quantum Grav. 27 (2010) 055005 K Giesel et al

It turns out that the boundary conditions need to be refined in order to make H
differentiable. We will not analyse the most general boundary conditions in this paper, but
just make a specific choice that will be sufficient for our purposes. Namely, we will impose in
addition that C

geo
j = −2DkP

k
j decays as 1/r3+ε (ε > 0) at spatial infinity. Then also Cj falls

off as 1/r3+ε . Since C decays like 1/r3, it follows also that H = √C2 − QjkCjCk decays as
1/r3, whence Nj = −Cj/H decays as 1/rε . This implies that δNj decays as33 1/rε . Thus,
δN = [QjkNkδNj + NjNkδQ

jk/2]/N decays as34 1/r2ε .
It follows that δ 	B ′( 	N) = 0 and

κδB ′(N) = κδEADM, EADM =
∫

S2

√
det(Q)Qjk

[−dSj �m
mk + Skδ�

k
jk

]
(5.5)

reduces to the variation of the ADM energy. The correct Hamiltonian is given by

H = EADM +
∫
S

d3σH(σ). (5.6)

It is reassuring that in the asymptotically flat context, we have automatically a boundary term
in the Hamiltonian, which is just the ADM energy. The additional bulk term comes from the
dust energy density and does not vanish on the constraint surface.

Before we close this section, let us also mention the physical Hamiltonian system under
consideration there exists a Lagrangian from which derives by Legendre transformation on
the phase space defined by the physical observables. Curiously, the corresponding effective
action turns out to be non-local in dust space but local in dust time. It can be computed via a
fixed point equation to any order in the spatial derivatives of the fields. Details can be found
in appendix C.

6. Linear, manifestly gauge-invariant perturbation theory

In section 4 we derived the (manifestly) gauge-invariant second-order equation of motion for
the scalar field � and the three-metric Qjk. Now we consider small perturbations around a given
background whose corresponding quantities will be denoted by a bar, namely �,Qjk . The
linear perturbations are then defined as δ� := � − � and δQjk := Qjk − Qjk , respectively.
Note that these perturbations are also (manifestly) gauge invariant because they are defined as
a difference of two gauge-invariant quantities. Consequently, any power of δ� and δQjk will
also be a (manifestly) gauge-invariant quantity such that in the framework introduced in this
paper gauge-invariant perturbation theory up to arbitrary order is not only possible, but also
straightforward. This is a definite strength of our approach compared to the traditional one,
see section 7 for a detailed discussion.

However, in this section we will restrict ourselves to linear (manifestly) gauge-invariant
perturbation theory. That is any function F(Qjk,�) will be expanded up to linear order in the
perturbations δ� and δQjk . We denote by δF the linear order term in the Taylor expansion
of the expression F(Qjk,�) − F(Qjk,�). A calculation of higher order terms will be the
content of a future publication. Usually, in cosmological perturbation theory one chooses
an FRW background and considers small perturbations around it. Here we will derive the
equations of motion for the linear perturbations assuming an arbitrary background. In our

33 We could more generally have imposed that δNj falls off like 1/rε at spatial infinity.
34 The choice ε = 1/2 seems to be appropriate in order to reproduce the asymptotic Schwarzschild decay for
dynamical lapse and shift. However, this is not the case here, because we are automatically in a freely falling (dust)
frame and τ is proper time. Hence, gττ = −N2 + QjkNjNk − 1, whatever choice for Nj is made, it is independent
of τ .
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companion paper, we will specialize the results derived here to the case of an FRW background
and show that we can reproduce the standard results as presented, e.g., in [7]. The reader who
is only interested in the final form of the perturbed equation of motions should go directly to
section 6.3, where a summary of the results is provided.

6.1. Derivation of the equation of motion for δ�

Let us go back to the second-order equation of motion for � shown in equation (4.23). Since
its perturbation involves several terms we will, for reasons of book keeping, split this equation
into several parts and consider the perturbation of those parts separately. Comparing the
equation of � with the one for Qij in equation (4.24), we realize that in both equations the first
term on the right-hand side includes an identical term, namely the expression in the square
brackets. Therefore, it is convenient to derive its perturbation in a closed form such that the
result can then also be used for the derivation of the equation of motion of δQij . Throughout
this section we will repeatedly need the perturbation of

√
det Q and its inverse, given by

δ
√

det Q = 1

2

√
det Q Q

ij
δQij

δ

(
1√

det Q

)
= −1

2

1√
det Q

Q
ij
δQij .

(6.1)

Next, considering the definition of the lapse functions given by N = C/H and the definition
of H = √C2 − QijCiCj we obtain N = √1 + QijNiNj . Thus, as mentioned before, N is
not an independent variable, but can be expressed in terms of Qij and the shift vector, which
itself is a function of the elementary variables �,Qij . However, as shown in our companion
paper [16], the perturbation of Nj is again a constant of motion, that is δṄj = 0. For this
reason it is convenient to work with δQjk, δ� and δNj , although, strictly speaking, δNj is not
an independent perturbation. Keeping this in mind the perturbation of N yields

δN =
[
−N

2

(
N

j
N

k

N
2

)]
δQjk +

[
N

N
j

N
2

]
δNj . (6.2)

From the explicit form of δN and δ
√

det Q we can derive the following expressions which we
will need below:

δ

(
Ṅ

N

)
=
[
− ∂

∂τ

1

2

(
N

j
N

k

N
2

)]
δQjk +

⎡⎣(N
j

N
2

)̇ ⎤⎦ δNj

δ

(
−
(√

det Q
)̇

√
det Q

)
=
[
− ∂

∂τ

1

2
Q

jk
]

δQjk.

(6.3)

Here the derivative with respect to τ is understood to act on everything to its right, including
the perturbations. We also used that δNj is a constant of motion, so the term proportional
to δṄj does not contribute. In order to calculate the perturbation of the Lie derivative term
occurring in the square brackets in equation (4.23), we compute

δ

(
N√

det Q

)
=
[
−
(

N√
det Q

)
1

2

(
Q

jk
+

N
j
N

k

N
2

)]
δQjk +

[
N

j

N
2

]
δNj

δ

(√
det Q

N

)
=
[(√

det Q

N

)
1

2

(
Q

jk
+

N
j
N

k

N
2

)]
δQjk +

[
−
√

det Q

N

N
j

N
2

]
δNj .

(6.4)
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The Lie derivative term then yields

δ

((
L 	N

√
det Q

N

))
=
[
L 	N

(√
det Q

N

1

2

(
Q

jk
+

N
j
N

k

N
2

))]
δQjk

+

[
−L 	N

√
det Q

N

(
N

j

N
2

)]
δNj +

(
Lδ 	N

√
det Q

N

)
. (6.5)

Similar to the τ -derivative, the Lie derivative L 	N acts on all terms to its right, including the
linear perturbations. For the moment we keep the Lie derivative with respect to δ 	N in the
compact form above. At a later stage we will write down these terms explicitly and express
them in terms of δQjk and δNj . Having calculated the variations of all components of the first
square bracket in equation (4.23), we can now give the final result:

δ

[
Ṅ

N
− (

√
det Q)̇√
det Q

+
N√

det Q

(
L 	N

√
det Q

N

)]
=
[
−
(

∂

∂τ
− L 	N

)(
1

2

(
Q

jk
+

N
j
N

k

N
2

))]
δQjk

+

[(
∂

∂τ
− L 	N

)
N

j

N
2

]
δNj +

N√
det Q

(
Lδ 	N

√
det Q

N

)
. (6.6)

The last term in this equation can be written explicitly in terms of δQmn and δNm as

N√
det Q

(
Lδ 	N

√
det Q

N

)
=
[
− N√

det Q

∂

∂xm

(√
det Q

N
Q

jm
N

k

)]
δQjk

+

[
N√

det Q

∂

∂xk

(√
det Q

N
Q

jk

)]
δNj . (6.7)

As the terms in equation (6.6) are multiplied by (�̇− (L 	N�)) in equation (4.23), we also need
the perturbation of the latter term. It is given by

δ(�̇ − (L 	N�)) =
(

∂

∂τ
− L 	N

)
δ� − (Lδ 	N�). (6.8)

Next we determine the perturbation of Qjk�,k which enters the second term on the right-hand
side of equation (4.23):

δ(Qjk�,k) = [−Q
jm

Q
kn

�,k]δQmn +

[
Q

jk ∂

∂xk

]
δ�. (6.9)

The perturbation of the term that is multiplied with Qjk�,k yields

δ

[
N√

det Q
(N
√

det Q),j

]
=
[
− N√

det Q

1

2

(
Q

jk
+

N
j
N

k

N
2

)
[N
√

det Q],j

+
N√

det Q

∂

∂xj

(
1

2

(
Q

jk − N
j
N

k

N
2

)
N

√
det Q

)]
δQjk

+

[
N√

det Q

N
j

N
2

[
N

√
det Q

]
,j

+
N√

det Q

∂

∂xj

(
N

j

N
2 N

√
det Q

)]
δNj . (6.10)
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We will split the third term occurring on the right-hand side of equation (4.23) into N2 and the
remaining part given by (�� + [Qjk],j�,k − 1

2v′(�)). Their respective perturbations are

δN2 = 2NδN = [−N
j
N

k
]δQjk + [2N

j
]δNj

δ

(
�� + [Qjk],j�,k − 1

2
v′(�)

)
=
[
− ∂

∂xn
(Q

jm
Q

kn
�,m)

]
δQjk

+

[
� + [Q

mn
],n

∂

∂xm
− 1

2
v′′(�)

]
δ�. (6.11)

Finally, we have to calculate the perturbation of the last three terms in equation (4.23),
involving Lie derivatives of � and �̇, respectively. We obtain

δ(2(L 	N�̇) + (L 	̇N�) − (L 	N(L 	N�))) =
[
L 	N

(
∂

∂τ
− L 	N

)
+

∂

∂τ
L 	N

]
δ�

+

(
LδN

(
∂

∂τ
− L 	N

)
+

(
∂

∂τ
− L 	N

)
LδN

)
[�]. (6.12)

Adding up all the contributions and factoring out the linear perturbations δ�, δQjk and δNj ,
we can rewrite the second-order EOM as

δ�̈ =
[[

Ṅ

N
− (
√

det Q)̇√
det Q

+
N√

det Q

(
L 	N

√
det Q

N

)](
∂

∂τ
− L 	N

)

+ Q
jk

[
N√

det Q
(N

√
det Q),j

]
∂

∂xk

+ N
2
(

� + [Q
mn

],n
∂

∂xm
− 1

2
v′′(�)

)
+

(
L 	N

(
∂

∂τ
− L 	N

)
+

∂

∂τ
L 	N

)]
δ�

+

[
−(�̇ − (L 	N�))

[(
∂

∂τ
− L 	N

)(
1

2

(
Q

jk
+

N
j
N

k

N
2

))

+
N√

det Q

∂

∂xm

(√
det Q

N
Q

jm
N

k

)]
− Q

jm
Q

kn
�,n

[
N√

det Q
(N
√

det Q),m

]

+

[
Ṅ

N
− (
√

det Q)̇√
det Q

+
N√

det Q

(
L 	N

√
det Q

N

)]
(Q

jm
�,mN

k
)

)

+ (Q
mn

�,n)

(
− N√

det Q

1

2
(Q

jk
+

N
j
N

k

N
2 )[N

√
det Q],m

+
N√

det Q

∂

∂xm

(
1

2

(
Q

jk − N
j
N

k

N
2

)
N

√
det Q

))

−N
2
(

�� + [Q
mn

],m�,n − 1

2
v′(�)

)(
N

j
N

k

N
2

)
− N

2 ∂

∂xn
(Q

jm
Q

kn
�,m)

−Q
jm

Q
kn

Nm[�̇ − (L 	N�)],n −
(

∂

∂τ
− L 	N

)
(Q

jm
Q

kn
Nm�,n)

]
δQjk

+

[
(�̇ − (L 	N�))

[(
∂

∂τ
− L 	N

)
N

j

N
2 +

N√
det Q

∂

∂xk

(√
det Q

N
Q

jk
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+ 2N
2
(

�� + [Q
mn

],m�,n − 1

2
v′(�)

)
N

j

N
2

+ (Q
mn

�,n)

(
N√

det Q

N
j

N
2 [N
√

det Q],m +
N√

det Q

∂

∂xj

(
N

j

N
2 N

√
det Q

))

−
[

Ṅ

N
− (
√

det Q)̇√
det Q

+
N√

det Q

(
L 	N

√
det Q

N

)]
(Q

jk
�,k)

+ Q
jk

[�̇ − (L 	N�)],k +

(
∂

∂τ
− L 	N

)
(Q

jk
�,k)

]
δNj . (6.13)

Here we used that the last term occurring in equation (4.23), which involves the Lie derivative
with respect to δ 	N , can again be expressed in terms of the perturbations δQjk and δNj ,
explicitly given by(
LδN

(
∂

∂τ
− L 	N

)
+

(
∂

∂τ
− L 	N

)
LδN

)
[�]

=
[
Q

jk
[�̇ − (L 	N�)],k +

(
∂

∂τ
− L 	N

)
(Q

jk
�,k)

]
δNj

×
[
−Q

jm
Q

kn
Nm[�̇ − (L 	N�)],n −

(
∂

∂τ
− L 	N

)
(Q

jm
Q

kn
Nm�,n)

]
δQjk.

