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Abstract
We perform a canonical, reduced phase space quantization of general relativity
by loop quantum gravity (LQG) methods. The explicit construction of the
reduced phase space is made possible by the combination of (a) the Brown–
Kuchař mechanism in the presence of pressure-free dust fields which allows to
deparametrize the theory and (b) Rovelli’s relational formalism in the extended
version developed by Dittrich to construct the algebra of gauge-invariant
observables. Since the resulting algebra of observables is very simple, one
can quantize it using the methods of LQG. Basically, the kinematical Hilbert
space of non-reduced LQG now becomes a physical Hilbert space and the
kinematical results of LQG such as discreteness of spectra of geometrical
operators now have physical meaning. The constraints have disappeared;
however, the dynamics of the observables is driven by a physical Hamiltonian
which is related to the Hamiltonian of the standard model (without dust) and
which we quantize in this paper.

PACS number: 04.60.−m

1. Introduction

The objects of ultimate interest in a field theory with gauge symmetry are the gauge-invariant
observables. There are two major approaches to the canonical quantization of such theories. In
the so-called Dirac approach, one first constructs Hilbert space representations of gauge-variant
non-observables and then imposes the vanishing of the quantized version of the classical gauge
symmetry generators (constraints) as a selection principle for physical states. The associated
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physical Hilbert space then hopefully (if there are no anomalies) carries a representation of
the observable algebra. In the so-called reduced phase space approach one first constructs the
classical observables and then directly looks for representations of that algebra.

The advantage of the Dirac approach is that the unreduced phase space of non-observables
is typically a smooth (Banach) manifold so that the algebra of non-observables is sufficiently
simple and representations thereof are easy to construct. Its disadvantage is that one has to deal
with spurious degrees of freedom which is the possible source of ambiguities and anomalies in
the gauge symmetry algebra. The advantage of the reduced phase space approach is that one
never has to care about kinematical Hilbert space representations. However, its disadvantage
is that the reduced phase space typically no longer is a smooth manifold turning the induced
algebra of observables so difficult that representations thereof are hard to find.

The reduced phase space of general relativity with standard matter is hard to construct
explicitly. However, on can combine two independent recent developments in order to make
progress.

On the one hand, Brown and Kuchař have shown in a seminal paper [1] that there is hope
to construct observables if one adds pressure-free dust to the theory. This is because one can
then write the constraints in a deparametrized form5.

On the other hand, there is Rovelli’s relational formalism [2] for constructing observables
which we need in the extended form developed by Dittrich [3]. With this formalism one
can write the observables as an infinite series Ff ;T in terms of powers of the so-called clock
variables T and with coefficients involving multiple Poisson brackets between constraints C
and non-observables f such that the series is (formally) gauge invariant6. Remarkably [3, 4],
the map FT : f �→ Ff ;T is a Poisson homomorphism between the algebra of non-observables
f and the algebra of observables with respect to a certain Dirac bracket (which is uniquely
determined by the constraints and the functions T).

Now usually Dirac brackets make the Poisson structure so complicated that one cannot find
representations thereof. However, as observed in [4], if the system deparametrizes, if one uses
as clocks T the configuration variables conjugate to the momenta P in C = P + H and if one
considers functions f which do not depend on T , P 7 then FT becomes a Poisson isomorphism.
Moreover, the functions H in C = P + H become physical, conserved Hamiltonian densities
which drive the physical evolution of the observables. This implies that a reduced phase space
quantization strategy becomes available, since to find representations of the Ff,T is as easy
as for the f . The only non-trivial problem left is to find representations which support the
physical Hamiltonian8.

In [5] these two independent observations were combined and the algebra of classical
physical observables was constructed explicitly by adding a general scalar field Lagrangian
without potential to the Einstein–Hilbert and standard model Lagrangian. It turns out that
among the, in principle, infinite number of physical observables, there is a unique, positive
Hamiltonian selected.

In [6, 7] that framework was further improved by using as specific scalar field the pressure-
free dust of Brown and Kuchař. The corresponding Hamiltonian is positive, reduces to the

5 Given a system of constraints CI on a phase space, deparametrization means that one can find local coordinates
in the form of two mutually commuting sets of canonical pairs (qa, pa), (T

I , πI ) such that the constraints can be
written in the locally equivalent form CI = πI + HI where the HI only depend on the (qa, pa).
6 It is manifestly gauge invariant in an open neighbourhood of the phase space if the series converges with non-zero
convergence radius which has to be checked.
7 This is no loss of generality because P can be eliminated in terms of the other degrees of freedom via the constraints
and T is pure gauge.
8 The caveat is that the deparametrization and thus the reduced phase space quantization is generically only locally
valid in phase space. Thus, the globally valid Dirac quantization programme should be developed further in parallel.
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ADM energy far away from the sources and to the standard model Hamiltonian on flat space.
It generates equations of motion for the observables associated with the non-dust variables
that are in agreement with the Einstein equations for the system without dust, up to small
corrections which originate from the presence of the dust. In particular one can develop a
manifestly gauge-invariant cosmological perturbation theory to all orders which was shown
to reproduce the linear order as developed by Mukhanov, Feldmann and Brandenberger [8].
The dust serves as a material reference system which we couple dynamically as fields rather
than assuming the usual test observers in order to give the Einstein equations (modulo gauge
freedom) the interpretation of evolution equations of observable quantities. This leads to in
principle observable deviations from the standard formalism which however decay during the
cosmological evolution.

In this paper we quantize the algebra of observables constructed in [6]. Actually there
is not much to do because that algebra is isomorphic to the Poisson algebra of general
relativity plus the standard model on R × S where S is the dust space manifold. Hence
we can take over the kinematical Hilbert space representation that is used in loop quantum
gravity (LQG) [9, 10]. For recent reviews on LQG see [11]; for books see [12]. One
may object that this representation is less natural here than in usual Dirac-quantized LQG
where it is uniquely selected on physical grounds [13, 14], namely one wants to have a
unitary representation of the spatial diffeomorphism group of the coordinate manifold X
which is a gauge group (passive diffeomorphisms) there. Since all our observables are gauge
invariant, we have no diffeomorphism gauge group any longer; hence, that physical selection
criterion is absent. However, it is replaced by a different one. It turns out that the physical
Hamiltonian has the diffeomorphism group of the dust label space as the symmetry group.
These diffeomorphisms change our observables, and they are active diffeomorphisms since
they map between physically distinguishable dust space labels. Thus we may apply the same
selection criterion.

Now the interesting remaining question is whether that representation allows us to
define the quantized version of the physical Hamiltonian. Maybe not surprisingly, it turns
out that the same techniques that allowed us to construct the quantum Hamiltonian constraint
[15] and the master constraint [16] in usual Dirac-quantized LQG can be used to define the
quantized physical Hamiltonian. This operator is positive, hence symmetric and upon taking
its natural Friedrich extension, it becomes self-adjoint. In order to preserve its classical, active,
spatial diffeomorphism symmetry it turns out that one has to define it in such a way that it
preserves the graph of a spin network function that it acts on. The techniques developed
in [17] can now be applied to show, using the semiclassical states introduced in [18], that
the physical Hamiltonian has the correct semiclassical limit on sufficiently fine graphs. In
fact, in order to get rid of the graph dependence one can use the generalization of LQG
to algebraic quantum gravity (AQG) [17]. This casts quantum gravity completely into the
framework of (Hamiltonian) lattice gauge theory [19, 20] with one crucial difference. There
is no continuum limit to be taken because we are in a background-independent theory with
active diffeomorphisms as symmetries.

The attractive feature of this reduced phase space approach is that we no longer need to
deal with the constraints: no anomalies can arise, no master constraint needs to be constructed,
no physical Hilbert space needs to be derived by complicated group-averaging techniques. We
map a conceptually complicated gauge system to the conceptually safe realm of an ordinary
dynamical Hamiltonian system. The kinematical results of LQG such as discreteness of spectra
of geometric operators now become physical predictions. This is a concrete implementation
of the programme outlined for the full theory in [21] and generalizes the reduced phase
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space techniques recently adopted for the loop quantum cosmology (LQC) truncation of LQG
[22–25], which is a toy model for the cosmological sector of LQG, to the full theory.

It ‘remains’ to analyse the physical Hamiltonian in detail since it encodes the complete
dynamics of general relativity coupled to the standard model. The following tasks should be
addressed in the future.

(1) Vacuum and spectral gap. For a start we note that the physical Hamiltonian does
not depend explicitly on an external time parameter. Our Hamiltonian system which
dynamically couples geometry and matter is a conservative system. This is in contrast
to QFT on curved and in particular time-dependent background spacetime metrics where
one quantizes matter propagating on an externally given background geometry. The
Hamiltonian of that QFT is not preserved and thus even the notion of a ground state or
vacuum as a lowest energy eigenstate becomes time dependent which leads to constant
particle creation problems, etc [26]. In our approach the notion of a vacuum state would
not suffer from those problems. This appears as a conceptual improvement although of
course the lowest eigenvalue of the Hamiltonian could be vastly degenerate. Also, the
minimum of the spectrum of the Hamiltonian might not lie in its discrete (more precisely,
pure point) part so that the ‘ground state(s)’ would not be normalizable.

(2) Scattering theory. With a physical Hamiltonian H at our disposal we can in principle
perform scattering theory, that is, we can compute matrix elements of the time evolution
operator U(τ) = exp(iτH). The analytical evaluation of those matrix elements is of course
too difficult but as in ordinary QFT we may use Fermi’s golden rule and expand, for short
time intervals τ , the exponential as U(τ) = 1H + iτH + O(τ)2. The matrix elements of
H seem hopeless to compute because it involves square roots of a positive self-adjoint
operator for whose precise evaluation we would need the associated projection-valued
measure which of course we do not have. However, since in scattering theory initial
and final states are excitations over a ground state which we do not know exactly but
presumably can approximate by kinematical coherent states, one can invoke the technique
developed in [17] to expand the square root of the operator around the square root of its
expectation value. We will do this in a future project. Of course there are issues to be
resolved such as those of the existence of asymptotic states [27] and how one implements
them in our formalism, see e.g. [28] for some basic ideas.

(3) Anomalies. As already mentioned, the Hamiltonian H has a huge symmetry group of
which Diff(S) is a subgroup and it is easy to implement this symmetry at the quantum
level. However, there is another infinite classical, Abelian symmetry group N which
is generated by the Hamiltonian density functions H(σ) and in terms of which the
Hamiltonian reads H = ∫

S d3σH(σ). Classically one has {H(σ),H(σ ′)} = 0 which
of course implies classically that {H(σ), H} = 0. The Lie algebra of the total classical
symmetry group thus consists of infinitesimal active diffeomorphisms and infinitesimal
transformations generated by the H(σ). The latter form an Abelian Poisson ideal and
thus N is an Abelian invariant subgroup in the total symmetry group which hence is a
semidirect product G = N � Diff(σ ). Presumably, in the naive quantization of H that we
consider as a preliminary proposal in this paper, the latter symmetry is explicitly broken,
or anomalous although semiclassically it is preserved. In order to reinstall it, one can try
to make use of renormalization group techniques associated with the so-called improved
or perfect actions [29].

(4) Lattice numerical methods. It transpires that within the framework proposed here many of
the conceptual problems of canonical quantum gravity have been solved and the technical
tasks have been simplified and reduced to a detailed analysis of the operator H, of course,
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at the price to have introduced additional, albeit unobservable, matter as a material
reference system and a possibly only locally (in phase space) description. Since H is a
complicated operator which is formulated in terms of lattice like variables especially in
the AQG version, it is natural to use Monte Carlo methods in order to study the operator
numerically.

(5) QFT on curved spacetimes and standard model. It is widely accepted that the framework
of QFT on curved spacetimes [26] should be an excellent approximation to quantum
gravity whenever the metric fluctuations are small. In particular, when the background
spacetime is Minkowski, then the standard model must be reproduced. Besides that, one
would like to see whether our background-independent lattice theory which is manifestly
UV finite and non-perturbative can explore the non-perturbative sector of the standard
model such as QCD. Another interesting question is whether our explicitly geometry-
mater coupled system can lead to an improved understanding of the Hawking effect due
to the possibility of taking care of backreaction effects.

