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Preface

The main question that this thesis tries to answer is the following: How can we calculate
numerically the gravitational field of isolated systems in an efficient way based upon a
clear geometric framework?

Isolated systems in general relativity are models of self-gravitating astrophysical
sources. Depending on the scales in consideration, these sources can be planets, stars,
black holes and even galaxy clusters. It is not the source that makes a system isolated,
but the behavior of its gravitational field far away from the source. The systems that
we might consider isolated share the property that as we move away from the source,
the gravitational field becomes weak. We model such systems by suitably attaching to
the far-field zone an asymptotic region in which the spacetime becomes flat in a certain
sense. These models are commonly referred to as asymptotically flat spacetimes.

In this idealization procedure, the details of the asymptotic behavior need to be
decided upon in accordance with physical intuition and the equations describing the
model, as we can not yet observe the precise behavior of asymptotic gravitational fields
to test and modify our assumptions.

An elegant and powerful characterization of the asymptotic behavior of spacetimes
can be given in terms of the conformal structure. Conformal techniques make use of
an important interplay between physics, conformal geometry and the theory of partial
differential equations in the study of Einstein equations. The conformal approach has
been applied successfully in mathematical relativity to various problems concerned
with the large scale structure of spacetimes.

To relate observations of gravitational radiation to properties of astrophysical
sources, we need to understand spacetimes representing isolated systems arising from a
large class of initial data that correspond to astrophysical configurations. As the Ein-
stein equations can not be solved explicitly for interesting dynamical systems emitting
gravitational radiation, we need to apply approximation schemes to make quantita-
tive predictions that can be compared with observations. The post-Newtonian and
perturbative schemes cover the weak field and low velocity limits. To make reliable
predictions on highly dynamical strong fields, we need numerical simulations.

There are many open problems in numerical calculations of spacetimes. At least
two of these problems, namely the treatment of the outer grid boundary and the inter-
pretation of numerically generated spacetimes, are related to the asymptotic region.
Applying conformal techniques to deal with these problems can lead to accurate and
efficient codes that allow us to gain control over numerical approximations.

An important goal of this thesis is the development of a numerical code that would
allow us to calculate entire, asymptotically flat, radiative solutions to the Einstein
equations. With such a code we should be able to follow the maximal development of



asymptotically flat initial data starting from a Cauchy surface reaching spatial infinity
up to the region close to timelike infinity. The achievement of this goal seems to
require different methods adapted to different asymptotic regions, i.e. spatial infinity,
null infinity and timelike infinity. With this goal in mind, we will discuss two novel
applications of conformal techniques to numerical simulations. These new methods
share the important advantage that the representation of the conformal factor is known
a priori in terms of grid coordinates. I will argue that this feature is very convenient,
because it is crucial to have numerical access to and some control over the asymptotic
region for accurate and efficient calculations of asymptotically flat spacetimes.

Organization

In the introduction we describe shortly the development of some basic notions in con-
formal geometry. We mention the controversy on the nature of gravitational radiation
and then present the idea of conformal infinity introduced by Penrose that is widely
used in mathematical relativity today. We discuss conditions for the feasibility of the
conformal approach investigated by Friedrich. An overview of current methods in nu-
merical relativity with respect to the treatment of the far-field region of asymptotically
flat spacetimes is given to motivate the numerical application of conformal techniques
further.

Chapter 2] concentrates on infinity in null directions, called null infinity. In[21 and
we investigate spacelike slices reaching null infinity, so-called hyperboloidal slices,
and conformal compactification of the Minkowski and the extended Schwarzschild
spacetimes. We see that one can prescribe the representation of a conformal factor in
terms of a suitably chosen compactifying radial coordinate on spherically symmetric
hyperboloidal slices such that null infinity is at a fixed spatial coordinate location.

In and [Z.4] we construct a method to numerically treat the hyperboloidal initial
value problem including null infinity in the computational domain without making
any symmetry assumptions. This method allows us to find solutions to the Einstein
equations in coordinates in which null infinity is fixed to a spatial coordinate location.
It is based on the general wave gauge that is commonly used in numerical relativity. It
introduces a suitable coupling of the conformal and the coordinate gauge to guarantee
certain geometric properties of null infinity with an appropriate choice of the gauge
source functions for the coordinates. It requires the numerical calculation of formally
singular terms arising from the conformal compactification.

In we discuss numerical test results obtained with the suggested method in
the special case of spherical symmetry on the example of the extended Schwarzschild
spacetime. We use a simple choice of evolution variables and numerical boundary
treatment. While our numerical setup does not allow us to do long time evolutions
of the extended Schwarzschild spacetime, one can see that the method can be applied
even with crude numerical techniques without the formally singular terms leading to
an immediate blow-up of numerical errors at the outer boundary.

The chapter ends in[2.6/ with an outlook on next steps to establish this new approach
for simulating dynamical isolated systems, and a short discussion of its open problems
and limitations.

In chapter[3we include not just null infinity but also spatial infinity in the numerical
domain which gives us direct access to the global structure of asymptotically flat
spacetimes. The reduced general conformal field equations developed by Friedrich



provide the only available system for the treatment of spatial infinity. The system is
based on the conformal Gauss gauge that we study using numerical methods. InBI]we
reproduce Friedrich’s construction of a conformal Gauss gauge in the Schwarzschild-
Kruskal spacetime numerically covering the entire solution in a smooth way. Going
beyond analytical studies we find out numerically that one can also cover the Kerr
solution using conformal geodesics including null infinity, timelike infinity and the
Cauchy horizon.

In we discuss certain aspects of the reduced general conformal field equa-
tions relevant for their numerical implementation. In B3] we solve numerically the
Cauchy problem for the equations in spherical symmetry with initial data from the
Schwarzschild-Kruskal spacetime which gives us the first numerical calculation of an
entire asymptotically flat black hole spacetime including timelike, null and spacelike
infinity and the region close to the singularity.

In order to include dynamical gravitational fields into our discussion of spacetimes
in a neighborhood of spatial infinity, we calculate in [3.4] asymptotically flat, axially
symmetric initial data based on studies by Friedrich. The calculated initial data has the
special property that its ADM-mass vanishes but its development has a non-vanishing
radiation field. InB.5lwe develop this data on a three dimensional Cartesian grid using
the reduced general conformal field equations such that spatial infinity is represented
by the point at the origin of our Cartesian grid. We calculate a certain component
of the Weyl tensor in a suitably adapted Newman-Penrose tetrad representing the
radiation field at null infinity and show that it does not vanish along null infinity in
accordance with expectation.

The Cartesian code can not be used to study spacetimes with non-vanishing ADM-
mass. For a generalizable code we implement the regular finite initial value problem
near spatial infinity formulated by Friedrich based on the reduced general conformal
field equations in a gauge that allows us to represent spatial infinity as a cylinder.
The cylinder at infinity imposes a certain geometry that requires a numerical code
which can handle a spherical grid topology in a frame formalism. In we discuss
a numerical implementation of a frame-based evolution system using spherical grid
topology in three spatial dimensions with overlapping grids.

In B0 we implement the regular finite initial value problem with the cylinder at
spatial infinity. A difficulty caused by the degeneracy of the equations at the set
where the cylinder at spatial infinity touches null infinity is dealt with by freezing
the evolution in the unphysical domain by exploiting the a priori knowledge of the
conformal factor in terms of initial data and grid coordinates. The chapter ends with
a discussion of possible improvements of the code.

In chapter @] I summarize the main results of the thesis and give an outlook for
possible directions for future work. The chapter ends with remarks on the idea of
conformal infinity.

In the appendix [A] we discuss the generation of causal diagrams.



Chapter 1

Introduction

This thesis is concerned with numerical studies of asymptotic fields of isolated systems.
Conformal techniques play a fundamental role in the discussion of the asymptotic struc-
ture of spacetimes. To develop an intuitive understanding of conformal rescalings, I
will refer to their application in cartography where their advantages and disadvantages
can be addressed in a simple manner and describe the argumentation of Hermann Weyl
to emphasize the role of the conformal structure of spacetimes in general relativity.

The historical controversy concerning the physical nature of gravitational radia-
tion is especially demonstrative for being cautious about interpretations of coordinate
dependent calculations in general relativity. I will indicate how an unambiguous for-
mulation of gravitational radiation that uses conformal techniques has been achieved.

The Penrose conformal compactification technique will be discussed and results
on its feasibility due to Friedrich will be described. It is a goal of this thesis to
combine a rigorous treatment of the far-field region of asymptotically flat spacetimes
with advantages of widely used numerical methods. To motivate this goal I will point
out certain properties of common numerical methods with special emphasis on their
treatment of the asymptotic region.

The introduction follows chronological lines because I believe that some of the
current problems in numerical relativity have their counterparts in earlier problems
that have been thoroughly discussed. We can learn from these discussions to avoid
similar confusions. Naturally, the presentation is highly subjective and makes no claim
of completeness.

1.1 Conformal geometry

A map that preserves local angles is called conformal. The first problem where con-
formal mappings played an important role, beside the trivial rescaling where the con-
formal factor is just a positive constant, was the problem of projecting the surface of
a globe onto a plane. The stereographic projection, probably already known to the
Egyptians, has been applied in the 2nd century BC by Hipparchus to represent the
celestial sphere on an astrolabe. Ptolemy used the stereographic projection for his car-
tography, a field which historically saw the most influential application of conformal
techniques [87]. The Mercator projection of the Earth constructed in the 16th century
is also a conformal projection. It was devised for nautical charts with the property
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that all lines of constant compass direction are represented by straight segments, but
its use was not only restricted to marine navigation. The Mercator projection was
so influential that its wide use was subject to political controversies related to the
distortion of scales in conformal maps [38].

The development of methods in cartography has paved the way for the discussion
on geometry of curved surfaces by Lambert, Bolyai, Lobachevsky, Gauss, Riemann and
others. Indeed, some of the basic terminology in differential geometry has its origin
in cartography. Therefore, it does not surprise that certain problems of cartography
are similar to certain problems of general relativity. For example, it is clear today
that in cartography different map projections serve different purposes. There is no
single map of the Earth that covers all requirements. Similarly, there is no best gauge
choice for a spacetime in general relativity. Emphasis on different aspects and parts
of the solution require different gauge choices as will be demonstrated in this thesis
by studies of various representations of the Minkowski and the Schwarzschild-Kruskal
spacetimes.

A key feature leading to the wide use of the Mercator projection is the fact that it is
a conformal projection. As a consequence the projection keeps relative local directions
-in the sense of local angles- invariant. Clearly, relative local directions are important
for marine navigation. In general relativity, the fundamental important structure is
the causal structure which is equivalent to the null cone structure as well as to the
conformal structure. We will see in the next sections how this fact can be used to get
access to the large scale structure of spacetimes and to describe gravitational radiation
rigorously, in an unambiguous way.

The importance of conformal geometry in general relativity has been recognized
already in 1918 by Hermann Weyl [146]. His motivation to study conformal rescalings
of the metric has partly been philosophical [126]. He was disturbed by what he called
an inconsistency due to which lengths of vectors at different points in Riemannian
geometry can be directly compared with each other. Weyl observes in [146]: ”The
metric allows the magnitudes of two vectors to be compared, not only at the same
point, but at any two arbitrarily separated points.” To remove this remnant of non-
local geometry (”Ferngeometrie”), he proposed to consider the conformal class of a
spacetime.

Let M be a four dimensional, smooth manifold and § a Lorentzian metric. The
conformal class [g] of a spacetime (M, g) is given by metrics g related to g by a
conformal rescaling g = Q2§ with a positive, point dependent conformal factor € > 0.
A choice of the unit of measurement, i.e. the gauge, corresponds to the choice of a metric
in the conformal class [g] or equivalently to the choice of a point dependent conformal
factor Q. As a consequence, in Weyl’s ”pure infinitesimal geometry” [147], the choice
of the unit of measurement is subject to local variations. Weyl states in [146] that for
the explicit representation of the spacetime in such a geometry we have to choose a
coordinate system and at each point determine the conformal factor. Therefore each
formula must have a double-invariance, namely invariance with respect to arbitrary
smooth coordinate transformations and with respect to conformal rescalings of the
metric. For applications of conformal techniques in this thesis, especially in chapter 2]
a suitable coupling of the coordinate and the conformal gauge freedom will be essential
to gain control over the asymptotic region.



1.1 Conformal geometry 7

The main step from Euclidean geometry to Riemannian geometry is the removal
of the assumption of integrability of vectors by parallel transport. In Riemannian
geometry, a vector parallel transported along a closed curve changes in general its
direction due to curvature, while its norm stays the same. Weyl demanded “the
non-integrability of the transference of distances” [I50]. He states in [146]: " A true
infinitesimal geometry should, however, recognize only a principle for transferring the
magnitude of a vector to an infinitesimally close point and then, on transfer to an
arbitrarily distant point, the integrability of the magnitude of a vector is no more to
be expected than the integrability of its direction.” To allow for comparison of lengths
in each small neighborhood, he introduced what we call today the Weyl connection.
A concise description of these ideas can be found for example in [I, [105]. We use a
modern representation following the notation of [64].

A Weyl connection V is a torsion free connection which is not necessarily the Levi-
Civita connection of a metric in the conformal class [g] but preserves the conformal
structure so that the covariant derivative of any metric g in [§] is proportional to itself,

@Ag,uu = _2f)\g;wa (11)

with a one-form f. Under conformal transformations of the metric ¢’ = w?§ with a
function w > 0, the one-form f transforms according to f' = f —w ldw. If f is
exact, it can be written as f = Q~1dQ and the Weyl connection V is the Levi-Civita
connection V of a metric g in the conformal class given by g = Q23.

The relation of the Weyl connection V with a metric connection V of a metric g
in the conformal class is given by

V-V=5(), where S(f)f,=0,f,+0Ffu—Guwi” fx (1.2)

We see that Weyl connections characterized by 1-forms f allow us a more general
discussion of the conformal structure than conformal rescalings of the metric.

The introduction of the Weyl connection was the first step in the study of gener-
alized connections and it led to a rich geometry, which Weyl used in his attempt to
unify the gravitational and electromagnetic fields. His attempt for a unified theory
was unsuccessful due to physical observations [76], however the main idea has been
the basis during the construction of modern gauge theories [I0T]. It is interesting to
note that the concept of gauge invariance in theoretical physics originates in Weyl’s
ideas on conformal invariance [102].

A torsion free connection implies the notion of parallel transport and allows the
construction of geodesics. Auto-parallel curves with respect to a Weyl connection are
referred to as conformal geodesics [T0]. Remarkably, conformal geodesics have been
useful in investigations of the asymptotic behavior of solutions to Einstein equations
carried out by Helmut Friedrich [64]. Following his investigations, we will make use of
conformal geodesics in chapter [3] for a numerical treatment of spatial infinity.

The application of conformal techniques in general relativity played an important
role in the clarification of a heated controversy in mathematical relativity on the phys-
ical nature of gravitational radiation that we discuss in the next section.
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1.2 Gravitational radiation and asymptotic flatness

The Newtonian theory of gravitation is governed by a linear elliptic Poisson equation
for the Newtonian potential and does not allow for free gravitational degrees of freedom
carrying energy. The action-at-a-distance property of Newtonian gravitation related
to the elliptic nature of the underlying Poisson equation was already questionable to
Newton and his contemporaries. A finite speed of gravity has been studied by Laplace
who concluded from this assumption to a damping force on the orbital motion of
planetary systems. In 1908, Poincaré suggested an acceleration of planetary orbits
due to loss of energy by emission of gravitational waves.

The first relativistic description of gravitational waves is due to Albert Einstein [46]
47). He studied wave phenomena in linearized gravity and introduced the quadrupole
formula which, in the weak field limit, relates the motion of a source to generation of
gravitational waves. In his linearized calculations he made use of a coordinate depen-
dent quantity which he called the pseudo energy momentum tensor to calculate the
energy flux of gravitational waves. Einstein’s use of the coordinate dependent pseudo-
tensor was criticized by many scientists of his time [31], among others Eddington who
suggested to put more emphasis on the curvature tensor, showed that certain classes
of wave-like solutions to the linearized Einstein equations are not physical and pointed
out limitations of linearized calculations [45].

Until the 1960s the status of gravitational waves was quite uncertain. Even Einstein
seems to have believed for some time that gravitational waves did not exist [86]. The
use of linearized calculations whose qualitative predictions are not necessarily valid
in the full theory, the application of coordinate-dependent methods and the non-local
nature of gravitational field energy have been sources of confusion. The difficulty with
a local energy concept for the gravitational field lies in the background independence
of general relativity. Due to the equivalence principle, the local gravitational field can
be transformed away by passing to a freely falling frame of reference.

With the work of Lichnerowicz on mathematical foundations of general relativity
[94] it turned out that certain calculations supporting the view that gravitational waves
are unphysical put too restrictive conditions on coordinates. Based on the development
of mathematical foundations and a stronger emphasis on curvature invariants, the
question on the status of gravitational waves was gradually answered by the works
of Bondi, Newman, Penrose, Petrov, Pirani, Robinson, Sachs and Trautman among
others.

It is difficult to give a precise definition to radiation in general relativity as the
gravitational field acts as its own source so that there is no background we can rely
on. However, the gravitational field becomes weak far away from sources. When we
concentrate our studies on an astrophysical system we assume that the interaction of
this system with the rest of the universe to be negligible. In the study of such ”isolated
systems” the astrophysical system is modeled by an asymptotically flat spacetime. This
corresponds to an idealized situation in which massive sources are confined to spatially
compact domains and the spacetime metric is required to approach a flat metric at
infinity. One might hope to find a precise notion of radiation for such systems in the
asymptotic region using the flat limit metric as a kind of background structure.

For the discussion of gravitational radiation, it is natural to require asymptotic
flatness in null directions. Historically, however, first discussions of asymptotic flatness
have been made with respect to spatial infinity. Note that asymptotic flatness is
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an assumption that is "put in by hand”. Today there are several mathematically
inequivalent definitions of the concept and we will refer to some of them in later
sections. In essence, one imposes some condition determining the approach of the
metric to a flat metric at (spatial or null) infinity. A formal definition based on
the existence of distinguished classes of coordinates, say near spatial infinity, can be
roughly given as follows. We may call a spacetime (M, §) asymptotically flat at spatial
infinity when there exists a coordinate system {Z*} in a neighborhood of spatial infinity
with respect to which

Guv = T + Or(F7F), as 7 — oo, forsomek,p>0, (1.3)

where 72 = 5(15:%0‘:55 with o, 8 =1,2,3. We denote by 7 the Minkowski metric, dog is
the Kronecker symbol and the terms Oy, (7 ?) behave like O(7?*7) under differentia-
tions of order j < k. The strength of the fall-off behavior is determined when we give
a precise description of Ok (7 ?). A question is how strong this fall-off behavior needs
to be so that suitable physical notions of total energy, linear and angular momentum
can be defined. It is known, for example, that for p > 1/2 and k > 1 a well-defined
notion of total energy at spatial infinity can be associated with an asymptotically flat
spacetime [130].

The linearized theory suggests that gravitational perturbations travel along null
directions. Therefore, to define gravitational radiation, one takes limits to infinity in
null directions. One may define a notion of asymptotic flatness in null directions by
requiring (I3)) in a neighborhood of null infinity with respect to a suitable coordinate
system. We might intuitively imagine that the spacetime should become simply close to
the Minkowski spacetime in whatever direction we approach infinity. The geometric
picture, however, is quite different and it is a delicate question how the notions of
asymptotic flatness at spatial and null infinity fit together. We will come back to this
issue at the end of the section. Let us first follow the historical development of the
concept of gravitational radiation.

An important step in the clarification of questions regarding gravitational radiation
was the demonstration that outgoing gravitational radiation carries positive energy
away from an isolated system [21] [120]. This analysis used a special class of coor-
dinate systems which is natural for studying radiation phenomena. The coordinates
are generated by distinguished families of outgoing null hypersurfaces. On the hy-
persurfaces the luminosity distance 7 has been defined. Today such coordinates are
called Bondi coordinates. The field equations have been studied along null directions
and certain conditions at infinity have been put that are similar to the no incoming
radiation conditions suggested by Trautman [I38]. These conditions included the re-
quirement that metric components have certain smoothness properties in 1/7 in the
limit 7 — oo along null directions. An important open problem was whether and to
what extend these conditions excluded interesting solutions [120].

Instead of putting conditions on metric components corresponding to asymptotic
flatness as above, it is more convenient to impose restrictions on certain components
of the Weyl tensor C* | , representing the free gravitational field. Sachs analyzed the
vacuum Bianchi identities V,C" | , =0 and suggested that the Weyl tensor satisfies
a ”peeling property” along outgoing null geodesics relating the fall-off behavior of its
components to the Petrov classification [I19]. Shortly after this analysis, Newman and
Penrose found a way to formulate fall-off conditions in an elegant way and showed that
they imply the peeling behavior [100]. They introduced the spin frame formalism and
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analyzed expansions of gravitational fields in 1/7 where 7 is an affine parameter along
outgoing null geodesics. Imposing a certain uniform smoothness condition, they found
out that if a particular complex tetrad component of the Weyl tensor with respect
to a distinguished tetrad at infinity has an asymptotic behavior vy = 0(7*5) and
dwbo = O(77 %) as ¥ — oo, one can derive the Sachs peeling behavior v, = O(7"~°) as
r — oo for k =0,1,2,3,4. In analogy to electromagnetism, the field with the weakest
fall-off in the order 1/7, namely 14, is interpreted as representing the outgoing radiation
field. Note that this interpretation of 14 is strongly related to the Sachs peeling
behavior and requires a distinguished choice of a tetrad field at infinity. In contrast
to electromagnetism, where the linearity of the Maxwell’s equations allows a clean
global separation between near field terms and far field terms, in general relativity no
such separation can be expected in general as the peeling behavior is valid only in the
asymptotic region. In the strong field regime one would expect a mixture of the fall-off
behavior. Therefore it is misleading to talk about 4 calculated with respect to some
tetrad field in the interior as the radiation field.

In the studies just discussed, the close relationship between gravitational radiation
and asymptotic behavior of solutions to the Einstein equations has been demonstrated.
However, the studies still relied on the use of special classes of coordinate systems and
included awkward limits to infinity. Such limits arise because a rigorous meaning to
gravitational radiation can only be given in the asymptotic region.

To study physical properties of isolated systems, one would like to have coordinate
independent definitions. The coordinate dependence in the early studies of gravita-
tional radiation blurred the global geometric structure of asymptotically flat space-
times. In the early development of the field, the global picture was by no means clear,
not even to those who contributed substantially to the development of the picture.
Sachs, for example, refers to null infinity as ”the cylinder at spatial infinity” in [120].

To motivate a coordinate independent approach to the concept of gravitational
radiation further and to point out a subtlety regarding the notion of asymptotic flatness
in spacelike and null directions, we shall discuss an illustrative example taken from
[110]. The Schwarzschild metric with mass m in standard Schwarzschild coordinates
(t, 75,0, @) reads

2 om\ !
Ge = — <1_ f”) dt® + (1_ ~m> di2 + 72 do?®,  Fy>2m,  (L4)

T's T's

where do? = d¥? + sin® ¥ dp?. This metric obviously approaches the flat Minkowski
metric 7 given by 7y = —dt? + di? + 72do?, as s — oo, so that we may call the
Schwarzschild spacetime asymptotically flat at spatial infinity. This, however, does
not by itself imply that the Schwarzschild spacetime is asymptotically flat in null
directions. With regard to null geodesics the Schwarzschild metric (4] differs greatly
from the Minkowski metric 75 at large distances. Consider outgoing null geodesics
given by u = const., ¢ = const., ¢ = const., where u is the Schwarzschild retarded
time u = t — (75 +2m In(7s —2m)). We see that as 7y — oo the value of the Minkowski
retarded time ¢ — 75 is unbounded above along outgoing Schwarzschild null geodesics
(the argument applies also for ingoing null geodesics). Schwarzschild null geodesics do
not correspond at all to Minkowski null geodesics with respect to 75 for large 7.

The solution to this apparent problem is to relate a Minkowski metric to the
Schwarzschild metric in a different way. Define a coordinate 7. = 75 + 2m In(7s — 2m).
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We can choose on the Schwarzschild manifold another Minkowski metric 7. given by
flx = —dt? +dr? +72 do?. Now the described difficulty does not arise because outgoing
null geodesics given by u = t — 7, = const. have the same form for both metrics gs and
7. While the condition for asymptotic flatness (3] has the same form in spacelike
and null directions, its geometric interpretation, i.e. the way we relate the Minkowski
metric 77 to the curved spacetime metric g, is different.

We mentioned that for studying gravitational radiation one might use the flat
limit metric as a kind of background structure. This example makes clear that the
relation of the flat limit metric to the curved spacetime is determined by the null cone
structure. The null cone structure, however, is part of the unknown in the Einstein
equations. It is therefore a difficult question how the flat background structure can be
used conveniently in dynamical spacetimes to discuss their asymptotic properties.

It turns out that the structure that we are looking for can be given in terms of the
idea of conformal infinity presented in the next section. This construction also allows
to replace asymptotic calculations by local differential geometry.

1.3 Conformal infinity

Conformal techniques in general relativity played an important role in the investiga-
tion of the solution space to the Einstein equations. The analysis of elliptic constraint
equations implied by the Einstein equations on spacelike hypersurfaces has made in-
tensive use of conformal methods [93] I53]. In the following, we will concentrate on
conformal rescalings of the full spacetime metric. We will also ignore the application
of conformal techniques in cosmological models (see [60] for an overview and [I7] for
a recent work).

It was discovered by Penrose that a suitable notion of asymptotic flatness can be
formulated in an elegant way using the conformal equivalence class of the metric. The
conformal compactification technique enabled a geometric formulation of the fall-off
behaviour. Penrose could also deduce the peeling behavior from a few assumptions on
the conformal structure of the metric not favoring any coordinate systems [107, [108].
Since then, conformal techniques to study in detail the structure of gravitational fields
in the asymptotic region in a coordinate independent way have been very fruitful in
mathematical relativity. Many physical concepts like mass, momentum or gravitational
radiation of isolated systems have been unambiguously defined in the asymptotic region
of an isolated system using conformal techniques.

Two important observations suggest a conformal approach for discussing radiation.
The first observation is the importance of the null cone structure. Conformal rescalings
of the metric preserve the null cone structure, which is equivalent to the characteristic
and the causal structures. It turns out that essential features of free gravitational
fields strongly related to the null cone structure can be discussed with respect to
the conformal equivalence class of the physical metric. The second observation is
related to the non-local feature of gravitational radiation which requires limits to
infinity as discussed in the previous section. Conformal rescalings can be used to
avoid such limits by compactifying the spacetime such that infinity corresponds to a
finite hypersurface. Asymptotic calculations can then be replaced by local differential
methods under certain conditions.