(6.14)

Analogously, the last term on the right-hand side of equation (6.6), which also involves a Lie
derivative with respect to δ 	N , can be expressed as

N√
det Q

(
Lδ 	N

√
det Q

N

)
=
[
− N√

det Q

∂

∂xm

(√
det Q

N
Q

jm
N

k

)]
δQjk

+

[
N√

det Q

∂

∂xk

(√
det Q

N
Q

jk

)]
δNj . (6.15)

Moreover (Lδ 	N�) occurring in equation (6.8) is given by

(Lδ 	N�) = [−Q
jm

�,mN
k
]δQjk + [Q

jk
�,k]δNj . (6.16)

We would like to emphasize again that the partial and Lie derivatives act on everything to
their right and therefore also on the perturbations. That is the reason why for instance δ�̇ and
δQ̇jk have not been factored out separately. This finishes our derivation of the second-order
equation of motion for the scalar field perturbation δ�. In the next section we will discuss the
corresponding equation for the metric perturbation δQjk .

6.2. Derivation of the equation of motion for δQjk

Similar to the derivation of the second-order equation of motion for δ� we will also split the
equation for Q̈jk in equation (4.24) into several terms whose perturbations are then considered
separately. More precisely, we will split the equation into seven separate terms, with the three
terms involving Lie derivatives in the last line counted as one. Starting with the first term on
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the right-hand side, we recall that the perturbation of the sum of terms in the square brackets
has already been computed during the derivation of the equation for δ�̈. Thus, we can take
over those results, as shown in equation (6.6). The perturbation of the term (Q̇jk − (L 	NQ)jk)

is given by

δ(Q̇jk − (L 	NQ)jk) =
(

∂

∂τ
− L 	N

)
δQjk − (LδNQ)jk, (6.17)

whereby

(LδNQ)jk =
[
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]
δQmn

+
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mn
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∂xj
(Q

mn
) + Qjn

∂

∂xk
(Q

mn
)

]
δNm. (6.18)

Consequently, we have all ingredients needed for the perturbation of the first term. However,
we will not present the final expression in the main text since it is quite lengthly. Nevertheless,
the interested reader can find the explicit form in appendix G in equation (6.17). The
perturbation of the second term on the right-hand side yields

δ(Qmn(Q̇mj − (L 	NQ)mj )(Q̇nk − (L 	NQ)nk))

= [−Q
mr

Q
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]
(LδNQ)j)m. (6.19)

The perturbation of the third term occurring on the right-hand side requires a bit more work,
because it involves C = Cgeo + Cmatter. Thus we will perform this calculation in two steps.
First we will ignore the explicit form of δC in terms of δQjk, δ� and δNj . The resulting
expression looks like
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δC +
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]
δ�. (6.20)

Due to its length, the explicit calculation of δC can be found in appendix G. However, when
actually inserting the expression of δC into equation (6.20), some of the terms in the expression
for δC cancel with existing terms in equation (6.20). As a result, the final expression for the
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perturbation of the third term in equation (6.21) is slightly less involved. It is given by
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Proceeding with the next term on the right-hand side of equation (4.24), we obtain for its
perturbation the following result:
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For this calculation we used the fact that the perturbation of the Ricci tensor can be expressed
in terms of the perturbations δQjk . The explicit relation reads

δRjk =
[
−1

2
DmDnQ

mn
]

δQjk +

[
−1

2
DjDkQ

mn
]

δQmn + [DnD(kQ
mn

]δQj)m. (6.23)

The next term in equation (4.24) includes covariant derivatives. Therefore we will have to
consider the perturbation of the Christoffel symbols �m

jk . These can again be written in terms
of metric perturbations as shown below:

δ�m
jk = Q

mn

2
((DjδQnk) + (DkδQjn) − (DnδQjk)). (6.24)
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Using this we end up with
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Note that covariant derivatives surrounded by round bracket such as (DjDk . . .) act on the
elements inside the round brackets only. By contrast, covariant derivatives not surrounded by
round brackets act on everything to their right, including also the perturbations.

Next we deal with the three terms on the right-hand side of equation (4.24) that include
Lie derivatives with respect to δ 	N . Those Lie derivatives are again functions of δQjk, δNj ,
and partial derivatives thereof, because we have δNm = −Q

mr
Q

ns
NsδQrn +Q
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δNn. In this

section, however, we will work with the following compact form only:
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In the next section, we will rewrite the second-order equation of motion in a more concise
form, using coefficient functions. That will allow us to include the Lie derivative term with
respect to δ 	N in the following, more explicit form:(
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Another term which includes Lie derivatives with respect to δ 	N appeared previously as
part of equation (6.19). Performing the Lie derivative also in this case, we end up with
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The other two terms that include Lie derivatives with respect to δ 	N are parts of the perturbation
of the first term. Their explicit expressions are given in equations (6.7) and (6.18), respectively.
Note that these terms are written out explicitly in appendix G, where the final form of the
perturbation of the first term is calculated.

Finally, we consider the last remaining term from equation (4.24). It involves the
Hamiltonian density H, which we found out to be a constant of motion in section 3.4. In
our companion paper [16] we show that also δNj and δH are constants of motion. Therefore,
in complete analogy with the case of δNj , we will factor out δH . We thus obtain
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(6.29)

Here we used that

δGjkmn = −GjkrsGmntuδ[G−1]rstu. (6.30)

Now we have finally derived all the individual parts that are needed in order to write down the
equation of motion for δQjk . However, by just looking at the various individual terms, it is
clear that they are already considerably more complicated than for the corresponding case of
the matter equation of motion for δ�. Nevertheless, we decided to present the final equation
in detailed form on the next page, in particular to convey a sense of how much more involved
the geometrical part of the perturbed equations is compared to the matter part. In the next
section we will rewrite both equations of motion, the one for δ� as well as the one for δQjk ,
in a more transparent form where all the complicated background coefficients in front of the
perturbations are hidden in certain coefficient functions. In our companion paper, we will
then specialize those coefficient functions to the case of an FRW spacetime and show that the
general equations derived in the last two subsection are (up to small correction caused by our
dust clock) in agreement with the well-known perturbation equations as discussed, e.g., in [7].
Note that we still kept the compact form of the Lie derivative with respect to δN in equation
(6.31), because we wanted to present this equation on one page only:
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6.3. Summary of the equations of motion for δ� and δQjk

In the last two sections we derived the second-order equations of motion for δ� and δQjk . The
results of our calculations can be found in equations (6.13) and (6.31), respectively. However,
these equations are quite complex and not very transparent in that form. For this reason, we
want to rewrite them in a form where we can still recognize their general form but where
they take a much simpler form. We will hide the precise details of the various background
quantities that occur as coefficients in front of the linear perturbations in certain coefficient
functions that will be introduced below. These coefficients will be operator valued since they
also involve objects such as partial or Lie derivatives, as can be seen from equations (6.13)
and (6.31). As explained before, apart from the elementary perturbations δQjk and δ�, the
second-order equations of motion contain also the perturbation of the shift vector δNj and
the (physical) Hamiltonian density δH . Both are functions of δQjk and δ�, and therefore
not independent perturbations. However, it turns out that these two quantities are constants of
motion, so it is convenient to keep them in the equations.

Starting with the second-order equation for δ�, its general structure is of the kind

[C�]δ� = [C�]jkδQjk + [C�]j δNj (6.32)

where the coefficients are given by
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Note that all partial and Lie derivatives act on all terms to their right, including the linear
perturbations. This is also the reason why terms such as for instance �̈ or Q̇jk do not occur in
the simple form of equation (6.32).

The third coefficient is given by

[C�]j :=
[(

∂

∂τ
− L 	N

)
(Q

jk
�,k)(�̇ − (L 	N�)) + (�̇ − (L 	N�))

×
[(

∂

∂τ
− L 	N

)
N

j

N
2 +

N√
det Q

∂

∂xk

(√
det Q

N
Q

jk

)]

+ 2N
2
(

�� + [Q
jk

],j�,k − 1

2
v′(�)

)
N

j

N
2

−
[

Ṅ
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As was to be expected, the corresponding equation for the perturbation of the three-metric
δQjk includes more than just three terms. It is of the form

[CQ]δQjk = [AQ]jkδ� + [BQ]jkδH + [CQ]m(kδQj)m + [CQ]mn
jk δQmn + [CQ]mjkδNm . (6.36)

The various coefficients introduced in the equation above are given as follows:
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Here we use the notation that covariant derivatives surrounded by round bracket such as
(DjDk . . .) act on the elements inside the round brackets only. By contrast, covariant
derivatives not surrounded by round brackets act on everything to their right, including also

47



Class. Quantum Grav. 27 (2010) 055005 K Giesel et al

the perturbations. The coefficient for δ� can be explicitly written as
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For the coefficient belonging to the linear perturbation of the Hamiltonian density δH we get
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The last two coefficients are the ones for δQmn and δNm. These are the most complicated
ones for the second-order equation of motion of δQjk . We will list them below:
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Note that the coefficient for δQmn in equation (6.31) and the one above are different due to
the presence of the last two lines in the equation above. The reason for this is that now we
used the explicit expression for the Lie derivatives with respect to δ 	N , which were derived in
equations (6.28) and (6.27) and lead to additional terms in δQmn and δNm.

Finally, we present the coefficient for δNm. Similar to the case of δQnm, we also get
additional terms coming from the Lie derivatives in the last line of equation (6.31):
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Although the form of the perturbed equations is quite complicated, they simplify drastically
for special backgrounds of interest. For the case of FRW, for instance, all terms proportional
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to Nj vanish, since Nj = −Cj/H = 0 for FRW. This is due to the geometry and matter
parts of the diffeomorphism constraint vanishing both separately in that case. Furthermore, all
terms in the coefficients that contain spatial derivatives applied to background quantities vanish
also. Other backgrounds where considerable simplification will occur include Schwarzschild
spacetime.

7. Comparison with other frameworks

We now proceed to compare our work with other approaches to general relativistic perturbation
theory found in the literature. In the following we will restrict ourselves to discussing works
that treat perturbation theory around general backgrounds. Approaches which deal exclusively
with cosmological perturbation theory will be looked at in our second paper, specifically
dedicated to that topic.

The central point of comparison is how gauge invariance is handled in the various
approaches. As that notion often acquires different meanings, especially in the context of
general-relativistic perturbation theory, it seems prudent to recall the precise mathematical
setting underlying most works. It was developed by Sachs [23] and Stewart and Walker
[24], and recently given a very general and elegant formulation by Bruni, Sonego and
collaborators [25–27]. The starting point consists of two spacetime manifolds M0 and M,
which represent the background spacetime around which one perturbs and the actual physical
spacetime, respectively. It is important to keep in mind that M0 is only an artificial construct.
Perturbations of geometric quantities are then defined by comparing their values in M0 and M,
respectively. This procedure is highly ambiguous, however, in that there is a great freedom
inherent in the choice of points where one compares background and ‘real’ quantities to
define the perturbations. Note that this freedom is in addition to the usual coordinate
gauge freedom in general relativity. For that reason, Sachs termed it gauge invariance of
the second type [23]. Making such a choice, which mathematically amounts to choosing a
so-called point identification map between M0 and M, is therefore nothing but a choice of
gauge. Correspondingly, gauge-invariant perturbations are those quantities whose values do
not depend on the choice of point identification map. The actual condition for a perturbed
quantity to be gauge invariant to first order in this sense was already derived in [23], fully
proved in [24] and finally generalized to arbitrary order n in [25]. The result can be succinctly
summarized as follows: a geometric quantity T—such as a tensor—is invariant to order n
iff all its perturbations to order n − 1 are either vanishing (spacetime) constant scalars or a
combination of Kronecker deltas. This result is often known as the Stewart and Walker lemma.
Clearly, the only case of actual interest is the first. An example is given by curvature tensors
in linear perturbation theory around Minkowski space. As they vanish in the background, they
are gauge invariant to first order. These insights have been the backbone of most attempts
to construct gauge-invariant quantities to various orders in perturbation theory or even non-
perturbatively. We will now discuss two of them.

In a series of papers [2–4] Nakamura has used these principles to develop formulae for
gauge-invariant quantities to second and third order around an arbitrary background. They
encompass the invariant parts of various metric and curvature, as well as matter perturbations.
These general formulae are, however, implicit only to the extent that Nakamura derives them
from the assumption that the corresponding linear order perturbations can be decomposed into
gauge-invariant and gauge-variant parts. Consequently, while the construction is, in principle,
valid for arbitrary backgrounds, in practice only backgrounds with sufficient symmetries to
perform that split at linear order explicitly can be used. Luckily, that applies, of course, to
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several cases of great interest, such as cosmological and spherically symmetric backgrounds.
The latter case is explicitly treated in [4].