(6) Effective action, universality, ambiguities. Our framework presents a canonical
quantization of the field theory underlying the Einstein Hilbert action plus the standard
model action. Now computations within perturbative QFT and also string theory suggest
that the effective action9 for gravity is an extension of the Einstein–Hilbert Lagrangian by
higher derivative terms and an often asked question is whether one should not quantize
these more general actions. There are several remarks in order.

(A) The effective action is a complicated, often even non-local, action which takes care of
all higher loop diagrams obtained from a simple bare action. It looks like a classical
action but it actually encodes all quantum fluctuations. Therefore, it is inappropriate
to quantize that classical action anew; it would not produce the same quantum theory
as the bare action.

(B) Still one could just add all possible higher derivative terms from the outset. While
one can canonically quantize such theories by the Ostrogradsky formalism, this leads
in general to a drastic increase in the number of degrees of freedom [30] due to the
appearance of higher time derivatives.

(C) In the Euclidean formulation of QFT on Minkowski as a path integral one entertains
a related (Wilson) notion of effective action as the action that one obtains when
integrating out degrees of freedom labelled by (in Fourier space) momenta above a
certain energy scale10. This also produces various higher derivative terms at lower
energies as compared to the bare action which is defined at infinite energy. Now the
couplings of the bare action also are in principle unknown, however, for many theories
that does not matter due to a phenomenon called universality. The couplings of the
higher derivative terms depend on the energy scale and a coupling is called relevant,
marginal or irrelevant, respectively, if it grows, remains constant or decreases in

9 There are several loosely equivalent definitions for the effective action. The notion we mean here is the following.
Consider first a renormalizable theory. Given a defining action with a finite number of finite but unknown couplings
and masses (parameters) one can perform perturbation theory and discovers, within a given regularization scheme,
that the parameters are to be altered by functions of the distance cutoff which diverge in the limit of vanishing cutoff
in order to avoid singularities in loop diagrams. If one does this order by order then one ends up with the so-called
bare action which produces finite higher loop diagrams to all orders. The effective action is a vehicle that produces
the same scattering amplitudes or n-point functions as the bare action but of which one only needs to compute tree
diagrams (no loops). The definition for a non-renormalizable theory such as gravity is the same, just that then number
of parameters is infinite. In renormalizable theories a finite number of experiments is sufficient to fix the unknown
parameters while non-renormalizable theories have no predictive power.
10 That energy scale has nothing to do with a perturbative cutoff; we are talking here about an already well-defined
theory.
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the low energy limit. A universal theory is such that all but a finite number of
the couplings are irrelevant. One may ask whether one can see universality also
in the canonical formalism; however, there are several obstacles in answering this
question. First of all, the Euclidean formulation uses a Wick rotation which is only
possible for background-dependent theories where the background has a presentation
with an analytic dependence on the time coordinate. In quantum gravity the metric
becomes an operator; hence, Wick rotation and therefore a Euclidean formulation is
not possible. One should therefore define the Wilsonian effective action directly in
the Hamiltonian (Lorentzian) formulation, however, that has not been done so far.

It seems to us that in order to make progress on this kind of question one should first
try to define a Hamiltonian notion of effective action, see [31] for a possible direction.
Then, if the symmetry arguments mentioned under (2.3) are insufficient in order to fix
the quantization (discretization) ambiguities in the definition of H, possibly universality
studies may lead to further understanding.

(7) Singularity avoidance. In quantum gravity we expect or want to resolve two types of
singularities. First, QFT kind of short-distance singularities which come from the fact that
in interacting field theories one has to deal with products of operator-valued distributions.
Second, classical general relativity kind of singularities which are simply a feature of the
Einstein equations to predict that generically spacetimes are geodesically incomplete. An
analytical measure for such spacetime singularities are typically divergences of curvature
invariants.

Now as shown in [15], UV-type of singularities are absent at the non-gauge-invariant
level, specifically, the quantum constraints are densely defined. In [21] it was discovered,
in the context of usual LQG, that expectation values of non-gauge-invariant curvature
operators with respect to non-gauge-invariant coherent states that are peaked on a
classically singular (FRW) trajectory remain finite as one reaches the singularity, thus
backing up the much more spectacular results of [22–25] which are at the level of the
physical Hilbert space albeit for a toy model and not the full theory.

While these are encouraging results, they are at the kinematical level only and thus
are inconclusive. However, with the technology developed in this paper we can transfer
both results literally and with absolutely no changes to the physical Hilbert space. As
far as the spacetime singularity resolution is concerned, this is still not enough because
the coherent states that we are using, while being now physical coherent states, are not
adapted to the physical Hamiltonian and thus may spread out under the quantum dynamics
generated by U(τ). In other words, given gauge-invariant initial data m(0) and a coherent
state ψ0 that we prepare at τ = 0 and which is peaked on m(0), it may be that after
short time τ the state U(τ)ψ0 is very different from the state ψτ which is peaked on the
classical trajectory τ �→ m(τ). Therefore, in order to come to conclusions one should
rather study expectation values with respect to the states U(τ)ψ0 rather than ψτ . In
addition, one should try to construct dynamical coherent states for which such a spread
does not happen. However, this is a difficult task already for the unharmonic oscillator.

The plan of the paper is as follows.
In section 2 we review the essentials of [6, 7] in order to make this paper self-contained.

This will lead to the reduced phase space and the classical physical Hamiltonian.
In section 3 we quantize the reduced phase space using methods from LQG and obtain

the physical Hilbert space almost for free. Then we implement the physical Hamiltonian on
that Hilbert space. We do this both for LQG and the AQG extension.

In section 4 we summarize and conclude.
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2. Review of the Brown–Kuchař and relational framework

2.1. Brown–Kuchař Lagrangian

In [1] Brown and Kuchař add the following Lagrangian to the Einstein–Hilbert and standard
model Lagrangian11 on the spacetime manifold M:

SD = −1

2

∫
M

d4X
√

| det(g)|ρ[gμνUμUν + 1], (2.1)

where the one-form U is defined by U = −dT + Wj dSj and the index j takes values 1, 2, 3
while μ, ν take values 0, 1, 2, 3. The action SD is a functional of the fields ρ, gμν, T , Sj ,Wj .
Here T , Sj have dimension of their length, Wj is dimensionless and thus ρ has
dimension cm−4.

As shown in [6, 7], in performing the Legendre transformation of (2.1) according to the
3 + 1 split of M ∼= R × X into time and space, one introduces momenta P,Pj , I, I

j

conjugate to T , Sj , ρ,Wj , respectively, next to the momenta P ab, p, pa conjugate to qab, n, na ,
respectively, where one encounters several primary constraints. Here one has introduced a
foliation of M, that is, a one-parameter family of embeddings t �→ Xt : X → Xt , where Xt are
the leaves of the foliation and the coordinates on X are denoted by xa, a = 1, 2, 3. The vector
field ∂tX

μ
t = nnμ + naX

μ
t,a can be decomposed into components normal and tangential to the

laves where nμ is the future-oriented normal. The functions n, na are the usual lapse and shift
functions and qab = gμνX

μ
,aX

ν
,b defines the three-metric intrinsic to X . The aforementioned

primary constraints are

Z =: I = 0, Zj := I j = 0, Zj := Pj + PWj = 0,

z := p = 0, za := pa = 0.
(2.2)

The stability analysis of these constraints with respect to the corresponding primary
Hamiltonian leads to the following secondary constraints:

ctot = c + cD, cD = 1

2

[
P 2

ρ
√

det(q)
+ ρ

√
det(q)(1 + qabUaUb)

]
ctot
a = ca + cD

a , cD
a = P

[
T,a − WjS

j
,a

]
c̃ = n

2

[
− P 2

ρ2
√

det(q)
+

√
det(q)(1 + qabUaUb)

] (2.3)

and six more equations which can be solved for the Lagrange multipliers corresponding to
constraints Zj ,Zj and which we do not display here. Here Ua = −T,a + WjS

j
,a = −cD

a

/
P

and c, cD
a respectively are the contributions of geometry and standard matter to the usual

Hamiltonian and spatial diffeomorphism constraint, respectively.
The stability analysis of the secondary constraints with respect to the primary Hamiltonian

which is a linear combination of the constraints (2.2) and the first two constraints in (2.3) reveals
that there are no tertiary constraints. Moreover, the classification of the sets of constraints into
the first and second-class shows that the constraints z, za, c

tot, ctot
a are first class while, roughly

speaking, the pairs (Z, c̃), (Zj , Z
j ) form second class constraints with non-degenerate matrix

11 Usually Lorentz symmetry breaking is discussed at the Lagrangian level before discussing the phase space and
constraint structure of the system. In that sense, our system is perfectly Lorentz invariant (more precisely, spacetime
diffeomorphism invariant). The Brown–Kuchar Lagrangian which is our starting point is a bona fide spacetime
diffeomorphism-covariant Lagrangian scalar density. With respect to the reduced phase space, which we discuss
below, it is physically completely obvious that different observers describe the same physics in different terms (rods
and clocks) and one would therefore not expect the reduced action to be ‘label space’ (in our case, dust space)
diffeomorphism invariant, see our companion work [6].
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formed by their mutual Poisson brackets. Hence, to proceed, one passes to the corresponding
Dirac bracket and solves the second-class constraints explicitly by setting

I := 0, I J := 0, Wj := −Pj

P
, ρ2 := P 2

√
det(q)

[qabUaUb + 1]. (2.4)

Fortunately, the Dirac bracket reduced to the geometry variables qab, p
ab and the remaining

matter variables is identical to the original Poisson bracket.
After using (2.4) and solving z = za by identifying lapse and shift as Lagrange

multiplicator functions respectively we are left with the first-class constraints

ctot = c + cD, cD = −
√

P 2 + qabcD
a cD

b

ctot
a = ca + cD

a , cD
a = PT,a + PjS

j
,a.

(2.5)

In principle we could have chosen the other sign to solve the quadratic equation for ρ in
(2.4) but the detailed analysis in [6] reveals that the other choice would produce the Einstein
equations with the wrong sign in the limit of vanishing dust fields. In particular one must
choose ρ, P < 0 so that the additional matter enters with a negative sign into the Hamiltonian
constraint. This has the important consequence that c > 0 thus enables close to flat space
solutions12.

As far as the physical interpretation of the additional matter is concerned we just mention
that its Euler Lagrange equations imply that the vector field Uμ = gμνUν is a geodesic in
affine parametrization, that the fields Wj, S

j are constant along the geodesic and that the
field T defines proper time along each geodesic. It follows that Sj = σ j = const. labels
a geodesic while T = τ = const. is an affine parameter along the geodesic. Furthermore,
its energy–momentum tensor is that of a perfect fluid with vanishing pressure and negative
energy density13; hence, it is pressure-free phantom dust. It serves as a dynamical, material
reference system which also plays the role of a phantom in the literal sense because it is not
directly visible in the final picture while leaving its fingerprint on the dynamics.