1.3 Conformal infinity 12

The idea of conformal compactification is similar to the construction of the Riemann
sphere in complex analysis by adjoining infinity to the complex plane. Due to the
Lorentzian signature of the metric, infinity for a spacetime corresponds not to a point
but has a richer structure, as Weyl already observed in [I48]. To demonstrate the
technique we discuss the conformal compactification of the Minkowski spacetime (see
also [51], 109, [144]).

The Minkowski metric 7 in coordinates adapted to spherical symmetry is given by

N = —di* + di? + #* do?, on teR, 7>0, (1.5)

where do? is the standard metric on the unit sphere S?. Introducing null coordinates
uw=1t—7and v = t+ 7 for ¥ > @, and compactifying them by U = arctanu and
V = arctanv, we get

1

1 s 2 2
W(—d‘/dU—i—Zsm (V—U)dO'), on (—7T/2<U§V<7T/2)

ﬁ =
Points at infinity with respect to the original coordinates have finite values with respect
to the compactifying coordinates (V = 7/2 or U = —7/2), however, the physical metric
7 in compactifying coordinates is singular at these points. This singular behavior can
be compensated by a conformal rescaling with the conformal factor €2 = cosV cosU,
so that the rescaled metric

1
n= 0% =—dUdV + 1 sin?(V — U)do?,

is well defined on the domain (—7/2 < U < V < 7/2) including points that are at
infinity with respect to 7. We say that 7 can be extended beyond infinity.

For Fig. [Tl time and space coordinates t = (V 4+ U)/2 and r = (V — U)/2 have
been introduced. The resulting metric n = —dt? + dr? + sin? r do? is the standard
metric on the Einstein cosmos R x S2. The embedding ¢ : R* — R x S3 of the
Minkowski spacetime into the Einstein cosmos is given by

7 1 ¢ t+r ¢ t—r s 1 ¢ t+r ¢ t—r
<3 () v (57)) e (e (5) ()
from M = R* = {f € (—00,00),7 € [0,00)} into M = R x §3 = {t € (—o0, ),
r € |0, 7]}, suppressing the angular coordinates. The part of M that corresponds to
the Minkowski spacetime is given by {|t + r| < 7, |t — r| < 7}.

We see that the completion of M is a manifold with boundary {t = +(x — r),
r € [0, 7]} where the boundary points correspond to points at infinity with respect to
the physical metric. Asymptotic behavior of fields on M can be studied using local
differential geometry on this boundary where the conformal factor 2 = cost + cosr
vanishes. The part of the boundary without the points at r = 0,7 is denoted by
S ={t ==x(nr—r),r € (0,m)}. The differential of the conformal factor does not
vanish at %, d2|» # 0, and .# consists of two parts .#*, each of them with the
topology R x S2.

Fig. [T shows curves that correspond to constant values of the coordinates ¢ and
7 in the new representation. Each point of the diagram represents a sphere except
the dashed vertical line segment connecting ¢+ and ¢~ which corresponds to the origin
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— t = const.
7 = const.

Fig. 1.1: Penrose diagram of the Minkowski spacetime

{7 = 0}. Surfaces of # = const. approach timelike infinity i* = {t = +7,r = 0},
surfaces of = const. approach spatial infinity i® = {t = 0,7 = 7}. The figure is a
Penrose diagram which is especially useful for depicting causal structures. In Penrose
diagrams, radial light rays are straight line segments with 45 degrees to the horizontal.
Null rays (U = const. and V' = const. surfaces) reach .# for an infinite value of the
physical affine parameter along them, hence .# is called null infinity.

The idea is now to take certain properties of the asymptotic structure of the Min-
kowski spacetime as being representative for the asymptotic structure of isolated sys-
tems. We make the following assumptions about an asymptotically flat spacetime
(M, g): There exists a regular spacetime (M, g), a sufficiently differentiable (say C?)
function 2 on M and an embedding ¢ : M — M, which is conformal with conformal
factor Q such that § = (Qo¢) 2¢*g = ¢* (27 2g). The conformal factor satisfies Q > 0
on ¢(M) C M and the completion of ¢(M) is a submanifold with non-empty bound-

ary .#, that is 8¢(ﬂ) = .4 # (), on which Q| =0, dQ|s # 0. These assumptions
are closely related to the notion of weak asymptotic simplicity [108]. In the following,
we identify (b(ﬂ) with M so that we write M C M or g = Q2. The triple (M, g,9)
is called conformal extension of (ﬂ, g). Note that the conformal extension is not
unique.

The basic assumption here is that the rescaled metric g is regular across .#. A
similar construction where this assumption is satisfied can be made for other explicit
solutions that can be regarded as asymptotically flat, for example the Schwarzschild-
Kruskal solution (see Fig. for the resulting Penrose diagram). However, we do not
have a large class of explicit radiative solutions where we can test our requirements on
the conformal extension. Therefore we do not know whether the above assumptions
cover sufficiently general spacetimes so that we can take a conformal approach in the
isolated system idealization of interesting astrophysical configurations .

A strong support for the conformal compactification technique comes from the
studies described in the previous section. Results achieved by coordinate dependent
methods and limits to infinity can be derived very elegantly for spacetimes admitting
a smooth conformal boundary using the conformal technique [107, [108].

To utilize the conformal compactification technique for calculating gravitational
radiation we would like to answer: How general is the description proposed by Penrose?

[111]
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— t = const.
7, = const.

Fig. 1.2: Penrose diagram of the Schwarzschild-Kruskal spacetime.

The details of the conformal compactification technique have been motivated by
explicit examples or well studied assumptions about the fall-off behavior of certain
fields as above and not by a detailed study of the full non-linear Einstein equations. The
assumption on smoothness of .# is geometrical and includes only requirements on the
conformal class [g]. Smoothness of the rescaled metric g along the conformal boundary
& corresponds to a fall-off behavior for the physical metric §, which is however a
solution to the Einstein equations that impose their own asymptotic behavior. It
might be that the smoothness requirement on the conformal extension is too restrictive
such that only a very special class of solutions satisfies it. Whether the geometrical
requirement of smoothness of .# is compatible with the fall-off behavior of the metric
fields as a solution to the Einstein equations is a delicate question.

We would like to know by some general argument whether we have a large class of
non-trivial, asymptotically flat, radiative spacetimes that admit a smooth conformal
boundary such that we can apply the conformal compactification technique. To answer
this question, the solution space to the Einstein equations needs to be studied with an
emphasis on the asymptotic structure of gravitational fields.

The available explicit solutions are not general enough to study the solution space
by direct means, therefore we are led to abstract analysis. By sufficient knowledge
on properties of spacetimes, we can get some results in certain classes. We know, for
example, that asymptotically flat, vacuum, stationary spacetimes admit an analytic
compactification at null infinity [42]. For more general results that include radiative
spacetimes, the initial value problem needs to be studied in a general setting.

The analysis of the initial value problem for Einstein equations in the compactified
picture is not straightforward, as the Einstein equations are not conformally invariant
and compactification leads to formally singular equations at infinity. However, the
equations are conformally regular as Friedrich showed by constructing a system which
is equivalent to the Einstein equations for £ > 0 and is regular for all values of the
conformal factor so that the equations for the rescaled metric g can be analyzed on a
conformal extension M including . where Q = 0 [53].

Friedrich analyzed the initial value problem for the conformally regular field equa-
tions based on spacelike surfaces that extend smoothly through null infinity. These
surfaces are called hyperboloidal as their asymptotic behavior is similar to the standard
hyperboloids in Minkowski spacetime [564]. Let S be such a hyperboloidal surface that
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Fig. 1.3: Penrose diagram for a hyperboloidal initial value problem.

cuts £ in a spacelike two dimensional surface ¥ = SN .+ and extends smoothly
through £ as in Fig. [[.3] (the discussion of .#~ follows by time reversal). The anal-
ysis of the hyperboloidal initial value problem revealed that if regular data for the
conformally regular field equations is given on &, the smoothness of .#* will be pre-
served into the future of S, at least for a while [54]. While this result is local in time,
Friedrich also proved a semi-global stability result stating that, for small data, .#*
will admit future complete null generators and a regular timelike infinity ¢+ [56]. The
existence of regular data for the conformally regular field equations has been shown
in [3]. The analysis of [3] showed further that, in general, even with the strongest
smoothness requirements on free data, logarithmic singularities can arise at ¥ unless
some mild regularity conditions on the geometry of ¥ are satisfied.

These analytic results are important for practical purposes in numerical calcula-
tions. Ome should be aware that the requirement of the existence of a smooth .#*
implies a restriction on the data. One may expect that this restriction does not ex-
clude physically relevant solutions, but this is yet an unresolved question. Still, for a
non-smooth .#* some of the relevant structure may be recovered |35, 151]. It is an
interesting open question whether one can deal with some mildly singular behavior
numerically. We will study the hyperboloidal initial value problem in chapter

The analytic results just described show that the decision on smoothness of null
infinity is made at spatial infinity i°. Remarkably, our knowledge on the asymptotic
behavior of solutions like Schwarzschild or Kerr can be applied to this question. By
gluing techniques developed by Corvino and Schoen [36], one knows that there exists a
large class of non-trivial initial data which is Schwarzschild or Kerr in a neighborhood
of spatial infinity. As stationary spacetimes admit an analytic compactification at null
infinity, we know that the development of such data leads to regular hyperboloidal ini-
tial data. Combined with Friedrich’s results on the hyperboloidal initial value problem
this leads to the existence of a large class of non-trivial, radiative, vacuum spacetimes
with smooth null infinity [34]. These spacetimes, however, have a special asymptotic
structure. The question still remains whether more general spacetimes exist. To an-
swer it, the behavior of gravitational fields in a neighborhood of spatial infinity needs
to be studied in detail.

A detailed study of solutions in a neighborhood of spatial infinity is complicated
by the fact that when the ADM-mass of the spacetime does not vanish point compact-
ification at spatial infinity leads to a certain singular behavior. Physical fields do not
admit smooth limits at the point i°. The limits depend on the spacelike direction along
which one approaches i% [75 [4]. Therefore, to study fields at spatial infinity, it might
be better not to represent it as a point. In [5, [14] [127], a representation of spatial
infinity as a unit timelike hyperboloid has been used. This representation of spatial
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infinity, however, does not allow a study of the full system of the Einstein equations
in a unified picture with spatial and null infinity.

A regular finite initial value problem near spatial infinity has been formulated by
Friedrich using the reduced general conformal field equations that he introduced in
[58]. These equations are written in a conformal Gauss gauge based on conformal
geodesics which are auto-parallel curves with respect to a Weyl connection [63 [70].
In the conformal Gauss gauge, spatial infinity can be represented as a cylinder. The
cylinder at infinity allows a detailed discussion of gravitational fields at spatial and
null infinity in a single, regular setting that only depends on the conformal structure
of the spacetime [61] [64].

Friedrich’s analysis showed that in general, logarithmic singularities arise in a small
neighborhood of spatial infinity. He obtained necessary regularity conditions on the
Cotton tensor for these singularities to vanish. Later on, Valiente Kroon showed that
these conditions are not sufficient and obtained further obstructions to smoothness
of null infinity [I41]. The question on necessary and sufficient conditions on Cauchy
data for smoothness of .# is still open and a field of active research. A rich structure
can be expected in a neighborhood of spatial infinity, as suggested for example by the
existence of initial data whose development may lead to different smoothness properties
on past and future null infinity [142].

For having numerical access to spatial and null infinity in a single setting, the
reduced general conformal field equations are the only tool we have at present. A
numerical implementation of this system needs to deal with certain difficulties. The
regular finite initial value problem at spatial infinity distinguishes directions at spatial
infinity. The regular representation of conformal data on a Cauchy surface crucially
relies on a conformal rescaling of a distinguished tetrad with respect to which the fields
are calculated. For numerical studies using this system, the geometry imposed by the
cylinder needs to be implemented. We will discuss an implementation and tests in
chapter

In this section, I described conformal techniques and some analytic results on their
applicability to present the analytic foundation on which the numerical studies of this
thesis are build. The studies are complementary to existing numerical methods but
they are not an aim by themselves. A motivation to use conformal techniques in nu-
merical calculations is given by the hope that interaction between mathematical and
numerical methods will lead to fruitful studies of the solution space to the Einstein
equations. Especially interesting seems the question, whether a mildly singular behav-
ior of solutions at infinity can be treated by numerical methods so that conjectures
on properties of solutions can be made which in turn might be studied by rigorous
analyses.

Another basic motivation is achieving efficient numerical simulations of isolated
systems using controlled approximations so that reliable predictions on gravitational
radiation can be made. Current numerical methods to calculate gravitational radiation
have certain disadvantages that we will discuss in the next section to give an overview
on the subject and to put the conformal approach in numerical relativity into its
broader context.
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1.4 The outer boundary in numerical relativity

To study the development of large classes of data and to make quantitative predictions
on highly dynamical, strong gravitational fields, we need to use numerical methods.
The Einstein equations written in arbitrary coordinates are of no known type as they
only determine the isometry class of the metric. To numerically calculate a solution
metric with given initial data on some hypersurface, one typically reduces the Einstein
equations to a hyperbolic system of partial differential equations. The reduced system
is discretized and solved iteratively by some numerical algorithm. A reduction can be
done in various ways which suggests a variety of methods in numerical relativity.

Special properties of general relativity among other theories of physics, particu-
larly the lack of a background and related difficulties like the non-linearity of the
equations or the non-local feature of gravitational field energy, require a strong inter-
play between mathematical and numerical methods not only on numerical analysis or
analysis of partial differential equations, but also on differential geometry. The im-
portance of abstract methods that can suggest well-defined techniques for numerical
calculations has been recognized only recently. Today, the numerical stability problem
for some astrophysically interesting classes of data seems to be solved. The numerical
development of various binary black hole initial data, which was a big challenge for
many years, can now be followed from the late inspiral through the coalescence phase
[10, 23, [30, 89, [T13] 122 [131].

There remain, however, many open problems that need to be studied. In this
thesis we are mainly concerned with numerical studies of the asymptotic behavior of
isolated systems. We will therefore concentrate on problems concerning the numer-
ical treatment of the asymptotic region. To illustrate the computational domain in
various methods that we discuss, the regions I and II in the Penrose diagram of the
Schwarzschild-Kruskal spacetime from Fig. will be plotted. We will also discuss
the causal structure on the grid depicted by ingoing and outgoing null surfaces. We
will assume that the interior of the event horizon is dealt with by the excision method.
This corresponds to the introduction of a spacelike boundary inside the black hole so
that no boundary data needs to be given. The requirement for the numerical treatment
of such a spacelike inner boundary is numerical stability. There are other possibilities
for treating the singularity that we ignore.

1.4.1 Timelike artificial boundary

The asymptotic region of isolated systems extends to infinity. To simulate such space-
times numerically on a finite grid, the most common method truncates the computa-
tional domain by introducing an artificial, timelike outer boundary which introduces
certain problems that we discuss in the following. Fig. [[.4] shows a typical foliation
of the Schwarzschild-Kruskal spacetime along with timelike surfaces that may act as
artificial boundaries. The diagram has been calculated using the ingoing Eddington-
Finkelstein coordinates described in Appendix [Al

The introduction of an artificial, timelike, outer boundary implies an initial bound-
ary value problem for a hyperbolic reduction of the Einstein equations which should
be well-posed. The requirement of well-posedness is not just a mathematical subtlety
but is also physically motivated. It means that unique solutions are required to exist
that depend continuously on initial data. This is strongly related to the requirement
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of predictability on a physical theory.

Further, the solutions to the reduced system should correspond to solutions to the
full system in the sense that the vanishing of the constraints on an initial hypersurface
is preserved into the future of that surface. Therefore, the boundary conditions at the
outer boundary should preserve the vanishing of the constraints. Such a well-posed,
constraint preserving initial boundary value problem for Einstein equations has been
constructed by Friedrich and Nagy [68]. Their frame-based, first order formulation
allows the adaptation of the evolution system to a timelike outer boundary such that
the constraints are propagated by maximally dissipative boundary conditions without
the need to restrict the boundary data. However, their reduction has not yet been used
in numerical simulations. Currently, there are many studies on the the initial boundary
value problem for the Einstein equations using methods that are simpler to implement
in numerical calculations but do not solve the full problem [6], [7, 88| Q11 117] 118 [121].

Another difficulty concerns the choice of boundary data. We see in Fig. that
ingoing characteristics enter the spacetime from the outer boundary. One might wish
to prescribe data on these characteristics that would correspond to a no incoming
radiation condition. However, the timelike outer boundary surface is geometrically
arbitrary, without invariant meaning. Apart from the problem related to its gauge
dependent choice, it seems difficult to give a precise definition of gravitational radiation
on such a surface. This difficulty is related to the lack of a quasi-local energy concept in
general relativity. Besides, such a no incoming radiation condition will not in general
correspond to the transparency of the artificial boundary due to backscattering of
gravitational radiation, which is related to the non-linearity of the theory. To give an
example for potential problems, we mention that it has been proven that certain types
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of commonly used boundary conditions in numerical relativity destroy the tail behavior
[40]. Nonetheless, there are detailed analyses on how to deal with these problems in
the linearized regime [26] 27].

The problems described above can be treated numerically provided that the outer
boundary is sufficiently far away so that linearized analysis is a good approximation.
When the outer boundary is far enough, a numerically stable treatment might be
good enough as one can trust the solution up to numerical accuracy on the domain
of dependence of the initial hypersurface. As can be seen in Fig. [[.4 the domain of
dependence grows when the outer boundary is put farther away. A difficulty arises
due to the slow 1/7 fall-off rate of the radiation field. To gain a factor of 2 in accuracy,
the outer boundary needs to be pushed to twice the distance which requires 23 =
8 times the number of grid points on a homogeneous grid in a simulation in three
space dimensions. Therefore, today’s numerical codes use inhomogeneous grids. By
using mesh refinement techniques one can put the outer boundary to as far as 700m
[9,[97]. Mesh boundaries, however, cause numerical errors and there is still a problem of
efficiency on foliations that approach spatial infinity with increasing physical distance.
Such foliations waste computational resources, as one needs long time evolutions to
calculate the emission of radiation in the far-field zone.

This brings us to the radiation extraction problem. In the analysis of numerically
generated spacetimes, one calculates certain quantities interpreted as gravitational ra-
diation along a timelike surface representing a family of observers far away from the
source whereas .# T is the natural place to measure emission [50]. As there is no unam-
biguous definition of gravitational radiation at a finite distance away from the source
one uses approximative methods. A common method, called the Regge-Wheeler-Zerilli
method assumes that the full metric in the extraction region is a perturbation of the
Schwarzschild spacetime in a certain gauge and tries to extract radiation information
in a coordinate invariant way [I15] [I56]. Another method relies on calculating Weyl
scalars with respect to a special tetrad class, called the quasi-Kinnersley frame, that
can be constructed in an invariant way in spacetimes of Petrov type D [99]. These
methods rely on linearized approximations. As shown in [106], different extraction
methods can deliver different results in an accurate code so that numerical error is
dominated by systematic error from the extraction method. Note that this error can
not be estimated by convergence tests. Even in the continuum limit of infinite resolu-
tion, the calculation of gravitational radiation will have the same systematic error.

To estimate the extraction error, one can put the extraction surface farther away
so that the systematic error decreases typically with 1/7. However, there are limita-
tions on the choice of the observer location that also limit the accuracy of radiation
extraction. On the one hand, one should not put the observer too close to the sources
because the assumptions underlying the extraction method are not valid in the strong
field regime. On the other hand, one should not put the observer too far, because
then the contamination from the outer boundary hits the extraction surface before
the waves reach the observer. A further difficulty arising from putting the extraction
surface far away is due to numerical dissipation which lowers the accuracy of the ex-
traction as the waves propagate slowly along the grid. Today, the observer location
for wave extraction is typically set to about 50m [16] [97].

Although recent years saw quite impressive advances in the problems mentioned,
one can say that there is still a lack of appreciation of global or semi-global considera-
tions. While the problems we alluded to can be regarded as subtleties and not crucial
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for the detection of gravitational waves, the approximation errors might turn out to be
relevant for gravitational wave astronomy where accurate waveforms are needed that
might in principle allow us to decide on different equations of state for inspiralling
neutron stars or to extract the remnant gravitational radiation from the big bang.
Such questions require accurate predictions under controllable approximations. As
large parameter studies need to be done, the efficiency of the codes will also play an
important role.

Beside the requirement of an unambiguous radiation extraction we can deduce the
following requirements on a smooth foliation for a clean boundary treatment just by
considering the causal structure on the grid as depicted in Fig.

e No characteristics should enter the computational domain from the boundary.

e Outgoing characteristics should leave the computational domain through the
boundary.

Note that both requirements are fulfilled for excision along a spacelike inner boundary
inside the black hole.

In the following we will review alternative methods that have been suggested to
deal with the problems of the artificial timelike outer boundary approach.

1.4.2 Coordinate compactification at spatial infinity

To avoid problems related to the treatment of the outer boundary within the standard
3+1 approach, one can use a compactifying coordinate system on the Cauchy hyper-
surfaces. Then the outer boundary of the computational domain is at spatial infinity
where natural boundary conditions can be used [33], [113].

To elucidate the idea, take an asymptotically flat, two dimensional spacetime metric
and a time function ¢ such that ¢ = const. surfaces are Cauchy surfaces. Introduce
on these surfaces a coordinate 7. We write the metric on the coordinate domain
{t € (—00,0),7 € [0,00)} as

§ = Gu dt® + 2,7 dt dF + Grr di°.

To avoid a timelike outer boundary, we can introduce a compactifying coordinate r by
setting 7(r) = 7/(1 + 7). The coordinate transformed metric takes the form

Jt7 - g7

~_ ~ 2 ~ ~ 2 P —
= gt dt* + 2g¢, dt dr + Gr dr®,  where gtr—ma grr—m-

(1.6)

The coordinate value {r = 1} corresponds to spatial infinity i® as the surfaces t =
const. are Cauchy surfaces. While the transformed metric components g; and g, are
singular at this point, the untransformed ones attain their Minkowski values for an
asymptotically flat spacetime. A numerical code can evolve the untransformed com-
ponents by substituting the relation (L) into the Einstein equations. The equations
become formally singular at {r = 1} where the following outer boundary conditions
can be applied
gu(t, 1) = =1, Ggw(t,1) =0, gsr(t,1)=1.

The outlined method solves the Einstein equations in a domain that is not bounded
by a timelike dashed curve in region I of Fig. [[4 but by the point i°. Note that
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spacelike surface in the interior of the
event horizon.

although ¢ is a point, in the coordinate compactification at spatial infinity it is blown
up in terms of the coordinates as illustrated in Fig. and Fig. [ In [113] 114]
spatial infinity becomes a cylinder with cubical cuts due to the use of a Cartesian
coordinate system.

While this method avoids the introduction of an artificial boundary, it does not
solve the problem of radiation extraction. Using compactifying coordinates on Cauchy
surfaces is very awkward for studying radiation. The grid velocity of outgoing char-
acteristics decreases to zero towards the outer grid boundary. In simulations, this is
seen by a slowing down of outgoing waves. Gravitational radiation, traveling along
outgoing null rays in Fig. and Fig. [[7 can not leave the numerical domain and
piles up during the evolution near the boundary. This leads to instabilities as the
waves can not be resolved after some time. Dissipation can be used to deal with such
instabilities, but this leads to a loss of accuracy. Radiation extraction is done at some
timelike, gauge dependent surface at a finite distance away from the source as in the
artificial timelike boundary case which implies similar problems. Extraction at outer
domains is not accurate due to the decrease of wave resolution at large spatial dis-
tances (see [113, [118] for detailed discussions). In addition, errors generated in the
vicinity of the outer boundary can travel along ingoing null rays depicted in Fig. [
and contaminate the interior solution.

In this method, our first requirement that no incoming characteristics should enter
the computational domain is fulfilled, while the second requirement is not. The use
of hyperboloidal foliations instead of Cauchy foliations might lead to a method that
satisfies the second requirement too. To my knowledge this idea has not yet been
tried out. It is an interesting open question whether the coordinate compactification
technique can be applied using hyperboloidal foliations.
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1.4.3 Characteristic evolution and matching

The characteristic approach is based on studies by Bondi, Sachs and others [21], [120].
For the treatment of the outer boundary in numerical calculations with the charac-
teristic approach, one uses compactifying coordinates along outgoing characteristic
surfaces with respect to which #7 is at a known coordinate location and rescales the
metric with an appropriate conformal factor [I34]. In a certain conformal gauge, this
procedure leads to equations which are formally singular but have a regular limit at
% that can be calculated by numerical methods.

The number of variables in a characteristic evolution scheme reduce dramatically
compared to the corresponding version of a Cauchy problem because the equations
do not involve second time derivatives. Also the structure of the equations is simpler
and there are no elliptic constraints so that initial data are free [152]. These features
make the characteristic approach very attractive. This approach has been successful in
cases where null foliations smoothly cover the numerical domain, such as a single black
hole or a relativistic star. Unfortunately the coordinates are not flexible and there is
little gauge freedom one can use to avoid coordinate singularities. The main problem
with this approach is the fact that characteristic foliations are not well-behaved in
regions of strong dynamical gravitational fields due to formation of caustics in the
light rays generating the null hypersurfaces [71]. Therefore, a modification has been
suggested which matches a calculation in the interior based on a spacelike foliation
to a characteristic calculation in the asymptotic region where the fields become weak
and a null foliation can be expected to smoothly cover the simulation domain. This
approach is called Cauchy-characteristic matching (CCM) [19, [152].

The conformal diagram for a CCM evolution scheme has been plotted in Fig. [[8
Note that the solid curves represent pieces of spacelike Cauchy surfaces as in Fig. [
Outgoing characteristics from the interior calculation are developed up to .#% and
ingoing characteristics to the interior are calculated by interpolating the solution in
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the characteristic region to a timelike curve. This timelike curve represents an outer
boundary for the Cauchy evolution and an inner boundary for the characteristic evo-
lution. The causal structure on the grid resulting from the matching has been plotted
in Fig.

Both the inner and the outer boundaries fulfill our requirements for a good nu-
merical boundary treatment, however, the foliation is not smooth. The main difficulty
with CCM is the matching along the timelike boundary between the interior and the
asymptotic region, where the causal nature of the foliation changes. Stability prob-
lems caused by interpolation between a Cartesian code solving a Cauchy problem and a
spherical code solving a characteristic problem using different sets of variables impeded
a further development of this approach. One can hope that with recent improvements
on the treatment of timelike boundaries, it will be possible to overcome the difficulties
the CCM approach has been facing in the past.

In the next subsection we will see that the required behavior at both boundaries
can be achieved smoothly without changing the causal nature of the foliation or the
variables of the reduction.