A distinctly different approach—let us call it the EB approach—is based on seminal work
by Ellis and Bruni [28], which has since inspired a multitude of other works [29–31]. Although
the discussions in these papers are geared towards applications in cosmology, the framework
itself can be applied to arbitrary spacetimes, in principle, which is why we decided to discuss
it here. The basic idea is to use a 1 + 3-approach by employing covariant quantities connected
to a family of flow lines or ‘fundamental observers’. The prime reason is that these quantities
are much more closely related to what one actually measures in astrophysics. Furthermore, by
a simple application of the Stewart–Walker lemma, they are automatically gauge invariant if
the corresponding quantities in the background spacetime vanish. Unlike in the more common
metric-based formalism, these quantities are defined in the physical, perturbed spacetime. As
a result, they are fully non-perturbative and in that sense their gauge invariance extends to
all orders. The connection to the standard perturbative approach based on perturbations in
the background spacetime can be made by suitably expanding the physical quantities to the
desired order, see [29]. This approach enjoys a clear geometric and physical interpretation of
the quantities used, as well as the advantage of basing perturbation theory on non-perturbative
variables.

Comparing the works mentioned so far to ours, a first obvious difference is found to
be that we work in a canonical setting versus the covariant setting used by the others. The
motivation is first that gauge issues become particularly clear in the canonical picture and
second our view towards quantization. The more important difference, however, is our use
of dust as a dynamically implemented coordinate system. Our dust clocks serve a twofold
purpose: on the one hand they enable us to construct background observables and therefore
to solve the standard gauge problem in general relativity. On the other hand they also serve
as the point identification map and thus eliminate the gauge freedom of ‘second type’. In that
sense they represent a logical extension to perturbation theory of the initial conceptual idea by
Brown and Kuchar [12] to use dust as a physical and therefore preferred coordinate system.

We should also point out that while our framework employs the metric and its perturbations
as fundamental variables, we could equally well use the dust clocks to build a gauge-invariant
perturbation theory based on the same variables used in the EB approach. In fact, it seems
worthwhile to look a bit more closely at the relationship between the two approaches. Both are
non-perturbative in the following sense: they construct quantities which are gauge invariant
(with respect to gauge transformations of the second type). Only then perturbation theory is
applied, which means that gauge invariance is then automatically guaranteed in each order of
perturbation. The difference arises when one looks at the role of gauge transformations of
the first kind. The EB approach uses idealized observers that are comoving with the physical
matter in the model. Thus the theory is not deparametrized and gauge freedom with respect
to the background spacetime remains, as illustrated by the presence of constraints as part of
the equations of motion. In our case, the observers are represented by the dust, a component
added to the physical matter content of the theory. They are thus dynamically included in the
theory via the dust contribution to the Lagrangian, in addition to all the other matter. This
allows for a complete deparametrization of the non-dust system with respect to the dust. Time
evolution for this subsystem becomes unconstrained and a physical Hamiltonian emerges.
The price to pay for this is that the dust contributes to the energy–momentum tensor of the
deparametrized system, the size of which is small, however. One might well argue that, for
practical purposes at the classical level, the choice between the two approaches is a matter
of taste. Our approach, however, offers a clear advantage if one is interested in quantization,
eventually. All programs aiming at a quantization of gravity that have been pursued, so far,
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use the metric as a fundamental building block. It is not obvious to us how to attempt a
quantization based on the covariant variables used in the EB approach.

Another argument in favour of our framework is the following: a test observer which
by definition does not have any impact is only a mathematical idealization. Physically much
more realistic is a dynamically coupled observer fluid like the dust considered here which in
particular takes into account the gravitational backreaction.

To summarize, the crucial difference between our approach and the others discussed here
is that the latter deal only with gauge freedom of the second type. This can be seen from the
fact that they use background variables which are not gauge invariant and is evidenced, e.g.,
by the presence of constraint equations in addition to evolution equations. Our treatment, by
contrast, deals with all variables at all orders in a unified manner. Furthermore, in our opinion
the framework developed here allows for a much more straightforward implementation at
higher orders. Another advantage is that it allows us to treat arbitrary backgrounds in practice,
without the high degree of symmetry necessary for approaches based on the Stewart–Walker
lemma to work. Recall that the latter require finding non-trivial quantities that vanish in the
background manifold. Only in symmetric backgrounds such as homogeneous spacetimes is
that a fairly tractable problem.

Finally, we should briefly discuss the recent work in [21], which is close to ours in
terms of motivation and conceptual underpinnings. The authors there also use the general
gauge-invariant framework of [11], however, with two differences: first of all, they do not use
dust matter to achieve gauge-invariant completions of geometry and matter variables. This
prevents them from bringing the constraints into a deparametrized form [9] and thus there is
no time-independent physical Hamiltonian. Secondly, while they can develop higher order
cosmological perturbation theory, their perturbations of gauge-invariant quantities are still
expanded in terms of the perturbations of the the gauge variant quantities which is what we
never do. Therefore the basic perturbation variables are different in the two schemes: in our
scheme we never care how our gauge-invariant variables are assembled from gauge variant
ones, they and their perturbations are fundamental for us and nth-order quantities are nth-
order expressions in those. In contrast, in [21] nth order means nth order in the gauge variant
quantities. In particular, the nth-order perturbed variables are only invariant with respect to
the nth-order constraints up to terms of higher order. In contrast, our perturbed variables
are always first order and always fully gauge invariant, it is only in the Hamiltonian that
higher orders of gauge-invariant variables appear. It would no doubt be fruitful to translate
the schemes into each other and to see which differences and similarities arise.

8. Conclusions and open questions

This is a long and technically involved paper. The reader rightfully will ask why one should
dive into its details and what exactly is novel as compared to the existing literature. The
following remarks are in order.

(1) Non-perturbative gauge invariance. To the best of our knowledge, there exists no
generally accepted notion of gauge invariance at nth order of perturbation theory in
general relativity. Moreover, at each order of perturbation theory one has to repeat the
analysis for how to preserve gauge invariance to the given order. Given those difficulties,
it is natural to try to invent a scheme which separates the issue of gauge invariance from
the perturbation theory. Hence, one must treat gauge invariance non-perturbatively. This
is exactly what we managed to do in this paper.
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Thus, one only deals with the exact observables of the theory. All the equations of
the theory have to be written in terms of those gauge-invariant quantities. Given such a
gauge-invariant function O on the full phase space, we evaluate it on a certain background
(data) which is an exact solution to our equations of motion and get a certain value O0.
The perturbation of O is then defined as δO = O − O0. We never care to expand δO in
terms of the perturbations of the gauge variant degrees of freedom (although we could).
However, all the equations are expanded directly in terms of the perturbations of those
physical observables.

(2) Material reference system. In general relativity it is well known that in order to
meaningfully talk about the Einstein equations and to have them describe something
observable or measurable, one has to suppose that spacetime is inhabited by (geodesic)
test observers. By definition, a test observer has no effect whatsoever on the system. This
is of course mathematically convenient but physically worrisome because a test observer
is a mathematical idealization. Every real observer interacts at least gravitationally and
does leave its fingerprint on the system. One of the achievements of the seminal work [12]
of Brown and Kuchař, which in our mind is insufficiently appreciated in the literature, is to
have overcome this shortcoming. The authors of [12] have identified a generally covariant
Lagrangian which comes as close as possible to describing a non-self-interacting, perfect
and geodesically moving fluid that fills out spacetime (congruence). It does leave its
fingerprint on the system and thus is physically more realistic than the test observer fluid.

In this paper we have driven the work of [12] to its logical frontier and have asked the
question whether the dust when added to the geometry–matter system really accomplishes
the goal of keeping the approximate validity of the usual interpretation of the Einstein
equations. We have verified that it does which in our mind is an intriguing result.

(3) Solving the problem of time. Since general relativity is a generally covariant or
reparametrization invariant theory, it is not equipped with a natural Hamiltonian. Rather,
the ‘dynamics’ of the non-observables is described by a linear combination of constraints
which really generate gauge transformations rather than physical evolution. Observable
quantities are gauge invariant and therefore do not evolve with respect to the ‘gauge
dynamics’. Therefore it is conceptually unclear what to do with those observables.
The achievement of [10, 11] is to have invented a scheme that in principle unfreezes the
observables from their non-motion. However, in general that physical motion is far from
uniquely selected, there are in general infinitely many such physical notions of time and
none of them is preferred. Moreover, the associated Hamiltonians are generically neither
preserved nor positive or at least bounded from below.

When combining the frameworks of [12] and [10, 11] we find the remarkable result
that there is a preferred Hamiltonian which is manifestly positive, not explicitly dependent
on physical time and gauge invariant. It maps a conceptually complicated gauge systems
into the safe realm of a conservative Hamiltonian system. The physical Hamiltonian
drives the evolution of the physical observables. It reproduces the Einstein equations for
the gauge-invariant observables up to corrections which describe the influence of the dust.

(4) Counting of the physical degrees of freedom. The price to pay is that one has to assume
the existence of the dust as an additional matter species next to those of the standard
model35. It would maybe be more desirable to have matter species of the standard model

35 Curiously, what we have done in this paper bears some resemblance to the Stueckelberg formalism. There one also
adds additional matter to the Maxwell theory. One can then make the longitudinal mode gauge invariant and thus
finds a theory with one more degree of freedom. This is one way to arrive at the Proca theory and more generally at
massive vector boson theories via the Higgs mechanism.
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or geometry modes playing the role of a dynamical test observer36. In principle this is
possible; however, the resulting formalism is much more complicated and it does not lead
to deparametrization. Thus a conserved physical Hamiltonian would then not be available
and the equations of motion would become intractable.

It is true that the dust variables disappear in the final description of the observables
which are complicated aggregates built out of all fields. However, the theory has
fundamentally four more physical degrees of freedom than without dust and that might
eventually rule out our theory if those additional degrees of freedom are not observed.

The truly remarkable feature of the dust is that it replaces the initial value constraints
of general relativity which are responsible for having less physical degrees of freedom
than one would naively expect, by four conservation laws. That is, in any given solution of
our equations of motion, the physical observables must physically evolve with respect to
each other in such a way that the conserved quantities do not change. This effectively acts
like a constraint and therefore reduces the number of independently evolving observables
by four, in agreement with the counting of the degrees of freedom without dust. Thus, at
least as long as the value of those conserved quantities is sufficiently small, we will not
be able to see those additional degrees of freedom. It is this fact which makes it possible
that one effectively does not see more degrees of freedom than in the standard treatment.

As a final objection against our formalism one might raise the fact that the dust
contributes with the wrong sign to the matter energy–momentum tensor. However,
the formalism not only forces us to do this as we would otherwise have a negative
definite Hamiltonian, moreover, as already remarked in the introduction, it is completely
acceptable since here we talk about the energy–momentum tensor of non-observables.
The energy–momentum tensor of the observables in the final Einstein equations does
satisfy the usual energy conditions.

(5) Complexity of the equations of motion. Since general relativity is a highly nonlinear,
complicated self-interacting theory, experience from much less complicated integrable
systems suggests that its invariants, that is, the gauge-invariant observables, satisfy a
tremendously complicated Poisson algebra and that the equations of motion are intractable.
Surprisingly, this is not at all the case. The observable algebra is almost as simple as the
algebra of non-observables and the equations of motion can be solved almost as easily as
in the usual gauge variant formalism. Key to that is the presence of the already mentioned
conserved current.

In this first paper we have developed the general gauge-invariant formalism and linear
perturbation theory about general backgrounds. In the companion paper we apply the
general results to flat and FRW backgrounds and find agreement with usual linear perturbation
theory for linearly invariant observables. This is a first consistency test that our theory
has passed. Thus we hope to have convinced the reader that the present framework has
conceptual advantages over previous ones and that it is nonetheless technically not much more
complicated. Actually, the pay-off for having a manifestly gauge-invariant approach will
really come in at higher order where we believe that our equations of motion will be simpler.