2.2. Brown–Kuchař mechanism

The observation of Brown and Kuchař was that the constraints (2.5) can be written in a
deparametrized form. This holds in more general circumstances, namely whenever we consider
scalar fields without potential and mass terms as pointed out in [5]. The observation consists
in the fact that the only appearance of T , Sj in ctot is in the form cD

a . However, this means that
using ctot

a = 0 we may write (2.5) in the equivalent form:

ctot = c + cD, cD = −
√

P 2 + qabcacb

ctot
a = ca + cD

a , cD
a = PT,a + PjS

j
,a,

(2.6)

12 As explained in the text, the energy density of the observable matter is supposed to obey the usual energy conditions.
This is not in contradiction with the vanishing total Hamiltonian constraint and nowhere vanishing non-positive dust
energy conditions since the gravitational contribution to the energy density is indefinite but of course excludes a
strictly flat spacetime in the absence of observable matter (‘vacuum’) which in turn is not in contradiction to the
experiment (Minkowski space is only a local approximation to the metric in our universe). The presence of the dust
leads to arbitrarily small, nowhere vanishing corrections where ‘small’ means arbitrarily small in any metric topology.
These do not exclude vacuum with respect to observable matter but rather that it is not possible to have both a flat
spacetime and no observable matter as already said above. Addressing stability, we are only concerned with the
stability of the reduced phase space with respect to the physical Hamiltonian which is manifestly positive and thus
renders the system stable.
13 We are not violating any energy conditions because we still require that the energy momentum tensor of observable
(standard) matter plus dust satisfies the energy conditions. In fact, it would be sufficient if the energy conditions are
satisfied by the standard matter alone because in the final analysis the dust completely disappears while the equations
of motion for observable matter and geometry assume their standard form plus small corrections, see [6, 7].
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where equivalent means that in (2.5) and (2.6) the new constraints c′ can be expressed in terms
of the old ones c as c′

I = MJ
I cJ where MJ

I is a matrix non-singular on the constraint surface
defined by the constraint cI. This means the constraints in equation (2.6) define the same
constraint surface and the same gauge-invariant functions.

We can now solve the first equation in (2.6) for P, remembering that P < 0 and the second
equation for Pj, making the assumption that the matrix S

j
,a is everywhere non-degenerate14

with inverse Sa
j . The result is

c̃tot = P + h, h = +
√

c2 − qabcacb

c̃tot
j = Pj + hj , hj = Sa

j [ca − hT,a].
(2.7)

In solving (2.6) in terms of P we find at an intermediate step that P 2 = c2 − qabcacb. Hence,
while the argument of the square root in (2.7) is not manifestly positive, it is constrained to
be positive.

Note that the function h is independent of Sj , T while hj still depends on both. Hence,
we have achieved only partial deparametrization. However, this will be sufficient for our
purposes. An important consequence is that the constraints in the form (2.7) are mutually
Poisson commuting. This follows immediately from an abstract argument15 [32], although
one can also verify this by direct computation [1]. This implies in particular that the h(x)

are mutually Poisson commuting while the h(x) do not Poisson commute with the hj (y) and
neither do the hj (y) among each other.

2.3. Relational framework

2.3.1. General theory. We first consider a general system with first-class constraints CI with
the arbitrary index set I and later specialize to our situation.

Consider any set of functions T I on phase space such that the matrix defined by the Poisson
bracket entries MJ

I := {CI , T
J } is invertible. Consider the equivalent set of constraints

C ′
I :=

∑
J

[M−1]JI CJ (2.8)

such that {C ′
I , TJ } ≈ δJ

I where ≈ means = modulo terms that vanish on the constraint surface.
Let XI be the Hamiltonian vector field of C ′

I and for any set of real numbers βI

Xβ :=
∑

I

βIXI . (2.9)

For any function f on phase space, we set

αβ(f ) := exp(Xβ) · f =
∞∑

n=0

1

n!
Xn

β · f. (2.10)

14 This is a classical restriction of the same kind as det(q) > 0. As far as the dynamical stability of the condition
is concerned, the expression det(Sj

,a) Poisson commutes with the function h whose observable is the Hamiltonian

density of the physical Hamiltonian. Therefore, if the condition det(Sj
,a) > 0 is satisfied on the inital hypersurface

it remains stable under the dynamics. It is also obviously spatially diffeomorphism invariant. Note that we use the
equivalent Hamiltonian constraint c̃ = P + h which is a linear combination of the original constraints with phase
space-dependent non-singular coefficients.
15 The constraints (2.7) are of first class. Hence their Poisson brackets are linear combinations of constraints. Since
the constraints are linear in the momenta P, Pj , their Poisson brackets are independent of P,Pj . Therefore, we
can evaluate the linear combination of the constraints that appear in the Poisson bracket computation in particular at
P = −h, Pj = −hj .

9
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Now let τ I be another set of real numbers and define

Of (τ) := [αβ(f )]αβ(T )=τ , (2.11)

where αβ(T ) = τ means αβ(T I ) = τ I for all I. As one can check, αβ(T I ) ≈ T I + βI so that
(2.11) is weakly (i.e. on the constraint surface) equivalent to

Of (τ) := [αβ(f )]β=τ−T . (2.12)

Note that after equating β with τ − T , the previously phase space independent quantities β

become phase space dependent; therefore, it is important in (2.12) to first compute the action
of Xβ with β treated as phase space independent and only then to set it equal to τ − T .

The significance of (2.12) lies in the following facts.

(1) The functions Of (τ) are weak Dirac observables with respect to the CI, that is,

{CI ,Of (τ)} ≈ 0. (2.13)

This remarkable property is due to the key observation that the XI weakly commute [3, 4].
(2) The multi-parameter family of maps Oτ : f �→ Of (τ) is a homomorphism from the

commutative algebra of functions on phase space to the commutative algebra of weak
Dirac observables, both with pointwise multiplication, that is,

Of (τ) + Of ′(τ ) = Of +f ′(τ ),Of (τ)Of ′(τ ) ≈ Off ′(τ ). (2.14)

The linear relation is obvious; the multiplicative one follows from the fact that

αβ(ff ′) = eXβ · ff ′ = eXβ · ff ′e−Xβ · 1 = [eXβ · f e−Xβ ][eXβ f ′e−Xβ ], (2.15)

where we used the identity

[eXβ · f e−Xβ ] =
∞∑

n=0

1

n!
[Xβ, f ](n) (2.16)

and where Xβ, f respectively are considered as derivation and multiplication operators
respectively on the algebra of functions on phase space so that [Xβ, f ] = Xβ · f . Here
[X, f ](0) = f, [X, f ](n+1) = [X, [X, f ](n)].

(3) The multi-parameter family of maps Oτ : f �→ Of (τ) is in fact a Poisson homomorphism
with respect to the Dirac bracket {., .}∗ defined by the second-class system CI , T

J , that
is,

{Of (τ),Of ′(τ )} ≈ {Of (τ),Of ′(τ )}∗ ≈ O{f,f ′}∗(τ ), (2.17)

where the Dirac bracket is explicitly given by

{f, f ′}∗ = {f, f ′} − {f,CI }[M−1]IJ {T J , f ′} + {f ′, CI }[M−1]IJ {T J , f }. (2.18)

Here we have used in the first step that both Of (τ),Of ′(τ ) have weakly vanishing brackets
with the constraints. Relation (2.17) follows from the fact that the map αβ is a Poisson
automorphism on the algebra of functions on phase space and the Poisson bracket must be
replaced by the Dirac bracket because in evaluating {Of (τ),Of ′(τ )} we must take care
of the fact that β = τ − T is phase space dependent. See [4] for the explicit proof.

The interpretation of Of (τ) is that it is a relational observable, namely it is the value of
f in the gauge β = T − τ .

10
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2.3.2. Specialization to deparametrized theories. For deparametrized theories it is possible
to find canonical coordinates consisting of two sets of canonical pairs (P I , TI ) and (qa, pa)

respectively (where the Poisson brackets between elements of the first and second set vanish)
such that the constraints CI can be rewritten in the equivalent form:

CI = PI + hI (q
a, pa), (2.19)

that is, they no longer depend on the variables T I . This is a very special case and most gauge
systems cannot be written in this form. Even with dust general relativity is a priori not of that
form; however, we will reduce it to that form with an additional manipulation below.

The simplifications that occur are now the following.

(A) We obviously have

MJ
I = {CI , T

J } = δJ
I ; (2.20)

therefore, C ′
I = CI and we do not have to invert a complicated matrix.

(B) By the same argument as in the footnote after (2.7) we have {CI , CJ } = 0 identically
on the full phase space, not only on the constraint surface which of course implies that
[XI ,XJ ] = 0; the Hamiltonian vector fields of the constraints are mutually commuting.
It also follows that {hI , hJ } = 0 and thus {CI , hJ } = 0 for all I, J which means that the
hI are already Dirac observables.

These simplifications mean that all the previous weak equalities become strong ones, i.e.
identities on the full phase space. The Dirac observable associated with TI

OTI
(τ ) = [αβ(T I )]αβ(T )=τ = τ I (2.21)

is simply the constant (on phase space) function τ I . The momenta PI are already Dirac
observables; however, they can be expressed in terms of qa, pa via the constraints. Moreover,
since Oτ is a homomorphism we have on the constraint surface

PI = OPI
(τ ) = −OhI

(τ ) = −hI (Oqa (τ ), Opa (τ )) =: −HI . (2.22)

In fact we have hI = HI because hI is already a Dirac observable.
The reduced phase space (where the constraints hold and where the gauge transformations

have been factored out) is therefore coordinatized by the functions

Qa(τ) = Oqa (τ ), Pa(τ ) = Opa
(τ ) (2.23)

and in what follows we concentrate on functions f which only depend on qa, pa . On such
functions the Dirac bracket reduces to the Poisson bracket since {TI , f } = 0 for all I. Therefore,
the reduced map Oτ : f �→ Of (τ) is now a multi-parameter Poisson automorphism with
respect to the Poisson bracket. In particular we note

{Pa(τ),Qb(τ)} = {Opa
(τ ),Oqa (τ )} = O{pa,qb}(τ ) = Oδb

a
(τ ) = δb

a (2.24)

which means that the reduced phase space has a very simple symplectic structure in terms of
the coordinates Pa := Pa(0),Qa := Qa(0) which in fact form a conjugate pair. It is this fact
which makes reduced phase space quantization feasible as observed in [4].

It seems that we have trivialized everything. However, this is not the case as we must
interpret the τ dependence of our observables. We note first of all that on functions f

independent of T I , PI formula (2.12) reads explicitly

Of (τ) = ατ (f ) = exp(Xτ ) · f =
∞∑

n=0

1

n!
Xn

τ · f, (2.25)

where Xτ is the Hamiltonian vector field of the function Hτ = (τ I − T I )HI . Here we have
used that the XI on f reduce to the Hamiltonian vector field of hI and since hI is independent

11
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of PJ we may write Of (τ) in the above compact form. It is now a simple exercise to verify
that [4]

∂Of (τ)/∂τ I = {HI ,Of (τ)} (2.26)

which means that the strongly Abelian group of Poisson automorphisms ατ is generated by
the ‘Hamiltonians’ HI. Thus, if we interpret the TI as clocks then we have a multi-fingered
time evolution with Hamiltonians HI.

In quantum theory then one would like to select a suitable one-parameter family by
prescribing functions τ I (s) in terms of a single parameter such that the associated Hamiltonian
is positive and has preferred physical properties.

2.4. The reduced phase space of general relativity with dust

Now we specialize to our situation which is a special case of the general theory. This has
been previously done in detail, including proofs, in [5] and was also reviewed in [6]. Here we
summarize those results.