1.4.4 Conformally regular field equations

The conformally regular approach in numerical relativity is based on analytic studies
by Friedrich [53], [54] 56] and it started with numerical studies in spherical symmetry
by Hiibner [79]. In this approach one solves numerically a hyperboloidal initial value
problem for the conformally regular field equations on a domain illustrated in Fig.
(see [51),[82] for reviews). The use of compactified hyperboloidal foliations is promising
because they combine advantages of Cauchy and characteristic foliations. On the one
hand, instead of approaching spatial infinity as Cauchy surfaces do, these surfaces
reach null infinity which makes them suitable for unambiguous radiation extraction,
and on the other hand, in contrast to characteristic foliations, hyperboloidal foliations
are spacelike everywhere and therefore as flexible as Cauchy surfaces.

An exemplary causal structure on the grid is depicted in Fig. [Tl for constant
mean curvature slices in the Schwarzschild-Kruskal spacetime in #*-fixing coordi-
nates, i.e. in coordinates in which the spatial coordinate location of .# ™ has been fixed
as described in Both requirements for a good boundary treatment are fulfilled.
Outgoing characteristics leave the computational domain through null infinity where
a rigorous definition of gravitational radiation allows us to construct an unambigu-
ous numerical radiation extraction method and there are no incoming characteristics
so that no boundary conditions are needed. The foliation is smooth throughout the
simulation domain and very flexible.

A difficulty with the conformally regular approach in numerical calculations is
that the equations include, among others, evolution equations for the conformal fac-
tor which results in a solution dependent representation of #* = {Q = 0};. Note
that in Fig. .10l .#* has been fixed to a spatial coordinate location. In the metric
based conformally regular field equations, however, the location of .#* on the grid is
not known a priori. The numerical boundary does not coincide with the conformal
boundary .#* which leads to problems of efficiency and requires a numerical bound-
ary treatment outside the physical spacetime M [81]. A gauge condition to fix #*
to a spatial coordinate location has been suggested by Frauendiener in [49] in the
context of frame-based conformally regular field equations. To my knowledge, this
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Ts/m

Fig. 1.10: Penrose diagram of a hyper-
boloidal initial value problem on the extended
Schwarzschild spacetime.

Fig. 1.11: The corresponding
causal structure on the grid.

gauge has not been implemented in a general scheme in which .# corresponds to the
outer grid boundary due to technical complications with numerical implementation of
a frame-based evolution system that requires spherical grid topology.

Another difficulty is that the conformally regular field equations are significantly
larger than usual formulations of Einstein equations including many additional evolu-
tion variables subject to constraints. Due to the large number of constraint equations,
numerical errors require a stronger control on constraint propagation properties of the
system. As there is not enough numerical experience with the equations, one can not
use established methods easily to deal with the encountered instabilities. While these
problems are not of a principal nature, they have made progress in the conformally
regular approach difficult.

Instead of trying to overcome the described difficulties within the context of the
outlined methods, we will discuss in the following chapters two novel conformal ap-
proaches for the numerical calculation of asymptotically flat spacetimes.

The approach taken in chapter [ falls into the category of the conformally regular
approach. It is based on the system of reduced general conformal field equations which
has certain advantages over the systems that have been tried in the conformally regular
approach until now. Using this system, we will numerically study a neighborhood of
spatial infinity including a smooth piece of null infinity.

Once a full neighborhood of spatial infinity has been calculated, including a piece of
null infinity, one can evolve the system further by solving a hyperboloidal initial value
problem. For accurate numerical calculations of gravitational radiation along null
infinity, however, the reduced general conformal field equations do not seem to be the
appropriate tool. The reason is that the underlying gauge based on timelike conformal
geodesics leads to a loss of resolution in the physical domain. A further motivation
to construct a different method for the numerical solution of a hyperboloidal initial
value problem is the wish to employ the extensive experience in numerical relativity
gathered over the last decades. In chapter 2 T will present a method in which null
infinity can be included in the computational domain for a common reduction of the
Einstein equations. In this method the location of null infinity is fixed on the numerical
grid so that no resolution loss appears.



Chapter 2

Null Infinity

The discussion on numerical outer boundary treatments in the introduction suggests
that one should include null infinity in the computational domain for a proper treat-
ment of the outer boundary as well as for unambiguous radiation extraction. In this
chapter, we will see how T can be included in the computational domain for a
common reduction of the Einstein equations.

We start with a study of a certain class of spherically symmetric hyperboloidal
surfaces in the Minkowski spacetime to develop an intuition about their behavior.
We observe in spherical symmetry that a conformal factor 2 together with a radial
spatial coordinate r can be chosen such that .#7 is given by {r = 1} as plotted in
Fig. [I1l1 Then we address the full problem without symmetry assumptions. We
see for a common reduction of the Einstein equations how .# T-fixing can be achieved
by prescribing the representation of a preferred conformal factor in terms of suitably
specified coordinates in a hyperboloidal initial value problem. We present numerical
tests of the method in spherical symmetry. The chapter ends with a discussion.

2.1 Hyperboloidal surfaces in Minkowski spacetime

A hypersurface S in a spacetime (M, g) can be given as a level set of a scalar func-
tion ®(p) = const. which satisfies d® # 0 for all p € S. We assume (M, g) to be
time-orientable, with metric signature (—, +, 4+, +) and coordinates {x*}. We set the
positive z%-direction to be the future direction. The unit normal to the hypersurface
is given by

VvV, o
Ve,

We require the hypersurface to be space-like so that the unit normal is time-like,
guwn*n’ = —1, and we choose n* to be future-pointing, n® > 0. If the level sets of ®(z)
define a local foliation in M, we can introduce a new time coordinate ¢(z) = ®(z) and
construct a new coordinate system on a certain domain by choosing space coordinates
on one of the hypersurfaces So = {® = const.}. We define the lapse function o and
the shift vector §* in this coordinate system by the decomposition 9; = an* + G#,
with g(n, 3) = 0. The induced Riemannian metric on S; is given by hy, = guw +nun..
The extrinsic curvature K,,,,, given by K, = hu)‘V ANy, is a measure for the variation

nt = gt (2.1)
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of the unit normal along the hypersurfaces S;. The mean extrinsic curvature K is the
trace of the extrinsic curvature,
K=¢g"K,, =V “—16\/ "
=9 pr = Vpunh —\/T—g M( —gnt).

In our notation positive K means expansion. The mean curvature of a hyperboloidal
surface S approaches a strictly positive value at #+. We will discuss some examples of
spherically symmetric hyperboloidal surfaces in the Minkowski spacetime (R*,7}) with
the metric 7 given as in (3. The mean curvature K of such a hypersurface with unit
normal 7#(t, 7) becomes

nr. (2.2)

2.1.1 Standard hyperboloids

The standard hyperboloids in the Minkowski spacetime can be given as level sets of
the function )
O(t,7) =1t — 72 (2.3)

We investigate the surfaces So = {® = const.} strictly inside the upper light cone,
t > 7, where they are spacelike and ® > 0. The unit future-directed normal (2.1 and
the mean curvature (2:2]) on S¢ read

=l (fo;+70y),

F-_3 _3
Vi -7 VPR Ve
Standard hyperboloids given by different values of ® have spatially constant mean
curvature (CMC), however, if we introduce ® as a foliation parameter we do not get
a CMC foliation as the value of K varies from slice to slice.
The embedding of the Minkowski spacetime into the Einstein universe from

allows us to study the asymptotic behavior of standard hyperboloids by using local
differential geometry. We get

® (t(V,U),7(V,U)) = tanV tan U.
The intersection ¥¢ = Sp N I is independent of @,

Uls, = arctan(® cot V =0,

)‘V:%

as seen in Fig 21 Therefore ® is unsuitable as a foliation parameter for #1. Tt
determines the angle « of the cut at ¥ = {U =0,V = 7/2},

tan U tanV dU tan U cos? U cos? U
5 cos?V + cos2U = dV s tan'V cos2 V sin? V'’
dU 9
tana = Tl = ® = o =arctan® = arctan (E) . (2.4)

We can use this relationship to find the hyperboloid that intersects .# T in a certain
angle. The hyperboloid which is ”parallel” to the ¢ = 0 surface in the above embedding
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Fig. 2.1: Standard hyperboloids. Fig. 2.2: Cutting angle at 7.

has a cutting angle o = /4 which implies ® = 1. The surface S; = {® = 1} has been
plotted in Fig. 21l and Fig.

We see from (24)) that for large values of K, the angle approaches 0. This suggests
that K can be used as an intuitive measure for how close the surfaces are to null
surfaces. In subsequent sections we will see how this aspect plays a role in numerical
calculations.

2.1.2 Simple hyperboloidal foliations

A hyperboloidal foliation can be constructed by translating a standard hyperboloid,
given by a? = 7 — i with a € R, along the timelike Killing vector field 0; of the
Minkowski spacetime. The translated surfaces satisfy a> = (f — ®)? — 7. So, they are

given by level sets of
O(t,7) =1 — Va2 + 7. (2.5)

The unit future-directed normal and the mean curvature read

1 -3

= (\/a2+f28t~+7*6,:) . k=2

a a

In this case, each surface not only has a spatially constant mean curvature, but also

different surfaces of the foliation share the same K. The value of the mean extrinsic

curvature does not depend on ® but on a real parameter a that can be fixed freely.
We embed the surfaces into the Einstein universe as before to get

1
o(V,U) = =(tanV +tanU) — \/a2 + Z(tanV—tanU)Q.

N | =

To study their asymptotic behavior near . where V — 7/2 and cot V — 0 we write

B(V,U) = 2tanU — 2a%cot V

1+tanUcot V + \/4a2cot2V—|— (1 —tanU cot V)?

We get a Taylor expansion in cot V near .# T

®(V,U) =tanU — a’cot V — a®tan U cot? V + O(cot® V) for V — /2.
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Fig. 2.3: CMC foliations of the Minkowski spacetime with K = {15,3,1.5}.

The cut at .# T depends on ® only
®|y+ =tanU = U|,, =arctan®.

The angle of the cut can be calculated by

tano = _v =a’cos’U|y+ = a=arctan (#) . (2.6)
av s+ K2(1+ 92)
Fig.[Z3lshows three CMC foliations in the Penrose diagram of the Minkowski spacetime
with the same set of values of ®, but different values of K. Each plotted surface is
spacelike, so their angle is smaller then 45 degrees to the horizontal. For small K
some of the surfaces look similar to Cauchy surfaces while for large K the surfaces
rather look like null surfaces. The diagrams illustrate the sense in which we say
that hyperboloidal surfaces mediate between Cauchy and characteristic surfaces. This
behavior affects also the dynamics of wave-like solutions. The propagation speed of
waves on the grid in adapted coordinates depends among others on the choice of K as
can be seen in Fig. 24l It is a nice feature that by choosing the mean curvature we
can control the behavior of the surfaces in the interior without changing their cut at
I
For a given foliation with some K, we can find the surface which is ”parallel”
to the Cauchy surface £ = 0 with the slope o = 7/4 at #T. From (2.8) we get

® = +va2 —1 = +4/9/K2 — 1. Such surfaces exist only for foliations with K < 3
which can also be seen in Fig.

Another interesting set of foliations can be constructed by requiring that each
surface of the foliation intersects .# with the same angle. Choosing o = 7/4 we
substitute a2 = 1 + ®? into ([Z.5) to get

~ 1 /=

o(f,7) = — (t2 2 1) :
2t

The mean curvature reads by construction K = 3/v/1+ ®2. As in the case of the

standard hyperboloids, each surface has a spatially constant mean curvature but K

depends on the foliation parameter ®. In this case we get a foliation. The embedding

results in
O = —cot(V +U) = — cot(2t),

where we used the compactifying time coordinate ¢t = (V 4 U)/2. As might have been
expected, we get the ¢ = const. surfaces.
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2.2 ./ T-fixing in spherical symmetry

As seen in Penrose diagrams like Fig. 2.3, .# T is an ingoing null surface. This property
can be made manifest in suitable coordinates such that the null generators of &+
converge. Such coordinates can be useful in numerical studies for discussing global
properties of spacetimes, for example with respect to the existence of a regular point
corresponding to timelike infinity ¢* [80]. These coordinates, however, do not seem
to be convenient for calculating gravitational radiation accurately as they lead to a
loss of resolution in the physical part of the conformal extension. Besides, when the
outer boundary is a timelike surface in the unphysical spacetime, our requirements for
a boundary treatment from [[.4] are not fulfilled.

It has been suggested [2] [49, [84] [155] that conformal compactifications in which
# T is kept at a fixed spatial coordinate location might be suitable for numerical
calculations. This is also suggested by illustrations of the causal structure as in Fig.
or Fig. LTIl In this section, we discuss the general construction of such #*-fixing
coordinates for spherically symmetric hyperboloidal foliations. The explicit examples
concentrate on CMC foliations.

We introduce some conformal transformation rules. Assume a time coordinate ¢
and space coordinates {x7}7:1,273 have been chosen in M. We write the conformal
rescaling in terms of variables of a 3+1 decomposition in the given coordinate system

g = (—a®+hyf7B°) dt* + 2hysB7 dt dz’ + hos da¥dz’ = Q%G =
- (—(Qd)2 + 92%537@5) dt? + 20%h5 37 dt dz® + Q2h.ys dada?
and deduce the transformation rules
a=Qa, B'=0F", has=Lhas.
1

The unit normal n* = 1 (9)' — 8*) transforms as n# = §@”. The transformation of
the covariant derivative under the conformal rescaling g = Q2§ reads [144]

. 1
V =V+5QtdQ), S, (Q71dQ) = o (030 + 000 — g™ g0 (2.7)

where Q,, := (d?),, = V,Q. By the above transformation rules and by the definition
of the extrinsic curvature K,, = hM)‘VAnl,, we derive K, = Q(KW + Qnﬁw), where
Q,, = n*Q,. The mean curvature transforms as K = Q_l(f( + 39Q,). We note that a
CMC foliation with respect to the physical metric ¢ does not necessarily imply a CMC
foliation with respect to the rescaled metric g.

The transformation rules above have been written in a given coordinate system.
For .# T-fixing, we need to construct the coordinate system together with the choice
of the conformal rescaling. This can be done explicitly in spherical symmetry. The
physical line element in spherical symmetry in coordinates {t,7, 24} can be written as

§= (-52 + B,%(BF)Z’) dt2 + 202G dt i + h2 di + 72 do. (2.8)

The lapse &, the shift component 37, and the spatial metric function h; are func-
tions of the coordinates (¢,7) only. We assume that the metric (28] admits a smooth
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conformal boundary and that the time coordinate ¢ is such that ¢ = const. hyper-
surfaces are hyperboloidal. We do not compactify the time direction. The conformal
compactification, g = 92§, can be done such that

Q*(hZdi* + #2do?) = b2 dr? + r? do?, (2.9)

with respect to a compactifying radial coordinate r. Note that we have some freedom
here. One can require for example h, = 1 which leads to r being the proper distance,
but then the conformal factor is determined by the above relation and the radial
coordinate transformation can not, in general, be written in explicit form. By keeping
h,, we have the freedom to prescribe the representation of a conformal factor in terms
of a suitable compactifying radial coordinate r and the coordinate transformation
can be made explicit. The relation ([2.9) implies for a given representation Q(r) a
coordinate transformation 7 = Q=17 so that dif = (2 — r Q")Q~2dr. Then the spatial
metric function transforms as h, = Qh, = Q-—r )Q_lﬁ;. For regularity of this
conformal compactification, h: (t,7) needs to have a specific asymptotic fall-off behavior
for ¥ — oo on the hyperboloidal surfaces of constant t.

A convenient representation for the conformal factor is € = (1 — r). This is not a
good choice at the origin, but we are interested in the asymptotic region. A possible
representation of a conformal factor in the interior will be discussed in 24.4] in con-
nection with a hyperboloidal initial value problem. Our choice fixes the compactifying
coordinate r via

r r dr dr T
iod — — _ d~ — — = — r) = 21
=t =g FegemEem A= (210
which implies . ~
a = Qa, g =024, hy = Q 1h;. (2.11)

In the following we will explicitly construct a .#*-fixing conformal compactifica-
tion for Minkowski and extended Schwarzschild spacetimes using a CMC foliation.
There are many other possibilities for constructing simple hyperboloidal foliations, for
example constant scalar curvature surfaces [104].

2.2.1 The Minkowski spacetime

We use the CMC foliation (ZF) to introduce a new time coordinate t = ®(f,7) for the

Minkowski spacetime (R*,7). We have df = dt+7/v/a2 + 7% dF, so that the Minkowski
metric (5] becomes

727: dtdr :
va?z + 72 T

The variables of the 3+1 decomposition read

ﬁ:—dt2— %d'f’2+7:2d0'2.
a T

T ~ 1

a2+, 3 &, hi=—=.
a

Conformal compactification, = Q27, with Q = 1 — r using (ZI)) results in

2r a?
0272 _ 24,27 2
n=—Q%dt o2 dtdr + ZE T2 dr® 4+ r“do”. (2.12)
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Fig. 2.4: Causal structures on the grid for CMC foliations of Minkowski spacetime
with K = {15,3,1.5}.

The variables of the 3+1 decomposition are

o) = VBRI R =08, F=-La=0F, h=L=0"T

a a !
With our choice of the conformal factor we get Q,, = 3" /a = —r/a = —Kr/3. Using
the transformation rule of the mean curvature under conformal rescalings we derive
K=0"YK+3Q,) =Q (K — Kr) = K. In this case the mean extrinsic curvatures
with respect to the physical and the rescaled metric are equal so that a CMC foliation
of the physical Minkowski spacetime gives a CMC foliation of the conformal extension
that we constructed.

The causal structure for n plotted in Fig. 24 is equivalent to the causal structure
for 7. The radial compactification allows us to include .# ™ in the grid domain and the
rescaling of the metric results in a regular conformal extension. We see that the value
of K has a strong effect on the grid speed of outgoing characteristics.

2.2.2 The extended Schwarzschild spacetime

To find a representation of the Schwarzschild spacetime based on hyperboloidal sur-
faces, we use the family of spherically symmetric CMC surfaces in the extended
Schwarzschild spacetime constructed in [96] (see Appendix for the definition
of the surfaces and [73] for a numerical study). In coordinates adapted to the CMC
slicing, the standard Schwarzschild metric is obtained in the form

2 2(J(F) — i
gS_—<1— m) a2~ 2D =€) s ———dP + 2 do?,

P(7) P2(r)

where C' is a constant parameter and we have defined

=50 Fo= fum-ore (1-2)#

7

I

The constant mean curvature of the surface S; = {t = const.} is denoted by K. The
unit normal to the hypersurfaces S; is

2 o+ (J(f7):2— C) 0.,
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7t ;‘ g+ Nas

T r r

Fig. 2.5: Causal structures on the grid for CMC foliations of the Schwarzschild space-
time with C = 2, m = 1 and K = {1,0.3,0.07}. See Fig. 27 for the corresponding
Penrose diagrams.

The variables of the 3+1 decomposition read

d:

Qi =

Conformal compactification, g; = Q2§s, as in 23) with Q = 1 — r and ZI0)
results in

2m Q 2(J(r)—CQ?) 4
s=—|1— Q7 A S A 777 dr? 2do? 2.1
g ( . ) e T+P2(r) r°+r°do®, (2.13)

where J(r) = Q3 J(7(r)) and P(r) := Q3 P(7(r)), or

T(r) = gﬁ, P(r) = <(J(r) — o)+ (1 _ M) (1- 7")27“4> °

r

The variables of the 3+1 decomposition read

P(r) - J(r)—CQ3 1
o = 2 , ﬁ :—Ta, hT:a (214)
The mean curvature reads o2
- 3
K=K+ 5
r

The slicing of the rescaled metric (2.13)) is not a CMC slicing for C' # 0, but the values
of K and K are equal at #+.

Different choices of K by constant C' have a similar effect on the grid speed of
outgoing characteristics as in the case of CMC slicings of the Minkowski spacetime.
Large values of K correspond to high grid velocities of outgoing characteristics as
seen in Fig. For low values of K, the causal structure on the grid resembles
the causal structure on Cauchy surfaces (Fig. [[7)) in that the grid speed of outgoing
characteristics decreases. In contrast to a Cauchy foliation, this speed stays larger
than zero allowing outgoing characteristics to leave the spacetime through the outer
grid boundary.
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2.3 Hyperboloidal evolution with a prescribed 2 > 0

We have seen in spherical symmetry that we can prescribe the representation of a
conformal factor in terms of a suitably chosen radial coordinate which can be deter-
mined to achieve explicit .# *-fixing. The freedom to prescribe the representation of a
conformal factor might be a special feature of spherical symmetry. We will see in the
following, however, that one can construct general solutions to the Einstein equations
where the representation of a conformal factor can be prescribed freely in terms of
suitably specified coordinates.

Consider the transformation behavior of the Ricci tensor under conformal rescalings
g = Q2§ with Q > 0 [144]

- 1 3
Ryolg) = By ld] = 5 2 V,V.0+ 00g.) + 55(T20) V20
The Einstein tensor, G, = R, — %gm,R, transforms as

2 3
Gulgl = G lg) — 9 (V. V,Q—00g,) — W(vm)vm G- (2.15)

As seen by this relation, the Einstein vacuum field equations for the physical metric,
Guv[g] = 0, are equivalent to a similar system

2 3 A\
= Y (V#V,/Q -0 g#l/) - @(VAQ)V Qg (2.16)
for the conformally rescaled metric g. We want to formulate a well-posed initial value
problem for this system.

As mentioned in [62] there are two difficulties when we try to solve (2.16) for
a conformally compactified metric g. The first one is caused by the terms involving
divisions by factors of Q which are formally singular at # . These terms attain regular
limits at .# T if the spacetime admits a smooth conformal boundary. In the following
we will assume that hyperboloidal initial data has been chosen whose development
admits a smooth conformal boundary as indicated in [[31 The question how these
limits can be calculated numerically will be discussed in

The second difficulty is related to the question of how to determine 2. The con-
formal extension is what we are solving the equations for and the conformal factor is
related to the asymptotic structure of the solution metric, therefore it must be deter-
mined jointly with the metric. Although it seems difficult to control the evolution of
the conformal factor we will see that the conformal invariance of our evolution system
(ZI6) combined with certain geometric properties of £ allow us to prescribe the
conformal and the coordinate gauge in a way that .# is kept at a spatial grid coor-
dinate, the representation of a suitable conformal factor in terms of grid coordinates
is known a priori and each of the formally singular terms in (2.I6]) attains a regular
limit at & .

In this section we concentrate on the case of a positive, sufficiently differentiable
conformal factor. The system (2.I0]) has the form of Einstein equations with source
terms. In general, such a system must be completed by additional equations derived
from the Bianchi identity. The divergence freeness condition, V#T,, = 0, implies
equations for the source functions. Some notable exceptions to this procedure are
the Vaidya metric and the null dust [I28]. In those cases, the divergence freeness

Guvlg] = T[4 :



2.3 Hyperboloidal evolution with a prescribed 2 > 0 34

condition is satisfied without implying additional equations for the source functions
so that certain functions can be prescribed freely, up to physically reasonable energy
conditions, in terms of coordinates adapted to the null cones. It is interesting to note
that these free functions are prescribed in a way that keeps the null cone structure
invariant which is equivalent to the conformal structure. We show now that also in our
case there are no additional equations required for the conformal factor 2 to satisfy
the divergence freeness condition. We calculate

2
VAT [0 = — 3 VAR 2V, V0 + D0g,) — 5 (OV,Q - V,00) +

Dl

+ % (V. Q)(VAQ)V Q. (2.17)

Contracting the commutation relation, VoV, V,Q -V, V,V,Q = R/\UP"VUQ, with
g and exchanging derivatives we get, OV,Q — V,0Q = R,°V,€). Using this, the
definition of the Einstein tensor and the conformal source tensor as given in (2.16), we
get the identity

VT[] =~ 5 V92 (Gulo) — TunlS) (2.15)

We see that the divergence freeness condition, V#T),,[Q] = 0, is satisfied identically by
the conformally transformed Einstein equations for a non-vanishing 2 that is at least
C3. Therefore, ) can be regarded as a free function. We can write some favorable
equation for its evolution consistent with the above calculation or prescribe it directly
in terms of arbitrary spacetime coordinates as long as 2 = 0.

2.3.1 A hyperbolic reduction

We showed that the Einstein vacuum field equations for the physical metric g are
equivalent to the conformally transformed Einstein equations (216) for the rescaled
metric ¢ = Q2§ with a non-vanishing, sufficiently differentiable conformal factor €2 # 0
written as a function of some yet unspecified coordinate system. However, this is not
enough to work numerically with the system (2I6). We also would like to see that we
can find solutions to (ZI6]). To show this we use the hyperbolic reduction technique
[59].

The source terms in (2.10) involve second order derivatives of the conformal factor
which translate to first order derivatives of the rescaled metric via Christoffel symbols,
V.V.,Q=0,0,Q— 1";\”,8,\ Q. In a fully first order reduction of the Einstein equations,
these Christoffel symbols can change the principal part. In the general wave gauge
reduction we discuss below, however, the principal part does not change and the ar-
gument for well-posedness from [69] can be directly used with a minor modification.

Regarding the Ricci tensor R*Y as a differential operator acting on the physical
metric g, we can write the Einstein vacuum field equations in a local coordinate system

{&#}=0,1,2,3 as

1 P .
RM[j] = 55]’\”3,\3,)@”” + V) — gregoT D¢ v =0, (2.19)

o pT

where we have defined the contracted Christoffel symbols T# := §oT# = —[J;7#
and set VATV = gH*(0,I"" + I‘Z)\I‘A). The principal part of the operator R*” is of
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no known type. It was recognized by Choquet-Bruhat that one can always choose a
wave gauge (historically referred to as harmonic gauge), at least locally, so that the
contracted Christoffel symbols vanish, I* = —@gi” = 0, and the Einstein vacuum
equations (2.19), reduce to a quasi-linear system of wave equations. This reduction
technique led to the first local existence result in general relativity [24].

The reduction based on the wave gauge was generalized to arbitrary coordinate
systems by Friedrich with the introduction of gauge source functions [55]. In the
general wave gauge, the coordinates are constructed as solutions to an initial value
problem for the semi-linear system of wave equations Ijg:i“ = —T" = —F* with
prescribed functions F*(Z,§) that can depend on the coordinates and the metric.
These functions act as source functions for the coordinate gauge, hence the name
gauge source functions. Note that the general wave gauge, in contrast to the wave
gauge described above, is not a specific choice of coordinates but a way to prescribe
general coordinates in an initial value formulation.