There are many lines of investigations that one can follow from here. An obvious one, the
specialization to the all-important case of an FRW background is presented in a companion
paper as already mentioned. Investigating perturbations around backgrounds of astrophysical
interest, such as Schwarzschild spacetime, is also valuable. Again, for all these cases it should

36 This would be similar to technicolour theories which declare the Higgs scalar field not as an independent degree
of freedom but as a compound object built from the bosons of the electroweak theory. Here one would build four
independent scalars e.g. from the geometry field.
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also prove very interesting to go beyond the linear to higher orders. Predictions from second-
order perturbation theory, e.g. the issue of non-Gaussianity in cosmological perturbations, are
the topic of current research and could soon be testable by future experiments such as PLANCK,
see [34]. On a more technical and conceptual level, our framework might prove useful to settle
the issue of under what conditions general-relativistic perturbation theory is consistent and
stable. Finally, with a view towards facilitating the search for physically relevant predictions
from approaches to quantum gravity, a quantization of our gauge-invariant formulation of
general relativity, together with the development of the corresponding perturbation theory at
the quantum level, strikes us as a highly desirable goal. See [20] for first steps.
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Appendix A. Second class constraints of the Brown–Kuchař theory

In this section we provide the calculational details of the constraint analysis of the Brown–
Kuchař theory discussed in section 2. In particular, we want to show that no tertiary constraints
arise. Our starting point is equation (2.25) which we display once again below for the
convenience of the reader:

z,t = {Hprimary, p} = −ctot za,t = {Hprimary, pa} = −ctot
a
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The last two equations involve the Lagrange multipliers μj and μj and can be solved for
them. In contrast we observe that the first three equations are independent of the Lagrange
multipliers; they are secondary constraints. We will now proceed with the constraint analysis
and show that when the Poisson brackets between the primary Hamiltonian Hprimary and the
secondary constraints are considered no new constraints are generated. Recall that the primary
Hamiltonian density was given by

hprimary = μjZj + μZ + μjZ
j + νz + νaza + n′ctot + n′actot

a (A.2)

whereby the single constraints are shown below:
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We begin with the calculation of the Poisson bracket of Hprimary and the smeared constraint
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For the single Poisson brackets that occur in the equation above we obtain the following result:∫
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} = 0∫

d3x

∫
d3y
{
μj(y)Zj (y), na(x)ctot

a (x)
} = −

∫
d3xPμjS

j
,an

a∫
d3x

∫
d3y
{
ν(y)z(y), na(x)ctot

a (x)
} = 0∫

d3x

∫
d3y
{
νb(y)zb(y), na(x)ctot

a (x)
} = 	ctot(	ν)∫

d3x

∫
d3y
{
n′(y)ctot(y), na(x)ctot

a (x)
} = ctot(L	nn′) + c̃(L	n′ρ)

+
∫

d3xρ n′ na
√

det(q)qbcUb

(
Wj,aS

j
c − Wj,cS

j
,a

)
∫

d3x

∫
d3y
{
n′b(y)ctot

b (y), na(x)ctot
a (x)

}
= 	c(L	n	n′) −

∫
d3x(n′anb − nan′b)PSj

,aWj,b. (A.6)

Consequently we can rewrite equation (A.5) as

{Hprimary, 	ctot(	n)} = ctot(L	nn′) + c̃(L	nρ) +
∫

d3x ρ n na
√

det(q)qbcUb

(
Wj,aS

j
c − wj,cS

j
a

)
−
∫

d3x μjPSj
ana +

∫
d3x μjPwj,an

a + 	c(L	n	n′) + 	ctot(	ν)

−
∫

d3x(n′bna − n′anb)PWj,aS
j

,b

≈
∫

d3x na
(
Sj

a (Pn′bWj,b − ρ n
√

det(q)qbcUbwj,c − μjP )

+ Wj,a

(−Pn′bSj

,b + ρ n
√

det(q)qbcUbS
j
,c + μjP

))
. (A.7)

Hence, the result above involves the Lagrange multipliers μj and μj and can be solved for
them such that no new constraints arise from ctot

a . Proceeding with ctot whereby the smeared
constraint is given by

ctot(n) :=
∫

d3x n(x)ctot(x). (A.8)
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Thus we get

{Hprimary, c
tot(n)} =

∫
d3x

∫
d3y
({μj(y)Zj (y), n(x)ctot(x)} + {μ(y)Z(y), n(x)c̃(x)}

+ {μj(y)Zj (y), n(x)ctot(x)} + {ν(y)z(y), n(x)ctot(x)}
+ {νb(y)zb(y), n(x)ctot(x)} + {n′(y)ctot(y), n(x)ctot(x)}
+
{
n′b(y)ctot

b (y), n(x)ctot(x)
})

. (A.9)

For the single Poisson brackets that occur in the equation above we obtain the following result:∫
d3x

∫
d3y{μj(y)Zj (y), n(x)ctot(x)} = −

∫
d3x
√

det(q)nρμjqabUbWj,a∫
d3x

∫
d3y{μ(y)Z(y), n(x)ctot(x)} =

∫
d3x μ

n

n′ c̃∫
d3x

∫
d3y{μj(y)Zj (y), n(x)ctot(x)} =

∫
d3x μjρ n

√
det(q)qbcUbS

j
,c∫

d3x

∫
d3y{ν(y)z(y), n(x)ctot(x)} = ctot(ν)∫

d3x

∫
d3y{νb(y)zb(y), n(x)ctot(x)} = 0∫

d3x

∫
d3y{n′(y)ctot(y), n(x)ctot(x)} = 	ctot(q−1[n′dn − ndn′])∫

d3x

∫
d3y{n′b(y)ctot

b (y), n(x)ctot(x)} = −ctot(L	n′n) − c̃(L	n′ρ)

−
∫

d3xρnn′a√det(q)qbcUb

(
Wj,aS

j
c − Wj,cS

j
,a

)
.

Reinserting these results into equation (A.9) yields

{Hprimary, c
tot(n)} = −

∫
d3x
√

det(q)nρμjqabUbWj,a +
∫

d3x μ
n

n′ c̃

+
∫

d3xρ nμj

√
det(q)qbcUbS

j
,c + ctot(ν) + 	ctot[q−1(n′dn − ndn′])

− ctot(L	n′n) − c̃(L	n′ρ) −
∫

d3xρnn′a√det(q)qbcUb

(
Wj,aS

j
c − Wj,cS

j
,a

)
≈
∫

d3x
√

det(q)nρqbcUb

(
Wj,c

(
n′aSj

,a − μj − ρ n′

P

√
det(q)qdeUdS

j
,e

)
× Sj

,c

(
μj − Wj,an

′a +
ρ n′

P
qdeUdWj,e

))
+
∫

d3x
√

det(q)nρqbcUb

ρn′

P

√
det(q)qdeUd

(
Wj,cS

j
,e − Wj,eS

j
,c

)
=
∫

d3x
√

det(q)nρqbcUb

(
Wj,c

(
n′aSj

,a − μj − ρ n′

P

√
det(q)qdeUdS

j
,e

)
× Sj

,c

(
μj − Wj,an

′a +
ρ n′

P
qdeUdWj,e

))
. (A.11)

Here we used in the last step that the last integral in the line before the last line one vanishes,
because Wj,cS

j
,e − Wj,eS

j
,c is antisymmetric in e, c and multiplied by qbcqdeUbUd which is

symmetric in the indices c, e.

57



Class. Quantum Grav. 27 (2010) 055005 K Giesel et al

These are again the equation involving the Lagrange multipliers that we have seen before
in the calculations for ctot

a .
Finally, let us consider the Poisson bracket of Hprimary and the secondary constraint c̃

whose smeared version is given by

c̃(u) :=
∫

d3x u(x)c̃(x) (A.12)

where u is an appropriate smearing function. We obtain

{Hprimary, c̃(u)} =
∫

d3x

∫
d3y
({μj(y)Zj (y), u(x)c̃(x)} + {μ(y)Z(y), u(x)c̃(x)}

+ {μj(y)Zj (y), u(x)c̃(x)} + {ν(y)z(y), u(x)c̃(x)} + {νb(y)zb(y), u(x)c̃(x)}
+ {n′(y)ctot(y), u(x)c̃(x)} +

{
n′b(y)ctot

b (y), u(x)c̃(x)
})

. (A.13)

In this case we do not need to compute all the individual Poisson bracket in order to convince
ourselves that no constraints arise, because the Poisson bracket of Z(μ) and c̃(u) yields∫

d3x

∫
d3y{μ(y)Z(y), u(x)c̃(x)} =

∫
d3xμu

nP 2

ρ3
√

det(q)
, (A.14)

which is a new term involving the Lagrange multiplier μ. Thus, we can solve the equation
{Hprimary, c̃(u)} = 0 for μ.

It follows that no new terms are produced not involving μj , μj , μ in this second
iteration step. Consequently, the full set of (primary and secondary) constraints is given
by ctot, ctot

a , c̃, Zj , Z
j , Z, za and z and it remains to classify them into first and second class.

Obviously,

{Zj(x), Zk(y)} = Pδ
j

k δ(x, y),

{Z(x), c̃(y)} =
nP 2

ρ3√
det(q)

δ(x, y) (A.15)

do not vanish on the constraint surface defined by the final set of constraints; hence they are
second class constraints. Since n appears only linearly in c̃ and na does not appear at all, it
follows that z, za are first class.

Let us consider the linear combination

c̃tot
a ≡ Iρ,a + I jWj,a + PT,a + PjS

j
,a + pn,a + L	npa + ca

= ctot
a + Zρ,a + ZjWj,a + ZjS

j
,a + zn,a + L	nza (A.16)

where

ca ≡ cgeo
a + cmatter

a (A.17)

is the non-dust contribution to the spatial diffeomorphism constraint ctot
a . Since all

constraints are scalar or covector densities of weight one and c̃tot
a is the generator of spatial

diffeomorphisms, it follows that c̃tot
a is first class. Finally, we consider as an Ansatz the linear

combination

c̃tot ≡ ctot + αjZj + αjZ
j + αZ, (A.18)

and determine the phase space functions αj , αj , α such that c̃tot has vanishing Poisson brackets
with Zj ,Z

j , Z up to terms proportional to Zj ,Z
j , Z.

We have

{c̃tot(x), Zj (y)} = {ctot(x), Zj (y)} + αk(x){Zk(x), Zk(y)}
= {ctot(x), Zj (y)} + αj (x)P (x)δ3(x, y). (A.19)
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where we used equation (A.15) in the last line. Solving this equation for αj we end up with

αj (x) = −
∫

d3y
1

P(y)
{ctot(x), Zj (y)} =

(
1

P

√
det(q) ρ qabUbWj,a

)
(x), (A.20)

which is a sensible expression since {ctot(x), Zk(y)} ∼ δ3(x, y). For the Poisson bracket
involving Zj we get

{c̃tot(x), Zj (y)} = {ctot(x), Zj (y)} + αk(x){Zk(x), Zj (y)}
= {ctot(x), Zj (y)} − αj (x)P (x)δ3(x, y) (A.21)

such that this equation can be solved for αj explicitly given by

αj (x) =
∫

d3y
1

P(y)
{ctot(x), Zj (y)} =

(
1

P
ρ
√

det(q)qbcUbS
j
,c

)
(x). (A.22)

Finally, for Z we obtain

{c̃tot(x), Z(y)} = {ctot(x), Z(y)} ∼ c̃ ≈ 0. (A.23)

Hence this Poisson bracket vanishes weakly. Considering now the Poisson bracket between c̃

and c̃tot we get

{c̃tot(x), c̃(y)} = {ctot(x), c̃(y)} + αj (x){Zj(x), c̃(y)}
+ αj (x){Zj(x), c̃(y)} + α(x){Z(x), c̃(y)}. (A.24)

The results of the last three individual Poisson brackets occurring above are listed below:

{Zj(x), c̃(y)} = (n
√

det(q)qabUaWjP )(y)
∂

∂yb
δ3(x, y)

{Zj(x), c̃(y)} = −(n√det(q)qabUaPS
j

,b

)
(y)δ3(x, y) (A.25)

{Z(x), c̃(y)} =
(

nP 2

ρ3
√

det(q)

)
(y)δ3(x, y).

Now, we can solve equation (A.23) for α which yields

α(x) = −
∫

d3y
ρ3√det(q)

nP 2
(y){ctot(x), c̃(y)} (A.26)

−
(

ρ3√det(q)

nP 2

[
n
√

det(q)qabUaWjP
)]

,b

1

P
ρ
√

det(q)qbcUbS
j
,c

)
(x)

−
(

ρ3√det(q)

nP 2

(
n
√

det(q)qabUaPS
j

,b

) 1

P

√
det(q) ρ qabUbWj,a

)
(x). (A.27)

Here we reinserted the expressions for αj and αj derived before. The final step which includes
the construction of the Dirac bracket can again be found in the main text.

Appendix B. Comparison with symplectic reduction

The spatial diffeomorphism invariant quantities

(ξ̃ (σ ), π̃(σ )), (T̃ (σ ), P̃ (σ )), (q̃ij (σ ), p̃ij (σ )) (B.1)

shown in equation (3.30) are also obtained in [12] through symplectic reduction which is an
alternative method to show that the pairs in (3.30) are conjugate.

59



Class. Quantum Grav. 27 (2010) 055005 K Giesel et al

To see how this works, we compute

d

dt
T̃ (σ ) = d

dt

∫
X

d3x det(∂S/∂x)δ(S(x), σ )T (x)

=
∫
X

d3x det(∂S/∂x)

(
δ(S(x), σ )

[
d

dt
T (x)

]
+ Sa

j (x)

[
d

dt
Sj

,a(x)

]
δ(S(x), σ )T (x)

+

[
d

dt
Sj (x)

] [
∂δ(σ ′, σ )

∂σ j ′

]
σ ′=S(x)

T (x)

)

=
[

d

dt
T (x)

]
S(x)=σ

+
∫
X

d3x det(∂S/∂x)

[
d

dt
Sj (x)

](
−Sa

j (x)∂a [δ(S(x), σ )T (x)]

+

[
∂

δ(σ ′, σ )
∂σ j ′
]

σ ′=S(x)

T (x)

)

=
[

d

dt
T (x)

]
S(x)=σ

−
∫
X

d3x det(∂S/∂x)δ(S(x), σ )

[
d

dt
Sj (x)

]
Sa

j (x)T,a(x)

=
[

d

dt
T (x) −

(
d

dt
Sj (x)

)
Sa

j (x)T,a(x)

]
S(x)=σ

(B.2)

where we have used ∂a[Sa
j det(∂S/∂x)] = 0. Exactly the same calculation reveals

d

dt
ξ̃ (σ ) =

[
d

dt
ξ(x) −

(
d

dt
Sj (x)

)
Sa

j (x)ξ,a(x)

]
S(x)=σ

d

dt
q̃jk(σ ) =

[
d

dt
qjk(x) −

(
d

dt
Sl(x)

)
Sa

l (x)qjk,a(x)

]
S(x)=σ

.