As previously mentioned, the Hamiltonian constraints in (2.7) are in deparametrized form;
however, the spatial diffeomorphism constraints are not. However, the idea is to exploit the fact
that the constraints (2.7) are mutually Poisson commuting so that one can perform the reduction
of the phase space in two steps. First we reduce with respect to the spatial diffeomorphism
constraint and then with respect to the Hamiltonian constraint. More precisely, consider
arbitrary functions β0, βj on X and denote by Xβ the Hamiltonian vector field of the function

ctot
β :=

∫
X

d3σβμ(x)c̃tot
μ (x), (2.27)

where we have defined c̃tot
0 = c̃tot. Then for arbitrary functions τ 0(x) = τ(x), τ j (x) := σ j (x)

on X the general formula reads

Of (τ) = [αβ(f )]αβ(T )=τ , αβ(f ) = exp(Xβ) · f, (2.28)

where T 0(x) = T (x), T j (x) = Sj (x). We readily compute that αβ(T μ(x)) = T μ(x) + βμ(x)

so that

Of (τ) = [αβ(f )]β=τ−T . (2.29)

Now since Sj (x) Poisson commutes with c̃tot(y), we may rewrite (2.29) in the form

Of (τ) = [αβ0([α
β(f ))]
β=
σ−
S)]β0=τ−T . (2.30)

It turns out that one can compute the inner argument of (2.30) rather explicitly with an
immediate physical interpretation for judicious choices of the functions σ j (x). Namely, for
any scalar function f built from of T , P, qab, p

ab and the matter of the standard model, one
finds explicitly that for constant functions σ j

[α
β(f (x))]
β=
σ−
S = f (x)
S(x)=σ . (2.31)

In other words, whatever the value of x at which the function f is evaluated, (2.31) evaluates
it at the point xa

σ at which Sj (x) assumes the value σ j . Since we have assumed that S
j
,a is

everywhere invertible and thus defines a diffeomorphism between X and the range of Sj which
is the dust space S, the value xσ is unique. Formula (2.31) is proved explicitly in [6] and will
not be repeated here. Thus, (2.31) takes a simple form if we choose as f one of the following
functions on S:

T̃ := T , P̃ = P

J
, q̃jk := qabS

a
j Sb

k , p̃jk := pabS
j
,aS

k
,b

J
, (2.32)

12
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where

J := det(∂S/∂x) (2.33)

as well as

ãI
j := aI

bS
b
j , ẽ

j

I := ea
I S

j
,a

J
, ψ̃αI := ψαI ,

˜̄ψαI := ψ̄αI , φ̃I := φI , π̃ I := πI

J

(2.34)

for connections aI
b , electric fields ea

I , fermions ψαI , ψ̄αI and Higgs fields φI with conjugate
momentum πI of the standard model where I labels a basis in the Lie algebra of the appropriate
gauge group; see [15] for the canonical formulation of the standard model coupled to gravity
including appropriate background independent Hilbert space representations.

It is clear that the evaluation of the functions (2.32) and (2.34) at xσ is nothing else
than the pull back of the corresponding fields to S under the inverse of the diffeomorphism
Sj : X → S. We will denote the corresponding tensor fields on S as in (2.32) and (2.34).
Note that while these are scalars on X they are tensor densities of the same weight on S as
they have16 on X . In [1, 6] it is shown that one can arrive at the spatially diffeomorphism-
invariant functions (2.32) and (2.34) also by symplectic reduction with respect to the spatial
diffeomorphism constraint which is an alternative proof of the fact that canonical pairs without
tilde on X are mapped to canonical pairs on S. For instance

{p̃jk(σ ), q̃mn(σ
′)} = κδ

j

(mδk
n)δ(σ, σ ′), (2.35)

where κ = 16πGNewton. This also shows that it is sufficient to consider constant σ j rather
than arbitrary functions.

Returning to (2.30) we see that it remains to compute

Of (τ, σ ) := [αβ0(f (σ ))]β0=τ−T , (2.36)

where f is now an arbitrary function of the spatially diffeomorphism-invariant functions (2.32)
and (2.34). Now we can use the simplified theory of section 2.3.2 because c̃tot is written in
deparametrized form, i.e. it does not involve T , Sj any longer. Actually, formula (2.36) would
be awkward for non-constant functions τ because it depends on

ctot
τ =

∫
X

d3x(τ − T )(x)c̃tot(x), (2.37)

which is expressed on the space X rather than dust space S. However, for constant τ (2.37) is
the integral of a density of weight 1 and can then be written in the form

ctot
τ =

∫
S

d3σ(τ − T̃ )(σ )[P̃ + h̃](σ ), (2.38)

16 This statement sounds contradictory because of the following subtlety. We have e.g. the three quantities
P(x), P̃ (x) = P(x)/J (x), P̃ (σ ) = P̃ (xσ ). On X , P(x) is a scalar density while P̃ (x) is a scalar. Pulling
back P(x) to S = S(X ) by the diffeomorphism σ �→ S−1(σ ) results in P̃ (σ ). But pulling back P̃ (x) back to S
results in the same quantity P̃ (σ ). Since a diffeomorphism does not change the density weight, we would get the
contradiction that P̃ (σ ) has both density weights 0 and 1 on S. The resolution of the puzzle is that what determines the
density weight of P(x) on X is its transformation behaviour under canonical transformations generated by the total
spatial diffeomorphism constraint ctot

a = cD
a + ca , where cD

a , ca are the dust and non-dust contributions respectively.
After the reduction of ctot

a , what determines the density weight of P̃ (σ ) on S is its transformation behaviour under
([ca + PT,a]Sa

j /J )(xσ ) = c̃j (σ ) + P̃ (σ )T̃,j (σ ) and this shows that P̃ (σ ) has density weight 1.
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where

h̃(σ ) =
√

c̃(σ )2 − q̃jk(σ )c̃j (σ )c̃k)(σ )

c̃(σ ) = c

J
(xσ )

c̃j (σ ) = caS
a
j

J
(xσ ).

(2.39)

Note that e.g. c̃ is just the pull back of c and that one simply has to replace every tensor
without tilde by their pulled back image with tilde. Thus, constant τ is uniquely selected by
the requirement that ctot

τ is spatially diffeomorphism invariant.
It follows now from section 2.3.2 that

Of (τ, σ ) =
∞∑

n=0

1

n!
{Hτ , f (σ )}(n), Hτ =

∫
S

d3σ [τ − T ](σ )h̃(σ ) (2.40)

and that
d

dτ
Of (σ, τ ) = {H,Of (σ, τ )}, H =

∫
S

d3σ h̃(σ ). (2.41)

Since the h(x) are mutually Poisson commuting, it follows that also the h̃(σ ) are mutually
Poisson commuting so that

H(σ, τ) := αβ0(h̃(σ ))β0=τ−T = h̃(σ ) =: H(σ) (2.42)

is independent of τ and already a Dirac observable.
Note that the physical Hamiltonian H is positive. It enjoys the following symmetries.

Since it is an integral over a density of weight 1 it is invariant under diffeomorphisms of S.
Note that S is a label space for geodesics and not a coordinate manifold; hence, in contrast to
the passive diffeomorphism group Diff(X ), the group Diff(S) are active diffeomorphisms. In
particular, it follows that

{H, c̃j (σ )} = 0, (2.43)

which also is a consequence of having chosen constant τ , in which case the physical
Hamiltonian has a maximal amount of symmetry. Had we not chosen constant τ then the
physical Hamiltonian would not be a Dirac observable.

This also implies that

{H, Cj (σ )} = 0, C(σ, τ ) := αβ0(c̃j (σ ))β0=τ−T =: Cj(σ ) (2.44)

is actually independent of τ , although c̃j �= Cj . Note that

H(σ) =
√

C(σ, τ)2 − Qjk(σ, τ )Cj (σ )Ck(σ ), C(σ, τ ) := αβ0(c̃(σ ))β0=τ−T . (2.45)

The second symmetry of H is of course that

{H,H(σ)} = 0. (2.46)

Let us write for some scalar and vector test functions f, uj respectively

H(f ) :=
∫
S

d3σf (σ)H(σ), C(u) :=
∫
S

d3σuj (σ )Cj (σ ); (2.47)

then,

{C(u), C(u′)} = −κC([u, u′])

{C(u),H(f ′)} = −κH(u[f ′])

{H(f ),H(f ′)} = 0

(2.48)
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which shows that the symmetry generators generate an honest Lie algebra g in contrast to
the Dirac algebra underlying GR as was pointed out already in [1] and further examined in
[33]. That Lie algebra has a subalgebra generated by the C(u) and an Abelian ideal generated
by the H(f ); hence, it is not semisimple. The corresponding Lie group G = N � Diff(S)

is therefore the semidirect product of the Abelian invariant subgroup N to which the H(f )

exponentiate and the active diffeomorphism group of dust space.

2.5. Physical interpretation and comparison with unreduced formalism

The symmetry algebra g and the associated conservation laws play a crucial role in showing
[6] that the equations of motion for the canonical pairs of true degrees of freedom

(Qjk, P
jk); (

AI
j , E

j

I

); (�αI , �̄αI ); (�I ,�
I ) (2.49)

which are the images of the canonical pairs

(q̃jk, p̃
jk); (

ãI
j , ẽ

j

I

); (ψ̃αI ,
¯̃ψαI ); (φ̃I , π̃

I ) (2.50)

under αβ0(.)β0=τ−T at τ = 0 assume the standard form that they have in general relativity
without dust [34], with two important modifications. First, in usual general relativity without
dust the equations of motion generated by the canonical Hamiltonian h(n, 
n) = c(n) + 
c(
n)

which is a linear combination of the smeared Hamiltonian constraint c(n) = ∫
X d3xnc

and spatial diffeomorphism constraint 
c(
n) = ∫
X d3xnaca involve arbitrary lapse and shift

functions n, na on X which are independent of phase space. However, in our formalism
lapse and shift functions become dynamical functions17 on S, namely N = C/H and
Nj = −QjkCk/H . Second, without dust we still have constraints c = ca = 0 while we
have energy–momentum conservation laws H = ε, Cj = −εj where ε, εj are arbitrary
functions on S independent of τ . This turns dynamical lapse and shift into a function of
Qjk, εj /ε. The functions ε, εj express the influence of the dust on the other variables and
are the price to pay for having a manifestly gauge-invariant formalism rather than assuming
non-dynamical test observers that turn geometry and matter into observable quantities.

This concludes the classical analysis and the review of [6].

3. Reduced phase space quantization of general relativity

3.1. Hilbert space representation

Let us summarize the result of the previous section. By using the relational formalism we
can explicitly compute the reduced phase space of general relativity with dust. It is identical
to the unreduced phase space without dust with proper identification of X with S and of the
gauge-invariant canonical pairs (2.49) with the gauge-variant canonical pairs

(qab, p
ab); (

aI
b , e

b
I

); (ψαI , ψ̄αI ); (φI , π
I ) (3.1)

of geometry and standard matter. The constraints have disappeared, they have been solved
and reduced. Instead of a linear combination of constraints on the gauge-variant phase space
coordinatized by (3.1) which generates gauge transformations, there is a physical Hamiltonian
(2.41) which generates physical time evolution on the gauge-invariant phase coordinatized
by (2.49). From the classical point of view one should now simply solve those equations in
physically interesting situations. In [6, 7] we have done this in the context of cosmological

17 This is similar in spirit to [35] where one replaces lapse and shift test fields by hand by phase space-dependent
functions, carefully chosen (via Witten spinor techniques that enter the proof of the gravitational positive energy
theorem) so that the resulting Hamiltonian is positive, at least on shell.
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perturbation theory [6, 7] which is written in manifestly gauge-invariant form. This not only
reproduces the standard results [8] but will also allow us to investigate higher order perturbation
theory without running into problems with gauge invariance.

In the quantum theory we are looking for representations of the Poisson ∗-algebra
generated by (2.49) which supports a quantized version of the Hamiltonian H. The selection of
appropriate representations will be guided by the symmetry group G unveiled in the previous
section. First of all, since we consider fermionic matter we are forced to work with tetrads
rather four-metrics. We use the second-order formalism as displayed in [15] (that is, we write
the Einstein–Hilbert Lagrangian in terms of the spin connection of the tetrad which involves
second-order derivatives rather than using the first-order Palatini formalism) in order to avoid
torsion. This means that we formulate the geometry phase space in terms of su(2) connections
and canonically conjugate fields

(
AI

j , E
j

I

)
rather than in terms of the ADM variables Qjk, P

jk

where I is an su(2) index. This casts the geometry sector of the phase space into an SU(2)
Yang–Mills theory description. The price to pay is that there is an additional Gauss constraint
on the phase space (which has been reduced only with respect to the Hamiltonian and spatial
diffeomorphism constraint) given by

GI := ∂jE
j

I + εIJKAJ
j E

j

K + fermion terms (3.2)

just as for the matter Yang–Mills variables (we assume that the Cartan Killing metric is always
δJK by appropriate normalization of the Lie algebra basis).

The gauge field language suggests to formulate the theory in terms of holonomies
along one-dimensional paths and electric fluxes through two-dimensional surfaces, just as
in unreduced LQG. There one has a uniqueness result [13, 14] which says that cyclic
representations of the holonomy-flux algebra which implement a unitary representation of
the spatial diffeomorphism gauge group Diff(X ) are unique and are unitarily equivalent
to the Ashtekar–Isham–Lewandowski representation [9, 10]. In our case we do not have
a diffeomorphism gauge group but rather a diffeomorphism symmetry group Diff(X ) of the
physical Hamiltonian H. This is physical input enough to also insist on cyclic Diff(S) covariant
representations and correspondingly we can copy the uniqueness result.