The reduced system to (ZI0]) is obtained by replacing the contracted Christoffel
symbols with the gauge source functions F*. The resulting system becomes a quasi-
linear system of wave equations for the metric components which can be written as

G lg] = THIO] + VCY) — L(VACN)g", (2.20)
where C* = I'* — F* are called the constraint fields. This is a coupled system of
quasi-linear wave equations for the unknown ¢g#¥ ([2.34)). We need to study the Cauchy
problem for this system. I will just mention certain aspects that play a role in later
considerations or that are different from the detailed discussion in [69].

The Cauchy data on an initial hypersurface S = {2° = 0} consists of g"”|s and
00g"”|s. Assume we are given on S a Riemannian metric hog and a symmetric tensor
Kz as a solution to the Einstein constraint equations and we have chosen gauge source
functions F*(z}). We further choose four functions on S that correspond to initial
data for the lapse function o > 0 and the three components of the shift vector 3°. In
the interior, these functions should be chosen such that dy is timelike which implies
a? — hwsﬁ'yﬁ‘; > 0. We will later allow dy to become null at the outer boundary (see
the discussion leading to (Z32)). We obtain the data g"¥|s via the decomposition

y 1 2 BB
g=g"9,0, = _Eag + 56”8087 + (W -

)8785, v,6=1,2,3. (2.21)

The data dpg"”|s is determined so that C*|s = 0 and K,g is the second fundamental
form on S§. Standard theorems guarantee that we can find a unique solution to the
Cauchy problem for the reduced equations (2:20) that depends continuously on the
initial data. Now we need to show that this solution is also a solution to (2.I6I).
The solution spaces of ([2220) and (216 are equivalent if the constraint fields vanish,
C* = 0. We can derive a system of partial differential equations for the constraint
fields by taking the divergence of our reduced system (Z20). The Bianchi identity,
V,.G*" =0, and (2.I8)) imply the following subsidiary system for the constraint fields

4 1
OC* + RECY = V.9 (v<ﬂc"> - 5(%0%#’/) =0. (2.22)

This is a homogeneous, semi-linear system of wave equations for C*. The Cauchy
problem for this system has unique solutions. The initial data for the evolution equa-
tions has been constructed such that the C* vanish on the initial surface, C*|s = 0.
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From the evolution equations evaluated on S it follows that also the first derivatives
of the constraint fields vanish on the initial surface, 9yC*|s = 0. The uniqueness of
solutions to the Cauchy problem for the subsidiary system (2.22)) then implies that the
solution to the reduced system (Z20)) satisfies C* = 0 away from the initial surface S.
Therefore, we can use ([Z20)) in a numerical calculation to find solutions to (ZIGI).

The above argument does not change when we add homogeneous combinations
of the constraint fields to the reduced system (220). These ”constraint adjustment”
terms can be of the form Af(z,g,dg) C* without changing the principal part of the
reduced system and the uniqueness of the vanishing solution to the subsidiary system.
Such terms can be useful for changing the behavior of the subsidiary system to damp
constraint violations when the constraints are only satisfied up to an error. It is
known that non-linearities in the subsidiary system can lead to catastrophic growth
of constraint violations [66]. There are suggestions for constraint adjustment terms
based on linearized studies [77] and numerical experiments with certain solutions [g].
A general procedure for their choice can hardly be expected.

Note the appearance of a division by the conformal factor in the subsidiary system
222). With our current limited understanding of the subsidiary system away from
the constraint surface, it can only be decided by numerical experiments whether this
division causes difficulties for the propagation of constraint errors for a large class of
dynamical solutions in regions where € is small.

We have seen that we can prescribe the representation of a conformal factor a priori
in an initial value problem for the Einstein equations in M, that is we can set Q = f(x)
in (Z20) where 2/ are coordinates in M and f is a positive function f(z) > 0, which is
at least three times continuously differentiable. Such a prescription does not determine
the conformal factor a priori as a function from the manifold to the positive real line.
I shall point out how this prescription is to be understood to avoid confusion due to
my sloppy but common notation.

In an initial value problem we do not know the manifold a priori. The coordinates
on the manifold are constructed during the solution process and they are determined
by initial data as well as by the choice of the gauge source functions. The prescription
of a function for a conformal factor determines only the representation of a conformal
factor in terms of coordinates which are yet to be constructed during the solution of
Z20). Properties of the resulting conformal factor will depend on initial data and the
choice of the gauge source functions for the coordinates, however, we can choose the
coordinate representation of €2 to be a convenient one for numerical calculations.

The essential property of ([2Z.IG) that is responsible for this feature is its con-
formal invariance, in the sense that if (M,g,€) is a solution to G lg) = T8,
then (ﬂ ,w?g,w) with a sufficiently differentiable positive function w is a solution to
Guvw?g) = T, [w)]. The system (2.16) determines the conformal class of the metric
g in contrast to the vacuum Einstein equations which determine the isometry class of
g. In the spirit of Weyl, an arbitrary choice of a point-dependent unit of measurement,
i.e. an arbitrary conformal gauge, is allowed. By prescribing a coordinate representa-
tion for a conformal factor, we do not fix the unit of measurement, but its dependence
on coordinates. The conformal factor is then constructed jointly with the metric, the
manifold and the coordinates.
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2.4 Including null infinity

The freedom to prescribe a convenient representation for the conformal factor in terms
of arbitrary coordinates is a feature valid for 2 # 0 where no invariant requirements
are to be fulfilled by the conformal factor. However, our motivation to study conformal
rescalings was to include .# " in the computational domain. To achieve this, we need
to allow €2 = 0 at the outer boundary of the future domain of dependence of an initial
hyperboloidal hypersurface S while keeping €2 > 0 in the physical manifold M. Of
course, this can only be done, if at all, when (M, g) admits a sufficiently regular
conformal boundary.

When  is a prescribed function in the above sense, the requirement that {2 = 0}
shall correspond to .#+ implies certain conditions on the coordinates. The choice of
the conformal gauge is then coupled to the choice of the coordinate gauge. In this
section, we see how a suitable coupling can be achieved.

2.4.1 The preferred conformal gauge at ./

We assume that the Einstein vacuum field equations with vanishing cosmological con-
stant are satisfied in a neighborhood of .# . We restrict ourselves to the case where
matter fields have spatially compact support, although a sufficiently strong fall-off be-
havior of matter fields can also be regarded as compatible with our discussion. As
a consequence of the Einstein vacuum field equations, .#T is a shear-free null sur-
face as discussed below (cf. [I08]). To find an appropriate conformal gauge for our
calculations, we will use this property of .#t.

Consider the transformation behavior of the Einstein tensor under conformal rescal-
ings. Multiplying (ZI5) with Q2 and evaluating it along .# © where © = 0 we see that
g VAQV Q| #+ = 0. This shows together with dQ| »+ # 0 that .# 7 is a null surface.

We multiply (2.I5) with Q and take its trace-free part along # where Q = 0 to
get

1
(V#VUQ — 29 DQ> ’ﬁ =0, (2.23)

The relation above is independent of the conformal gauge because we derived it from
the transformation behavior of the Einstein tensor (2Z.I5]) under some conformal rescal-
ing. Another way to see this independence is to consider the transformation behavior
of (223) under a further conformal rescaling of the metric given by

g =uw?9, U =wQ, w>0on M. (2.24)

Using 7)) with V/ = V +S(w ™ dw), we derive the following transformation behavior
for the second covariant derivative of the conformal factor along &+

ViV, s+ =wV, V. Q + g Qwy,

where we have set 2, = V. and wy = Vi w. The trace of the above relation reads

1
O g+ = — (WO +4Q%)) . (2.25)
w
We get
vV -ty oo ’ —w (v, w0 - L., 00 ’ ~0
wv 47mv g+ wov 47 gt
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The relation ([2:23) can be interpreted as implying shear-freeness of £ . To see
this, we introduce in a neighborhood of .#* a null vector field I# that satisfies on
7 the relation [* = V#Q. We complete I* to a Newman-Penrose complex tetrad
(1, k,m,m) satisfying

g(l,l) = g(k,k) = g(m,m) = g(m,m) =0, g(l,k) = —g(m,ﬁ”L) = -1,
g(l,m) = g(k,m) =g(,m) =g(k,m)=0. (2.26)

In [100], Newman and Penrose introduce twelve complex functions called spin coef-
ficients. We are interested in two of them defined by o := mtm”V,l, and p :=
m*m”V ,l,. As discussed in [100], when {* is tangent to an affinely parametrized null
geodesic, o can be interpreted as the complex shear of the null geodesic congruence

given by [#* and the expansion of the congruence is characterized by p. Evaluating o
and p at £ and using (2.23)) we see

olg+ = im“m”guyDQ =0, plo+ = im“m”g#,,DQ = iDQ.
In our case, the null generators of # are not necessarily geodesic, i.e. do not satisfy in
general [’V ,I[* = 0 on .#T. However, under a rescaling of [* given by (I')* = §I* with
a positive function 6, the spin coefficient o transforms as ¢/ = 6o, so the vanishing
of ¢ is invariant under a rescaling of [* which we can use to make [** geodesic. We
therefore conclude that £ is a shear free surface.

While the vanishing of o and the shear freeness of # is valid in any conformal
gauge, the vanishing of the expansion of £ characterized by €| s+ depends on
the conformal rescaling as seen from the transformation behavior (2Z25). The relation
(Z23)) implies that given {2 whose expansion along .# T does not vanish, we can always
find a conformal rescaling (2:24) such that ['Q’'| »+ = 0. To construct this conformal
gauge in a given conformal extension, we need to solve an ordinary differential equation
for the rescaling w along the null generators of .# T which reads

1
ANValnw)| gt = —ZDQ|ﬂ+.

This equation can always be solved in a given regular conformal extension and so, one
can always construct the conformal gauge in which .# 7 is manifestly expansion-free.

We call the conformal gauge in which the expansion of #+ vanishes, Q| s+ = 0,
a preferred conformal gauge. This gauge is useful for analytic studies because of its
special properties [112] [129]. It is also used in numerical calculations in the character-
istic approach [134]. A direct consequence of (Z23)) in a preferred conformal gauge is
that V,V,Q| s+ = 0. By multiplying (ZI6) with £ we see that in this gauge

1
lim — ¢g*V,QV0 = 0.
QanO Q) 9NNV
So a useful property of this gauge is that each term in the conformally compactified
Einstein equations (Z.I6) attains a regular limit at ..
Summarizing, a preferred conformal gauge in which # is expansion free satisfies

the following relations along .#

1
00+ =0 = V,V,Ql+ =0 and lim ﬁngmvﬁ@ =0. (2.27)
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2.4.2 Coupling the conformal and the coordinate gauge at ¢

In a preferred conformal gauge, we adapt the coordinates to .# T so that £ is at a
fixed spatial coordinate location. This secures that no resolution loss in the physical
part of the conformal extension appears.

Assume a conformal extension (M, g, ) with a regular .#* has been given in a
preferred conformal gauge. As dQ| s+ # 0, one can use the conformal factor as a
coordinate in a neighborhood of .#*, which has the topology R x S%. We can then
introduce another coordinate system {z*} = {t,r, 2} with respect to which Q = 1—r
in a neighborhood of .# . Here, t is some time coordinate, r is a radial coordinate and
x4 are angular coordinates. This essentially corresponds to using the conformal factor
as a coordinate in a neighborhood of .#T which now corresponds to the coordinate
surface {r = 1}.

We use a specific representation of the conformal factor in terms of coordinates,
Q =1 — r, which couples the conformal and the coordinate gauge so that geometric
properties of # 7 translate into coordinate conditions. The relation £ = 1 —r satisfies
dQ| s+ # 0. The requirement that € is a preferred conformal factor such that the
expansion of # 1 vanishes manifestly in  implies

0| s+ =I"|r=1 = 0. (2.28)
By ([227), we further have as a consequence of (2.25)

g”VV#QV,,Q|y+ - gTT|T:1 = 0; V,U,VUS)L]+ = FLy|T:1 - 0;

1 g
=1 — gt =1 = — T _
0 slzlino Qg AYRIAVRY) }LIIll - g | =1 (2.29)

In this representation of the conformal factor, the source terms (2.I6) for the confor-
mally transformed Einstein equations (2.I6]) read

2 r T
TMV:_l_T(FHV_gHVP )_

3
e 9wy’ (2.30)
By our assumptions on the spacetime and our choice of coordinates, each term in 7},
attains a regular limit along {r = 1}.

We can specify 9; further such that it is equal to Q¥ = g**V,Q along .#*. Then

we get
W g+ = =g""|r=1 = 0} =9, (2.31)

The relation (Z31) implies along & : 0 = ¢"" = ¢""¢"" g, = gi which is compatible
with the fact that ¢ is a parameter along a null surface. The vanishing of F;U|T:1
implies then in combination with (23] the following 10 relations along &+

1
Otgit = Orgit = Oagee = 0,  Orgtr — 53169” =0,
Orgat +0agir — Otgra =0, Oagpt +0pgas — 0rgap =0
The coordinate conditions we get are similar but more flexible than those in the char-

acteristic approach [134]. This is because the hyperboloidal foliations allow for more
gauge freedom.
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2.4.3 Constructing preferred coordinates

We have studied implications (228 [Z29) of the specific prescription of a preferred
conformal factor by 2 = 1 — r in terms of a radial coordinate r. In a numerical cal-
culation of a previously unknown spacetime, we would like to know how to construct
preferred coordinates such that the coordinate surface {r = 1} has the desired geomet-
ric properties of #*. In general, it is not clear how to control geometric properties
of given coordinate surfaces during time evolution because the spacetime which de-
termines the geometry is constructed together with the coordinates, however, in the
general wave gauge the condition ([2:28) can be controlled in a hyperboloidal initial
value problem directly by an appropriate choice of the radial component F” of the
gauge source functions.

Assume hyperboloidal initial data is given on a spacelike hypersurface S with a two
dimensional boundary ¥ such that its evolution admits a regular .# T in accordance
with the theorems of [3 [54]. We can always do a coordinate transformation on S such
that the conformal factor has the form Q|s = 1 — r in a neighborhood of X.

In the hyperboloidal initial value problem for the conformally compactified Ein-
stein equations using the general wave gauge reduction (2.20), the coordinates are
constructed during time evolution implicitly as solutions to the wave equations with
source terms [ga# = —I'* = —F*. As seen by this relation and Q =1 — r, the radial
gauge source function F" at {r = 1} determines directly the expansion of .# . We
can make sure that (Z28) is satisfied by simply setting F"|,—; = 0 initially and during
time evolution. The initial data for lapse and shift should be chosen according to

231). By @221 we set
als = Vi, By = —h". (2.32)

By our choice of initial data and gauge source functions we have a preferred conformal
gauge and therefore also ([2.29). Note that while it is not clear whether (231 can be
satisfied by the choice of gauge source functions, ([2:29) is sufficient for the conformal
source terms given by ([2:30) to attain regular limits at .# that can in principal be
calculated numerically. A possibility to deal with these formally singular terms is
discussed in section

We note again that, even in a given manifold, a prescription such as 2 =1 —r will
result in different functions on the manifold depending on the choice of the coordinate r.
It is a remarkable feature of the conformally compactified Einstein equations that they
allow us to prescribe the conformal and the coordinate gauge in a way that geometric
properties of .# T are respected by the coordinates in an initial value formulation and
the representation of a preferred conformal factor in terms of coordinates is known a
priori.

2.4.4 Choice of a conformal factor in the interior

The notion of an isolated system implies the existence of an interior and a far-field
region. The suggested method to include null infinity in the numerical domain is
tailored for the treatment of the asymptotic region. The numerical evolution scheme
in the interior does not need to be changed in this approach as we are free to prescribe
the representation of a conformal factor in M.
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The interior domain on a spacelike surface will be confined to the interior of a ball
of radius r; which includes the spatially compact support of matter sources. Assume
that a radial coordinate r has its origin in the center of this ball and choose a large
rq > 1;. The domain r; < r < r, can be regarded as the transition domain between
the interior and the asymptotic region. The conformal factor in the interior can be set
to unity, Q = 1 for r < r;, so that the conformal source terms in ([2I6) vanish. In the
asymptotic region r > r, we can choose {2 = R — r with any large constant R > r,
without changing the analysis in the previous sections made for a neighborhood of .#+
which is now given by {r = R}. On r; < r < r, any transition between the different
domains can be used that is at least C3. A smooth transition is given for example by

_Lr=r)? _Lr=ry)?
ND=c¢ traZ +(R—71)(1—¢ ra? ).

There are of course many other possibilities. The important point is that we are allowed
to prescribe a non-vanishing, sufficiently differentiable function for the representation
of a conformal factor to solve the Einstein equations in the interior which allows us in
principle to attach a compactified asymptotic region to standard numerical relativistic
calculations. The width of the transition region or the form of the transition function
should be decided upon by empirical studies.

2.5 Numerical tests in spherical symmetry

A question that we did not discuss so far is how to set up a numerical code such that
the formally singular source terms 7}, as given in (230) can be dealt with. In this
section, we study a simple possibility and discuss numerical test results on the example
of the extended Schwarzschild spacetime as given in (Z.I3]).

The system (Z20) is not suitable for analytic studies on questions of smoothness
properties of .# T, as the equations are formally singular at the set whose properties we
are interested in. In this section, however, the main interest does not lie in questions
of differentiability or existence but in the numerical construction of spacetimes which
admit a sufficiently smooth conformal boundary. To achieve this in the case of spherical
symmetry, we numerically solve the conformally transformed Einstein equations in
the general wave gauge discussed in previous sections for the extended Schwarzschild
spacetime. The example we study is clearly very special.

The general wave gauge has been used in various numerical studies |7} 8] [72], [05] 106,
1141 117, 118| [122] 131], 132} [133]. There are many aspects to numerical evolutions that
a successful calculation needs to deal with. The numerical results presented below are
not optimal with respect to the numerical grid boundary treatment or the constraint
propagation. The aim is only to see whether the suggested method is robust enough
to deliver results with a simple choice of evolution variables and a straightforward
treatment of the outer grid boundary.
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2.5.1 The evolution system

The evolution system can be written as

1
R;w [g] - v(;LCV) + Auu = THV[Q] - 5 guuT[Q]v (2'33)

with C, =T, — F),. Here, A, are constraint adjustment terms of the form
Auu = C)\ A;);u(xa g, 89)

These terms vanish when the constraints are satisfied. They change the propagation
properties of constraint errors without effecting the principal part of the system. In
terms of metric components we get for (2.33)

1 g a
?WWQMW—VwEO—WJ%w”%U—miwpwwmm—Aw:

3
= 217 Fg.)— ——=3" 9. 2.34
1—T( HV+ g# ) (1_,,,)29 g# ( )

For the right hand side, {2 = 1 —7 has been set explicitly and the contracted Christoffel
symbol I'" has been replaced by the gauge source function F”. This replacement
modifies the subsidiary system (222)) by a single term without changing the results
we discussed in 223711

The calculations are done for a spherically symmetric metric in adapted coordinates
(t,r,9,¢). The line element can be written as

g = gut dt* + 2gy, dt dr + gpr dr® + gy do?, (2.35)

where do? = dv? + sin?9dp?. All metric components are functions of (¢,7) only.
Alternatively one can write the metric in terms of the variables of a 3+1 decomposition
as

g = (—a® +h?B*) dt* + 2h2B dt dr + h? dr* + b? do?,
where the lapse «, the shift 8, and the spatial metric functions h and b are functions
of the coordinates (¢,r) only. They are given in terms of the metric components by

1 | 92 ger —
o = = _— N ﬁ = —_—, h = .
/—_gtt Grr gtt Grr Grr

The evolution variables can be chosen such that the resulting system of partial
differential equations is first order in time and second order in space. This can be
done in various ways with different stability properties. A simple choice is given by
guv and the auxiliary variables m,, = n’\(?)\gw, where n* is the unit normal to the
surfaces ¢ = const. given by n = é(@t — [ 0,). We write the system of evolution
equations for the variables (g, 7. ) as

atg,uv = 6 37«9;“/ +amu,
[0
(9,57TH,, = p 67‘7TMU + g_ 839;1!! + Hyy (9,09,m,7),

rr

where the H,, are lower order terms. The initial data at {¢ = 0} is read from the
explicit solution ([Z.I3]) and no boundary data is needed.
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The numerical code is based on finite differencing for the spatial derivatives and
method of lines for time integration. We discretize the computational domain by
introducing the homogeneous grid r; = (ro + jér). The radial coordinate location
of the spacelike inner boundary inside the event horizon is denoted by ¢, the grid
spacing is denoted by ér and j = 1,2,...,n where n+1 is the total number of nominal
grid points. We define difference operators D1 by their action on a grid function
gf)j via D+¢j = ((ijrl — ¢J)/(5T) and D,gf)j = ((bj - gf)j,l)/(KST). We also define
Dy = (D4 + D_)/2. The spatial derivatives are replaced by fourth order accurate
discrete derivatives
(6r)? (or)?

6 12

9y — Do <1 - D+D) b;, d2¢p — D, D_ (1 — D+D> ¢;. (2.36)
The calculation of derivatives at the boundaries is described in[2.5.3] To each evolution

equation for a variable ¢ we add Kreiss-Oliger type dissipation terms [90] given by

(or)°

di
¢l 188 =€ 26

(D+D*)3¢i7

where € is a small dissipation coefficient. No dissipation is applied in a neighborhood of
the boundaries. The time integration is done by a fourth order accurate Runge-Kutta
scheme.

2.5.2 Choice of the gauge source functions

For the evolution of Einstein equations starting from some initial surface, we prescribe
the covariant components of the gauge source functions, F,. The form of the metric
([238) and the Einstein equations (Z33]) imply for the angular components

Fy = —cot 1y, F,=0.

The gauge source functions F; and F,. are free. In spherical symmetry they can be
prescribed in a way that distinguishes the radial coordinate r. For any metric adapted
to spherical symmetry, one can find a radial coordinate such that ggg(t,7) = r? or
b(t,r) = r. Such coordinates are called areal as in these coordinates any r = const.
2-surface on a time slice has the area 4mr2.

In the ADM formalism, the condition that r is an areal coordinate is called the ”area
locking” condition. It determines the shift by an algebraic relation [85]. In the general
wave gauge, the condition that r is an areal coordinate implies a relation between
the gauge source functions F; and F;.. This relation can be derived from the Einstein
equations by setting ggy(t,7) = r? or b(t,r) = r, into the angular component of the
equations. Without compactification (T}, = 0 in (2:33))) and constraint adjustment
(A = 0), we get the following relation between the gauge source functions F; and F;

it — 9t2r + gueGrr + 7 (Fr g1t — Fy ger) = 0.

This relation can be used to determine for example Fi(gst, gty Grr, Frry7) for a given
F.. In terms of variables of the 3+1 decomposition we get

2 2 2 2
Ft(aaﬁathrvr)__%<%_%)Fr_a_<i_%+l), (237)
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for non-vanishing shift. For the conformally transformed Einstein equations one gets

the relation ) 5
Frgit 2 Jtt

F=—+ — ) €2 —
b o T (=97 + 9t19rr) 2+ g11) o)

Unfortunately, the areal condition in this form is not suitable for our calculations in
general, because the shift (or equivalently g:,) vanishes in the interior. This is because
we require the shift to point into the computational domain at both boundaries. For
the interior calculation around the excision region of the black hole, the shift is required
to be positive so that the inner boundary is a spacelike surface inside the event horizon.
At the outer boundary, the shift becomes negative since .# T is an ingoing null surface.
The change of sign in the shift seems to be a general feature of hyperboloidal foliations
that can be used for excision.

For the numerical tests, we do not use ([Z38)). We read the gauge source functions
from the explicit solution (2I3]). In spherical symmetry, the condition that F”| s+ = 0
corresponds to Fy| s+ = 0. A simple calculation shows that this condition is satisfied
in our case.

. (2.38)

2.5.3 Numerical treatment of grid boundaries

We introduce ghost points for the discussion of grid boundaries. To build fourth order
finite differences via ([2.36]) at the boundaries we need two ghost points. Our method
for the numerical treatment of boundaries for a first order in time second order in
space system relies on [28]. Below, we give prescriptions for the grid functions at the
inner ghost points j = —2, —1 and at the outer ghost points j = n + 1,n + 2. For the
simulations, we choose m = 1 and set the boundaries at

2 1

) Tn = 1- Rl

n n

which implies a grid spacing of ér = (1, — 70)/n = 1/(3n) — 1/n?. The event horizon
is at 2/3 and £ is at r = 1. For large n, the distance of the inner boundary to the
horizon is about 6 (dr) and the distance of the outer boundary to . is about 3 (67).
Note that the coordinate distance decreases with increasing resolution.

Inner Boundary

The inner boundary is a spacelike surface inside the event horizon of the black hole as
depicted in the Penrose diagram Fig. 2.7 or in the diagram of the causal structure on
the grid Fig. No boundary data is needed on a spacelike hypersurface so that we
can excise the singularity from the computational domain. The computation outside
the event horizon should not be disturbed by the excision inside the black hole.

The numerical outflow boundary conditions consist of a fifth order extrapolation
for g and fourth order extrapolation for 7 [28]. We set

(6r)°D3g-1=0 = g-1="5g0—1091+10g2 — 595+ gu,
(6r)°D3g-2=0 = g-o=>5g-1—10g0+10g1 — 592+ gs,
(5T)4Di7r,1 =0 = w1 =47 —6m +4m — 73,
(5T)4Di7r,2 = = T_o=47m_1—6m+4m — ™.
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Fig. 2.6: Stencil for extrapolation at the outer boundary.

Outer Boundary

There are no characteristics entering the computational domain from the outer bound-
ary therefore no analytic boundary data are needed. A numerical treatment, however,
is necessary to deal with the appearance of divisions by factors of Q on the right hand
side (Z30). Two possibilities are:

e Calculate the limit for 7}, at .#* by numerical techniques (for example by using
a discrete version of the I’'Hospital rule).

o Extrapolate the solution (g, ) at the outer boundary.

I chose the second option, not because it is a clean treatment, but because it is a
simple method to implement. In the simulations presented below, .# T is about three
grid points away from the outer grid boundary (Fig. 2.6]). The ghost points are filled
by the outflow conditions as for the inner boundary

(5T)5Dign+l =0 = gn+1 = 5gn - 1Ogn—1 + 10 In—2 — 5gn—3 + gn—4a,
(0r)°D2 gnia=0 = gny2=5gn11— 1090 +10gn 1 —5gn—2+ gn3,
(6r)*D* 11 =0 = g1 =47y — 67y 1+ 4T 0 — Th_3,

(5T)4Diﬂn+2 =0 = mpqo=4mpy1 —6m, +4mHp_1 — THh_2.