(B.3)

Using (B.2) and (B.3) we can now rewrite the symplectic potential in terms of the spatially
diffeomorphism invariant variables as follows: ˙(·) := d

dt
(·) and J = det(∂S/∂x)):

� =
∫
X

d3x
[
ξ̇π + Ṫ P + ṠjPj + q̇abp

ab
]

=
∫
X

d3x

[
ξ̇π + Ṫ P + ṠjPj +

(
d

dt

(
qjkS

j
,aS

k
,b

))
pab

]
=
∫
X

d3x
[
ξ̇π + Ṫ P + ṠjPj + q̇jk

(
Sj

,aS
k
,bp

ab
)

+ 2qjkṠ
j
,aS

k
,bp

ab
]

=
∫
X

d3x
[
ξ̇π + Ṫ P + ṠjPj + q̇jk

(
Sj

,aS
k
,bp

ab
)− 2Ṡj ∂a

(
qjkS

k
,bp

ab
)]

=
∫
X

Jd3x

[
ξ̇
π

J
+ Ṫ

P

J
+ q̇jk

S
j
,aS

k
,bp

ab

J

]
+
∫
X

d3xṠj
[
Pj − 2∂a

(
qbcS

c
jp

ab
)]

=
∫
S

d3σ π̃ [[ξ̇ ]S(x)=σ + P̃ [Ṫ ]S(x)=σ + p̃jk[q̇jk]S(x)=σ ] +
∫
X

d3xṠj [Pj − 2∂a(qbcS
c
jp

ab)]

=
∫
S

d3σ [ ˙̃ξ π̃ + ˙̃T P̃ + ˙̃qjkp̃
jk]

+
∫
X

d3x Ṡj
[
Pj + Sa

j

(
π ξ,a + PT,a + pbcSk

,bS
l
,cS

a
j qkl,a

)− 2∂a

(
qbcS

c
jp

ab
)]

=
∫
S

d3σ [ ˙̃ξ π̃ + ˙̃T P̃ + ˙̃qjkp̃
jk]
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+
∫
X

d3x Ṡj
[
Pj + Sa

j

(
π ξ,a + PT,a + pbcSk

,bS
l
,c∂a

(
Se

kS
f

l qef

))− 2∂a

(
qbcS

c
j pab

)]
=
∫
S

d3σ [ ˙̃ξ π̃ + ˙̃T P̃ + ˙̃qjkp̃
jk]

+
∫
X

d3x Ṡj
[
Pj + Sa

j

(
π ξ,a + PT,a + pbc

(
qbc,a + 2qecS

k
,bS

e
k,a

))− 2∂a

(
qbcS

c
j pab

)]
=
∫
S

d3σ [ ˙̃ξ π̃ + ˙̃T P̃ + ˙̃qjkp̃
jk]

+
∫
X

d3x Ṡj

[
Pj + Sa

j

(
π ξ,a + PT,a + −2

[
qab∂cp

bc +
1

2

(
2qa(b,c) − qbc,a

)
pbc

])]
=
∫
S

d3σ [ ˙̃ξ π̃ + ˙̃T P̃ + ˙̃qjkp̃
jk] +

∫
X

d3x Ṡj
[
Pj + Sa

j

(
π ξ,a + PT,a + −2qabDcp

bc
)]

=
∫
S

d3σ [ ˙̃ξ π̃ + ˙̃T P̃ + ˙̃qjkp̃
jk] +

∫
X

d3x Ṡj Sj
a ctot

a (B.4)

where we used

Sa
j Sk

,bS
e
k,a = −Sa

j Sk
,baS

e
k = −Sa

j Sk
,abS

e
k = Sa

j,bS
k
,aS

e
k = Se

j,b (B.5)

as well as the definition of the Christoffel symbol in the second to last step (note that pab is a
tensor density so that Dbp

ab = ∂bp
ab + �a

bcp
bc).

Formula (B.4) means that on the full phase space we can switch to the new canonical
pairs (B.1) on X and the canonical pair

(
Sj , P ′

j = Sa
j ctot

a = ctot
j

)
. The pairs (B.1) are thus ctot

j

invariant while Sj is pure gauge. The symplectic reduction of the full phase space with respect
to ctot

j is therefore precisely coordinatized by (B.1) which is identical to equation (3.30) in the
main text.

Appendix C. Effective action and fixed point equation

The aim of the present section is to derive, at least in implicit form, the Lagrangian that
corresponds canonically to the physical Hamiltonian. This can be done by calculating the
inverse Legendre transform37 and leads to a fixed point equation, which can be solved order
by order, in principle. Interestingly, the Lagrangian turns out to be local in dust time, but will
be non-local in dust space. However, the Hamiltonian description is completely local.

The inverse Legendre transform requires to solve for the momenta P jk(σ ),
(σ) in terms
of the corresponding velocities Vjk(σ ),ϒ(σ), respectively, defined by38

Vjk(σ ) ≡ Q̇jk(σ ) = {H,Qjk(σ )}
ϒ(σ) ≡ �̇(σ ) = {H, �(σ)}. (C.1)

This can be done by using the first-order equations of motion for Qjk(σ ),�(σ), derived from
the physical Hamiltonian H. From the physical Hamiltonian H we obtain the Lagrangian

L[Q,V ;�,ϒ] =
∫
S

d3σL(σ) =
∫
S

d3σ

[(
1

κ
P jkVjk +

1

λ

ϒ

)
− H[Q,P ;�,
]

]
(C.1)

(C.2)

where it it is understood that the solution of (C.1) for P jk,
 has to be inserted.

37 This is possible because the Legendre transform is regular.
38 Note that Q̇jk and �̇ must be treated as independent variables in addition to Qjk and �.
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With the dynamical lapse and shift given by N = C/H,Nj = −Cj/H , respectively, we
obtain for Pjk

P jk =
√

det(Q)

2N
[G−1]jkmn(Q̇mn − (L 	NQ)mn) =

√
det(Q)[G−1]jkmnKmn, (C.3)

with Kmn denoting the extrinsic curvature. This leads to the following expression for the
velocities Vjk and ϒ :

Vjk = 2[NKjk + D(jNk)] and ϒ = N√
det(Q)


 + QjkNj Dk�. (C.4)

We conclude

L =
∫
S

d3σ

[
1

κ
VjkP

jk +
1

λ
ϒ
 − H

]
=
∫
S

d3σ

[
2

κ
(NKjk + D(jNk))P

jk +

(
N




λ
√

det(Q)
+ NjDj

�

λ

)

 − H

]
=
∫
S

d3σ

[
N

(
2

κ
KjkP

jk +

2

λ
√

det(Q)

)
+ NjCj − H

]
=
∫
S

d3σ
1

H

[
C

(
2

κ
KjkP

jk +

2

λ
√

det(Q)

)
− QjkCjCk − H 2

]
=
∫
S

d3σ
C

H

[
2

κ
KjkP

jk +

2

λ
√

det(Q)
− C

]
=
∫
S

d3σN

[
2

κ

√
det(Q)

(
KjkK

jk − (Kj

j

)2)
+


2

λ
√

det(Q)
− C

]
=
∫
S

d3σN
√

det(Q)

[
1

κ

(
KjkK

jk − (Kj

j

)2
+ R(3)[Q] − 2�

)
+

1

2λ

(

2

det(Q)
− [Qjk�,j�,k + v(�)]

)]
=
∫
S

d3σN
√

det(Q)

[
1

κ

(
KjkK

jk − (Kj

j

)2
+ R(3)[Q] − 2�

)
+

1

2λ
((∇u�)2 − (Qjk�,j�,k + v(�)))

]
. (C.5)

In the third step we performed an integration by parts and in the fourth step we substituted the
expressions for dynamical lapse and shift, in the sixth we rewrote Pjk in terms of Kjk, in the
seventh we substituted for C and in the last we introduced the vector field u = 1

N
(∂τ −Nj∂σj ).

If lapse and shift are independent variables, the final expression in (C.6) would
coincide with the 3+1-decomposition of the Einstein–Hilbert term minimally coupled to a
Klein–Gordon field with potential v! Since Nj is a constant of the physical motion and
N = √1 + QjkNjNk , we could, in particular, consider the case Nj = 0, whence N = 1. In
that case (C.5) would agree with the usual Lagrangian description on dust spacetime for a
static foliation. However, fundamentally lapse and shift are not independent variables, and we
must use this fact in (C.1) in order to solve for P jk,
. We now turn to this task.

By definition

Nj = −Cj

H
= −Cj

C

C

H
= −Cj/

√
det(Q)

C/
√

det(Q)

√
1 + QjkNjNk,

Cj√
det(Q)

= − 2

κ

(
DkK

k
j − DjK

k
k

)
+

1

λ
(∇u�)Dj�,
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C√
det(Q)

= 1

κ

(
KjkK

jk − [Kj

j

]2 − R(3) [Q]
)

+
1

2λ

(
(∇u�)2 + Qjk�,j�,k + v(�)

)
,

Kjk = 1

2
√

1 + QjkNjNk

[Vjk − 2D(jNk)],

∇u� = 1√
1 + QjkNjNk

[ϒ − QjkNjDk�]. (C.6)

The set of equations (C.6), when inserted into each other, yields an equation of the form

Nj = Gj [Nk;Qkl, Vkl, �,ϒ], (C.7)

where Gj is a local function of its arguments and their spatial derivatives up to second
order (in particular, second spatial derivatives of Nj). Since P jk,
 are known in terms
of Qjk, Vjk,�,ϒ , once Nj (and thus N) is known as a function of these arguments, we have
reduced the task of performing the inverse Legendre transform to solving the fixed point
equation (C.7).

Unfortunately, (C.7) is not algebraic in Nj, so a solution just by quadratures is impossible.
Also, it represents a highly nonlinear system of partial differential equations of degree 2, so
linear solution methods fail, as well. We leave the full investigation of this system for future
research. However, the fact that it is a system of fixed point equations suggests to look for a
solution by perturbative or fixed point methods.

(1) If we make the Ansatz that Nj is small, in an appropriate sense, then we may expand
Gj [Nk] around Nk = 0 to linear order and solve the resulting linear system of PDEs.

(2) The fixed point method suggests to write the solution in the form

Nj = Gj

(
Gk1

(
Gk2

( · · · (Gkn
(· · ·)) · · · ))). (C.8)

If convergence is under control, then an nth-order approximation may be given in the
form

N
(n)
j = Gj

(
Gk1

(
Gk2

( · · · (Gkn
(0)
) · · · ))), (C.9)

which consists in setting the starting point of the iteration at Nj = 0 (which is a reasonable
guess if the exact solution is indeed small in an appropriate sense, having a test clock in
mind) and to iterate n times. Expression (C.9) contains spatial derivatives of the metric
of order up to 2(n + 1), but is only of first order in τ -derivatives, thus establishing that the
final Lagrangian is spatially non-local in dust space but temporally local in dust time.

Appendix D. Two routes to second time derivatives of linear perturbations

In this appendix we consider a general Hamiltonian system with canonical coordinates (q, p)

and standard Poisson brackets {p, q} = 1 and a Hamiltonian function H(q, p). We will
consider only one degree of freedom but everything generalizes to an arbitrary number of
degrees of freedom.

Lemma D.1. Let (q0(τ ), p0(τ )) be an exact solution of the Hamiltonian equations of motion

q̇0(τ ) = [{H, q}(q, p)] q=q0(τ )
p=p0(τ )

ṗ0(τ ) = [{H,p}(q, p)] q=q0(τ )
p=p0(τ )

.
(D.1)

Define the perturbations δq := q − q0(τ ), δp := p − p0(τ ). Let H(q, p) = ∑∞
n=0 H(n) be

the expansion of H(q, p) around q0(τ ), p0(τ ) in terms of the perturbations where H(n) is the
nth-order term in terms of the perturbations. Then
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(1) expanding the full Hamiltonian equations of motion for q̇, ṗ to linear order is equivalent
to using the function H(2) as a Hamiltonian for the perturbations;

(2) expanding the equation for q̈ to linear order is equivalent to the equations for
δ̇q = δq̇, δ̇p = δṗ to linear order.

Proof. Note that q0(τ ), p0(τ ) do not carry any phase space dependence in contrast to δq, δp.
Therefore {δq, δq} = {δp, δp} = 0 and {δp, δq} = 1.