Thus we simply choose the background-independent and active diffeomorphism-covariant
Hilbert space representation of LQG used extensively in [15] and we ask whether that
representation supports a quantum operator corresponding to H.

3.2. Subtleties with the Gauss constraints

Before we analyse this question in detail, we should mention a subtlety. When one rewrites
the geometry and standard matter contributions c, ca to the total Hamiltonian and spatial
diffeomorphism constraint in terms of the gauge theory variables, one can do this in G invariant
form (where G is the compact gauge group underlying the corresponding Yang–Mills theory)
only by introducing terms proportional to the Gauss constraint, see e.g. [12]. For instance, the
contribution to the spatial diffeomorphism constraint of a Yang–Mills field on the unreduced
phase space is given by

cYM
a = f I

abe
b
I − aI

ag
YM
I = c̃YM

a − aI
ag

YM
I , (3.3)

where f I
ab = 2∂[aa

I
b] +εIJKaJ

a aK
b is the curvature of the connection aI

a and εIJK are the structure
constants of the corresponding Lie algebra. The function (3.3) really generates Yang–Mills
gauge transformations; however, it is itself of course not Yang–Mills gauge invariant due to
the term proportional to the Gauss constraint

gYM
I = ∂ae

a
I + εIJKaJ

a ea
K. (3.4)
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Likewise, the geometry contribution cgeo to c contains a term proportional to g
geo
I [12] (however,

cYM does not). As far as the definition of the complete constraint surface is concerned, one can
drop the various Gauss law contributions to c, ca since we impose the Gauss laws independently
anyway. This gives an equivalent set of constraints which is such that c, ca are manifestly
invariant under Yang–Mills type of Gauss transformations. However, now the algebra of the
ctot, ctot

a only closes up to a term proportional to the various Gauss laws.
The question is now whether this spoils the argument that the constraints in the form (2.7)

are mutually Poisson commuting. In fact, we only can conclude that their Poisson brackets are
proportional to c̃tot, c̃tot

a and the various gYM
I while they must not depend on the dust momenta

P,Pj . This means that their Poisson brackets are proportional to a Yang–Mills gauge-invariant
linear combination of Gauss constraints. Hence, indeed the constraints c̃tot, c̃tot

a are Abelian
only on the constraint surface of the Gauss constraints.

This poses the question which consequence this has for the formalism developed in the
previous section. First of all, all relations that we have written there remain valid modulo
terms proportional to the Gauss constraints. Second, the physical Hamiltonian is manifestly
Yang–Mills gauge invariant, manifestly Diff(X ) invariant and invariant modulo the Gauss
constraints under N .

The strategy that we adopt is the following. In the presence of gauge fields we actually
work with the non-Gauss-invariant contributions to the spatial diffeomorphism constraints as
in (3.3) and with the non-Gauss-invariant contribution to cgeo such that algebra of Hamiltonian
and spatial diffeomorphism constraints closes without involvement of the Gauss constraints.
This makes the analysis of the previous section go through without modifications at the price
that the physical Hamiltonian is not Gauss invariant. When we quantize it turns out that one
can actually solve the various Gauss constraints explicitly by Dirac constraint quantization.
That is, the Hilbert space can be projected to the Gauss-invariant subspace which has an
explicitly known orthonormal basis given by the Gauss-invariant spin network functions
(and their analogue for the gauge group of the standard model). Therefore, on the Gauss-
invariant Hilbert space one can actually replace the CYM

j by C̃YM
j because the correction

term proportional to the Gauss constraint vanishes on the Gauss-invariant Hilbert space (upon
appropriate ordering of the Gauss constraint operator to the right so that no commutator terms
arise). Thus Cj is replaced by its Gauss-invariant analogue and similarly one can replace C by
its Gauss-invariant analog so that H and H become manifestly Gauss-invariant operators and
H should have the symmetry group G as well.

An alternative route would be to also reduce the phase space with respect to the Gauss
constraints, possibly using the framework of [36] and references therein.

3.3. Quantum Hamiltonian

3.3.1. Sign issues and strategy. Before we go into details we must worry about yet another
issue. As we have seen in the classical analysis, the expression H 2 = C2 − QJKCJ CK is
constrained to be non-negative. Actually we have seen this only for c2 − qabcacb but as we
showed

(C2 − QjkCjCk)(σ ) = ([c2 − qabcacb]/J )(xσ ) (3.5)

and J > 0 by assumption (we have imposed J �= 0 everywhere; hence either J > 0
everywhere or J < 0 everywhere by continuity and we choose the first option). However,
on the full, reduced phase space C2 − QjkCJ CK maybe indefinite. In the quantum theory
we therefore should derive, roughly speaking, a self-adjoint operator (valued distribution)
for H 2(σ ) and restrict the spectral resolution of the Hilbert space to the positive spectrum
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part. This has to be done for every σ . This may be impossible because the corresponding
spectral conditions could be incompatible. However, as already pointed out by Brown and
Kuchař [1], if we indeed manage to quantize H 2(σ ) in such a way that they are mutually
commuting18, then the corresponding spectral projections commute and the above requirement
is consistent. Unfortunately, it might not only be difficult to achieve commutativity of the
operators corresponding to the various H 2(σ ), but it will also be difficult to compute the
corresponding projection-valued measures.

Therefore, as a first step, in this paper we adopt the following strategy. Classically, in
the interesting part of the phase space we have C2 − QjkCjCk � 0. Therefore, on this part
of the phase space we have trivially C2 − QjkCjCk = |C2 − QjkCjCk|. Hence, on that part
of the phase space we have the identity

H =
√

|C2 − QjkCjCk| =
√

1
2 ([C2 − QjkCjCk] + |C2 − QjkCjCk|). (3.6)

The virtue of this rewriting is that both expressions, which are identical on the physically
interesting piece of the phase space, can be extended to the full phase space without becoming
imaginary. In the second version, the function actually vanishes on the unphysical part of the
phase space. In either form, the square root now makes sense in the quantum theory because
its argument is now a non-negative expression.

We remark that a discussion of similar sign issues and whether one should allow states
in the quantum theory, which violate the classical positivity of H 2(σ ) which is enforced by
a constraint of the form P 2 − H 2 = 0 and where H2 is not manifestly positive while P2

surely is, can be found for instance in [37]. There the authors argue that one should allow
negative energy states because otherwise one would exclude the tunnelling effects into the
classically not allowed regions which, as we know from quantum mechanical experiments,
do happen. What happens mathematically is that in the operator constraint method (Dirac
approach), one quantizes both P and H2 as self-adjoint operators on the kinematical Hilbert
space and then solves the quantum constraint. The elements of the corresponding physical
Hilbert space may have support in the classically not allowed region of the configuration space
(where they typically decay rather than oscillate) so that the expectation value of H 2 = P 2

becomes negative. This is possible only because the operator corresponding to P, while being
a quantum Dirac observable, does not descend to a self-adjoint operator on the physical Hilbert
space. In a strict reduced phase space quantization, one would have to restrict the physical
Hilbert space to states which have support only in the classically allowed region of the phase
space and this may well be the physically correct procedure. However, for the moment, as we
do not yet have sufficient control over the spectrum of H2, we comply with the conclusion of
[37] and do not make any restriction on the physical Hilbert space.

Thus, in this paper we therefore propose to quantize the first version of (3.6) which is
a classically valid starting point19. We then adopt a naive quantization strategy and are able
to construct a well-defined Hamiltonian operator. That quantization not necessarily has the
property that the quantized versions of the H 2(σ ) are mutually commuting and therefore the
operator constructed in this paper should only be considered as a preliminary step. However,
that operator has the following three properties. It is manifestly Gauss invariant, manifestly
Diff(S) covariant and has the correct classical limit in the sense of expectation values and
fluctuations with respect to coherent states. However, it maybe anomalous with respect to

18 More precisely, one has to demand that the projection-valued measures Eσ for the H 2(σ ) mutually commute in
order to avoid domain questions. Note that the Poisson commutativity of the H(σ) implies the Poisson commutativity
of the H 2(σ ) and vice versa.
19 A similar strategy was adopted for the quantization of the volume in LQG. Classically we have det(q) = det(E) > 0
but in order to give meaning to

√
det(q) in the quantum theory we must start from

√| det(E)|.
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the group N . In fact, the absence of that anomaly would be mathematically equivalent to
showing that the Dirac algebra of general relativity is implemented non-anomalously. We
stress, however, that the gauge symmetries of general relativity have been exactly taken
care of in the reduced phase space approach. We are talking here about a symmetry group
and not a gauge group. To break a local gauge group is usually physically unacceptable
especially in renormalizable theories where the corresponding Ward identities find their way
into the renormalization theorems. However, it may or may not be acceptable that a physical
symmetry is (spontaneously, explicitly, etc) broken. For instance, the explicit breaking of the
axial vector current Ward identity in QED, also called the ABJ anomaly, is experimentally
verified.

In the lack of a physical justification for why the N symmetry should be broken, we
view that potential anomaly as an indication that the quantization of the present paper has
to be improved. In fact, since we are effectively working with a background-independent
lattice gauge theory, it is useful to adopt strategies from lattice gauge theory in order to
restore symmetries on the lattice that are broken in a naive quantization. It turns out that
in fortunate cases one can restore the symmetry by making the operator quasi-non-local.
That is, in addition to next-neighbour interactions one has to consider next-to-next-neighbour
interactions, etc which makes the action non-local; however, the coefficients of those additional
interactions decay exponentially with the lattice distance. See e.g. [29] and references therein.

We consider the completion of this step as a future research programme. In the course of
that analysis we might even be able to fix the quantization (discretization) ambiguities, i.e. the
coefficients in front of the various nth neighbour contributions.

With this cautionary remarks out of the way, we can now consider a naive quantization
of the Hamiltonian which is strongly guided by analogous techniques developed for the
Hamiltonian and Master constraint of unreduced LQG [15, 16] so that these constructions are
also helpful in the present reduced phase space approach.

3.3.2. Naive quantization.

Classical regularization. We begin with some classical considerations and we focus on the
gravitational contributions to C,Cj and for C only on the Euclidean piece. For the matter
contributions and the Lorentzian piece the necessary, completely analogous manipulations can
be found in [17]. Consider a partition P of S into cubes � so that

H =
∑
�∈P

∫
�

d3σ

√
|C2 − QjkCjCk|(σ ). (3.7)

Let V0(�) be the coordinate volume of � in any coordinate system and let σ(�) be some
coordinate point inside � with respect to the same coordinate system. Then we can write (3.7)
as the limit, in which the partition becomes the continuum, of the following Riemann sum
approximation of the above integral:

H = lim
P→S

∑
�∈P

V0(�)

√
|C2 − QjkCjCk|(σ (�)). (3.8)

Using the classical identities

Qjk = E
j

I Ek
J δIJ

det(Q)
, E

j

I =
√

det(Q)e
j

I , (3.9)

where I, J, ... = 1, 2, 3 label a basis τI = −iσI (where σI denote the Pauli matrices) in su(2)
and e

j

I denotes the triad, it is not difficult to verify that

C2 = [Tr(B)]2, QjkCjCk = [Tr(BτI )]
2/4 =: C2

I . (3.10)
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Here we have introduced the magnetic field B
j

I = 1
2εjklF I

kl and have set Bj = B
j

I τI , ej =
eI
j τI , B = Bjej where eI

j denotes the cotriad. We may further write

H = lim
P→S

∑
�∈S

√
|C(�)2 − δIJ CI (�)CJ (�)|, (3.11)

where

C(�) :=
∫
�

d3σC(σ), CI (�) :=
∫
�

d3σCI (σ ). (3.12)

The strategy is now to quantize the objects (3.12) and to define

Ĥ := lim
P→S

∑
�∈S

√
|Ĉ(�)†Ĉ(�) − δIJ ĈI (�)†ĈJ (�)| (3.13)

provided the limit exists. For C(�) this has been done in the literature [15, 16] and we follow
the same strategy here. In fact we can treat both C,CI in a unified way. We have with τ0 := 12∫

�
d3σ Tr(Bτμ) =

∫
�

Tr(F ∧ eτμ) = 1

κ

∫
�

Tr(F ∧ {V (�), A}τμ), (3.14)

where

V (�) =
∫
�

d3σ
√

det(Q) (3.15)

is the physical volume of �. Actually there is a sign of det(e) involved in (3.15) but this is
cancelled in the squares that appear in (3.11).