Note that in this method, the outer grid points move along a timelike curve and .# T is
not on a grid point. Clearly, this method is not optimal. Extrapolation near .# T is not
very accurate. An accurate calculation in a neighborhood of . is however important
for a general calculation of gravitational radiation that depends via the rescaled Weyl
tensor on third derivatives of the metric. To establish the idea presented in [2.3] and
24, a more sophisticated numerical treatment of the formally singular terms will be
required. As mentioned before, our aim in this section is not to construct a general
numerical method, but to test the suggested idea on a special example using simple
techniques.

2.5.4 Test results

We test our method on the example of the extended Schwarzschild spacetime in a
CMC foliation presented in Malec and Murchadha discuss in [96] the asymp-
totic behavior of the embedded CMC slices depending on the parameters K and C.
The surfaces K > 0 reach future null infinity. Their behavior in the interior depends on
the choice of C. Below the critical value C' = 8 K'm?/3 the surfaces pass the Schwarz-
schild throat below the bifurcation sphere. Fig. 2.7 shows foliations of the extended
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Fig. 2.7: Penrose diagrams of CMC foliations of the Schwarzschild spacetime with
C=2,m=1and K ={1,0.3,0.07}. See also Fig.

Schwarzschild spacetime with the same value of C'= 2, m = 1 and three different val-
ues of K ={1,0.3,0.07}. In the case K = 1 the surfaces go through the past horizon

into the white hole. Then the shift vector given in [2I4) by 8 = —W o is
negative over the computational domain and excision can not be expected to work.
In this case, no numerically stable evolution was possible. Note that in a black hole
spacetime formed by gravitational collapse, no bifurcation sphere and no past horizon
exists.

Below we discuss numerical test results for the cases K = 0.3 and K = 0.07 where
the condition C' > 8 K'm?/3 is satisfied with C' = 2 and m = 1. As seen in Fig. 27 these
surfaces go through the future horizon. The dissipation coefficient has been chosen to
be € = 0.05 and no constraint adjustment terms have been added. The solutions have
been calculated on the domain r € [2/3 — 2/n,1 — 1/n] where n + 1 is the number
of grid points. We use 501,1001 and 2001 grid points on a homogeneous grid. In
terms of the Schwarzschild radius 7, the lowest resolution correspond to the domain
7 € [1.96m, 499m| while the highest resolution corresponds to 7 € [1.99m, 1999m].

Fig.28shows the convergence factors ¢(t) in the Ly-norm for the metric component
gut as a function of time. The convergence factor ¢(t) for a grid function ¢ is calculated
by
[¢™! — ¢°* |1,

[[ghioh — e ||,
where ¢™¢¢ is the numerical solution in medium resolution, ¢™*9" in high resolution

and ¢°® is the explicit solution. The Ly norm of a real function ¢ € L?(S;, R) over the
one dimensional computational domain S; reads

c(t) = log,

6], = (/S ¢? dr) : (2.39)

The discretized version of the Lo-norm reads

(VB

2

1 n
6l = { =5 D_0F | (2.40)
=0

To compare different resolutions for the convergence tests, the sum over the grid points
in the Ly norm is sampled according to the resolution.

We observe in Fig. 28 for K = 0.3 that the convergence factor drops to roughly 3
after about 40m. For K = 0.07 the decrease is faster. A global convergence factor of 3



2.5 Numerical tests in spherical symmetry 47

c(t)

t/m
20 40 60 80 tm 20 40 60 80

Fig. 2.8: Convergence factors in g;; with m =1 and C = 2.

might be expected due to our numerical outer boundary treatment. After about 80m
the codes crash. To localize the problem of the crash, we plot in Fig. and Fig.
the radial dependence of the error for gy at times ¢t = {10m, 20m,30m,40m}. The
aim is to see on which part of the computational domain the errors become large and
where convergence is lost.

For representing the errors of different resolutions in the same plot, we scale them
depending on a convergence factor c¢. For example when the convergence factor is
expected to be 4, the error for the solution in medium resolution is scaled by 2* = 16
and the error for the solution in high resolution is scaled by (22)* = 256. When the
curves are on top of each other, we can assume that the overall convergence factor is
close to the chosen one with which the errors have been scaled. This visual test gives
us a possibility to localize deviations from convergence along the grid.

In Fig. we see that already at ¢ = 20m the convergence in the interior is dis-
turbed. At ¢ = 30m the convergence factor has dropped to about 3.1 while the lowest
resolution does not align with the medium and the high resolution. This deviation of
the low resolution can be seen more clearly at 40m. For K = 0.07 the largest errors
appear in the interior where the code eventually crashes.

In Fig. with K = 0.3 we see that the decrease in the convergence factor is
slower in accordance with Fig. but this time the largest errors are due to the outer
boundary treatment. One observes deviations from convergence in the interior too but
the error is dominated by the region close to £ = {r = 1} and the code crashes in
this region.

For small K the numerical errors produced in the interior propagate outwards
slower compared to large K as can also be seen in the plots of causal structures
Fig. Therefore the numerical errors in a neighborhood of .# T stay small for small
K while the errors in the interior grow until the code crashes in contrast to large
K which crashes close to .# . We observe that different choices of K have a strong
effect on numerical errors. A related effect of the foliation has been studied in [52)
where it was shown for a certain system that the choice of the time slicing influences
propagation properties of constraint errors.

Summarizing, we can say that although our numerical setup does not allow us to do
long time evolutions of the extended Schwarzschild spacetime, a piece of null infinity
can be calculated with the method suggested in and [2.4] even with simple choices
of variables and numerical boundary treatment.
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2.6 Discussion

The main content of this chapter has been the development of a numerical method
that allows us to construct solutions to the Einstein equations including null infinity in
the computational domain based on a general wave gauge with .# T-fixing coordinates.
The method employs a suitable coupling of the conformal and the coordinate gauge
to establish expansion freeness of .# T via an appropriate choice of the gauge source
functions for the coordinates. Under our assumptions on initial data and our gauge
conditions, each formally singular term arising from the conformal compactification
attains a regular limit at .# ™ which needs to be calculated by numerical techniques.

I presented a numerical test of this method in spherical symmetry in which the
outer boundary treatment is based on extrapolation near .# . The code is afflicted by
an unbounded growth of numerical errors. One could see, however, that the treatment
of the outer boundary does not lead to immediate problems so that a piece of null
infinity can be calculated. It is an outstanding question whether one can calculate
the formally singular terms arising from the conformal compactification numerically
in a stable manner for dynamical spacetimes. To achieve this one might need to use
intrinsic properties of the characteristic surface .# T to a larger extent.

As a next step, one should try the method described in 23] and 24 in a setting
including radiation using a more sophisticated choice of variables and numerical bound-
ary treatment. Techniques developed in various groups over many years working with
the general wave gauge reduction might be useful in that context [, 95] 106l 114, 122}
13T]. One should also study the freedom in prescribing gauge source functions further
to derive useful gauge conditions which lead to a convenient representation of the so-
lution metric along .# . A numerical finite differencing scheme might be adapted to
certain expected properties of the solution metric as in the characteristic approach.

As #7 has topology R x S2, a general numerical calculation in which .# ¥ is fixed
to a spatial coordinate location which corresponds to the outer grid boundary should
be able to handle spherical grid topology. To my knowledge, there are currently two
approaches in numerical relativity that avoid coordinate singularities on a sphere and
use the general wave gauge [106, [122]. Both of these methods seem promising for
trying the suggested idea in a general setting.

In our studies we used a general wave gauge reduction. However, the idea to solve
a hyperboloidal initial value problem for conformally compactified Einstein equations
with a prescribed representation of the conformal factor is independent of the reduc-
tion. The open question for other reductions of Einstein equations is whether the
conditions (228 229) can be satisfied during time evolution in a well-posed Cauchy
problem. This question needs to be studied for each reduction separately.

The maximal development of hyperboloidal initial data does not yield the global
spacetime. We do not get access to spatial infinity in a hyperboloidal initial value
problem and in .# T-fixing coordinates, also timelike infinity can not be reached. While
one can argue that these points are not of physical interest and possibly irrelevant
for the comparison of observational data with numerical calculations, it would be
desirable to have access to the global structure for various reasons. In the hyperboloidal
approach it is not clear whether the cut of the initial hyperboloidal surface at null
infinity is close to timelike infinity or to spatial infinity. One would also like to be
able to relate asymptotic quantities as mass or momentum defined at null infinity to
corresponding quantities at spatial infinity.



Chapter 3

Spatial Infinity

In this chapter we want to solve numerically a Cauchy problem for the Einstein equa-
tions starting from a Cauchy hypersurface including spatial and null infinity in the
numerical domain. This gives us, in principal, access to the global spacetime solution.
We will see that in spherical symmetry the maximal development of Schwarzschild-
Kruskal initial data given on a Cauchy hypersurface can be calculated. For more
general situations including gravitational radiation we will focus our interest on the
calculation of the detailed structure of gravitational fields in a neighborhood of spatial
infinity including a piece of null infinity.

We make certain assumptions on initial data that allow us to discuss the main fea-
tures of our problem while simplifying the calculations involved. We consider asymp-
totically flat, time symmetric, vacuum initial data, i.e. we are given (S, izag), where S
is a three dimensional manifold with an asymptotically flat end and ﬁaﬁ is a positive
definite, asymptotically flat, Riemannian metric on S. The data satisfies the vacuum
Einstein constraint equations with f(ag = 0. We mean by asymptotic flatness for
(S , Bag) that the complement of a compact set in S is diffeomorphic to the comple-
ment of a closed ball in R? and in the chart {Z} given by this diffeomorphism the
following fall-off conditions are required

: 2
hrap = (1 n Tm> Sap + Op(F 0T, as 72 = §,55°%° — 00, a,f=1,2,3,
T

(3.1)
with e > 0, £ > 2 and m is the ADM-mass of the initial data set. The fall-off conditions
above are written with respect to a coordinate system. To discuss such conditions
without relying on specific coordinate systems one can use conformal techniques along
the lines of Penrose’s considerations. In [74] Geroch uses conformal compactification
techniques to represent spatial infinity as a single point ¢ so that asymptotic properties
of fields on S may be treated as local geometric properties at . The construction is
similar to the conformal mapping of R? onto the 3-sphere by adding a single point at
infinity. We require that there exists a manifold S = SU {i} and a conformal factor ¢
with ¢ > 0 on S satisfying

e h = ¢2h is a smooth metric on S,

o d):O, Dad):o, DaDﬁgf):Q?Laﬁ at i,
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where D is the covariant derivative operator defined by h. The described notion of
asymptotic flatness is a property of the conformal structure in the sense that the
conditions are invariant under conformal rescalings h — w?h, ¢ — w¢ with positive
smooth functions w satisfying w(i) = 1. In the examples that we will study, ~ will not
just be smooth but analytic at 4.

To calculate numerically an entire, asymptotically flat spacetime including spatial,
null and timelike infinity, we might wish to solve Friedrich’s conformally regular field
equations presented in [53]. The reason why we can not do this is that the initial
data for the conformal field equations blow up at spatial infinity when represented as
a point ¢ for non-vanishing ADM-mass. Specifically, denote by r(p) the distance of the
point p € S from the point i in terms of the metric hos on the Cauchy surface S. It
turns out as a consequence of the constraint equations implied by the conformal field
equations on S that the rescaled Weyl tensor blows up like [60]

Wi =0 (%) as r— 0 with m #0. (3.2)

A regular, finite, initial value problem near spatial infinity could be formulated by
Friedrich based on an extended system of conformal field equations and a certain con-
formal gauge near spatial infinity, called the conformal Gauss gauge. This gauge allows
a representation of spatial infinity as a cylinder denoted by Z. In this representation,
the point 4 is blown up to a sphere Z" (Fig. B). The blow-up procedure is such that
a suitable rescaling of fields on S results in smooth conformal data up to and beyond
Z°. The development of this data can be studied further by the evolution equations.
A basic difficulty in this new representation is the degeneracy of the equations at the
sets Z+ where null infinity meets spatial infinity.

The construction of the cylinder at spatial infinity is a delicate procedure which
relies on a deliberate choice of the coordinate, the conformal and the frame gauge
in accordance with a suitable notion of asymptotic flatness. For further details of
this construction that we do not discuss in this chapter, the reader is referred to the
original paper [61] and the review articles [62, 64]. Further applications of the cylinder
at spatial infinity in analytic work can be found for example in [139, 142, 143].

Fig. 3.1: Point compactification and the cylinder at spatial infinity.

We are concerned in this chapter with a numerical implementation of the extended
system of conformal field equations with the cylinder at spatial infinity. First we
discuss the numerical construction of a conformal Gauss gauge in the simple examples
of Schwarzschild and Kerr spacetimes. After discussing some aspects of the reduced



3.1 The conformal Gauss gauge 52

general conformal field equations, we integrate the equations in spherical symmetry
for the Schwarzschild-Kruskal spacetime. To include radiation into our discussion
in a simple setting in which the problem ([B.2]) does not appear, we calculate initial
data with vanishing ADM-mass but a non-vanishing radiation field along .# . The
numerical development of this data is discussed in a neighborhood of spatial infinity
represented both as a point and as a cylinder. The numerical implementation of the
equations with the cylinder is such that the code can also be used to study physically
more interesting spacetimes with non-vanishing ADM-mass. Such studies are left for
future work.

In the following, we will use a frame formalism. Latin letters are used for frame
indices with 4,7, k,... = 0,1,2,3 and a,b,c,... = 1,2,3. Greek letters are used for
coordinate indices with p, v, A\,...=0,1,2,3 and «, 3,7,... =1,2,3.

3.1 The conformal Gauss gauge

The main reference for the properties of the conformal Gauss gauge that we discuss
below is [63]. This gauge is based on conformal geodesics.

3.1.1 Conformal geodesics

Null geodesic congruences, when they are smooth, provide a valuable tool to study
the asymptotic and causal structure of spacetimes. As null geodesics are invariants of
the conformal structure, one might presume that spacelike or timelike curves that are
conformal invariants might also be useful in such studies. In general, geodesics with
respect to a metric are not geodesic with respect to a conformally rescaled metric.
Conformal geodesics, however, are conformally invariant in the sense that, as point
sets, they are independent of the metric chosen in the conformal class. They are
autoparallel curves with respect to a Weyl connection defined in [[11

A solution to the conformal geodesic equations given below does not only provide
a spacetime curve, but along the curve also a Weyl connection, a conformal factor and
a frame which is orthonormal for a metric in the conformal class. While the equations
are independent of coordinates, we will have to write them in some coordinate system,
as we will study them in numerical applications.

Given a metric g, the equations that define a conformal geodesic z#(7) are written
for its tangent vector ##(7) and a covector f, (1) as

(Vad) + S(f) ahir = 0,
(Vifu— 3 ASDNNE = I (33)

where S(f) has been given in (I2) and L, = %Ruu -+ R g, is called the Schouten

tensor. It is related to the Schouten tensor L,, of a Weyl connection V=V+S(f)
by ﬁw = i,w — @Hf,, + fuf,, — %gwg)"’f)\fp. By setting fu = 0 in (B3) we see that
every physical geodesic of a vacuum spacetime is also a conformal geodesic.

We can write the equations [33) using the Weyl connection V that is defined by
the 1-form f along the curve z#(7) by V = V 4 S(f). The equation for i* becomes
Vait = 0, so that the curve x#(7) is autoparallel with respect to the Weyl connection
V. The equation for f becomes :z':“ﬁw, = (0. We will also use a frame that is @—parallelly
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transported along the conformal geodesics. The equation for the components of the
frame vector fields e,”(7) reads Vie,” = 0. We will take & to be the timelike frame
vector field eg.

We see by (L) that the metric g = Q23 is @—parallelly transported along a given
curve x(7) in M if the function Q > 0 satisfies on x(7) the equation

Vi = Q fuit. (3.4)

In a spacetime solution to the vacuum Einstein equations one can derive for the confor-
mal factor Q(7) satisfying ([B4) the equation V3Q = 0 (see [58] or [63]). This equation
can be solved explicitly so that the conformal factor €(7) is known a priori in terms
of initial data. This is a remarkable property of conformal geodesics which will play
an important role in this chapter. For given initial data on S = {7 = 0}

Q0) =, a#(0)=ak, #(0)=d, [u(0)=(f)u,

the conformal factor Q(7) along the conformal geodesic can be written explicitly as

0(r) = 0. (147 (i lemo + 1 (i o G oo )

It is useful to distinguish between the conformal compactification of the induced
metric i on the initial Cauchy hypersurface S = {r = 0} and the conformal compact-
ification of the spacetime metric g. We write for the compactification of the induced
spatial metric h = ¢2h, with ¢ satisfying the relations given in the beginning of the
chapter. The choice of 2, can be made such that spatial infinity is represented either
by a point or by a cylinder. We introduce a free function s by setting Q, = % When
we choose |; = 1, dk|; = 0, then spatial infinity i corresponds to the point i® of the
spacetime. Choosing k|; = 0, dk|; # 0, results in the representation of spatial infinity
as a cylinder Z (Fig. B). We will make use of this freedom in later sections of this
chapter.

We have h = Q2h = i—? = %ﬁ. We choose initial data for the conformal geodesics
such that (f.),z% = 0. On the initial hypersurface S we set (f.), = ¢~'9,¢. By
requiring ¢(&, ¢)|r—0 = —1, we have §(&,&),=0 = —g—z. Then the conformal factor
becomes )

2
(1) = % (1 - 72%) with w= __ 29 (3.5)

S 8,60,6

Another important role of the free function « is seen by this formula. We can control
the value 74+ = £ of the time coordinate at which the conformal geodesic cuts
I* = {Q(74+) = 0} by the choice of .

Beside the conformal factor, the field dy := Q2 f#ek“ can also be determined explic-
itly. It turns out that

. Ko 1
dk = (Q(T),da(o)) = <—2TF, ;(6*)aﬂau¢) , (36)
where (e.) := e/(0). For a derivation of these results, see [58]. The knowledge

of the conformal factor by [B.5]) will be very useful in our numerical studies in later
sections.
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3.1.2 Construction of the conformal Gauss gauge

To construct a conformal Gauss gauge one uses conformal geodesics in a similar way
as one uses metric geodesics to construct the Gauss gauge. One specifies a congruence
of timelike vectors, a conformal factor and a 1-form on an initial hypersurface. The
timelike conformal geodesics starting from this surface provide the conformal Gauss
coordinates. Spatial coordinates are dragged along.

Assume a solution (./\/l g) to the vacuum Einstein equations has been given. We
construct a conformal Gauss gauge with timelike conformal geodesics and an orthonor-
mal frame along them, (z#(7), f.(7), e/*(7) ), as follows:

1. We find a conformal extension (M, §,6) of the solution (M, ). In general, we
will need different coordinates in different asymptotic regions which are used for
the calculation of conformal geodesics via ([B.7)).

2. On a spacelike slice with a spatial metric h, we introduce compactifying co-
ordinates and rescale h with a suitable conformal factor ¢, such that in these
coordinates we have h = ¢2h. The metric h is used in the calculation of the
conformal factor ([B.5]).

3. We set initial data (x4, #%, (f.) ., (ex) ) = (a*,@", fu, el)|s according to
; _ ;o . . P
(f*),u:(b 18#¢5 (f#x“)|S:O, .I*J_S, g(xv'r”S: FQ(I,«@”S:—I,
g(ea, )]s =0, g(ea,ep)ls = dab, where a,b=1,2,3.

The timelike frame vector is given by & itself. The frame is not unique, the
freedom corresponds to the freedom of spatial rotations. One also needs to
choose the free function x that determines the representation of spatial infinity
and the value of the time coordinate on .# in the conformal Gauss gauge.

4. We solve the following system of ordinary differential equations

@)t = @,

@) = =T @80 = 2(fud”) & + (Gapii”) §* [,

@D = DLyt () Fu = 50 F) # 4 L

(Oreat = T itel — (foel) i — (Foi")el + (Gapeld?) g o (3.7)

The one-form f for which we solve the equations is related to the Weyl connection
V= V—I—S(f)byv V + S(f) where V = V+S(9 1d), so f = f+07'd6.
The initial data for f is chosen accordingly as f, = (¢/60)"'d(¢/6).

In a numerical calculation, we check the quality of the solution using B3] and (&4]).

We introduced various conformal metrics to do the calculation. The physical metric
is denoted by g, it induces a spatial metric h on the initial hypersurface S which we
compactify on § = S U {i} by rescaling h = #2h. As the conformal geodesics cover
asymptotic regions where the physical metric § becomes singular, we also introduced
a compactified spacetime metric § = 627 to calculate the right hand side of [B.1).
Another conformal spacetime metric is the one that is @—parallelly transported along
the conformal geodesics with the conformal factor satisfying (3.4). It is acquired by
g = Q2§ with Q given explicitly by (B.5]).
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3.1.3 Numerical experiments

In [63] Friedrich analytically constructs conformal Gauss coordinates in the Schwarz-
schild-Kruskal spacetime and shows that they cover the conformal extension in a
smooth way. In the following, we will construct such coordinates numerically. Go-
ing beyond the analytical studies, we will also see in our numerical studies that one
can construct conformal Gauss coordinates on the Kerr spacetime.

For the numerical experiments presented below, I calculated the right hand side
of (B1) using the computer algebra package MathTensor. For the integration of the
system of ordinary differential equations (ODE’s), I used a 4th order Runge-Kutta
integration algorithm.

The Schwarzschild-Kruskal spacetime

We calculate initial data for the conformal Gauss gauge in the Schwarzschild-Kruskal
spacetime using different coordinates and conformal compactifications. Resulting
gauges are illustrated in the numerically generated conformal diagrams Fig. and
Fig. B3l

The physical Schwarzschild metric reads

P 2mY\ o 2m\ 52 | 52 g 2
gs=—(1——=)d"+ [ 1—-— drs + 75 do®,

Ts Ts

where 75 is the Schwarzschild radial coordinate and 7; > 2m. We transform the metric
using retarded and advanced null coordinates

u=1t—(Fs +2mIn (Fs — 2m)), v=1+7s+2mIn (s —2m), (3.8)

After the inversion r(7s) = % and the rescaling with § = r following § = 62§ we get

G =—r*(1—2mr)du® + 2dudr + do?, G =—r*(1—2mr)dv? —2dvdr + do*

We use the metric § to calculate the right hand side of B.7). The coordinates u,v
extend analytically into regions where 75 < 2m. For a simulation through . we use
the retarded null coordinate u, for a simulation through the future horizon we use the
advanced null coordinate v.
We give initial data on the ¢ = 0 slice. From the transformation (3.8) and the
1

inversion r = =, we have on this slice
s

1 1

du = ————d dv=—————d
“ r2(1 — 2mr) " Y "

which leads to the induced spatial metric

~ 1 1

h=————dr’+ = do*.
r4(1 —2mr) e 2

From now on, we choose m = 2 and present the calculation only for the retarded null

coordinate u. The domain from the event horizon to spatial infinity corresponds to
- 2 - >

reE [i, 0]. We compactify h using the conformal factor ¢ = 12j2w so that h = ¢2h is

diffeomorphic to the standard metric on the three sphere h = dx? + sin? x do?, as can
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Fig. 3.2: Schwarzschild-Kruskal spacetime in a conformal Gauss gauge.

be shown by the transformation r(y) = 57 SILX__ The starting point of the conformal

B 1+sin x)
geodesic on the ¢t = 0 hypersurface depending on 7, is given by

1 1
T = (Us, %) = <—— —41n (— —4> ,T*) ,
T T

where we suppressed the angular coordinates. The initial data for the 1-form f is given
as fu = %dr. The orthogonality condition (f,&"). = 0 and the normalization
requirement delivers &, = wé}%

Initial data for the spatial frame vector reads

1—2r, 1—2r)WI=dr,
LTP SN i) "5,

o2 T —arn, 2

The time coordinate at which the conformal geodesics cross .# is given by 74+ =

+=. We have w = F+M' Note that w vanishes at spatial infinity and becomes

K Oy. The timelike frame vector is given by e = #.

(ex)1 =

unbounded at the intersection of the event horizon with the initial hypersurface.

The resulting conformal Gauss gauge can be visualized in a conformal diagram
which depends on the choice of the spatial coordinate and the free function x. Fig.
is the result of a numerical calculation where k = w/(kr + 1) has been chosen in a
neighborhood of spatial infinity such that .# % is a straight line in the corresponding
conformal Gauss gauge with the slope k£ > 0. At the intersection of the event horizon
with the initial hypersurface where w — oo, this choice would lead to k — oo. To
avoid this, we choose a different x in the interior of the event horizon which reads
k = 2r/(1 — 2r). There is a smooth transition region between the domain inside the
event horizon and the exterior region.

Tllustrated in Fig. is the "upper right part” of the Penrose diagram for the
Schwarzschild-Kruskal spacetime (Fig. [[2). The lower horizontal line corresponds
to the hypersurface { = 0} in the standard Schwarzschild coordinates, where also
{7 = 0}. We see that the conformal geodesics cover in a smooth way spacelike, null
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Fig. 3.3: Schwarzschild-Kruskal spacetime in a conformal Gauss gauge.

and timelike infinity and the domain close to the singularity. This result is robust
in the sense that it allows variations of initial data which satisfy the orthogonality
condition ( fug'c”)* = 0, or the use of different compactifications g based on different
coordinates.

Another representation of the Schwarzschild-Kruskal spacetime is given in Fig. 3.3
For this representation a spatial coordinate x has been chosen via r(y) = %
The domain from the event horizon to spatial infinity corresponds to x € [7/2,7]. We
have in this coordinate

sin? x
2(1 +siny)’

~ 2sinx(1+siny)
~ Jeosx|(2 + sin)

b= h = dx? +sin® x do?,
We choose k = siny. The causal structure near spatial infinity can be clearly seen
in Fig. Denoted are the sets Z°,7 and Z1 all represented by i® in the one-point
compactification. We will refer to these sets in the following sections in the context
of the regular finite initial value problem at spatial infinity. Note that the presented
conformal diagrams are not Penrose diagrams as the light rays are not represented
by straight segments with 45 degrees to the horizontal. In a Penrose diagram, spatial
infinity is necessarily represented by a point.

We can do the calculation of the conformal Gauss gauge using other compactifica-
tions of the Schwarzschild spacetime as well. As an example, consider compactifying
isotropic coordinates given by the radial transformation

-1
p(r)=2(Fs—m+ f«s(fs—zm)) .
The Schwarzschild metric becomes
_ 1—mp/2\* o [(L+mp/2%1" 5 5
= ——| dt ~— | (d d
1=~ (Tom) @+ [ @t a

Choosing as our initial hypersurface the ¢ = 0 hypersurface and setting the spatial
conformal factor to ¢ = p2/ (1 +mp/2)* we get h = ¢2h = dp® + p>do?.
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The initial point has (%, p«) = (0, p.). We set further

2 . (1+mp./2)3
— = dps, b =k —5———=0f
px(1+mp./2) p:(1 —mp./2)

The spatial frame vector on the initial hypersurface reads e; = k9,. For the choice of x
we calculate w = p(1 + mp/2). The choice k = p leads to a similar conformal diagram
as Fig. The use of different coordinate systems or different compactifications for
calculating the right hand side of (B does not affect the quality of the calculation.