(1) Consider the full Hamiltonian equations of motion for a general solution (q(τ ), p(τ)):

q̇(τ ) = H,p(q(τ ), p(τ)) and ṗ(τ ) = −H,p(q(τ ), p(τ)) (D.2)

where H,q = ∂H/∂q,H,p = ∂H/∂p. We set δq(τ ) = q(τ) − q0(τ ) and δp(τ) =
p(τ) − p0(τ ). Subtracting from (D.2) the equations for (q0(τ ), p0(τ )) we obtain

δ̇q(τ ) = H,p(q(τ ), p(τ)) − H,p(q0(τ ), p0(τ ))

δṗ(τ ) = −H,q(q(τ ), p(τ)) + H,q(q0(τ ), p0(τ )),
(D.3)

which is still exact. Expanding the right-hand side of (D.3) to first order in δq(τ ), δp(τ)

we find
δq̇(τ ) = H,pq(q0(τ ), p0(τ ))δq(τ ) + H,pp(q0(τ ), p0(τ ))δp(τ)

δṗ(τ ) = −H,qq(q0(τ ), p0(τ ))δq(τ ) − H,qp(q0(τ ), p0(τ ))δp(τ).
(D.4)

On the other hand, we have

H(2) = 1

2
H,qq(q0(τ ), p0(τ ))[δq]2 +

1

2
H,pp(q0(τ ), p0(τ ))[δp]2

+ H,qp(q0(τ ), p0(τ ))[δq][δp]. (D.5)

Then it is trivial to check that (D.4) is reproduced by

δq̇(τ ) = {H(2), δq} δq=δq(τ )
δp=δp(τ)

and δṗ(τ ) = {H(2), δp} δq=δq(τ )
δp=δp(τ)

. (D.6)

(2) Let p(τ) = F(q(τ), q̇(τ )) be the solution of solving q̇(τ ) = H,p(q(τ ), p(τ)) for p(τ).
Then

q̈(τ ) = H,pq(q(τ ), p(τ))q̇(τ ) + H,pp(q(τ ), p(τ))ṗ(τ )

= H,pq(q(τ ), p(τ))q̇(τ ) − H,pp(q(τ ), p(τ))H,q(q(τ ), p(τ))

= H,pq(q(τ ), F (q(τ), q̇(τ )))q̇(τ ) − H,pp(q(τ ), F (q(τ), q̇(τ )))

× H,q(q(τ ), F (q(τ), q̇(τ )))

= G(q(τ), q̇(τ )). (D.7)

Equation (D.7) is what we mean by the q̈(τ ) form of the equations of motion, i.e. an
equation only involving q, q̇, q̈ but no longer the momentum. Subtracting from (D.7)
the corresponding equation for q̈0(τ ) and expanding the right-hand side to first order we
obtain with G = G(q, v)

δ̈q(τ ) = G,q(q0(τ ), q̇0(τ ))δq(τ ) + G,v(q0(τ ), q̇0(τ ))δq̇(τ ). (D.8)

Now

G,q(q, v) = [H,pqq(q, p)v − H,ppq(q, p)H,q(q, p) − [H,pp(q, p)H,qq(q, p)]p=F(q,v)

+ [H,ppq(q, p)v − H,ppp(q, p)H,q(q, p)

−H,pp(q, p)H,pq(q, p)]p=F(q,v)F,q(q, v)

G,v(q, v) = H,pq(q, p) + [H,ppq(q, p)v − H,ppp(q, p)H,q(q, p)

−H,pp(q, p)H,pq(q, p)]p=F(q,v)F,v(q, v). (D.9)
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Since v = H,p(q, F (q, v)) is an identity we obtain

1 = H,pp(q, F (q, v))F,v(q, v) and

0 = H,pq(q, F (q, v)) + H,pp(q, F (q, v))F,q(q, v) (D.10)

by taking the derivative with respect to the independent variables v, q respectively. This
way we can eliminate the derivatives of F:

F,v(q, v) = 1

H,pp(q, F (q, v))
and F,q(q, v) = −H,pq(q, F (q, v))

H,pp(q, F (q, v))
. (D.11)

Substituting (D.11) into (D.9) we obtain the simplified expressions

G,v(q, v) =
[(

H,ppqv − H,pppH,q

H,pp

)
(q, p)

]
p=F(q,v)

G,q(q, v) = [H,pqq(q, p)v − H,ppq(q, p)H,q(q, p) − H,pp(q, p)H,qq(q, p)]p=F(q,v)

− [H,ppq(q, p)v − H,ppp(q, p)H,q(q, p)

−H,pp(q, p)H,pq(q, p)]p=F(q,v)

H,pq

H,pp

. (D.12)

Now we invert the second equation in (D.4) for δp and obtain

δp(τ) = δq̇(τ ) − H,pq(q0(τ ), p0(τ ))δq(τ )

H,pp(q0(τ ), p0(τ )
. (D.13)

Taking the time derivative of the first equation in (D.4) and using (D.13) yields after some
algebra

δq̈(τ ) =
[
Ḣ,pq − H,ppH,qq − H,pq(Ḣ,pp − H,ppH,pq)

H,pp

]
(q0(τ ), p0(τ ))δq(τ )

+

[
Ḣ,pp

H,pp

]
(q0(τ ), p0(τ ))δq̇(τ ) (D.14)

where e.g. Ḣ,pp(q0(τ ), p0(τ ) := d
dτ

H,pp(q0(τ ), p0(τ ). Carrying out the remaining time
derivatives in (D.14) and comparing with (D.8) evaluated with the help of (D.12) at
q = q0(τ ), v = q̇0(τ ) = H,p(q0(τ ), p0(τ ) we see that the expressions coincide. �

Appendix E. Constants of the motion of nth-order perturbation theory

In this section we will show that for any fully conserved quantity F of a Hamiltonian system
with Hamiltonian H, when expanding both the equations of motion and F to order n, then F
is still a constant of motion up to terms of order n + 1.

Let m0(τ ) = (q0(τ ), p0(τ )) be an exact solution of a Hamiltonian system with canonical
coordinates m = (q, p), non-vanishing Poisson brackets {p, q} = 1 and Hamiltonian
H = H(m) = H(q, p). Define δm = m − m0(τ ). Since m0(τ ) is just a number (for
fixed τ ) we immediately have the non-vanishing Poisson brackets {δp, δq} = 1. For any
function F on phase space we consider its Taylor expansion around m0(τ ) given by

F(m) =
∞∑

n=0

F (n)(m0(τ ); δm) (E.1)

where F (n)(m0(τ ); δm) is a homogeneous polynomial of degree n in δm whose coefficients
depend explicitly on the background solution m0(τ ), that is

F (n)(m0(τ ); δm) =
n∑

k=0

1

k!(n − k)!

[
∂bF

[∂q]k [∂p]n−k

]
(m0(τ )) [δq]k [δp]n−k . (E.2)
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Lemma E.1. The Poisson bracket {F,G} can be computed either by first expanding F,G as
in (E.1) and then using the Poisson bracket for δm or by using the Poisson bracket for m and
then expanding the result as in (E.1).

Proof. The proof is elementary: since

F =
∞∑

k,l=0

1

k! l!

[
∂k+lF

[∂q]k [∂p]l

]
(m0(τ ))[δq]k[δp]l , (E.3)

we have with the substitution of F by F,q

F,q =
∞∑

k,l=0

1

k! l!

[
∂k+l+1F

[∂q]k+1[∂p]l

]
(m0(τ ))[δq]k[δp]l = F,δq (E.4)

and similarly F,p = F,δp. Since one computes Poisson brackets the first way by first expanding
and then taking derivatives with respect to δq, δp while the second way we compute Poisson
brackets with respect to q, p and then expand, the assertion follows. �

Lemma E.2. Suppose we expand the Hamiltonian to nth order in δm with n � 1. Suppose
also that F is an exact constant of the motion with respect to the Hamiltonian H. Then:

(1) The equations of motion up to order n for δm are generated by the Hamiltonian

Hn =
n+1∑
k=2

H(k). (E.5)

(2) The perturbation up to order n of F given by

Fn :=
n∑

k=1

F (n) (E.6)

is a constant of motion with respect to Hn up to terms of order at least n + 1.

Note that the Hamiltonian starts at order 2 and ends at order n + 1.

Proof.

(1) Let m(t) be any solution of the exact equation of motion. We have for example

q̇(τ ) = [{H, q}]m=m(τ). (E.7)

Subtracting the same equation for m0(τ ) and setting δq(τ ) = q(τ) − q0(τ ) we find

δq̇(τ ) = [{H, q}]m=m(τ) − [{H, q}]m=m0(τ ) =
∞∑

k=2

H
(k)
,δp (E.8)

from which the assertion follows immediately (the proof for δp is identical).
(2) Using the explicit background dependence of F (k) = F (k)(m0(τ ); δm(τ)) we have

d

dτ
F (k) = ∂F (k)

∂q0
q̇0(τ ) +

∂F (k)

∂p0
ṗ0(τ ) +

∂F (k)

∂δq
δq̇(τ ) +

∂F (k)

∂δp
δṗ(τ )

= ∂F (k)

∂q0

∂H(1)

∂δp
− ∂F (k)

∂p0

∂H(1)

∂δq
+

∂F (k)

∂δq

∂Hn

∂δp
− ∂F (k)

∂δp

∂Hn

∂δq
(E.9)

where we used the first part of the lemma as well as the fact that H,q(m0) =
H

(1)
,δq , H,p(m0) = H

(1)
,δp . All Poisson brackets are with respect to the coordinates δq, δp.
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Now observe the important fact

F (k)
,q0

=
k∑

l=0

1

l!(k − l)!

∂k+1F

[∂q]l+1 [∂p](k+1)−(l+1)
[δq]l [δp](k+1)−(l+1)

= ∂

∂δq

k∑
l=0

1

(l + 1)!((k + 1) − (l + 1))!

∂k+1F

[∂q]l+1 [∂p](k+1)−(l+1)
[δq]l+1 [δp](k+1)−(l+1)

= ∂

∂δq

k+1∑
l=1

1

l!(k + 1 − l)!

∂k+1F

[∂q]l [∂p]k+1−l
[δq]l [δp]k+1−l

= ∂

∂δq

[
F (k+1) − 1

(k + 1)!

∂k+1F

[∂p]k+1 [δp]k+1

]
= F

(k+1)
,δq (E.10)

and similarly F (k)
,p0

= F
(k+1)
,δp .

Combining (E.9) and (E.10) we see that

dF (k)

dτ
= {H(1), F (k+1)} + {Hn, F

(k)} (E.11)

Hence

dFn

dτ
=

n∑
k=1

[
{H(1), F (k+1)} +

n+1∑
l=2

{H(l), F (k)}
]

. (E.12)

We would like to show that the terms up to order n in (E.12) vanish identically. Since
{H(l), F (k)} is of order k + l − 2, for given k we can restrict the sum over l from l = 2
until n + 2 − k up to terms of order O(δn+1). Note that n + 2 − k is at least 2 (for k = n)
and at most n + 1 (for k = 1) for all values of k which is the allowed range of l. It follows

dFn

dτ
+ O(δn+1) =

n∑
k=1

[
{H(1), F (k+1)} +

n+2−k∑
l=2

{H(l), F (k)}
]

=
n∑

k=1

[
{H(1), F (k+1)} +

n∑
r=k

{H(r−k+2), F (k)}
]

=
n∑

r=1

[
{H(1), F (r+1)} +

r∑
k=1

{H(r−k+2), F (k)}
]

=
n∑

r=1

r+1∑
k=1

{H(r−k+2), F (k)} (E.13)

where in the second step we have introduced the summation variable r = k + l − 2
which for given k takes range in k, . . . , n (lowest value for l = 2 and highest value for
l = n + 2 − k) whence l = r − k + 2, in the third step we have changed the order of the
k and r summation in the second term (keeping in mind the constraint 1 � k � r � n)
while the summation variable k was renamed by r in the first term and in the fourth step we
noted that the first and second term can be combined by having the k summation extend
to r + 1.

Now we exploit the fact that F is an exact invariant, that is

0 = {H,F } =
∞∑

k,l=1

{H(l), F (k)} =
∞∑

r=0

[
r+1∑
k=1

{H(r−k+2), F (k)}
]

(E.14)
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where in the second step we collected all terms of order r (note that l = r − k + 2 � 1 as
required). Since (E.13) is an identity on the entire phase space, the Taylor coefficients of
[δq]k[δp]l have to vanish separately for all k, l � 0. The term corresponding to order r in
(E.13) contains all terms of the form [δq]s[δp]r−s , s = 0, . . . , r . Therefore we conclude

r+1∑
k=1

{H(r−k+2), F (k)} = 0 (E.15)

identically for all r. In particular, (E.13) implies

dFn

dτ
= O(δn+1). (E.16)

�

The only n for which the term O(δn+1) vanishes is for n = 1 as one can see from (E.12)
since then k = 1, l = 2 can only take one value which already contributes to order r = 1.
Thus for n = 1 we even have

dF1

dτ
= 0. (E.17)

It is instructive to see how the background equations find their way into demonstrating the
important result (E.16) which ensures that an exact invariant expanded up to order n remains
an invariant up to higher orders for the equations of motion expanded up to order n, thus
simplifying the task to integrate those equations of motion.