The virtue of writing (3.14) in this form is that (3.15) can be quantized on the LQG Hilbert
space; hence, one replaces the Poisson bracket by the commutator divided by ih̄. Thus one is
left with the quantization of the connection A and its curvature F. This is the source of many
ambiguities already in unreduced LQG because A,F do not exist as operators, what exists
are holonomies along paths and loops respectively which can be used in order to approximate
A,F respectively. However, while classically there are infinitely many ways to do this with
the same continuum limit, in the quantum theory each choice leads to a different regularized
operator in unreduced LQG, see [15]. In unreduced LQG one can still argue that most of the
uncountably infinite number of choices are gauge-related under the spatial diffeomorphism
group and in fact spatial diffeomorphism invariance is used in order to carry out the limit
P → X in a specific operator topology [11, 15]. However, in reduced LQG the spatial
diffeomorphism group is no longer a gauge group; it is a symmetry group of the dynamics.
Therefore, these two arguments are no longer available and therefore the ambiguity issue
appears to be much worse in reduced LQG. This is the first indication that calls for the AQG
generalization.

In the next paragraph we will discuss to what extent those ambiguities persist in reduced
LQG, in the paragraph after that we use the AQG reformulation.

Reduced LQG: embedded graphs. We want to define the Hamiltonian operator Ĥ on the
Gauss-invariant Hilbert space of LQG which we will denote by H. This Hilbert space has
an orthonormal basis consisting of spin network functions Tγ,j,I where γ is a (semianalytic)
graph embedded into S, j = {je}e∈E(γ ) is a collection of non-vanishing spin quantum numbers
(one for each edge) and I = {Iv}v∈V (γ ) is a collection of Gauss-invariant intertwiners (one for
each vertex). There is a unitary action of the active diffeomorphisms on this Hilbert space
defined by

U(ϕ)Tγ,j,I = Tϕ(γ ),j,I . (3.16)
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In unreduced LQG the diffeomorphisms are considered as gauge transformations and therefore
the states (3.16) are all gauge related. In the reduced formalism of this paper the states
of the form are physically distinguishable. Therefore, it does not make physical sense to
construct diffeomorphism-invariant distributions which sometimes are used in the construction
of Hamiltonian or master constraint operators as already pointed out.

This last point has crucial bearing on the quantization strategy. If we want to preserve
the classical symmetry of the Hamiltonian operator under diffeomorphisms, then this operator
must be quantized in a graph non-changing way [38] on H. By this is meant the following.
Let Hγ be the closed linear span of spin network states over γ . Then H is the direct sum of
the Hγ , that is,

H = ⊕γHγ (3.17)

which shows that the physical Hilbert spaceH is non-separable. This is an important difference
with non-reduced LQG where the physical Hilbert space can be made separable if one extends
the spatial passive diffeomorphism group beyond the differentiable category [39]. This is a
second indication that one should possibly leave the strict realm of (reduced) LQG and pass
to another framework where non-separable Hilbert spaces can be avoided. This calls for the
AQG extension [17] which we discuss in the subsequent paragraph.

In any case, graph non-changing in the sense of [38] now means that the operator Ĥ
should preserve each Hγ separately! This appears as if we had to assume an infinite number
of conservation laws that the classical theory did not have which is a second point to worry
about and presents a third motivation to switch to the AQG extension of LQG. However, let
us see how far we can get within the usual formalism. To that end, we use the notion of a
minimal loop originally introduced in [28] and also used to some extent in [16].

Definition 3.1. Given a graph γ , consider a vertex v ∈ V (γ ) and a pair e, e′ ∈ E(γ ) of
distinct edges incident at v and with outgoing orientation. A loop αγ,v,e,e′ in γ starting at v

along e and ending at v along (e′)−1 is said to be minimal provided that there exists no other
loop in γ with the same properties and fewer edges traversed. The set of minimal loops in γ

with data v, e, e′ will be denoted by Lγ,v,e,e′ .

Note that the definition is background independent and diffeomorphism covariant.
Given a graph γ and a vertex v ∈ V (γ ) we define for μ = 0, 1, 2, 3

Ĉμ,γ,v := 1

�2
P |Tv(γ )|

∑
(e1,e2,e3)∈Tv(γ )

εIJK 1

|Lγ,v,eI ,eJ
|

∑
α∈Lγ,v,eI ,eJ

× Tr(τμA(α)A(eK)[A(eK)−1, V̂γ,v]), (3.18)

where Tv(γ ) is the set of ordered triples (i.e. order matters) of distinct edges of γ incident at
v taken with outgoing orientation, A(p) denotes the holonomy of the connection A along a
path p and

V̂γ,v = �3
P

√√√√√
∣∣∣∣∣∣ 1

48

∑
e1,e2,e3∈Tv(γ )

σ (e1, e2, e3)εLMNXL
e1
XM

e2
XN

e3

∣∣∣∣∣∣ (3.19)

is the projection of the volume operator [40] to20 Hγ for an infinitesimal neighbourhood of v.
Here σv(e1, e2, e3) is the sign of the determinant of the matrix formed by the tangents of those

20 The alternative volume operator [41] was ruled out in [42] as inconsistent with the classical Poisson bracket identity
(3.14). In unreduced LQG one could still say that the volume operator and the Poisson bracket identity are relations
among non-observable objects but this is no longer true in reduced LQG as considered here and hence the objection
[42] must be taken seriously.
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three edges at v and Xe denotes the right invariant vector field on SU(2) associated with the
copy of SU(2) coordinatized by A(e).

Finally we set

Ĥγ :=
∑

v∈V (γ )

√∣∣∣∣Pγ

[
Ĉ

†
γ,vĈγ,v − 1

4
Ĉ

†
I,γ,vĈI,γ,v

]
Pγ

∣∣∣∣, (3.20)

where Pγ : H → Hγ denotes the orthogonal projection and makes sure that Ĥ is not graph
changing, i.e. preserves Hγ . The dagger operation is that on H for the operator defined in
(3.18) using that entries of holonomies matrices are just multiplication operators and that V̂γ,v

is self-adjoint.
The operator Ĥ is now simply

Ĥ = ⊕γ Ĥγ . (3.21)

It is easy to check that it is diffeomorphism invariant:

U(ϕ)ĤU(ϕ)−1 = Ĥ (3.22)

for all ϕ. Moreover, it is manifestly Gauss invariant. One may ask what happened to the
limit P → S. The answer is that we define the operator Ĥ as in (3.22) and just check that its
expectation values with respect to suitable semiclassical states reproduce the classical function
Ĥ. Such states in particular must use sufficiently large and fine graphs in order to fill out S.
What the operator does on small graphs is irrelevant from the point of view of the classical
limit.

With the methods of [17] one should be able to verify that on such graphs the semiclassical
limit of the operator is correct. However, that calculation is of course graph dependent.

Reduced AQG: abstract (algebraic) graphs. One of the motivations for the AQG extension
of LQG is the graph dependence of the semiclassical calculations. The other is the necessarily
graph-preserving feature of diffeomorphism-invariant operators which appears to say that
there is an uncountably infinite number of conservation laws that the classical theory does
not have. Finally, the non-separability of the Hilbert space H even if S is compact without
boundary is disturbing. In a sense, to use all graphs is a vast over-counting of degrees of
freedom, at least from the classical perspective. To see this, suppose for simplicity that S
is topologically R

3 (or an open neighbourhood thereof) and thus can be covered by a single
coordinate system. Consider piecewise analytic paths which consist of segments along the
coordinate axes. Likewise, consider piecewise analytic surfaces which are composed out of
segments of coordinate planes. It is clear that the holonomies along those kind of paths and
fluxes through that kind of surfaces separates the points of the reduced phase space.

It is true that also in canonical QFT the quantum configuration space is always a
distributional enlargement of the classical configuration space. However, there it is never
the case that the label set of those fields is uncountable. For instance, in free scalar field theory
on Minkowski space the quantum configuration space consists of Schwartz distributions rather
than smooth functions. The label set of the fields consists of test functions of rapid decrease
which are dense in the Hilbert space of square integrable functions on R

3 and there exists
a countable orthonormal basis of that Hilbert space consisting of Schwarz functions (e.g.
Hermite functions times a Gaussian). Thus, the quantum fields are tested by a countable set of
test functions and an orthonormal basis in the QFT Hilbert space is labelled by that countable
set. In LQG on the other hand the quantum connections are tested by all graphs which is an
uncountable set and states over different graphs are orthogonal. So the situation is completely
different which seems to be the price of having a diffeomorphism covariant theory [13, 14].
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One could of course restrict the labels to those mentioned above but these would not be
preserved by diffeomorphisms. It is true that the diffeomorphic image of a coordinate segment
can be approximated by coordinate segments; however, the length of say a rotated segment
when approximated by a staircase will differ largely from the original length. The same
happens for areas of surfaces. The only chance that this does not happen is for observables
that are integrals over three-dimensional regions as pointed out in [43].

To make progress on those issues, we therefore will restrict attention to operators that
come from integrals over regions of S such as the volume operator or the Hamiltonian operator.
This does not mean that one cannot construct length and volume operators, one just has to
define them in an indirect way. In fact, we will only consider quantizing functions which
are Diff(S) invariant. The motivation for doing this is that in physics we do not specify
spatial regions by considering a 3D subset R of S and define, say, a Diff(X )-invariant volume
functions (i.e. a function invariant under passive diffeomorphism starting from the unreduced
formalism) by

V (R) :=
∫
X

d3xχR(S(x))
√

det(q)(x), (3.23)

where χR denotes the characteristic function of the set R. Rather we use observable matter for
doing this. To be sure, (3.23) is Diff(X ) invariant, being the integral of a scalar density over
all of X . In fact, we can pull back this expression to S and obtain

V (R) =
∫
S

d3σχR(σ )
√

det(q̃)(σ ) =
∫

R

d3σ
√

det(q̃)(σ ), (3.24)

where q̃ = (S−1) ∗ q which would be a mathematically natural object to consider in the
reduced theory (after further applying αβ0(.)β0=τ−T ). It is, however, not Diff(S) invariant.
However, from the point of view of observation one would rather like to consider an object of
the form

V (I) :=
∫
X

d3xχI (φ(x))
√

det(q)(x), (3.25)

where I is a subset of the real axis and φ is a scalar field. Note that (3.25) is Diff(X ) invariant
but it is not a Dirac observable yet. It measures the volume of the subset of X in which φ has
a range in I. Now we apply the map Oτ and immediately obtain

OV (I)(τ, σ ) :=
∫
S

d3σχI (�(τ, σ ))
√

det(Q)(τ, σ ), (3.26)

where �(τ, σ ) = Oφ(x)(τ, σ ) (for any x) is the Dirac observable associated with φ. Curiously,
(3.26) is a Dirac observable and it is Diff(S) invariant. It measures the physical volume
of the region in S where the physical scalar field � ranges in I. The argument shows that
Diff(S)-invariant observables naturally arise from the point of the unreduced theory and from
operational considerations.

Having motivated to consider only Diff(S)-invariant observables we are now ready to
consider the AQG framework. Since for such observables the coordinate system plays no
role we generalize from embedded to non-embedded graphs and the above argument shows
that infinite cubic algebraic graphs should be sufficient although a generalization to arbitrary
countable algebraic graphs as sketched in [17] would be desirable21. In this paper we will just
consider the cubic graph for simplicity.