A nice feature of the conformal geodesics is that we have some global control on
their behavior in a given spacetime. This analytic knowledge has been used to test
the quality of numerical calculations. One test is given by the double role that the
conformal factor plays. While  is some known function given by (BE) in terms of
coordinates and initial data, the set where it vanishes corresponds to the conformal
boundary of the spacetime and has therefore a special meaning. The spatial coordinate
value on the conformal geodesics must correspond to 75 — oo at the set {Q = 0}.

A stronger test has been made using the behavior of the frame. The 1-form dj =
Q fuek" is known explicitly in terms of the initial data and the coordinates via the
relation ([0). Comparing the evolution of dj with its a priori known form (B0
delivers a strong test for the numerical calculation.

fe=07ldg =

The Kerr spacetime

Numerical techniques allow us to go beyond the spherically symmetric case in the study
of the conformal Gauss gauge. As shown in this subsection and seen by the numerically
generated conformal diagram Fig. B4 we can solve the conformal geodesic equations
in the Kerr spacetime covering null infinity, timelike infinity and the Cauchy horizon.
We take the Kerr metric in Boyer-Lindquist coordinates with m > a where m is the
mass and a is the angular momentum of the Kerr spacetime. We make an Eddington-
Finkelstein-like transformation using ingoing and outgoing light rays as coordinate
lines (see [78] for the transformations). We introduce a compactifying coordinate r
which is related to the physical coordinate 7 by the inversion r(7) = 1/7. For the
outgoing case with the retarded null coordinate u we get for the Kerr metric

— 2m 9 2 dam . o
g = (1 TE) du Tzdudr 5 sin ¥ dudyp
2a . 2, 1 1 2 ’ 2 2 . 2 2
+ —sin“ddrdp 4+ Xdd° + = —+a — Aa”sin“y | sin“d dp?,
r2 z r2
where 1 1 5
Y = — +a’cos’ 0, A:———m+a2.
r2 r2 r

The metric § with respect to which we calculate the right hand side of (8.7 is obtained
by § = 62§ with 8 = r as before.

We give initial data on a t = 0 hypersurface in the Kerr spacetime where # is the
timelike Boyer-Lindquist coordinate. Following [43], we do the coordinate transforma-
tion 7(x) = sin X We rescale h with the conformal factor

m sin x+vm2—a?’
¢isinx7 r2v/m2 — a2
S VE (1 —mr)VIF a?r2cos?d
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Fig. 3.4: Kerr spacetime in a conformal Gauss gauge.

The compactified spatial metric reads

2 14+2m/(Xr(x))

B_¢>2ﬁ_dx2+sin2xdz92+sm2xsin2z9(1+a SPT
sm” x

sin? y sin? 19> dyo?.

We write the initial data using the coordinate r. We get

2 — mr + a?r? cos?y a?r? cos ¥sindd
r
(1 —mr)(1 + a?r? cos?V) 1+ a?r?cos?y '

fo=07"do =
r

and

(1 —mr)(1 + a?r? cos??9)
vVm2 — a2r2y/1 + a2r2 cos2d — 2mr
Note that for a = 0 we get the formula for the Schwarzschild spacetime calculated in
the previous subsection.

The conformal diagram in Fig. B4 has been plotted with the parameters chosen
as ¥ = 7/2, m = 2 and a = 1. For the "flat” .#* depicted in the figure, the free
function x has been chosen according to x = w. We made this choice only to illustrate
the resulting conformal diagram. For a numerical solution to the Cauchy problem,
this choice is bad as the grid speed of ingoing characteristics becomes unbounded near
Z+. Tt is bad also in the interior of the event horizon as the Cauchy and the event
horizons meet on the initial hypersurface in such coordinates. It turns out, however,
that the choice is useful in analytic studies [140), [143].

In both the Schwarzschild-Kruskal and the Kerr spacetimes the conformal geodesics
are seen to be regular in the interior of event horizons. In the Kerr spacetime they
pass regularly through the Cauchy horizon where one needs to change the coordinate
representation of the metric to integrate the equations further. This property of the
conformal geodesics suggests that the conformal Gauss gauge might be suitable to
study the inner structure of black holes and questions on stability of Cauchy horizons
[41, 103]. The behavior of conformal geodesics in the interior of black holes needs to
be analyzed in further detail before such studies can be made. As our main interest
in this thesis lies in the treatment of the asymptotic region we do not follow these
questions further.

K Oy.

Ty =
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3.2 The reduced general conformal field equations

To use the conformal geodesics as the underlying gauge, Friedrich extended the con-
formal field equations to admit Weyl connections. This extended system is called the
general conformal field equations and is written for a conformally rescaled frame field
with respect to a Weyl connection.

The introduction of a rescaling and the transition to Weyl connections allows a more
general conformal gauge freedom than the one studied in chapter The conformal
gauge now includes in addition to the conformal factor €2, a 1-form f. We have
seen that in vacuum, conformal geodesics determine a conformal factor and a 1-form
defining a Weyl connection. Friedrich used the conformal Gauss gauge based on the
conformal geodesics to fix the extended conformal gauge freedom. He derived a reduced
system that is equivalent to the vacuum Einstein equations and implies a symmetric
hyperbolic system which preserves the constraints on a conformal extension. We call
this system the reduced general conformal field equations.

Based on the reduced general conformal field equations, Friedrich formulated a
regular finite initial value problem near spatial infinity in which the location of spatial
and null infinity are known a priori [61]. The construction allows one to study in
detail properties of solutions to Einstein equations near spatial infinity (see [62] [64]
for reviews).

The reduced general conformal field equations are written for the following vari-
ables: a frame field e,", a Weyl connection f‘ikj, the Schouten tensor f/ij = %R(ij) —
%R[ij] — %R gij, and the rescaled conformal Weyl tensor Wijkl =3 Cijkl. Note that
the rescaling is such that if the conformal Weyl tensor satisfies the Sachs peeling behav-
ior, the rescaled conformal Weyl tensor attains a regular limit at .#. We set &# = ¢
as in to construct a conformal Gauss gauge. We have as a consequence

e =08", fo=fued' =0, T, =0, Loj=0. (3.9)

The reduced general conformal field equations read

e = _fal e
ool ; = =TT 0+ 0 oLaj+1'1La0 —mjoLy +Q W',
OoLej = TS oLej+diW',,
VW', = 0. (3.10)

The functions 2 and di are known a priori in terms of initial data and are given by
B.3) and (B.06).

The numerical and analytical advantages of the system (B.I0) are similar. We take
a numerical point of view:

e The system is regular for all values of the conformal factor so that no calculation
of formally singular terms is needed that might introduce numerical instabilities.

e The system consists mainly of ordinary differential equations (ODE’s) except
the Bianchi equation, which admits symmetric hyperbolic reductions. Besides
enhancing the accuracy of the code and lowering the computational cost, this
property is especially advantageous when one is dealing with complicated geome-
tries.
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e The location of the conformal boundary is known explicitly so that the code can
be adapted to calculate the physical part of the conformal extension only.

e The Weyl tensor is one of the variables. Combined with the knowledge of the
conformal factor, this property simplifies the numerical extraction of radiation.

e There is a wealth of analytic knowledge on the solutions of the system near spatial
infinity which can be used to test or improve the numerical code [61], [T4T].

Some difficulties with the system are the following

e The equations become degenerate at the sets Z+ where null infinity meets spatial
infinity.

e For non-vanishing ADM-mass, the regular finite initial value problem at spatial
infinity imposes a spherical grid topology so that simple codes based on Cartesian
grids cannot be used.

e The number of variables and equations is higher than in common reductions of
Einstein equations.

e Numerical experience with systems based on frames is sparse.

Note that while the degeneracy of the equations at ZT is an intrinsic difficulty, the
other items depend on the practical experience gathered in numerical calculations. In
any case, the advantages of the system seem to counteract its difficulties.

We will deal with the degeneracy of the equations at the set Z+ by freezing the
evolution in the unphysical domain given by 2 < 0 and by choosing a suitable time
stepping. To achieve this, a priori knowledge of the conformal factor along the confor-
mal geodesics is very helpful.

As to the geometry imposed by the cylinder at spatial infinity, numerical codes are
available that can handle coordinate singularities on a spherical grid [92] 122] [135].
Indeed, we will use an infrastructure based on the Cactus framework [I37] called
GZPatchSystem that can handle different coordinate patches to cover the sphere in a
smooth way [135] [136]. To implement a frame-based evolution system on a sphere, we
need to deal not just with different coordinate systems but also with different frames as
the sphere can not be covered by a single frame field. We will extend GZPatchSystem
such that frame-based evolution systems can be solved on a spherical grid. The fact
that the main part of the reduced general conformal field equations determining the
geometry consists of ODE’s will simplify the numerical implementation significantly.

The high number of variables is a common feature in conformally regular field
equations. One may think of this as the price for having a system which is regular
for all values of the conformal factor. In the reduction based on conformal geodesics,
the high number of variables is mainly just a memory issue as the main part of the
resulting equations consists of ODE’s that are cheap in terms of computational time.
These issues will be discussed further in later sections. First, we rewrite the equations
in a form suitable for numerical implementation.
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3.2.1 Rewriting the equations

We want to write the equations for independent evolution variables such that only
spatial indices appear. The components of a Weyl connection f‘ijk do not have the
symmetries of the components of a metric connection I‘Z—j x- The components of a metric
connection satisfies I';j;, = —I'sx; which is convenient in calculations. We therefore
write the Weyl connection in terms of components of a metric connection and a 1-form.
The relation of the Weyl connection components to the metric connection components
of g = Q2§ reads . ‘ ‘ ‘

L7 =07+ 067 fu + 67 fi — naen” 1. (3.11)

We count 21 independent variables (fa,T 2y, T'.>.). We will rewrite the equations in
terms of these variables. By (8:9) and (B.I1]) we have

A0 ™0 b
FaO:faa Fab:FaO'

The equation for the frame components e/ becomes by summation
aoeaH = —fa(so# - Faboeb#'

The equation for f‘ai consists of three parts

J

aOfa = —feraeo + EaO;
alLy = —TLL 0 —nooL, + QWi
aOI‘abc = _Febcl—‘aeo +Q Wcha + 6gf€FceO - 62LCO - nacnbefdred() +

+77€c77bdfdraeo + nacnbeieo - fcrabo-
For the Schouten tensor we get

80ia0 = —Faeoiao + de Weooa,
aO-i/ab = _Fan‘EEb +do WObOa +de WebOa'

All together we get 45 ODE’s for the variables (e,*, fu,T.lo, T, Laj). The rest of the
system is given by the Bianchi equation that plays a fundamental role. We set n = eq
as in [68] and decompose the Bianchi equation with respect to n and its orthogonal
component with the induced metric h;; = gi; + nin; = gi; + M0iMo;- We denote by
€155 the totally antisymmetric tensor with €p123 = 1 and set €;;, = nlelijk = €ijk-
The electric and the magnetic parts of the rescaled Weyl tensor are defined by E;; =
h;”h}“kanmknl and B;; = h?h}“W;lknlnknl where W;}kl = %WijmnEW"kp so we have
Eijn/ = 0,E," = 0 and B;;n/ = 0,B;" = 0. Setting l;; = h;; + n;n; we write the
splitting of the rescaled Weyl tensor as

Wit = =2(Lin By — LBy — npBym€ i — 1 Bjjm€ k)-

In our case where n* = 56 we get for the electric and magnetic parts Eqp = Woaop = Epa

and Bay, = Wiy = —%WOacd eCdb = By,. Using the relation €,.qe?? = —253 we get

Woabe = ebchda- The splitting of the rescaled Weyl tensor becomes

Wijkt = —noiEjxnor + noj Eiknor + noiEjimor — Moj Eanor —
N0i B3" €mit + 10 B €mrt + €, Bmknor — €5 Brunok — €ijm E™" €npi. (3.12)
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We use these relations to replace the Weyl tensor by its electric and magnetic parts. It
is convenient for numerical implementation to write all evolution variables with lower
frame indices. We get

doe = —fo—Tacoe 6%,

Ooe,” = —Facoedo‘(SCd,

dofa = —fLadod® + Lao,
0Tabo = —Tepol'aa0d + Lap — Q Eqp,
O0Tave = (~Tavelaco + Sapfalceo — Sacfalven) 3%,

~8ab Lo + SacLio — felabo + folaco + Q €peaBaed™,
d0Lao = (~TacoLeo — de Eea)d,
801iab = (—Facoﬁeb +d. Eedeaf(Sdf)éce —do Egp. (3.13)

The rescaled Weyl tensor has 10 independent components. We use the tracefreeness
property of its electric and magnetic parts (Eqp, Bqp) for the replacement F33 = —Fy;—
Es3 and B3z = —Bi11 — Bas.

The splitting of the Bianchi equation, VlWlijk = 0, has been given in [59] [68]. We
set Kij = hkanj, K= hinijy CLi = njani, DkEZJ = hfygh;nhzllemn In our gauge
we have ‘ .

Kug=-T', K=-6*T20, a=T4,=0.

We get the following evolution equations for the electric and the magnetic parts of the
rescaled Weyl tensor

LnEab + Dch(aeb():d — 3Ec(aKb)d —+ KEab — eaCdEbe'fEcede = 0,
LnBab — DeBy(a€,{* — 3B, Kyyq + K Bap — e e, B Ky = 0, (3.14)

where L, denotes the Lie derivative along n = ey. The system (BI4) is not yet
ready for implementation in a code based on method of lines. The derivatives along
the spatial frame vector fields include time derivatives because the time components
of the spatial frame do not vanish in general, that is e # 0. The system (3.14)
is a homogeneous, first order, symmetric hyperbolic system for the unknown u =
(Eab, Bap), ignoring the tracefreeness of Eq, and Bg,. We can write this system in the
form

A*Ou+ Fu=0, (3.15)

where A* and F are matrix valued functions of the unknown u. For the time integration
using method of lines we need to build dou = —(A°)~1(A%0,u + Fu). Instead of a
direct calculation, it is more practical for the numerical implementation to calculate
and store (A%dyu + Fu) using finite differencing and then to build —(A%) ™1 (A*d4u +
Fu). This leads to less terms in the equations which reduces the time for computation
as well as for the search of eventual errors in the code. We use the tracefreeness
property of Ey;, and By, to replace F33 and Bss.
The splitting of the Bianchi equation implies the following constraints

DCEca + 2Kb66dc(aBb)d = 0
DBy + €, 42K, — K ,°)Eyq 0 (3.16)

The calculation of the constraints includes time derivatives if e ,° # 0.
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3.2.2 Initial data for the reduced conformal field equations

The construction of initial data for the reduced general conformal field equations from
a given asymptotically flat solution to the vacuum constraint equations can be found
n [64]. We will focus on the special case of time reflection symmetric data for which
the second fundamental form vanishes.

Assume we are given on a three dimensional manifold S with an asymptotically
flat end an asymptotically flat solution metric h to the vacuum Einstein constraint
equations. The data we consider is such that (S , ﬁ) admits an analytic conformal
compactification at spatial infinity. The analyticity of the conformal compactification
is not essential for our studies. This assumption is made for convenience. To set initial
data for the reduced general conformal field equations on S = S U {i} we need to
calculate from h the following 55 variables: (e ed, T L. T2 fa, Lab, Lao, Eap, Bay).

We introduce compactifying coordinates on S and choose a conformal factor 10}
such that the rescaled metric h = ¢2B is analytic on S and ¢|; = 0, Dyé|; = 0 and
Dal_)g¢|i =2 ﬁag, where D,, is the Levi-Civita derivative on S defined by h. In these
coordinates we find an adapted spatial frame €,* to h such that h(€q, &) = 64p. Note
that this frame is not unique. We can use any other frame ¢/, = R,é, where R’ is a
rotation matrix such that the orthonormality requirement h(el,e,) = 6, is fulfilled.
We can also use different frames on different domains and patch the solution together.
Having chosen a frame, we calculate the spatial connection coefficients l:‘ac »» the spatial
Ricci tensor 7, and the Ricci scalar 7 on S with respect to é,.

For the calculation of initial data we need the following intermediate quantities

2 _ 1 _ 1
w = —¢ tab = Dan(b - g 6ab 6CchDd¢u Sab = Tab — g 5ab .

V6% Dyé Dyo’
(3.17)

The derivative D, is taken with respect to &,, so that for example D,¢ = &,(¢) =
éaa Ot(b'

We choose a free function xk which determines the value of the time coordinate at &
and the representation of spatial infinity in conformal Gauss coordinates. Then we set
the initial data for our 55 evolution variables on S. The frame components e,* are given
by the rescaling e,® = x€,* and we set ¢,® = 0. The spatial connection coefficients ", .
are calculated from the rescaled frame e,. In the conformal Gauss gauge, e is chosen
orthogonal to the initial hypersurface so the connection components I' ., correspond
to the second fundamental form on the initial surface. It holds I';’, = 0 due to time
reflection symmetry. The 1-form f on § is given such that f |s = ¢~ 1d¢ which implies
fls = k™ 'dk. Initial data for the Schouten tensor is symmetric due to time reflection
symmetry and is given by

2 1 1 A A
Ly = K2 <_E tab + E T5ab> = Lpq, Ly =0. (3.18)

The electric and the magnetic parts of the rescaled Weyl tensor read

1 1
Eup = —r* (? tab + 3 sab) : Bay = 0. (3.19)
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The a priori known variables for (3I3)) are as given in (33 and (B:6)
¢ K2 K¢ _
Qn=L(1-m7=), do(t) = =27 — dy = 2,10,

The choice k = 1 corresponds to the point compactification at spatial infinity.
We have seen in ([3.2) that the Weyl tensor blows up near spatial infinity with 1/r? if
spatial infinity is represented as a point. As seen in (B.19), choosing xk ~ r compensates
for this singular behavior. This choice leads to a representation of spatial infinity as a
cylinder depicted in Fig. 311

3.3 The Cauchy problem in spherical symmetry

A first step in numerical work with the reduced general conformal field equations is
the spherically symmetric case. From the analytic work of Friedrich [63] we know
that the conformal Gauss gauge covers the complete Schwarzschild-Kruskal solution.
Our studies in show that the gauge is robust enough for numerical calculations.
Therefore, we can expect that the Cauchy problem for the reduced general conformal
field equations in spherical symmetry with initial data from the Schwarzschild-Kruskal
spacetime can be solved numerically without major difficulties.

We set the frame such that e; shows in the radial direction. Due to spherical
symmetry we can assume that the frame matrix has the form

10 0 0
o e’ et 0 0
k 0 0 e? 0 ’

2
0 0 0 e?/sind

where the coefficients depend on (¢,7) only. In spherical symmetry the reduced general
conformal field equations simplify considerably. If we are interested only in the single
non-vanishing component of the Weyl tensor E;1, we just need to solve the following 3
coupled ordinary differential equations for T's%, Lo and Ey; which decouple from the
rest of the system

A 1
0Ty = —(T.%)% + Los + 59 Eqq,
R A 1
OoLoe = -T2 Lo+ §d0 Eqq,
dEn = —3T7 En.

The degeneracy of the equations at the set ZT is not present in this simple case.

We calculate the initial data using isotropic coordinates as in section [3.1.3 and in
[61]. We set I'y25|r=0 = 0 and choose x = p. The initial data for the Schouten tensor
reads

Laaly—o = e
T U me2”
For the electric part of the Weyl tensor we get F11|,—9 = —2m. The conformal factor

reads

. T
O w22 (1 @ +mp/2>2> |
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The one form di becomes

p 2p

dy = —-271—M di=——.
O T T W mp2)t T U mp/2)?

The solution to the Cauchy problem generates the Schwarzschild-Kruskal spacetime
in the conformal Gauss gauge. The resulting conformal diagram is similar to the ones
presented in

To check the solution, we compare the Weyl tensor in the frame representation
adapted to the conformal geodesics constructed in[3.1.3]in the given background of the
Schwarzschild-Kruskal spacetime with the Weyl tensor that we get from the solution
to the Cauchy problem described above. For this comparison, we need to calculate
the timelike coframe ai# for the conformal geodesics satisfying the orthonormality
relations

el'o’, = 57 and o' 07, Nij = Guu- (3.20)

In a frame adapted to spherical symmetry we get

1 0
0 €1 0 €1

ag = = 5 ag = = F.
0 1,0 1,0 1 1,0 1,0
€1¢ — €€ €1°¢ — €y €

The rescaled Weyl tensor in a conformal Gauss gauge on the Schwarzschild-Kruskal
background is then calculated by

1

i L
0

—En = W0101 -0

0 _ 0 vV, AN, PR
Chor = 0 €1 €0 € Ou,\p-

On the background of the Schwarzschild-Kruskal spacetime in the conformal Gauss
gauge using isotropic coordinates we calculate

2mp®(1 —mp/2)*
00101 = (1 m mp/2)8 001 (—601 (610)2 + 600610611) +
2m 1

_— 0 —
P mpy2 ° 0 40

+ e’er’ + ey (er')?).
This background calculation agrees with the result of the numerical solution to the
Cauchy problem up to converging numerical errors.

The calculation carried out above is the first numerical calculation of an entire,
asymptotically flat black hole spacetime including spacelike, null and timelike infinity
and the region close to the singularity [154]. Difficulties related to the mathematical
representation of spatial infinity and numerical resolution loss in the neighborhood
of timelike infinity prevented earlier attempts of other authors to cover the entire
Schwarzschild-Kruskal solution (see [51] [123]).

While numerical tests of tetrad formulations in spherical symmetry can be instruc-
tive [25], the simplicity of the reduced general conformal field equations in spherical
symmetry does not allow us to draw representative conclusions for the general case.
Still, the study shows that global numerical calculations are possible with this system.
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3.4 Regular data at spatial infinity as a point

We want to include gravitational radiation into our discussion in a simple setting.
We would like to study numerically a spacetime that allows us to represent spatial
infinity both as a point and as a cylinder. The point representation is regular only for
vanishing ADM-mass.

To any asymptotically flat, conformally non-flat, static vacuum solution one can
construct conformally related initial data for a spacetime with vanishing ADM-mass
but a non-vanishing radiation field along .# [57]. In this section we will see how such
data can be calculated.

3.4.1 Radiative solutions with vanishing ADM-mass

An asymptotically flat, static solution g to the Einstein vacuum field equations can be
written in coordinates adapted to a hypersurface-orthogonal, timelike Killing field as

§=—v%dt* +h, v =v(z%), h = hapdz®da®, (3.21)

where v is the norm of the Killing field that in these coordinates takes the form 0;.
The induced positive definite metric on the hypersurfaces S; = {t = const.} is denoted

by ]~7L The Einstein vacuum field equations reduce to the static vacuum field equations
onS=S8;

Foslh] = %fyaﬁﬁv, 798 Dy D = 0. (3.22)
In addition to the asymptotic flatness condition (B for h we require v — 1 as 7 — co.

Beig and Simon show in [15] that if the ADM-mass of an asymptotically flat, static
spacetime does not vanish, the conformally rescaled metric h in a suitable conformal
and coordinate gauge is not just smooth, but analytic at spatial infinity. A suitable
conformal gauge is given by

T , (1—1})2
h=@¢?h  with ¢= . (3.23)

m

In this conformal gauge, we have 7[h] = 0 as a consequence of the Einstein equations
[67]. The rescaled metric h extends as an analytic metric to 4, but the conformal data
for the evolution equations is still singular at i. Following [57] we construct from h
conformally related initial data h,qq for a spacetime with vanishing ADM-mass but a
non-vanishing radiation field via

hoa— o with o= (2170) (3.24)
rad — = m1+ov . .

The conformal data constructed from (h, o) is regular at spatial infinity represented as
a point ¢ which implies that the ADM-mass of ﬁmd vanishes. If ﬁmd is not conformally
flat, the radiation field along null infinity does not vanish as shown in [57] and therefore,
by the positive mass theorem, we conclude that the initial hypersurface S can not
be complete. Spacetimes constructed from such data will probably include naked
singularities and do not represent physically reasonable solutions. They serve, however,
as a good testbed to study the neighborhood of spatial infinity in the presence of
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radiation. In this thesis we are not interested in the singularity and will confine our
evolutions in a neighborhood of spatial infinity.
The static vacuum field equations ([8:22)) in the conformal gauge ([3.23)) imply with

the notation of (BI7) and ¢ = ﬁ where 1 = m?/4 the relation [64]

o 1
D,Dyo — gAO’ Oab + 0 (1 — po) Tap = tap + o(1 — po)sap = 0.

Using the above relation the initial data for the fields Lap and Eg, BI8 BI9) simplifies
to

Lab=—"tap,  Eap= —2— L. (3.25)
g

3.4.2 Weyl solutions

In this section we calculate initial data of the type described above from Weyl solutions.
These are asymptotically flat, static, axisymmetric, vacuum solutions to the Einstein
equations [I45]. A metric from the class of Weyl solutions can be written in standard
spherical coordinates as

g =—cVat? + HV(di? + 72 d0® + e 2K sin?dyp?),

where the functions U and K are p—independent, U satisfies the flat-space Laplace
equation, AU = 0 = (T%BT(TQ&) + éag) U, and K is determined from U by

r2sin2
quadrature up to an additive constant [I8, [128]. Due to the requirement of asymp-
totic flatness, we have U — 0 and K — 0 as ¥ — oo. Weyl solutions are uniquely
parametrized by the asymptotically flat solutions U to the Laplace equation in flat
space which can be written in the form

U= Z an MY P, (cos ),
n=0

where the a,, are constants and the P, are the Legendre polynomials. We introduce
the compactifying coordinate » = 1/7 which maps spatial infinity to the origin. The
metric h induced by § on a {t = const.} hypersurface reads

R 2, .2 392 2K 2 i 2 2
h = o (dr +redv +e 7 sin 19d<p).

For Weyl solutions a simple choice for the conformal factor is given by ¢’ = r2eV—K
which leads to the analytic metric b/ = ¢?h = dr? + r? d9¥? + e~ ?Kr?sin® 9 dp?. By

U 1—eY

m

comparing with (B2I)) we see that v = e, so that the conformal factor ¢ = (

also leads to an analytic metric. To calculate initial data for the reduced general
conformal field equations, we can use the simple metric i’ or the metric h = ¢%h
which leads to the simplification ([B.25]). The conformal relations for these metrics are

as follows

W=¢?h, ¢ =r2V"K b =d?+0rd0* + e 2Kr?sin® 9 dy?,

L 12U\ K 2
h = ¢h, ¢=(%)2, h=(¢¢"1)2h’=<w> N, (3.26)

m2r2
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The physical initial metric induced by the radiative spacetime with vanishing ADM-
mass is given by

_ 2 U\?
Ryaad = O'_2h, with o= (— tanh—) .
m 2
We can write it also as

- ! U

hyaa = 0 2(p'™1)?H = 0’721, with o = % = e K2 cosh™? (5) .
The advantage of using (', 0") for calculating initial data is the simplicity of h’. The
pair (h,o) is advantageous because in this conformal gauge we have 7[h] = 0 and the
related simplification ([3:25)) in the construction of initial data.