Appendix F. Generalization to other deparametrizing matter

In this work dust was used as a reference frame in order to define a physical time evolution. We
chose dust because then, for the case of no perturbations, the induced physical Hamiltonian
yields the exact FRW equations used in standard cosmology. However, when perturbations of
the metric and the scalar field are considered, deviations from the standard FRW framework
occur, which are, however, still in agreement with observational data. Since general relativity
does not tell us which is the right clock to use for cosmology, we chose a clock such that the
resulting physical Hamiltonian is as close as possible to the FRW Hamiltonian in standard
cosmology, where one uses the Hamiltonian constraint c as a true Hamiltonian. The physical
Hamiltonian used here, Hdust = √C2 − QijCiCj , reduces to H FRW

dust = C for an FRW universe,
namely to the gauge-invariant version of the Hamiltonian constraint. However, the question
arises how generic are the results obtained from a dust clock and what changes do we expect
when choosing other matter than dust to reparametrize or even deparametrize the constraints
of general relativity. To illustrate this issue, let us discuss the phantom clock introduced in [9]
which leads to a physical Hamiltonian of the form

Hphan =
∫

χ

d3σHphan(σ ), (F.1)

with the Hamiltonian density Hphan defined as

Hphan(σ ) =
√

1
2 (F (C,Ci,Qij )) +

√
1
4 (F (C,Ci,Qij ))2 − α2Qij (σ, τ )CiCj (σ )Q(σ, τ)

(F.2)

where

F(C,Ci,Qij ) := C2(σ, τ ) − Qij (σ, τ )CiCj (σ ) − α2Q(σ, τ). (F.3)
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Above we introduced the abbreviation Q = det(Qij ), and α > 0 is for the moment an arbitrary
constant of dimension cm−2 that enters the phantom field action as a free parameter. Recall
that the expressions for C and Cj were given by the geometry and matter part of the total
Hamiltonian and diffeomorphism constraint, respectively, that is

C(σ, τ) = Cgeo(σ, τ ) + Cmatter(σ, τ ) and Cj(σ ) = C
geo
j (σ ) + Cmatter

j (σ ). (F.4)

From now on we will drop the τ dependence of C(σ, τ) and Qij (σ, τ ) in the expression for
Hphan and write them explicitly only when confusion could arise otherwise.

For the dust Hamiltonian we saw that the first-order equations of motion obtained for
�,
 and Qij , P

ij look similar to the standard cosmological equations apart from the fact that
in the case of a dust clock we obtain a dynamical, that is phase space dependent, lapse function
Ndust = C/Hdust and shift vector Ni

dust = Ni/Hdust. Moreover, in the general equations there
occurs a term proportional to Ni

dustN
j

dust.
With respect to Hphan, we want to analyse now whether it produces a similar effect and

leads to possibly more serious deviations from the standard equations. Starting with the
first-order equation for � we obtain

�̇(σ, τ ) = {Hphan, �(σ, τ )}

=
∫

χ

d3σ ′
[

C

Hphan
(σ ′)

⎛⎝1

2
+

(C2 − QijCiCj − α2Q)(σ ′)

4
√(

1
4 (C2 − QijCiCj − α2Q)2 − α2QijCiCjQ

)
(σ ′)

⎞⎠
× {Cmatter(σ ′),�(σ, τ )}

− QijCj

Hphan
(σ ′)

⎛⎝1

2
+

(C2 − QijCiCj + α2Q)(σ ′)

4
√(

1
4 (C2 − QijCiCj − α2Q)2 − α2QijCiCjQ

)
(σ ′)

⎞⎠
× {Cmatter(σ ′),�(σ, τ )i}

]
. (F.5)

Introducing the dynamical lapse function Nphan and the dynamical shift covector Ni
phan as

Nphan(σ ) := C

Hphan
(σ )

⎛⎝1

2
+

(C2 − QijCiCj − α2Q)(σ)

4
√(

1
4 (C2 − QijCiCj − α2Q)2 − α2QijCiCjQ

)
(σ )

⎞⎠
Ni

phan(σ ) := −QijCj

Hphan
(σ )

⎛⎝1

2
+

(C2 − QijCiCj + α2Q)(σ)

4
√(

1
4 (C2 − QijCiCj − α2Q)2 − α2QijCiCjQ

)
(σ )

⎞⎠ ,

(F.6)

we can rewrite the first-order equation of motion for � as

�̇(σ, τ ) = {Hphan, �(σ, τ )}
=
∫

χ

d3σ ′(Nphan(σ
′){Cmatter(σ ′),�(σ, τ )} + Ni

phan

{
Cmatter

i (σ ′),�(σ, τ )
})

. (F.7)

Hence, we realize that, similar to the case of the dust clock, the effect of the phantom clock
results in the appearance of a dynamical lapse function and a dynamical shift vector. However,
due to the more complicated structure of Hphan as compared to Hdust, Nphan and Ni

phan are not
simply given in terms of C/Hphan and −Cj/Hphan respectively. Now also terms occur which
include higher than linear powers of the constraints in the nominator and denominator. Since
the quantities 
 and obviously Qij also Poisson commute with any function that does depend
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on Qij only, the calculation works analogously in these cases and we obtain


̇(σ, τ ) = {Hphan,
(σ, τ )}
=
∫

χ

d3σ ′(Nphan(σ
′){Cmatter(σ ′),�(σ)} + Ni

phan

{
Cmatter

i (σ ′),
(σ, τ)
})

(F.8)

and

Q̇ij (σ, τ ) = {Hphan,Qij (σ )}
=
∫

χ

d3σ ′(Nphan(σ
′){Cgeo(σ ′),Qij (σ, τ )} + Ni

phan

{
C

geo
i (σ ′),Qij (σ, τ )

})
. (F.9)

For the dynamical variable Pij things look slightly different, because Pij does not Poisson
commute with functions depending on Qij. Therefore we get, as in the dust case, an additional
contribution proportional to the Poisson bracket {Qkl(σ ′), P ij (σ, τ )}. Furthermore, since
Hphan includes a term of the form α2Q, we also obtain a term proportional to the Poisson
bracket {Q(σ ′), P ij (σ, τ )}. The explicit results for these Poisson brackets are

{Qkl(σ ′), P ij (σ, τ )} = κ

2
(QikQlj + QjkQil)(σ ′, τ )δ3(σ ′, σ )

{Q(σ ′), P ij (σ, τ )} = −κ(QQij )(σ ′, τ )δ3(σ ′, σ ).

(F.10)

Inserting this back into the equation for Ṗ ij , we end up with

Ṗ ij (σ, τ ) = {Hphan, P
ij (σ, τ )}

=
∫

χ

d3σ ′(Nphan(σ
′){Cgeo(σ ′), P ij (σ, τ )} + Ni

phan

{
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geo
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})
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(C2 − QijCiCj + α2Q)

4
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4 (C2 − QijCiCj − α2Q)2 − α2QijCiCjQ

)
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⎛⎝α2QijQ
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C2 + QijCiCj − α2Q

4
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1
4 (C2 − QijCiCj − α2Q)2 − α2QQijCiCj

⎤⎦⎞⎠ (σ, τ ). (F.11)

The remaining Poisson brackets in the first-order equations for the dynamical variables are the
same Poisson brackets that occur when Hdust is used as a Hamiltonian. Inserting the results
obtained there into the corresponding equations for the case of Hphan, we obtain the following
final form of the first-order equations:

�̇(σ, τ ) = Nphan


Q
(σ, τ) + (L 	Nphan�)(σ, τ )


̇(σ, τ ) = [NphanQQij�, i],j (σ, τ ) − 1

2
(NphanQV ′(�))(σ, τ ) +

(
L 	Nphan



)
(σ, τ ) (F.12)

Q̇ij (σ, τ ) = 2Nphan

Q
(σ, τ)

(
GijmnP

mn
)
(σ, τ ) +

(
L 	Nphan

Q
)
ij
(σ, τ ),

where

Gijmn := 1
2 (QimQjn + QinQjm − QijQmn), (F.13)

with its inverse given by

[G−1]ijmn := 1
2 (QimQjn + QinQjm − 2QijQmn). (F.14)
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For the gravitational momentum we have

Ṗ ij (σ, τ ) =
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2
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4
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1
4 (C2 − QijCiCj − α2Q)2 − α2QQijCiCj

⎤⎦⎞⎠ (σ, τ ). (F.15)

One can see that the first-order equations for �,
 and Qij in equation (F.12) are identical
to those for the dust Hamiltonian Hdust, apart from the different definitions of the dynamical
lapse function Nphan and shift vector Ni

phan in equation (F.6). However, the equation for Ṗ ij

differs from the corresponding dust Hamiltonian equation. The term in the second last line
in equation (F.15) corresponds to the term − κ

2

(
HdustN

i
dustN

j

dust

)
(σ ) in the equation for Ṗ ij

derived from Hdust. In the present case this term looks a bit more complicated, since we have
to divide the whole expression by the term in the square brackets which is identical to one in
the case of Hdust. The additional term in the last line of equation (F.15) comes from the terms
α2Q and α2QijCiCj in Hphan, which are absent in Hdust. Since in this term we cannot factor
out C or Ci but only α2, we are also not able to reexpress this term by means of the dynamical
lapse function Nphan and the dynamical shift vector Ni

phan, respectively, as it was possible for
the term in the second last line.

In summary, when using a phantom scalar field as a clock we also obtain deviations from
the standard treatment in which the Hamiltonian constraint is used as a true Hamiltonian. These
deviations manifest themselves in the appearance of a dynamical lapse function Nphan and a
dynamical shift vector Ni

phan, analogous to the case where dust is used as a clock. However, the
explicit dependence of Nphan and Ni

phan on the dynamical variables is more complicated than
for the corresponding quantities Ndust and Ni

dust. Another modification occurs in the equation
for the gravitational momentum Pij. While it contains a term that is second order in Ni

phan, in
complete analogy with the case of Hdust, it also features an additional term proportional to α2.

F.1. The special case of an FRW universe

It is interesting to study the special case of FRW also for Hphan. Recall from [16] that by
assuming homogeneity and isotropy, Hdust, Ndust and Ni

dust reduce to the following quantities:

Ndust(σ )
FRW−→ 1, Ni

dust(σ )
FRW−→ 0, Hdust(σ )

FRW−→ CFRW(σ ), (F.16)

where

CFRW
dust (τ ) = A3(τ )

(
1

κ

(
−6

(
Ȧ

A

)2

+ 2�

)
+

1

2λ

(
�̇2 + V (�)

))
(τ ). (F.17)
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Here A = A(τ) is a function of the dust time τ and the dot refers to a derivative with respect
to the dust time. In particular, A(τ) can be understood as the gauge-invariant extension of
the ordinary scale factor a(t) used in standard cosmology. The difference between the two
is that A is gauge invariant and thus a physical observable whereas a is not, since it does not
commute with the Hamiltonian constraint of FRW.