21 The idea would be to consider the most general such graph which is the maximal algebraic graph. This is an
algebraic graph with a countably infinite number of vertices and with a countably infinite number of edges between
each pair of vertices including loops. This generalizes the notion of a complete graph which is a graph in which a
single edge connects each pair of vertices.
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At the algebraic level the notion of Diff(S) and even of S itself is meaningless. Note that
in AQG the infinite algebraic graph is a fundamental object. This fundamental graph does not
change. What does change under the dynamics are subgraphs of the algebraic graph. In other
words, subgraphs of the fundamental algebraic graph are not preserved under the quantum
dynamics22. The definition of Ĥ in AQG is much simpler and no longer involves the projection
operators Pγ , so we do not have the awkward conservation laws any longer. In fact, there is no
dependence on any algebraic subgraph whatsoever. In complete analogy23 to [17] it is given
by the following list of formulae:

Ĉμ,v := 1

24�2
P

∑
s1,s2,s3=±1

s1s2s3ε
I1I2I3 Tr(τμA(αv;I1s1,I2s2)A(ev;I3s3)[A(ev;I3s3)

−1, V̂v]), (3.27)

where ev;Is is the edge beginning at v in the positive (s = 1) or negative (s = −1) I direction
and αv;Is,J s ′ is the unique minimal loop in the cubic algebraic graph with data v, ev;Is , ev;J s ′ .
Formula (3.27) is actually the specialization of (3.18). The operator V̂v is the algebraic volume
operator

V̂v = �3
P

√√√√√
∣∣∣∣∣∣ 1

48

∑
s1,s2,s3=±1

s1s2s3εIJKεLMNXL
ev;Is1

XM
ev;J s2

XN
ev;Ks3

∣∣∣∣∣∣. (3.28)

Finally

Ĥ :=
∑

v

√∣∣∣∣Ĉ†
0,vĈ0,v − 1

4
Ĉ

†
I,vĈI,v]

∣∣∣∣, (3.29)

where the sum is over all of the infinite number of vertices of the algebraic graph. The operator
(3.29) is manifestly Gauss invariant.

The Hilbert space of AQG is the infinite tensor product (ITP) of Hilbert spaces
L2(SU(2), dμH ), one for each edge of the graph (this can be generalized to defining different
ITPs that come into play when constructing Gauss-invariant states). This Hilbert space is not
separable but it is a direct sum of separable Hilbert spaces which assume a Fock-like structure
and which are preserved24 by Ĥ. As far as the symmetry group G is concerned, at the algebraic
level for instance we no longer have spatial diffeomorphisms. However, we have its algebraic
version which consists of the following. Consider the master constraint-like functional

M :=
∫
S

d3σ
aH 2 + bQjkCjCk√

det(Q)
, (3.30)

where b > a > 0 are any real numbers. Then a classical function F is invariant with respect
to transformations generated by H,Cj respectively if and only if {F, {F,M}}M=0 = 0. The
functional (3.30) can be quantized on the AQG Hilbert space by literally the same techniques

22 This bears some resemblance with the models for emergent gravity considered in [44] although the dynamics of
those models not obviously models the dynamics of H.
23 In [17] we considered the extended Master constraint which involves, in the language of this paper, [C2 +

QjkCjCk]/
√

det(Q) rather than
√

|C2 − QjkCjCk |. Hence apart from the sign in front of QjkCjCk we only need

to change the power of the volume operator from V
1/2
v in [17] to Vv here.

24 We do not know whether Ĥ is densely defined on all of the ITP. However, if it is defined on a single vector in a
given separable sector then it is densely defined on the entire sector. Now each separable sector of the ITP is labelled
by a cyclic vector � which is explicitly known. Now Ĥ is defined on a given � if and only if it is densely defined on
the corresponding sector. Hence, for each � we just have to perform this test and we simply remove the sectors from
the ITP on which Ĥ it is not densely defined, if any, since they are unphysical. Ĥ is certainly densely defined on the
sectors built from semiclassical �; hence, the surviving part of the ITP certainly includes all the semiclassical states.
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as in [17]. Thus, we have the possibility of analysing the anomaly issue with respect to G at
the algebraic level as well.

Finally, we can compute the expectation value of Ĥ with respect to semiclassical states
as in [17] and to zeroth order in h̄ we should find that the classical value is reproduced
with small fluctuations. As for the master constraint, the really astonishing fact is that Ĥ is
a finite operator without renormalization, thanks to our manifestly background-independent
formulation. Namely, at the fundamental quantum level the operator algebra is labelled by a
single, countably infinite abstract, that is non-embedded, graph �. There is no such thing as
a lattice distance which would need a background metric. However, the semiclassical states
depend on a differential manifold X , an embedding Y of the algebraic graph � into X , a cell
complex Y (�)∗ dual to Y (�) as well as a point (A0, E0) in the classical reduced phase space.
Thus, the semiclassical states make contact to the usual (reduced) LQG formulation which
in particular uses an at least topological manifold X . Hence AQG describes all topologies
simultaneously. The point is now that, since � is an infinite graph, the embedding of � can
be as fine as we wish, with respect to the spatial geometry described by E0 even if X is
not compact25. The expectation values of our operators such as Ĥ will now give, to zeroth
order in h̄, a Riemann sum approximation of the desired continuum integral Ĥ as in (3.14) in
terms of holonomies along edges of the embedded graph and the volume of the cubes in the
dual-cell complex. The better that a Riemann sum will approximate the integral, the finer the
embedding. It is in this sense that in (3.29) no continuum limit has to be performed.

4. Summary and outlook

As compared to the master constraint programme [16], the present framework has the
advantage that the master constraint and its solutions are not needed. We directly consider a
representation of the gauge-invariant phase space and its Hamiltonian. Celebrated results of
unreduced LQG such as the discreteness of the spectrum of kinematical geometric operators
[40, 41, 45, 46] which is not granted to survive when passing to the physical Hilbert space
[47, 48] in the usual Dirac constraint quantization now becomes a physical prediction if the
curves, surfaces and regions that one measures length, area and volume of are labelled by
dust space. The Gauss-invariant [49] kinematical coherent states [18] of unreduced LQG now
become physical coherent states.

However, the physical Hilbert space of reduced LQG is non-separable which appears to
be a vast over-counting of quantum degrees of freedom. Passing to AQG means to switch from
embedded to non-embedded graphs and thus removes the over-counting. Since for spatially
diffeomorphism-invariant operators (on dust space) such as the Hamiltonian Ĥ or any other
operationally interesting observable (which does not refer directly to the dust label space) the
embedding of a graph is immaterial, we can consider the AQG reformulation as an economic
description of reduced LQG in the sense that diffeomorphism-related embeddings would lead
to isomorphic sectors superselected by this kind of observables. The additional advantage of
AQG is that it does not require a topological manifold and that it is free from complications
that have to do with graph preservation.

The challenge of the present framework is to implement the (algebraic version of) the
symmetry group G in the definition of Ĥ which will require tools from lattice gauge theory.
The final AQG version of the reduced phase space is in any case very similar to Hamiltonian
lattice gauge theory with the important difference that no continuum limit has to be taken

25 In the compact case the embedding necessarily has accumulation points but we can choose our states not to be
excited on edges that are mapped under the embedding into a suitably small neighbourhood of every accumulation
point.
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which is why the theory is UV finite. Another important question is how one can understand
from the complicated, non-perturbative Hamiltonian Ĥ the significance of the standard model
Hamiltonian on Minkowski space. The answer to this question must lie in the construction
of a minimum energy eigenstate of Ĥ which is simultaneously a minimal uncertainty state �

for all the observables and which is peaked around flat vacuum (no excitations of observable
matter) spacetime. Presumably, if one studies matter excitations of � and considers matrix
elements of Ĥ in such states, then the resulting matrix elements can be considered as the matrix
elements of an effective matter Hamiltonian on Minkowski space which should be close to the
Hamiltonian of the standard model on Minkowski space. This expectation is supported by the
analysis of [6, 7] which shows that the equations of motion of the gauge-invariant geometry
and matter degrees of freedom perturbed around a homogeneous and isotropic (FRW) solution
are described effectively by the usual Hamiltonian on a FRW background expanded to second
order in the perturbations. Of course, this is only a classical argument. See [28] for more details
about the quantum aspects of this idea. We leave this and the research projects mentioned in
the introduction for future analysis.
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[1] Brown J and Kuchař K 1995 Dust as a standard of space and time in canonical quantum gravity Phys. Rev.
D 51 5600–29 (arXiv:gr-qc/9409001)

[2] Rovelli C 1991 What is observable in classical and quantum gravity? Class. Quantum Grav. 8 297–316
Rovelli C 1991 Quantum reference systems Class. Quantum Grav. 8 317–32
Rovelli C 1991 Time in quantum gravity: physics beyond the Schrodinger regime Phys. Rev. D 43 442–56
Rovelli C 1990 Quantum mechanics without time: a model Phys. Rev. D 42 2638–46

[3] Dittrich B 2007 Partial and complete observables for Hamiltonian constrained systems Gen. Rel. Grav. 39 1891
(arXiv:gr-qc/0411013)

Dittrich B 2006 Partial and complete observables for canonical general relativity Class. Quantum
Grav. 23 6155–84 (arXiv:gr-qc/0507106)

[4] Thiemann T 2006 Reduced phase space quantization and Dirac observables Class. Quantum Grav. 23 1163–80
(arXiv:gr-qc/0411031)

[5] Thiemann T 2006 Solving the problem of time in general relativity and cosmology with phantoms and k-essence
arXiv:astro-ph/0607380

[6] Giesel K, Hofmann S, Thiemann T and Winkler O 2010 Manifestly gauge-invariant general relativistic
perturbation theory: I. Foundations Class. Quantum Grav. 27 055005 (arXiv:0711.0115 [gr-qc])

[7] Giesel K, Hofmann S, Thiemann T and Winkler O 2010 Manifestly gauge invariant general relativistic
perturbation theory: II. FRW background and first order Class. Quantum Grav. 27 055006 (arXiv:0711.0117
[gr-qc])

[8] Mukhanov V, Feldman H and Brandenberger R 1992 Theory of cosmological perturbations. Part 1: Classical
perturbations. Part 2: Quantum theory of perturbations. Part 3: Extensions Phys. Rep. 215 203–333

26

http://dx.doi.org/10.1103/PhysRevD.51.5600
http://www.arxiv.org/abs/gr-qc/9409001
http://dx.doi.org/10.1088/0264-9381/8/2/011
http://dx.doi.org/10.1088/0264-9381/8/2/012
http://dx.doi.org/10.1103/PhysRevD.43.442
http://dx.doi.org/10.1103/PhysRevD.42.2638
http://dx.doi.org/10.1007/s10714-007-0495-2
http://www.arxiv.org/abs/gr-qc/0411013
http://dx.doi.org/10.1088/0264-9381/23/22/006
http://www.arxiv.org/abs/gr-qc/0507106
http://dx.doi.org/10.1088/0264-9381/23/4/006
http://www.arxiv.org/abs/gr-qc/0411031
http://www.arxiv.org/abs/astro-ph/0607380
http://dx.doi.org/10.1088/0264-9381/27/5/055005
http://www.arxiv.org/abs/0711.0115
http://dx.doi.org/10.1088/0264-9381/27/5/055006
http://www.arxiv.org/abs/0711.0117
http://dx.doi.org/10.1016/0370-1573(92)90044-Z


Class. Quantum Grav. 27 (2010) 175009 K Giesel and T Thiemann

Mukhanov V 2006 Physical Foundations of Cosmology (Cambridge: Cambridge University Press)
[9] Ashtekar A and Isham C J 1992 Representations of the holonomy algebras of gravity and non-Abelian gauge

theories Class. Quantum Grav. 9 1433 (arXiv:hep-th/9202053)
[10] Ashtekar A and Lewandowski J 1994 Representation theory of analytic holonomy C� algebras Knots and

Quantum Gravity ed J Baez (Oxford: Oxford University Press) (arXiv:gr-qc/9311010)
[11] Rovelli C 1998 Loop quantum gravity Living Rev. Rel. 1 1 (arXiv:gr-qc/9710008)