The Curzon solution

The mathematically simplest Weyl solution is the Curzon solution [39] which is given
by
m? sin? ¢

m
v=-" K=
7’ 272

In the compactifying coordinate r = 1/7 we have
L 5o .9
U=—-mr, K:—imr sin“ 9.

For an interpretation of this solution see [I8] and the references therein.

3.5 A Cartesian implementation

We solve numerically the reduced general conformal field equations for a massless, axi-
symmetric, asymptotically flat, radiative spacetime with initial data from the previous
section. The code is based on an equidistant grid in Cartesian coordinates {z,y, z}
and does not make use of the axisymmetry of the spacetime.

We expect a singularity in the interior. No attempt has been made to study
questions on the nature of this singularity, such as the (non-)existence of a horizon or
the precise blow up behavior of fields. Our interest lies in a neighborhood of spatial
infinity including a piece of .# 7. Qur aim is to calculate the radiation field along .# T
and to show that it does not vanish in accordance with the theorem presented in [57].
The spacetime is axisymmetric and therefore we may expect that the radiation field
in the direction of the axis will vanish.

3.5.1 The initial data

As we solve a frame-based system using Cartesian coordinates, we need to choose a
suitable frame in which the initial data for a numerical implementation of the reduced
general conformal field equations can be calculated as described in For the
presentation of an adapted frame I will use the metric k' as the formula are shorter. I
used the frame &, in the actual calculations involving the simplification ([8.25) which
is related to e/, by the rescaling e, = (¢'¢~1)el,.
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Spatial infinity is mapped to the origin of our coordinate system. The numerical
code based on this one-point compactification uses Cartesian coordinates which are
regular at the origin. A frame adapted to the axisymmetry of A’ can not be regular
at the origin. To find a regular frame, we write the metric k' in Cartesian coordinates

(z,y,2)

o= drt ot dv? + e 2K rtdy? =

22 e~ 2K y2 e (1—e2K)zy

x2+y2 I2+y2

672Kx2+y2
2dedy + —————2 dy?® + d2°.
vy + 2 4 92 Yotz

We choose one of the frame vector fields to be d,. By choosing €} to be proportional
to 0, we get

/ z? 4y /
& = 5 o2k On e3 = 0,
T°+e Y

1 — 2K 2K 2 1 42
¢ = U oy 5 4 |22 F0,
V(@2 +y2)(@? + e72Ky2) z? +y

This frame is regular at the origin (remember that we require K|; = 0). Using cylindri-
cal coordinates (p, z, ) instead of Cartesian coordinates simplifies certain calculations.
In cylindrical coordinates the metric reads b’ = dp? + dz% + e~ 2K p2dp? and the frame
above becomes

1 ( sin
e] = cospd, — —= 0 ) ,
! Veos? ¢ + e2K sin? 8 p 7

1 ( . ek cos @
eh = e Ksinpo, + 0, |, es=20,.
2 Veos? o+ e 2K sin? ¢ . p v ¥

We can do the calculations in cylindrical coordinates and then transform the data to
Cartesian coordinates by a simple point transformation.

The rest of the calculation is tedious but straightforward and will not be presented.
I just write the conformal factor because of its importance for the analysis and the
conformal boundary. For x = 1 which results in the one-point compactification i ~ i°,

the conformal factor given by ([B5]) becomes for data from the Curzon solution

42 4 U 4 m(mp®+4r), 6 442
Q_a(l——2>_—2tanh2(—) - T ) @32
w m 2 (1 _ emT) (1 + emr)
Here, m is the ADM-mass of the static Curzon solution. Remember that the radiative
solution that we construct has vanishing ADM-mass.
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3.5.2 Form of .#* and the computational domain

The conformal boundary of the spacetime is given by the zero set of the conformal
factor which is explicitly known B21). From this formula we read the value of the
time coordinate at .# T depending on the space coordinates as

(1 _ emr)B(l + emr)
2mB3r2es (mp?+ar)

t g+ = (3.28)
We refer to the spatial variation of the value of the time coordinate along .# T as the
"form” of .#T. In the present compactification, the form depends on the ADM-mass
of the static Curzon metric, m. In the code, we choose m = 2. The resulting form of
# 7% on the spatial coordinate domain [—1, 1] is shown in Fig.[3.5lon the xz-plane with
y = 0 and in Fig. on the xy-plane with z = 0. We see that the form is symmetric
on the xy-plane but not on the xz-plane. The diagrams show an awkward behaviour
for a numerical calculation as the time coordinate of .#* decreases while we move to
the interior in the x and y directions.

Fig. 3.5: . plotted on the zz-plane. Fig. 3.6: .# plotted on the zy-plane.

This behavior can be changed by a suitable choice of the free function x away from
i°. As we are interested only in a neighborhood of spatial infinity, however, we will
simply confine our analysis to a region depicted in Fig. 3.7

Our computational domain is given by {z,y, 2} € [-0.2,0.2] and ¢ € [0,0.2]. We
restrict the analysis of the numerically generated spacetime to the domain {z,y, 2z} €
[-0.1,0.1] and ¢ € [0,0.1]. In terms of the physical coordinate 7, this domain corre-
sponds to 7 € [10, 00] on the initial slice S. Note that we are also able to calculate a
piece of £ which is infinitely far away from the singularity in null directions. This
allows us to calculate the Weyl component 14 in terms of a suitably adapted frame at
null infinity as described below.

In our calculations, spatial infinity is included in the numerical domain, but it is
not on a grid point. The reason is that the numerical evaluation of initial data at ¢
causes difficulties due to formally singular divisions by the conformal factor. This can
be remedied by taking the limit analytically at ¢. For our purposes, however, using a
staggered grid where ¢ is between two grid points works sufficiently well.
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0.1

0.05

Fig. 3.7: The domain of analysis in a neighborhood of spatial infinity.

3.5.3 The code

The code for the numerical solution of the reduced general conformal field equations
with the point compactification at spatial infinity using Cartesian coordinates is based
on the Cactus computational infrastructure [I37]. I used MathTensor and Kranc
[83] to generate the formula for the initial data and the right hand side calculations.
For the time integration I used a 4th order Runge-Kutta algorithm. Spatial deriva-
tives are calculated using second order accurate finite differences. For a grid function
o(z,y, 2) — ¢; .k, second order accurate finite differencing along a direction, say along
the z-direction, is given by

0:0(x,y,2) —  Dggijr= L (Pit1,5,6 = Di-1,5,k)- (3.29)
(20x)

The reason for using second order accurate derivatives instead of fourth order
derivatives lies in the boundary treatment. To avoid the presumably naked singularity
in the interior of the spacetime, we use an artificial timelike inner boundary. In our
case, the numerical outer boundary, i.e. the outer boundary of the computational
domain, lies in the interior domain of the spacetime. Therefore in the discussion, we
refer to the computational outer boundary as the inner boundary.

As the inner boundary of our evolution is not a generic aspect of our approach,
no special numerical inner boundary treatment has been devised for our system. The
inner boundary is present in this test case due to the naked singularity in the spacetime
under study. In cases with regular data given on a complete hypersurface S, we would
not have such a timelike boundary. Therefore we are not concerned with the problem
of boundary treatment and set the derivatives simply to zero at the inner boundary.
This results in large numerical errors in the interior domain which propagate outwards
faster than the grid speed of the physical characteristics because the treatment is not
well-posed. Second order accurate finite differencing results in a slower propagation
of errors than a fourth order accurate differencing. We will see that in the restricted
domain of our analysis the code is second order convergent.

In Fig. B, the domain of analysis has been plotted for the medium resolution.
The analysis has been done for two resolutions: medium and high. The medium
resolution has 40 points, the high resolution has 80 points in each spatial direction on
the computational domain [—0.2,0.2] which implies 20 and 40 points on the domain
of analysis in each spatial direction.
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3.5.4 The radiation field

We calculate gravitational radiation represented by the absolute value of the Weyl
tensor component 14 at null infinity with respect to a suitably adapted Newman-
Penrose tetrad in the x and z directions.

In an adapted complex Newman-Penrose tetrad (I,k,m,m) along T fulfilling
the relations (2.20]), the complex rescaled Weyl tensor component 14 representing the
radiation field is given by [32]

Yy = Wigil'm? 1Fm!, (3.30)

The advantage of knowing not only the location of .#T but also the conformal factor
in explicit form simplifies the numerical radiation extraction considerably.

The vector field [ along #* is given by I; = V;Q = ¢,/9,0. We can calculate
0uQ| #+ a priori from [B217) or we can use the known field d; = Qf; + V;Q from (B.6).
I chose to use the explicit form of the conformal factor. By our gauge conditions we
have ey = 4§, and therefore also [y is known a priori. We only need to read the values
e from the numerically generated solution to calculate the adapted frame vector field
[, the rest is known explicitly.

There is an arbitrary choice involved in the calculation of v, that we fix in the
following way. Given l; = (lo,l1,l2,13) with respect to some frame e;, we can always
find a new frame e,, so that { takes the form l;; = (Iy/, 0,0, lo/) with respect to the new
frame e},. We have ly = loy = /I3 +13 + 13 as [ is null and the rotation is purely
spatial. The new frame €/, is related to the original frame e; by eq = ej and e/, = R ey,
The rotation may be thought as consisting of two subsequent two-dimensional rotations
resulting in

COS (x12 —sin Q12 0
Ral/’ = COS o3 Sin(vja2 COS (a3 COSrys — Sinaigg
sin g sinvys  COS (1o Sinrgg  COS (o3

Assume without loss of generality that I # 0 and I3 # 0. The first rotation is done

with the angle 15 = arctan (%) on the 12-plane to achieve l;; = 0 and the second

/12 2
one with the angle a3 = arctan <%> on the 23-plane to achieve Iy = 0. The

rotation matrix becomes

l2 _ ll O
Vi2+IE V22
Ral/j = l1l3 lals /34
loy/ZHI2  lon/12+12 lo

li/lo la/lo l3/lo

We have used /1% + 13 + 13 = lp. In this new frame, m; can be written in accordance
with the relations ([226) as m;y = (0,0,a + ib,ia — b) where i* = —1 and a,b € R
satisfy a’ + b = % In our calculations, we choose a = 0 and b = i? The rotation
matrix is used to calculate the electric and the magnetic parts of the rescaled Weyl
tensor in the new frame via E,p = Ra‘/’Rbf’Eab and By = Ra‘,‘Rbf’Bab. Using the
splitting (812, the tracefreeness of E and B and the definition of 94 given in (8:30)
we see that 14 is given in the new frame by

Yy = (10)2((—E1’1’ + Fy9r — 2 Boryr) + i (Byyy — Baryr — 2 Eoryr)). (3.31)
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Fig. 3.8: Absolute value of 14 along .# 7 in
the z-direction rescaled according to reso-
lution.

Fig. 3.9: Absolute value of 14 along &+
in the x-direction representing radiation.

We discuss the absolute value of 4 calculated from (33])) along # " in the z and
z directions in a neighborhood of spatial infinity on the domain illustrated by Fig. B.1
While we did not make explicit use of the axisymmetry of the spacetime in the code,
we expect that it makes itself manifest in the radiation field. The radiation field in
the direction of the axis along .# T should vanish. This can be seen nicely in Fig.
which shows the absolute value of 14 in the direction of the axis, the z-direction in our
coordinates, along £+ in two different resolutions. We see that the absolute value of
14 vanishes up to numerical errors with the expected order of accuracy. The curve from
the high resolution run has been multiplied with 22 = 4 and lines up quite accurately
with the curve from the medium resolution run which implies that the code is second
order accurate in a neighborhood of spatial infinity. We also see that errors coming
from the inner boundary destroy the convergence at a z-coordinate distance of about
0.08 to spatial infinity along .#+. This problem can be dealt with by devising a better
numerical boundary treatment, but we are interested in the radiation field only in a
neighborhood of spatial infinity and for this purpose the code is good enough.

The radiation field along the x-direction has been plotted in Fig. for the high
resolution run. To see the effect of the inner boundary on this plot, we need to go fur-
ther in the direction of the source. We see that the radiation field grows monotonously
as we move away from spatial infinity along .#*. The source of radiation is presumably
the naked singularity in the interior of the spacetime.

We note that the simplification of radiation extraction over earlier forms of confor-
mally regular field equations is two-fold. Firstly, we know the location of .# % a priori
by B28) and therefore do not need to find numerically the zero set of the conformal
factor (note though that the zero set is also known in a .# T-fixing gauge in the context
of a hyperboloidal initial value problem [49]). Secondly, we know the explicit form of
the conformal factor (327 and not only its zero set. This allows us to write down
analytic expressions for the derivatives 9,8 s+, which would have to be calculated
numerically on .# 7 if the conformal factor would be one of the evolution variables. A
disadvantage over a .# T-fixing gauge is that the location of the extraction surface is
not fixed on the grid.
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3.6 Numerical implementation of frames on S?

The numerical simulation presented in the previous section is based on the assump-
tion of a regular point compactification at spatial infinity and cannot be generalized to
include the more interesting cases with non-vanishing ADM-mass. For a generalizable
numerical code, we need to implement the equations in a gauge in which spatial in-
finity is represented by a cylinder. The cylinder implies a spherical geometry, because
its construction and the resulting regularity of the conformal data distinguishes the
direction towards the cylinder in a substantial way as will be discussed in the next
section. The main difficulty with implementing a spherical grid geometry is that the
sphere can not be covered by a single coordinate chart in a non-singular manner.

One possibility to deal with this problem is to use pseudo-spectral methods which
are promising due to their high accuracy and low memory requirements [22] 48]. These
techniques apply spectral methods for spatial derivatives and method of lines for time
integration. In pseudo-spectral methods, the expected singular behavior of variables at
coordinate singularities can be dealt with by an appropriate choice of function spaces
which respect certain parity properties [111, 22, [48], [8g].

The pseudo-spectral approach does not seem to be appropriate for our problem
for two reasons. The first reason is the nature of our initial data. We would like
to avoid effects from the interior where presumably a naked singularity resides and
want to study only a small neighborhood of spatial infinity. Pseudo-spectral methods,
however, are not local methods in contrast to finite differencing methods. One might
introduce some localization by using spectral elements instead of global basis functions.
This roughly corresponds in the language of finite differences to high order accurate
stencils [22] [48]. Remember, however, that in the previous section we chose a second
order accurate finite differencing stencil to separate, as much as possible, the study
of a neighborhood of spatial infinity from the influence of the inner boundary. It
seems desirable for the studies we are interested in to keep the localization that finite
difference methods offer. The second reason for not working with pseudo-spectral
methods is that we do not only need to deal with the coordinate singularity at the
poles but also with the singularity of the frame because S can not be covered by a
single frame in a regular way (see [17] for a treatment of S%).

A natural solution to the problem described above is to cover the sphere in a non-
singular manner using multiple charts on which different frames can be defined. It is
not a coincidence that this idea which underlies the concept of a manifold has found
its way into numerical relativity.

To my knowledge, there are currently two approaches in numerical relativity in the
context of an evolution problem based on finite differences that use multiple coordi-
nate patches on a sphere. They differ by the way neighboring patches are organized.
The ”penalty method” uses touching patch boundaries over which characteristic infor-
mation for a first order hyperbolic system is exchanged. Penalty terms drive ingoing
modes of one patch to the outgoing modes of a neighboring patch [44] 92] [125]. The
” ghost-zones method” uses overlapping grids with redundant points at the boundaries
of the patches, called ghost points, where information from the interior of a neighbor-
ing patch is interpolated to [116], 135 [136]. As the equations we are interested in are
naturally written in first order symmetric hyperbolic form we can use both methods.
In this thesis, the second approach will be followed. The reasons for this choice are
rather circumstantial than fundamental.
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3.6.1 Coordinates of GZPatchSystem

The ghost-zones method has been implemented by Jonathan Thornburg in a code
called the GZPatchSystem. The acronym GZ stands for ghost zone. I used a version of
GZPatchSystembased on the Cactus computational infrastructure [137] and the Carpet
driver [I24]. In the following we will discuss certain properties of GZPatchSystem that
are relevant for the implementation of a frame-based evolution system. Information
on further details can be found in the references [135, [136].

From different ways to cover a sphere with non-singular coordinate charts,
GZPatchSystem uses the “inflated cube” coordinates with 6 patches as described below.
Another notable possibility is given by two stereographic coordinate charts [20]. Due
to large coordinate distortions in stereographic coordinates along patch boundaries,
however, these seem to result in less accurate codes [116].

In the following discussion, it will be convenient to think of the spheres r = const. as
embedded into R3 with its standard global Cartesian coordinates {z,v,z}.
GZPatchSystem uses 3 angular coordinates denoted by p,v and ¢ to cover S? reg-
ularly which correspond to the rotation angles around the Cartesian coordinate axes.
Their relation to the Cartesian coordinates is given by

w(z,y, z) = arctan(y/z), v(z,y,z) = arctan(z/z), ¢(z,y,z) = arctan(y/z).

We enumerate the patches as: 0,1,2,3,4,5 — +z,+z,+y, —z,—y, —z. We use the
pair (v, ) on the +a- respectively (1, 3)-patches, (i, ¢) on the +y- respectively (2,4)-
patches and (v, ) on the +z- respectively (0, 5)-patches such that the local coordi-
nates on each patch are regular covering a neighborhood of the Cartesian axes. The
internal coordinates of GZPatchSystem denoted by (p, o) are defined on the interval
[—7/4,m/4]. This implies the following translations for the coordinates on the patches

Py, EP(LB) : (V,(P) = (pq:ﬂ-/270)7 P+z EP(O) : (V7M) = (p,U),
Pry=Poa: (n,9) =(pF7/2,0F7/2), P..=PFg:p=p-mo—mn).

The standard polar coordinates (¢, ¢) on the unit sphere are related to (v, u) via

tan (v, u) = \/tan? p + tan?v, tan (v, u) = tan u/tanwv.

The standard metric on S? in polar coordinates reads ds? = d? + sin) dp?. In local
patch coordinates (p, o) this metric takes the form

1 2 2 . . 2 2
cos” o dp® — 2sino cososin pcos pdp do + cos® pdo®) .
(1 — sin? p sin? )2 ( P peospap pdo)

(3.32)

The main task of GZPatchSystem is the interpolation of a specified set of functions
from the interior of neighboring patches into each patch’s interpatch boundary ghost
zones. We refer to this process as ”synchronizing” the interpatch boundary ghost zones
in accordance with [I36]. On each patch the local coordinates are used to define the
tensor basis. To communicate the information between different patches, one needs to
do a a point transformation and a tensor transformation of the field variables. As we
use a frame basis, we do not need the tensorial coordinate transformation except for
the vector fields that constitute the frame. Instead we need to implement the rotation
of frame-based variables. Later, we will refer to the rotation of the variables as being
part of the synchronizing process. First we discuss the choice of frames on the unit
sphere.

ds® =
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3.6.2 Choice of frames on 52

The sphere can neither be regularly covered by a single coordinate chart nor by a single
frame field. The coordinate singularity is independent of the singularity of the frame.
Any frame field on the unit sphere in standard coordinates (1, @) can be written as
sin « cos (v
elzcosa(%—md{,, egzsina&g—m o

where a = a9, ¢) is an angle of rotation. We see that at least one of the frame vector
fields becomes singular at ¥ = 0,7 independent from « and therefore independent
from the choice of the frame. For o = 7/2 we recover the standard frame on the
sphere given by ey = 0y and e, = ﬁ 0,. In this choice, the singularity of the
frame coincides with the singularity of the coordinates so that the frame vector field
e, becomes singular at the center of the patches (0, 5).

Given coordinates {x!, 22} and a metric g on S?, we can use the one-parameter
rotation freedom to adapt a frame to a coordinate direction so that one of the frame
components vanishes. Choosing arbitrarily e;? = 0 we get by orthonormality relations
up to reflections

1 gi1 gi2
1 2 1 2
e} = Coe=0, el= )T =22 3.33
! V911 ! 2 det g 2 Vgi1detg (3.33)

Using the above relations we can set the frame according to the metric given in local
patch coordinates by (B32). It turns out that the standard frame (eg,e,) in the
inflated cube coordinates is adapted so that one of the frame components vanishes on
the patches (1,2,3,4). In terms of local patch coordinates the standard frame on S? is
given by

1,3) 1—cos?vsin® _ (2.4) 1 — cos® pucos? ¢
ey () LTCOVVSINP, () LT O HCOT o

Ous

cos ¢ sin ¢

/ 1
€y (1:’3) 1-— cos21/sin230 (—tancpcosu@,, + — 8¢> (2£4)
sin v
(2,4) cos [ 1
= /1 —cos?pucos?y . Ou + Oy | -

any sin p

On the patches (0,5) the standard frame is not adapted and becomes singular. There
we choose a different frame given by

0.5)

el (1 —sin® psin®v) 9,

cosv
1
€9 (22 —/1 —sin? psin? v (— al,—l—sin,utany(?#) .
CoS

It is convenient to have the frames written in global Cartesian coordinates

1 1

= Op +yz 0y — (2> +y%) 0.) =" (—y0, +x0,),
ey e (ZZTZ yz 0y — (z° +y°) ) €y :172+y2( Y x 0y)
1= — o (ay O+ (P + )0y — y20.), ez = (—20, + 30.).

rvax? + 22
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Note that we have chosen only two frames on S?, namely the standard frame (ey, e,,)
on the (1,2,3,4) patches and an adapted frame (e1, e2) on the (0,5) patches. This means
that we need the rotation implied by the different frames only between the 2 polar
patches and the 4 equatorial patches in contrast to the coordinate transformations
which need to be done between each pair of neighboring patches. The number of
frame systems to cover S? should not be relevant for the accuracy of finite differencing
in contrast to the number of coordinate charts because finite difference operators act
along the coordinate lines and not along the integral curves of the frame vector fields.

Rotation of the frames

To communicate information on evolution variables between different patches, we need
to use the rotation between the frames ey = R AB ep. The rotation matrix can be
written as

RB_ [ cosa — sina
A sina  cosa )’
Using the orthonormality relation in (3.20)), the rotation matrix can be calculated by

RP = RACeCfLUBH = e;fa]i. (3.35)
There are different possibilities to implement this calculation and the transformation of
frame-based grid functions between neighboring patches. We shall discuss this question
on a simple example in the next subsection.

3.6.3 The eigenvalue equation for the Laplace-operator on S?

It is instructive to discuss the numerical implementation of frames using
GZPatchSystem on a simple example that does not involve time evolution. We check
the code by verifying the following eigenvalue equation for the Laplace-operator on an

embedded sphere of radius r = y/x2 + y2 + 22

(l+1
Ay = Dy
T

We use this relation on a three dimensional domain to test the numerical implementa-
tion of frames on a spatial slice. We calculate the Laplacian of Y}, in first order and
second order form. We write ¢ := Y}, for notational simplicity. The Laplacian of ¢
can be calculated by

Ap = §ab (eaaebﬁ 00086 + €, (Dne,”)0s — r;becﬁam) : (3.36)

This formula includes second order derivatives of ¢. Therefore we refer to the above
calculation as the second order form. Another option is to define auxiliary variables
Ga = €q(¢p) = €204¢. Then the Laplacian can be written in first order form as

Ap = 6" (e, 20np — T ,Cde) . (3.37)

The main steps in the calculation of the Laplacian of the spherical harmonics using
GZPatchSystem in first order form (337) are as follows:



3.6 Numerical implementation of frames on S? 79

e Fix the geometry.
We fix the geometry by setting the frame fields (eyg, e,), (e1, e2), the radial frame
vector field e, and the related connection coefficients I' ;. It is convenient to
use Cartesian coordinates for the input (834]). The radial frame vector field is
the same on each patch.

e =e3 = %(:v(?w—i—y(?y—i—z@z).

The connection coefficients I'y"y = '/, = T'*; = ')’y = 1 are the same for
both frame fields. The only non-vanishing connection coefficient that depends
on the choice of our frame is

z
e 2
[Fy=——— 2 =—

e Set the function ¢ = Yj,,.
We set the function for some [ and m = 0,1,...,l. We give the real part of the
spherical harmonics as initial data in global Cartesian coordinates. We set, up
to the normalization factor,

Yy
rva2 + 22

322

z
Y0 =— PO

; R(Y11) = E, Yoo=—-1+

r r

e Transform the data to local patch coordinates.
We let GZPatchSystem transform the grid functions to each patch’s local co-
ordinates and coordinate basis. Only a point transformation is needed for the
spherical harmonics and the connection coefficients. For the frame fields a point
transformation as well as a transformation of the coordinate basis needs to be
done. These transformations are implemented in GZPatchSystem and are steered
by the user via interface and parameter files.

e Calculate the auxiliary variables ¢, .
We calculate ¢, = e,*0n¢ in local coordinates on each patch using fourth order
accurate discrete derivatives as in (Z36]). For the numerical approximation of
0q ¢ using fourth order accurate derivatives on each nominal grid point, the values
of the function on two neighboring points in each direction along the coordinate
line of x® is needed. We do not calculate the derivatives on the ghost zones.

Fig. illustrates a two-dimensional non-trivial stencil geometry for overlap-
ping grids with two ghost points. The thick line is the common boundary of
adjacent patches denoted by P and P. The solid lines are the coordinate lines of
the patch P, the dashed lines are the coordinate lines of the patch P. Note that
the patches share the coordinate perpendicular to their common boundary. The
ghost zone of P is in the interior of P. For clearness the ghost zone of P has not
been drawn. The filled small circles correspond to grid points of P, the empty
ones correspond to grid points of P. No distinction has been made in the circles
between nominal and ghost points. Say, we want to calculate the derivative of
¢ in patch P on the boundary line at the grid point denoted by n in the figure.
Beside the nominal points n — 2,n — 1,n, we need the values of ¢ at n + 1 and
n + 2. When initial data has been set correctly on the whole grid including the
ghost points, the derivatives d,¢ can be calculated on the nominal points.
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Fig. 3.10: Stencil geometry with overlapping grids.

e Synchronize the auxiliary variables.