The gravitational canonical variables are given by Qij = A2(τ )δij and P ij = −2Ȧ(τ )δij .
We mentioned previously that a consequence of this behaviour is that the unperturbed equations
of motion for (�,
) and (Qij , P

ij ) agree with the FRW equations used in standard cosmology.
In particular, the deviation from the general standard equation of motion for Pij vanishes in
the case of FRW, because it is quadratic in Ni

dust.
For the phantom Hamiltonian Hphan things look slightly different. Here we have the

following behaviour of Hphan, Nphan and Ni
phan, when a homogenous and isotropic universe is

considered:

Nphan(σ )
FRW−→ NFRW

phan :=
(

CFRW
phan

H FRW
phan

)
(σ ), Ni

phan(σ )
FRW−→ 0,

Hphan(σ )
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√(

CFRW
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)2 − α2A6(σ ) (F.18)

with
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phan (τ ) = A3(

NFRW
phan

)2 (τ )

(
1

κ

(
−6

(
Ȧ
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(F.19)

Hence, the dust clock and the phantom scalar field clock agree only if the parameter α is chosen
to be tiny compared to the Hamiltonian constraint CFRW

phan , e.g. αA3 � CFRW
phan . Consequently,

the equations of motion generated by Hphan also deviate from the standard FRW equations.
The significance of this deviation again depends on the specific value of the parameter α, as
was discussed in detail in [9]. For completeness we also list the first-order equations of motion
here:

�̇(τ ) =
(
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phan
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(τ ) 
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(
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Ṗ ij = NFRW
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(τ ). (F.20)

Taking into account that Qij = A2δij and using the first-order equation for Qij, we solve for the
momenta P ij = −2Ȧ

/
NFRW

phan δij in terms of Q̇jk = 2AȦ. In order to derive the corresponding
FRW equation with respect to the time generated by HFRW

phan , we take the time derivative of the
equation for Q̇ij and insert into the resulting equation for Q̈ij the expression for Pij and Ṗ ij

given above. This yields(
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. (F.21)
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Apart from the lapse functions in the equation above which are not present in the standard
FRW equations, we get an additional term including the time derivative of the lapse function.
Using the explicit definition of the lapse function, we can perform this time derivative, leading
to

ṄFRW
phan

NFRW
phan

(
Ȧ

A

)
= 3
((

NFRW
phan

)2 − 1
)(

NFRW
phan

)2 (
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. (F.22)

Consequently, equation (F.21) can be rewritten as(
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. (F.23)

The term (Ȧ/A)2 can be replaced by considering the energy conservation law ˙H FRW
phan = 0, that

is H FRW
phan = ε0, from which we get CFRW

phan =
√

ε2
0 + α2A6. Solving this equation for (Ȧ/A)2

yields
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where we used in the last line

ρmatter = 1

2
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)2 �̇2 +
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V (�) and ρphan = −α
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ε0
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. (F.25)

Reinserting equation (F.24) into equation (F.23), we obtain the phantom FRW equation given
by

3
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Ä

A

)
= �
(
1 + 4
((

NFRW
phan

)2 − 1
))− κ

4

[(
1

λ
ρmatter + ρphan

)(
1 − 5

((
NFRW

phan

)2 − 1
))

+ 3
(
NFRW

phan

)2(1

λ
pmatter + pphan

)]
, (F.26)

whereby we introduced

pmatter = 1
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1(
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)2 �̇2 − 1
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pmatter = − 1

3A2
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(A3ρphan) = α2A3
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(F.27)

That this equation agrees with the one derived in [9] can be seen when expressing
(
NFRW

phan

)2
in

terms of the deviation parameter x := ε0/α
2A6 used there, resulting in

(
NFRW

phan

)2 = 1 + 1/x.
In general, choosing one clock or the other might have significant effects on the equation

of motion. General relativity does not tell us which clock is convenient to work with; hence,
additional physical input is needed. The results of the application of this framework for FRW
in [16] show that choosing dust as clock reproduces the standard FRW equations. Thus we
could call the dust clock the FRW clock. Since so far an (approximate) FRW universe is in
agreement with observational data, dust seems to be a good choice. However, the α parameter
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in HFRW
phan can be chosen such that the resulting equation of motion also do not contradict

present experiments. Therefore, based on experimental constraints, none of the two clocks
is excluded, nor is one of them preferred. From a theoretical point of view, the choice of a
clock is mainly guided by the requirement that the constraints can be deparametrized, that is,
they can be written in the form C = pclock + H clock. Here the Hamiltonian density H clock

must no longer depend on the clock variables, and furthermore it should be positive definite.
Additionally the structure of H clock should not be too complicated such that calculations of,
for instance, the equation of motions are still possible. However, in principle, we have a
large amount of freedom to choose a clock, as long as the induced equations of motion do not
contradict experiments.

Appendix G. linear perturbation theory: some calculations in more detail

In section 6.2 we derived the second-order equation of motion for the linear perturbation of
the (manifestly) gauge-invariant three-metric δQjk . For that we needed the perturbation of
the geometry and matter part of the gauge-invariant Hamiltonian constraint, denoted by Cgeo

and Cmatter, respectively, as these terms occur in the third term on the right-hand side of the
unperturbed equation of motion for Qjk, equation (4.24). We omitted the details in the main
text due to their length, and also because it turns out that several terms cancel when inserted
back into the expression of the perturbation of the third term, shown in equation (6.20). For
the interested reader, however, the detailed perturbations of the constraints are given below.

The perturbed geometry constraint δCgeo is given by
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Here we used that the perturbation of the Ricci scalar can be written as

δR = [[G
−1

]jkmnDmDn − R
jk

]δQjk. (G.2)

For the perturbed matter part of the constraint δCmatter we obtain

δCmatter =
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+

[
−
√

det Q

N
2
λ

(�̇ − (L 	N�))Q
jk

�,k − 2
N

j

N
2

×
(

C
matter −

√
det Q

2λ
(Q

jk
�,j�,k + v(�))

)]
δNj

+

[√
det Q

λ

(
1

N
2

(
�̇ − (L 	N�)

)(
∂

∂τ
− L 	N

)
+ Q

jk
�,k

∂

∂xj
+

1

2
v′(�)

)]
δ�.

(G.3)

Since the perturbation of δC = δCgeo + δCmatter occurs in equation (6.20) multiplied by a

factor of κN
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, we will present it here already with this factor in front:
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Going back to the second-order equation of motion for Qjk shown in equation (4.24), we
remind the reader that the perturbation of the first term on the right-hand side involves a term
that we had already calculated for the equation of motion of δ�. For this reason, we presented
in the main text only the perturbation of the remaining term (Q̇jk − (L 	NQ)jk), not the final
result for the full first term. For those interested in more detail, we display it here:
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Appendix H. Gauge-invariant versus gauge fixed formalism

In this appendix we investigate the question under which circumstances a manifestly gauge-
invariant formulation of a constrained system can be equivalently described by a gauge fixed
version.

We begin quite generally and consider a (finite-dimensional) constrained Hamiltonian
system with first class constraints CI , I = 1, . . . , m, on a phase space with canonical pairs
(qa, pa), a = 1, . . . , n;m � n. If there is a true, gauge-invariant Hamiltonian H (not
constrained to vanish), enlarge the phase space by an additional canonical pair (q0, p0) and
additional first class constraint C0 = p0 + H . The reduced phase space and dynamics of the
enlarged system is equivalent to the original one; hence, we consider without loss of generality
a system with no true Hamiltonian.

The canonical Hamiltonian of the system is a linear combination of constraints

Hcan = λICI (H.1)

for some Lagrange multipliers λI whose range specifies the amount of gauge freedom. A
gauge fixing is defined by a set of gauge fixing functions GI with the property that the matrix
with entries MIJ := {CI ,GJ } has everywhere (on phase space) non-vanishing determinant39.
Note that we allow for gauge fixing conditions that display an explicit time dependence. The
conservation in time of the gauge fixing conditions

0 = d

dt
GI = ∂

∂t
GI + {Hcan,GI } = ∂

∂t
GI + λJ MJI (H.2)

uniquely fixes the Lagrange multipliers to be the following phase space dependent functions:

λI = −∂GJ

∂t
(M−1)JI =: λI

0. (H.3)

By arbitrarily splitting the set of canonical pairs (qa, pa) into two sets (T I , πI ), I = 1, . . . , m,

and (QA, PA),A = 1, . . . , n − m, we can solve CI = GI = 0 for

C ′
I = πI + h′

I (Q, P ) = 0, G′
I = T I − τ I (Q, P ) = 0 (H.4)

39 Ideally, the gauge GI = 0 should define a unique point in each gauge orbit.
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for certain functions h, τ which generically will be explicitly time dependent. The variables
T , π are called the gauge degrees of freedom and Q,P are called the true degrees of freedom
(although typically neither of them is gauge invariant).

The reduced Hamiltonian Hred(Q, P ), if it exists, is supposed to generate the same
equations of motion for Q,P as the canonical Hamiltonian does, when the constraints and the
gauge fixing conditions are satisfied and the Lagrange multipliers assume their fixed values
(H.3), that is,

{Hred, f } = {Hcan, f }C=G=λ−λ0=0 = [λI
0{CI , f }]

C=G=λ−λ0=0 (H.5)

for any function f = f (Q,P ). For general gauge fixing functions the reduced Hamiltonian
will not exist; the system of PDEs to which (H.5) is equivalent will not be integrable.

However, a so-called coordinate gauge fixing condition GI = T I −τ I with τ I independent
of the phase space always leads to a reduced Hamiltonian as follows: we can always (locally)
write the constraints in the form (at least weakly)

CI = MIJ (πI + hI (T ,Q,P )). (H.6)

Then, noting that MIJ = {CI , TJ }, (H.5) becomes

{Hred, f } = [λI
0MIJ {hI , f }]C=G=λ−λ0=0 = [τ̇I {hI , f }]G=0 = {τ̇I h̃I , f } (H.7)

with h̃I = hI (T = τ,Q, P ) and we used that f only depends on Q,P . This displays the
reduced Hamiltonian as

Hred(Q, P ; t) = τ̇I (t)hI (T = τ(t),Q, P )). (H.8)

It will be explicitly time dependent unless τ̇I is time independent and hI is independent of T, that
is, unless those constraints can be deparametrized for which τ̇I �= 0. Hence, deparametrization
is crucial for having a conserved Hamiltonian system.

On the other hand, let us consider the gauge-invariant point of view. The observables
associated with f (Q, P) are given by

Of (τ) = [exp(βIXI ) · f ]β=τ−T (H.9)

where we have denoted the Abelian Hamiltonian vector fields XI by XI := {πI + hI , .}.
Consider a one parameter family of flows t �→ τ I (t); then with Of (t) := Of (τ(t)) we find

d

dt
Of (t) = τ̇ I (t)

∞∑
n=0

βJ1 · · ·βJn

n!
XIXJ1 · · ·XJn

· f. (H.10)

On the other hand, consider HI(t) := OhI
(τ (t)); then

{HI(t),Of (t)} == O{hI ,f }∗(τ (t)) = O{hI ,f }(τ (t)) = OXI ·f (τ (t))

= τ̇ I (t)

∞∑
n=0

βJ1 . . . βJn

n!
XIXJ1 · · ·XJn

· f (H.11)

where in the second step we used that neither hI nor f depends on πJ , in the third we used
that f does not depend on TJ and in the last we used the commutativity of the XJ. Thus the
physical Hamiltonian that drives the time evolution of the observables is simply given by

H(t) := τ̇ I (t)hI (τ (t),OQ(t),OP (t)) (H.12)

This is exactly the same as (H.8) under the identification f ↔ Of (0). Hence we have shown
that for suitable gauge fixings the reduced and the gauge-invariant frameworks are equivalent.
Note that it was crucial in the derivation that (T I , πI ) and (QA, PA) are two sets of canonical
pairs. If that is not the case, then it would be unclear whether the time evolution of the
observables has a canonical generator.
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The power of a manifestly gauge-invariant framework lies therefore not in the gauge
invariance itself. Rather, it relies on whether the gauge fixing can be achieved globally,
whether it can be phrased in terms of separate canonical pairs, whether the observer clocks
TI are such that reduced Hamiltonian system is conserved and whether they do display the
time evolution of observables as viewed by a realistic observer. In particular, the reduced
Hamiltonian by construction only depends on (QA, PA). In application to gravity, if one does
not add an additional matter component such as the dust, then the true degrees of freedom
would sit in two of the six canonical pairs (qab, p

ab). However, note that it is not obvious how
to split these pairs into gauge and true degrees of freedom in an at least spatially covariant
way and moreover it is not possible to solve for four of the pab algebraically because the
spatial diffeomorphism constraint involves their derivatives. Hence the physical or reduced
Hamiltonian would become non-local. Furthermore, if one uses gravitational degrees of
freedom for reduction, then it is clear that one does not get the full set of Einstein’s equations
as evolution equations which is something that one may want to keep. Finally, the reduced
Hamiltonian will not reduce to the standard model Hamiltonian in the flat space limit (i.e. with
unit lapse) nor will it be necessarily positive. Of course, when adding matter like our dust,
then similar to the Higgs mechanism the four dust degrees of freedom get absorbed by the
metric which develops four additional Goldstone modes. These modes should decouple and
they do as we showed explicitly in this paper because of the existence of an infinite number of
conserved charges; however, it is not granted to happen when adding arbitrary matter.

We close this section by verifying that the reduced Hamiltonian for the Brown–Kuchař
dust model with the obvious choice for the gauge degrees of freedom indeed agrees with the
physical Hamiltonian. As gauge fixing conditions we choose

G(x) = T (x) − τ(x; t), Gj (x) = Sj (x) − σ j (H.13)

whence τ j (t, x) = σ j (x) is not explicitly time dependent. The stability of (H.13) with respect
to the canonical Hamiltonian

Hcan =
∫
X

d3x
{
n[c −

√
P 2 + qabcacb] + na

[
PT,a + PjS

j
,a + ca

]}
(H.14)

fixes lapse and shift to be

n0 = − τ̇
√

P 2 + qabcacb

P
, na

0 = 0. (H.15)

Hence for any function f independent of the dust degrees of freedom

{Hcan, f }ctot=	ctot=n−n0=	n−	n0=0

=
∫
X

d3x

(
n0

[
{c, f } − 1

2
√

P 2 + qabcacb

{qabcacb, f }
])

ctot=0

=
∫
X

d3x τ̇
c

h

[
{c, f } − 1

2c
{qabcacb, f }

]
=
∫
X

d3x τ̇
1

2h
[{c2, f } − {qabcacb, f }]

=
∫
X

d3x τ̇ {h, f }] (H.16)

where we used

ctot = 0 ⇔ −P = h =
√

c2 − qabcacb. (H.17)

Thus the reduced Hamiltonian for τ̇ = 1 equals the physical Hamiltonian under the
identification qab ≡ Qjk, p

ab ≡ P jk .
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