Thiemann T 2003 Lectures on loop quantum gravity Lect. Notes Phys. 631 41–135 (arXiv:gr-qc/0210094)
Ashtekar A and Lewandowski J 2004 Background independent quantum gravity: a status report Class. Quantum

Grav. 21 R53 (arXiv:gr-qc/0404018)
[12] Rovelli C 2004 Quantum Gravity (Cambridge: Cambridge University Press)

Thiemann 2007 Modern Canonical Quantum General Relativity (Cambridge: Cambridge University Press)
arXiv:gr-qc/0110034

[13] Lewandowski J, Okolow A, Sahlmann H and Thiemann T 2006 Uniqueness of diffeomorphism invariant states
on holonomy-flux algebras Commun. Math. Phys. 267 703–33 (arXiv:gr-qc/0504147)

[14] Fleischhack C 2009 Representations of the Weyl algebra in quantum geometry Commun. Math. Phys. 285 67
(arXiv:math-ph/0407006)

[15] Thiemann T 1996 Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity
Phys. Lett. B 380 257–64 (arXiv:gr-qc/9606088)

Thiemann T 1998 Quantum spin dynamics (QSD) Class. Quantum Grav. 15 839–73 (arXiv:gr-qc/9606089)
Thiemann T 1998 Quantum spin dynamics (QSD): II. The kernel of the Wheeler–deWitt constraint operator

Class. Quantum Grav. 15 875–905 (arXiv:gr-qc/9606090)
Thiemann T 1998 Quantum spin dynamics (QSD): III. Quantum constraint algebra and physical scalar product

in quantum general relativity Class. Quantum Grav. 15 1207–47 (arXiv:gr-qc/9705017)
Thiemann T 1998 Quantum spin dynamics (QSD): IV. 2+1 Euclidean quantum gravity as a model to test 3+1

Lorentzian quantum gravity Class. Quantum Grav. 15 1249–80 (arXiv:gr-qc/9705018)
Thiemann T 1998 Quantum spin dynamics (QSD): V. Quantum gravity as the natural regulator of the Hamiltonian

constraint of matter quantum field theories Class. Quantum Grav. 15 1281–314 (arXiv:gr-qc/9705019)
Thiemann T 1998 Quantum spin dynamics (QSD): VI. Quantum Poincaré algebra and a quantum positivity of
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[33] Kuchař K and Romano J 1995 Gravitational constraints which generate a lie algebra Phys. Rev. D 51 5579–82

(arXiv:gr-qc/9501005)
Markopoulou F 1996 Gravitational constraint combinations generate a Lie algebra Class. Quantum

Grav. 13 2577–84 (arXiv:gr-qc/9601038)
[34] Wald R M 1989 General Relativity (Chicago, IL: The University of Chicago Press)
[35] Ashtekar A and Horowitz G 1984 Phase space of general relativity revisited: a canonical choice of time and

simplification of the Hamiltonian J. Math. Phys. 25 1473–500
[36] Leigh R, Minic D and Yelnikov A 2006 Solving pure QCD in 2+1 dimensions Phys. Rev. Lett. 96 222001

(arXiv:hep-th/0512111)
Leigh R, Minic D and Yelnikov A 2007 On the glueball spectrum of pure Yang–Mills theory in 2+1 dimensions

Phys. Rev. D 76 065018 (arXiv:hep-th/0604060)
Leigh R, Minic D and Yelnikov A 2007 On the spectrum of Yang–Mills theory in 2+1 dimensions, analytically

arXiv:0704.3694 [hep-th]
Freidel L, Leigh R and Minic D 2006 Towards a solution of pure Yang–Mills theory in 3+1 dimensions Phys.

Lett. B 641 105–11 (arXiv:hep-th/0604184)
Freidel L 2006 On pure Yang–Mills theory in 3+1 dimensions: Hamiltonian, vacuum and gauge invariant

variables arXiv:hep-th/0604185
[37] Ashtekar A and Horowitz G 1982 On the canonical approach to quantum gravity Phys Rev. D 26 3342

28

http://dx.doi.org/10.1103/PhysRevD.56.2127
http://www.arxiv.org/abs/gr-qc/9608033
http://dx.doi.org/10.1088/0264-9381/23/5/001
http://www.arxiv.org/abs/gr-qc/0505032
http://dx.doi.org/10.1088/0264-9381/23/5/002
http://www.arxiv.org/abs/gr-qc/0505033
http://dx.doi.org/10.1103/PhysRevLett.86.5227
http://www.arxiv.org/abs/gr-qc/0102069
http://www.arxiv.org/abs/gr-qc/0306008
http://www.arxiv.org/abs/gr-qc/0304074
http://dx.doi.org/10.1088/0264-9381/22/16/014
http://www.arxiv.org/abs/gr-qc/0504029
http://dx.doi.org/10.1103/PhysRevLett.96.141301
http://www.arxiv.org/abs/gr-qc/0602086
http://dx.doi.org/10.1103/PhysRevLett.96.141301
http://www.arxiv.org/abs/gr-qc/0602086
http://dx.doi.org/10.1103/PhysRevD.73.124038
http://www.arxiv.org/abs/gr-qc/0604013
http://dx.doi.org/10.1103/PhysRevD.74.084003
http://www.arxiv.org/abs/gr-qc/0607039
http://dx.doi.org/10.1088/0264-9381/23/3/019
http://www.arxiv.org/abs/gr-qc/0207030
http://dx.doi.org/10.1088/0264-9381/23/3/020
http://www.arxiv.org/abs/gr-qc/0207031
http://www.arxiv.org/abs/hep-lat/9803027
http://www.arxiv.org/abs/hep-lat/0003007
http://dx.doi.org/10.1016/S0920-5632(01)00986-0
http://www.arxiv.org/abs/hep-lat/0010033
http://dx.doi.org/10.1002/piuz.200401051
http://dx.doi.org/10.1142/S0129055X06002772
http://www.arxiv.org/abs/math-ph/0511043
http://dx.doi.org/10.1103/PhysRevD.51.5579
http://www.arxiv.org/abs/gr-qc/9501005
http://dx.doi.org/10.1088/0264-9381/13/9/021
http://www.arxiv.org/abs/gr-qc/9601038
http://dx.doi.org/10.1063/1.526317
http://dx.doi.org/10.1103/PhysRevLett.96.222001
http://www.arxiv.org/abs/hep-th/0512111
http://dx.doi.org/10.1103/PhysRevD.76.065018
http://www.arxiv.org/abs/hep-th/0604060
http://www.arxiv.org/abs/0704.3694
http://dx.doi.org/10.1016/j.physletb.2006.08.030
http://www.arxiv.org/abs/hep-th/0604184
http://www.arxiv.org/abs/hep-th/0604185
http://dx.doi.org/10.1103/PhysRevD.26.3342


Class. Quantum Grav. 27 (2010) 175009 K Giesel and T Thiemann

[38] Ashtekar A, Lewandowski J, Marolf D, Mourão J and Thiemann T 1995 Quantization of diffeomorphism
invariant theories of connections with local degrees of freedom J. Math. Phys. 36 6456–93
(arXiv:gr-qc/9504018)

[39] Fairbairn W and Rovelli C 2004 Separable Hilbert space in loop quantum gravity J. Math. Phys. 45 2802–14
(arXiv:gr-qc/0403047)

Velhinho J 2004 Comments on the kinematical structure of loop quantum cosmology Class. Quantum
Grav. 21 L109 (arXiv:gr-qc/0406008)

Koslowski T 2006 Physical diffeomorphisms in loop quantum gravity arXiv:gr-qc/0610017
[40] Ashtekar A and Lewandowski J 1997 Quantum theory of geometry: II. Volume operators Adv. Theor. Math.

Phys. 1 388–429 (arXiv:gr-qc/9711031)
[41] Rovelli and Smolin L 1995 Discreteness of volume and area in quantum gravity Nucl. Phys. B 442 593–622

Rovelli and Smolin L 1995 Nucl. Phys. B 456 753 (arXiv:gr-qc/9411005)
[42] Giesel K and Thiemann T 2006 Consistency check on volume and triad operator quantisation in loop quantum

gravity: I Class. Quantum Grav. 23 5667–91 (arXiv:gr-qc/0507036)
Giesel K and Thiemann T 2006 Consistency check on volume and triad operator quantisation in loop quantum

gravity: II Class. Quantum Grav. 23 5693–771 (arXiv:gr-qc/0507037)
[43] Thiemann T 2006 Complexifier coherent states for canonical quantum general relativity Class. Quantum

Grav. 23 2063–118 (arXiv:gr-qc/0206037)
[44] Konopka T, Markopoulou F and Smolin L 2006 Quantum graphity arXiv:hep-th/0611197
[45] Ashtekar A and Lewandowski J 1997 Quantum theory of geometry: I. Area operators Class. Quantum

Grav. 14 A55–82 (arXiv:gr-qc/9602046)
[46] Thiemann T 1998 A length operator for canonical quantum gravity J. Math. Phys. 39 3372–92

(arXiv:gr-qc/9606092)
[47] Dittrich B and Thiemann T 2009 Are the spectra of geometrical operators in loop quantum gravity really

discrete? J. Math. Phys. 50 012503 (arXiv:0708.1721 [gr-qc])
[48] Rovelli C 2007 Comment on ‘Are the spectra of geometrical operators in loop quantum gravity really discrete?’

by B Dittrich and T Thiemann arXiv:0708.2481 [gr-qc]
[49] Bahr B and Thiemann T 2009 Gauge-invariant coherent states for loop quantum gravity: I. Abelian gauge

groups Class. Quantum Grav. 26 045011 (arXiv:0709.4619 [gr-qc])
Bahr B and Thiemann T 2009 Gauge-invariant coherent states for loop quantum gravity: II. Non-Abelian gauge

groups Class. Quantum Grav. 26 045012 (arXiv:0709.4636 [gr-qc])

29

http://dx.doi.org/10.1063/1.531252
http://www.arxiv.org/abs/gr-qc/9504018
http://dx.doi.org/10.1063/1.1763247
http://www.arxiv.org/abs/gr-qc/0403047
http://dx.doi.org/10.1088/0264-9381/21/15/L01
http://www.arxiv.org/abs/gr-qc/0406008
http://www.arxiv.org/abs/gr-qc/0610017
http://www.arxiv.org/abs/gr-qc/9711031
http://dx.doi.org/10.1016/0550-3213(95)00150-Q
http://dx.doi.org/10.1016/0550-3213(95)00550-5
http://www.arxiv.org/abs/gr-qc/9411005
http://dx.doi.org/10.1088/0264-9381/23/18/011
http://www.arxiv.org/abs/gr-qc/0507036
http://dx.doi.org/10.1088/0264-9381/23/18/012
http://www.arxiv.org/abs/gr-qc/0507037
http://dx.doi.org/10.1088/0264-9381/23/6/013
http://www.arxiv.org/abs/gr-qc/0206037
http://www.arxiv.org/abs/hep-th/0611197
http://dx.doi.org/10.1088/0264-9381/14/1A/006
http://www.arxiv.org/abs/gr-qc/9602046
http://dx.doi.org/10.1063/1.532445
http://www.arxiv.org/abs/gr-qc/9606092
http://dx.doi.org/10.1063/1.3054277
http://www.arxiv.org/abs/0708.1721
http://www.arxiv.org/abs/0708.2481
http://dx.doi.org/10.1088/0264-9381/26/4/045011
http://www.arxiv.org/abs/0709.4619
http://dx.doi.org/10.1088/0264-9381/26/4/045012
http://www.arxiv.org/abs/0709.4636

	1. Introduction
	2. Review of the Brown--Kucha20 r and relational framework
	2.1. Brown--Kucha20 r Lagrangian
	2.2. Brown--Kucha20 r mechanism
	2.3. Relational framework
	2.4. The reduced phase space of general relativity with dust
	2.5. Physical interpretation and comparison with unreduced formalism

	3. Reduced phase space quantization of general relativity
	3.1. Hilbert space representation
	3.2. Subtleties with the Gauss constraints
	3.3. Quantum Hamiltonian

	4. Summary and outlook
	Acknowledgments
	References