As we will derive the auxiliary variables for the calculation of the Laplacian in
first order form (B3T), we need their correct values also on the ghost zones. These
are not known, neither in patch P nor in patch P, but they can be calculated
by interpolation from P. This calculation is done in GZPatchSystem using one-
dimensional interpolation in the direction parallel to the boundary. In Fig.
GZPatchSystem uses the empty circles in the nominal domain of P along the two
coordinate lines parallel to the thick boundary line to calculate the values of the
auxiliary variables on the full circles.

e Rotate the auxiliary variables.
For the calculation of the auxiliary variables on the ghost zone of patch P, we
need a transformation in accordance with the rotation of the frame. We set
¢4 = RE¢p where the rotation matrix R% is calculated as in (8:35). For this
calculation we have two options:

— Analytic calculation: We calculate the rotation matrix analytically using
the explicitly known frames (ey, e,) and (e1, e2) in local coordinates.

— Numeric calculation: We use the algebraic relation ([B:35]) numerically.

The code for the analytic calculation includes switches by patch number which
determines the coordinates and by grid side which determines the rotation ma-
trix (each of the 6 patches has 4 sides). The code for the numeric calculation on
the other hand is very short. The solution of ([B:35]) can be written independent
of local coordinates, so the second option results in a code which is more efficient
than the input of the analytic rotation matrix. This method can also be gener-
alized to the case in which the frame components are evolution variables and the
rotation matrix is not known a priori. We choose the numeric calculation.

e Build the Laplacian (337).

e Calculate the error by

lapl_error = A¢ — (—l(l%l)qﬁ) .

r



3.6 Numerical implementation of frames on S? 81

The calculation in low resolution is made with 20 points, the medium one with 40
points and the high one with 80 points in both angular directions on each patch. The
radial domain of calculation is r € [1, 2].

low-med med-high
(0,5) (1,3) (2,4) | (0,5) (1,3) (2,4)
3.96 3.96 3.96 | 3.99 3.99 3.99
3.96 3.96 3.96 | 3.99 3.99 3.99
3.94 3.95 3.95 | 3.99 3.99 3.99
3.95 3.95 3.95 | 3.99 3.99 3.99
3.95 3.94 3.94 | 3.99 3.99 3.99
3.92 3.94 3.94 | 3.98 3.98 3.98
3.93 3.93 3.94 | 3.98 3.98 3.98
3.93 3.93 3.93 | 3.98 3.98 3.98
3.94 3.92 3.93 | 3.98 3.98 3.98

w| | ws| wo| po| pof o =] =] ~
wlo| ol ol ol 3

Table 3.1: Convergence factors for the calculation of the Laplacian in second order
form.

In Table Bl convergence factors are listed for the second order form of the Lapla-
cian. They are calculated in the Lo-norm for [ up to 3 on a sphere with radius » = 1.5.
The convergence factors are independent of the sphere on which they have been cal-
culated. For their calculation I used the code reduce by Christian Reisswig available
from [I37] including documentation. The factors have been given for pairs of patches
that use the same coordinate system. We see a clean fourth order convergence. Note
that for the calculation of the Laplacian in second order form, we do not need any
synchronization.

low-med med-high
(0,5) (1,3) (2,4) | (0,5) (1,3) (2,4)
3.33 3.02 3.02 | 3.17 2.96 2.96
3.00 3.33 3.00 | 2.96 3.17 2.96
3.75 4.06 4.06 | 3.51 3.61 3.61
2.82 2.84 2.88 | 2.90 2.91 2.92
4.09 3.79 3.79 | 3.58 3.46 3.46
3.31 3.21 3.21 | 3.18 3.12 3.12
3.23 3.21 3.42 | 3.14 3.11 3.23
3.04 3.30 3.30 | 3.02 3.17 3.17
3.27 3.23 3.20 | 3.14 3.13 3.12

| w| wof wo| ro| po| b | =] ~
win| ol =lo|llo]3

Table 3.2: Convergence factors for the calculation of the Laplacian in first order form.

Table lists convergence factors for the first order form of the Laplacian. We see
that the calculation is roughly third order accurate. At first sight it seems that a higher
number of grid points results in a drop of convergence which would be problematic.
A closer look, however, reveals that the convergence factor approaches consistently 3
when we increase the resolution as seen for example in the case with [ = 2 and m = 1.
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The study of point-wise convergence factors using gnuplot or reduce shows that the
convergence on the ghost points is third order which dominates in the Lo-norm.

The reason seems to be the interpolation of spatially derived functions and not the
rotation. This claim can be tested by synchronizing the derivatives d,¢ as covariant
tensors instead of synchronizing the frame-based auxiliary variables ¢, as functions.
In that case no rotation is needed, but the spatial derivation d,¢ is interpolated and
derived again for the calculation of the Laplacian. One observes a similar behavior of
the convergence factors as in Table

In an evolution scheme, a grid function that is derived on a time step is not interpo-
lated because synchronization takes place immediately after each evolution step in the
MoL_PostStep schedule bin of Cactus (see [I37] for a documentation on schedule bins
of Cactus). The next subsection discusses a test case with a simple evolution system
where we see fourth order convergence as expected. The issue with the interpolation
of numerical derivatives will not play any role in our later discussions.

3.6.4 Wave equation with source terms

As a simple test for an evolution system, we solve the wave equation on a Minkowski
background for a scalar function ¢ with source f

o = f.
Writing out the equation in terms of frames we get
O¢ =n"V;V;¢ =n"Vie;(¢) =n[e; (e;(4)) — Fikjek(¢)] =f

The above system can be brought into first order form by using auxiliary variables
o1 = er(¢), which obey an integrability condition V¢ — Vi¢; = 0. Take ey to be a
timelike frame field and e, to be spacelike frame fields. The evolution system reads in
terms of the frame and the connection coefficients

eo(do) = 0%a(gy) = =0T b0+ (Lg% — 8°T5%) de — f,
€0 (¢a) — €a (¢0) = I‘Ooa(bo + (FOCU, - 1—‘U,CO) ¢C7
eo(d) = do.

For the tests we use the Minkowski background in standard spherical coordinates with
e3 taken to be the radial direction. The wave equation takes the form

2
g0 = €'0101+ e’y + ey 0102 + €, 0202 + D303 + TP 1 + ;¢3 - f
ded1 = e 010+ e,° 0200,
Orda = ey 010 + €52 0200,
Or 93 = 0300,
00 = ¢g. (3.38)

An explicit solution to this symmetric hyperbolic system is given with the source term
f =110, by 6(t,r,0, ) = $(t,7) Yim (9, ) with

_r+n)? _(r=1)?

(b(t,r):%((r—l—t)e B L —te 5, (3.39)

where o is some constant. The evolution consists of the following steps:
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e Fix the geometry.
We set the frame fields and the connection coefficients as in [3.6.9]

e Set initial data.
The initial data consists of ¢(0, z,y, z) and ¢;(0,z,y, 2) = (¢, 0,9(t, .y, 2))|t=0
calculated from the explicit solution (839) in Cartesian coordinates. Note that
the input for the auxiliary variables ¢4 depends on the frame and therefore also
on the patch number.

e Transform the data to each patch’s local coordinate system.

e Calculate the right hand side of the system ([B:38]) and apply boundary conditions
for integration using method of lines.
No boundary conditions are needed in the angular directions. The boundary
conditions we apply in the radial direction are the same as for the reduced general
conformal field equations. We set the derivatives at the outer boundary to zero.

e Do an evolution step.

e Analyze the numerical solution.
Our analysis consists of building the difference between the numerical solution
and the analytic solution given by (3.39).

e Synchronize the auxiliary variables ¢;.
This step is discussed in some detail below.

e (Calculate the right hand sides and apply boundary conditions.
e Do an evolution step ...

Due to its importance in the code, we go through the steps included in the synchro-
nization. We use the frame components to illustrate the steps involved. We write
a two-dimensional frame field e4 in angular coordinates 2 on a patch P with grid
points n as Fe AA(xn). The frame, the coordinates, the coordinate basis, and the grid
points of a neighboring patch P will be denoted by barred indices. A synchroniza-

tion step transforms the information from a neighbouring patch into the current patch

Pe Mwy,) — PeAA (Zs). The steps of the synchronization are (compare Fig. B.10)
Copying into current patch: Pe — F
Point transformation: e(z) «— e(Z)
Transformation of coordinate basis: e —eh
Interpolation: e(ZTn) — e(Zn)
Frame rotation: eqA — ejg

The steps except the rotation are implemented by Thornburg in GZPatchSystem.

There are three main sources of numerical errors in our evolution system that can
be controlled to some degree: the round-off, the interpolation and the finite differenc-
ing. The convergence factors presented below show that round-off and interpolation
errors are negligible compared to finite differencing errors. Of course, this can only be
expected in a high enough resolution and a higher interpolation order than the order
of finite differencing. For the tests presented below a 6th order interpolation has been
chosen.
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Table shows convergence factors for the numerical solution of the symmetric
hyperbolic wave equation ([8.38]). The source terms havel =2, m = 1landl=3,m = 2.
The convergence factors in Table have been calculated on a sphere with r = 1.5.

=2, m=1 =3, m =2

time | low-med med-high | low-med med-high
0.0125 4.000 4.001
0.025 3.995 3.999 4.003 3.999
0.0375 3.998 3.998
0.05 3.994 3.997 3.999 3.994
0.0625 3.995 3.990
0.075 3.992 3.994 3.994 3.987
0.0875 3.992 3.984
0.1 3.974 3.990 3.981 3.981

Table 3.3: Convergence factors for the wave equation averaged over 6 patches.

We see fourth order convergence. Tests with other choices of parameters result in
the same qualitative convergence behavior with slightly different numerical factors.

3.7 Implementation of the cylinder at infinity

In the previous section we discussed the principles of a frame-based evolution code
using overlapping grids. In this section we will apply this technique in a local study
of spatial infinity represented as a cylinder. The spacetime under study is the same
as in We use a spherical grid topology instead of a Cartesian one. The code is
designed to be usable also in studies of spacetimes with non-vanishing ADM-mass.
We make some remarks on the structure of the reduced general conformal field
equations with respect to the cylinder at infinity. The system consist of ordinary
differential equations and the Bianchi equation for the rescaled Weyl tensor that implies
a symmetric hyperbolic system as in (3.15). In coordinates z° = ¢, z*, A = 1,2, and

x2 = r we can write the Bianchi equation in the form

(A9, + A0, + A0\ )u + Fu = 0.

A rescaling with k|; = 0, dk| s+ # 0 leads to the blow-up of spatial infinity to a
cylinder 7 which acts as a boundary surface to our evolution equations. This does not
imply an initial boundary value problem as the boundary Z is totally characteristic in
the sense that A” =0 on Z [61], [62] . We get interior symmetric hyperbolic equations
on Z and no prescription of boundary data is required or allowed. The solution is
determined uniquely by Cauchy data.

The blow-up of spatial infinity takes care of the singular behavior of conformal
initial data for non-vanishing ADM-mass ([8.2]), such that we get a regular finite initial
value problem near spatial infinity. This delicate interplay between the regularization
of the conformal data for the field equations and the blow-up procedure of spatial
infinity is the main reason for insisting on a spherical grid topology for our numerical
calculations. The procedure distinguishes radial and angular directions in a substantial
way. The smoothness of conformal data and the property that 7 is a totally character-
istic surface is related to the vanishing of the radial frame vector field on the cylinder.
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We can implement radial and angular frame vector fields also in Cartesian coordi-
nates, so that the radial and angular directions are distinguished geometrically near
the totally characteristic surface Z. The points of the cylinder, however, would not
correspond to points of our grid and this might require a more complicated numerical
boundary treatment. The massless case studied in this section might still be numeri-
cally stable, but the code might not be applicable in studies of physically interesting
spacetimes.

Another remark concerns the time evolution. As described in [62], certain entries
of the matrix valued function A* vanish on the set Z+ where null infinity meets spatial
infinity. This degeneracy of the evolution equations is the main difficulty in clarifying
the open problems regarding the regular finite initial value problem near spatial infinity.
It causes also numerical difficulties. Remember that we build (A*)~! in the calculation
of the right hand side. This calculation is singular at ZT where the matrix A? is
degenerate. The main feature that allows us to deal with this problem is that the
location of ZT is known a priori. A suitable choice of time stepping and freezing the
evolution in the unphysical domain takes care of this issue, at least in the massless
case that we study. Whether this treatment of the problem is sufficient in cases with
non-vanishing mass remains to be seen.

3.7.1 The initial data

For numerical calculations with GZPatchSystem we do not map spatial infinity to r = 0
as we did in the Cartesian case. Instead we map spatial infinity to a finite coordinate
radius. The reason is that spherical coordinates are not well-defined at the origin.
Therefore GZPatchSystem assumes that the computational domain is a shell bounded
by two spheres with non-vanishing radial coordinate values.

We compactify the physical Weyl solution such that the interval 7 € [0,00) is
mapped to r € (1,00) via the coordinate transformation

7(r) = r(F) = % +1.

It might better reflect the physical relations to map spatial infinity to some large
radius and change the sign in the coordinate transformation so that large values of
the compactifying radial coordinate correspond to the far field zone away from the
source of radiation. In our case, however, we are only interested in a neighborhood of
spatial infinity and not in the source. Therefore we have made the above choice of a
compactifying radial coordinate.

The conformally rescaled metric h in these compactifying coordinates takes the

form (compare (3.26))

_ . 4 sinh? ¥ K
h= ¢2h = <M> (dr? + (r — 1)2d9® + e 2K (r — 1)2sin® 9 dy?).

m2(r —1)2
The Curzon solution from which we calculate conformal data is given by U = —m/(r—1)
and K = —1m?(r — 1)?sin® 9. The metric h is analytic at spatial infinity so it can be

2
extended beyond 7 = 1. We can use the conformal factor o = (% tanh %) as before
to generate initial data from (h, o). Another option is to use the frame adapted to
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W' and the conformal factor o/ = (r — 1)>e % /cosh(¥). I have done the calculation
presented below using the pair (h’,0").
A frame adapted to b’ = (¢'¢~1)~2h reads in spherical and Cartesian coordinates
as
PR U B
r—1 (r—1)va* +y?

T€K

K

e
@ (r—l)sinﬁap_ (r —1)\/22 + ¢
e, = 0, 1(x(i)m+y6y+zaz).

T

(2202 +y20y — (2* +y7) 0:) ,

(=Y 05 + 20y),

r

The frame (eg, e,) is used on the equatorial patches (1,2,3,4). On the polar patches
(0,5) around the +z-axis, we choose a different frame (e}, €5) which is adapted the to
local coordinates of the (0, 5)-patches in the sense of section The frame (e}, e})
is given in Cartesian coordinates by

K /7312
ell — u ((y2 + 22) am +£Cy ay +£L'Zaz) ,
(r—=1)f :
ey = " (1 = e2®)zyz 0, + (2K 2? +y?) 9y + (2* + y?)y 0.),

(r=1DfVa>+y?

where f = /y2(y2 + 22) + 22(y? + €2K22). This frame is by construction regular at
x =0,y = 0. While the input of the frame into GZPatchSystem is made in Cartesian
coordinates, the calculation of initial data using this representation is difficult because
none of the components of the frame vector fields vanish and all coordinates {z,y, z}
appear many times in the expressions. Instead, for the calculation of the conformal
initial data we use the frame written in spherical polar coordinates as

ey = i(cosg@sinﬁcosﬁ(%—singoa )
b -nf -
2
r . .
ey = (RS (sinpsind Oy — e*K cos pcos?dy,)

with f = 2 sin¥/e2K cos? p cos? 9 + sin? . Components of the frame (¢}, €}) in this
coordinate representation become singular at the poles given by 9 = 0,7 and these
points are part of the patches (0,5), but this is a coordinate singularity of the coordi-
nates (1, ¢) and not a singularity of the frame as discussed in section B.6.2lon a simple
example. We do not evaluate the above expressions on the patches (0,5). We use it for
the analytic calculation of the initial data as described in After the calculation
has been done, we transform the data to regular Cartesian coordinates for the input.
Because the frame is geometrically regular on the patches (0,5), the calculated data
will also be regular. One should reorganize the result of the calculation such that
no formal divisions by the coordinates x and y appear (with formal division I mean
expressions of essentially the form ﬁ) Divisions by z will appear, but they cause
no problems because on the patches (0,5) we have z # 0. That such a reformulation
can be done is due to the regularity of the data. It is a lengthy but a useful test to

calculate the conformal data using the frames (ej,e{,) and (e}, e5) and to check that
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the rotation of frame-based tensors agrees with the rotation of the frames on the initial
hypersurface.

Another point concerning the input of initial data into the evolution code is the
divisions by ¢ appearing in the construction of initial data (B.I8 BI9). Though the
data extends analytically through Z°, a straightforward evaluation of the input causes
problems. Therefore, we evaluate the formula analytically at Z°.

The calculation of the full data set described in results in long expressions
that will not be given as they are not relevant for our discussion.

3.7.2 Form of .#* and the computational domain

Looking at the initial data for the frame e/, we observe that the components of the
angular frame field e/, become singular at r = 1 which corresponds to spatial infinity
i. The rescaling e, = rel, with kK ~ (r — 1) results in the blow-up of the point i to a
sphere Z9. Tt leads to regular angular frame vector fields while the frame vector field
in the radial direction vanishes on Z°.

A simple choice for £ motivated by the regularization of conformal data would be
k = (r —1). Fig. BII shows the resulting coordinate representation of the cylinder,
Z, and null infinity, .#+. The value of the time coordinate on .#* is seen to depend
on the angular coordinate ¥ in a way that seems bad for numerical calculations. It
decreases as we move away from the cylinder in certain directions so that future null
infinity is running backwards in grid time. This behavior leads to singularities in the
numerical solution once the conformal geodesics approach # .

f—‘r

P

U
Fig. 3.11: The cylinder at infinity and the form of .# T for x = (r — 1).
We have complete control over the form of .#+. A good choice in the asymptotic

region that we studied also in B.1.3 seems to be

w

=— tyr=k(r—1)+d 3.40

SR r-ntd . TR D+d (3.40)

with positive real parameters k and d. The parameter d determines the height of the
cylinder at r = 1, the parameter &k determines the slope of £ (see Fig. B.12)).
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Fig. 3.12: The cylinder at infinity and the form of T for k = TcyEw

3.7.3 The code

The code is based on the Cactus infrastructure [137] and uses the thorn GZPatchSystem
[136]. We use second order finite differencing and fourth order Runge-Kutta time
integration. No dissipation terms have been added to the evolution equations.

We solve the reduced general conformal field equations numerically on the radial
computational domain r € [1,1.2]. The time domain is given by t € [0,t 4+ + At]. We
stop the evolution after .# T has been reached and one time step into the unphysical
spacetime has been calculated. A reason for stopping the evolution is that the numer-
ical solution in the unphysical region becomes singular near the set Z+ where spatial
infinity meets null infinity. Another reason is computational efficiency. We are not
interested in the domain beyond #+.

The fact that a large part of our field equations consist of ordinary differential
equations plays a simplifying role in the implementation of the spherical grid geome-
try. We need to implement the rotation of frame-based variables, but only for those
for which numerical derivatives need to be calculated. These are the 10 components of
the rescaled Weyl tensor. We do not need to implement the rotation for the remaining
45 variables. This leads to a simplification in the synchronization step. If the evolu-
tion of the frame components and the connection coeflicients is governed by partial
differential equations (such as for the Friedrich-Nagy system [68]), the rotation might
cause difficulties with GZPatchSystem because for the derivative of the transformation
of the connection coefficients we would need to derive synchronized frame variables.

As the geometry is not given a priori, the rotation matrix is calculated after each
evolution step from the evolved frame components. We proceed in this calculation as
follows:

e After an evolution step and before the synchronization we store the components
of the evolved frame field of the local patch in a temporary grid function.

e We synchronize, without rotation, the 10 components of the rescaled Weyl tensor,
and also the frame field although no numerical derivatives of the frame field need
to be calculated.

e After the synchronization step, the temporary grid function has the information
on the local frame field while the synchronized frame field corresponds to the
frame field of the neighboring patch. By using this information we calculate the
rotation matrix on the ghost zone via ([3.33]).
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e We rotate the components of the rescaled Weyl tensor as covariant two-tensors.
After this step we can build derivatives and proceed with the evolution.

We have two disjoint numerical boundaries in contrast to the evolution with point
compactification at spatial infinity. The inner boundary in the physical domain (the
outer boundary of the computational domain) is as in the Cartesian case an artifi-
cial timelike surface. Our treatment consists of freezing the evolution at this artificial
boundary which is not a well-posed treatment. We emphasize again that in the physi-
cally interesting cases no artificial boundary will be present. As this inner boundary is
not a general feature of the method we develop, we are not concerned with this issue.

The boundary which was not present in the Cartesian case is given by the cylinder
at infinity. The cylinder is the natural boundary to our evolution system. It is a
characteristic surface so that no boundary data are to be prescribed. Further, as it is
totally characteristic, no radial derivatives need to be calculated. Therefore no one-
sided differencing needs to be implemented on the cylinder. For second order accurate
finite differencing ([3.29)) also the next point to the cylinder does not require any special
treatment.

3.7.4 The radiation field

The form of # 7 in our choice of x does not depend on angular coordinates as seen in
Fig. 312l Therefore, on .# ", the angular derivatives of the conformal factor vanish.

Rescaled |Psiy, on scri
0.025 T

0.02

0.015 -

|Psiy,

0.01 -

0.005 -

Fig. 3.13: Absolute value of 14 along .# " in the r-direction representing radiation.

Fig. shows |t)4] calculated along #* in the direction of the Cartesian z-axis.
We observe the same qualitative behavior as in Fig. The radiation field grows as
we move to the interior of the spacetime. The numerical values depend on the choice
of the free function k. The parameter d that determines the height of the cylinder
at r = 1 according to (340) is chosen to be small so that we can calculate a piece of
J T before the ill-posed inner boundary treatment can destroy the solution. For the
evolution leading to Fig. we have chosen d = 0.02 and k = 0.7.

No quantitative comparison has been made between the calculation with the one-
point compactification and with the cylinder. Certainly, more tests and experiments
can be done in the massless axisymmetric case. It seems, however, more interest-
ing to move on to studies of spacetimes with non-vanishing ADM-mass using further
developed numerical methods. This will be part of future work.
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3.8 Discussion

The main content of this chapter has been the development of a numerical method
that allows us to construct solutions to the Einstein equations including spatial and
null infinity by solving a regular finite initial value problem near spatial infinity based
on the reduced general conformal field equations. We have implemented this system
numerically with spatial infinity represented as a cylinder.

The method presented in this chapter is based on solving a frame-based evolution
system with smooth inner and outer boundaries. Certain difficulties we had to deal
with are specific to numerical calculations, such as the coordinate and the frame singu-
larity on spheres. Other difficulties, such as the degeneracy of the equations at the set
Z7T where spatial infinity meets null infinity are shared by the numerical and analytic
studies. It would be interesting to see whether our numerical treatment can deal with
some mild singularity of the conformal structure at null infinity.

We have studied a neighborhood of spatial infinity of a radiative massless space-
time. The study of spacetimes with non-vanishing ADM-mass may require technical
improvements of the code. We may use higher order information on the solution along
the cylinder from analytic studies [61] [I41]. Parallelization would allow more exten-
sive and accurate studies of the spacetimes in question. A possibility would be to
use parallel multi-block methods to solve evolution systems using multiple patches
[92, 125].

As shown in conformal diagrams of section[3.1] the speed of outgoing characteristics
approaches zero near spatial infinity. This property may be used to construct adapted
finite differencing stencils. One should also consider adapting the stencil to the a
priori known location of #* such that boundary grid points lie on .#*+. For long time
evolutions aiming at timelike infinity, one may add additional grid points dynamically
into the computational domain such that the resolution loss due to the form of #7 is
compensated numerically.

A major advantage of the conformal Gauss gauge is that the location of the con-
formal boundary can be prescribed a priori in terms of coordinates and initial data
by the choice of a free function x, assuming the underlying conformal geodesics are
well-behaved. A convenient choice for numerical calculations seems to be (B40). Given
a time scale and an accuracy requirement, we may choose a very large k that would
allow an efficient and accurate calculation of gravitational radiation in the conformal
Gauss gauge without much resolution loss in the physical part of the conformal exten-
sion. It is an open issue which choices of k are good in the interior of asymptotically
flat spacetimes. We have seen in numerical solutions of conformal geodesics on given
backgrounds, that certain choices of k are bad in the interior of black holes. These
problems seem, however, of secondary importance. The main question that one should
study concerns the feasibility of the conformal Gauss gauge in general studies of the
asymptotic region. If it turns out that the conformal geodesics are not well-behaved
in the interior region, one can still devise matching methods or choose another gauge
in a domain where the conformal factor has been set initially to unity. One can only
hope to answer the question on the feasibility of the conformal Gauss gauge gradually.
Possible steps for further research are outlined in section



Chapter 4

Summary and Outlook

In this thesis I took a conformal approach to the numerical calculation of asymptoti-
cally flat spacetimes. To avoid certain conceptual and technical deficiencies of current
numerical methods discussed in the introduction, I devised and studied new numerical
methods which have, as expected, difficulties of their own.

In the summary I discuss the achievements of the thesis and point out some open
problems of the methods introduced. In the outlook I try to give a glimpse of the
possibilities opened up by the methods assuming their problems can be solved. The
thesis ends with remarks on the idea of conformal infinity.

4.1 Summary

The question that has been raised in the preface concerns the numerical methods for
calculating asymptotically flat spacetimes, not the statements that can be made on
such spacetimes. Accordingly the main content of this thesis does not lie in numerical
studies of the solution space to the Einstein equations but in the development of
new methods for future studies of the solution space. I tried to motivate the search
for new methods in the introduction by stating some problems of currently available
numerical methods. The results of this thesis have been presented in two chapters,
each concentrating on a different asymptotic domain: null infinity and spatial infinity.

Chapter 2. Null Infinity

e Counstruction of a #-fixing gauge in spherical symmetry, 2.2

This study refutes claims made at various places (for example in [29]) that the
conformal approach necessarily leads to a resolution loss in the physical space-
time. The explicit examples written in a .#-fixing gauge in spherical symmetry
show clearly that the allegedly necessary resolution loss is a property of a bad
coordinate choice and not of the conformal approach itself, a fact sufficiently
supported by existence results. The examples also serve as a testbed for new
ideas in the conformal approach.
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e The development of a numerical method that includes null infinity in the com-
putational domain to solve a hyperboloidal initial value problem for the Einstein
equations in a general wave gauge, 2.3] 2.4

A basic difficulty with the equations used in the conformal approach has been
that they are very different from common formulations of the Einstein equations.
Experience gained within the standard approach could so far not be applied in
the conformal approach, and the clean framework that the idea of conformal in-
finity yields could not be used in conventional numerical relativistic calculations.
Motivated by this difficulty, I constructed a method to include null infinity in
the computational domain using a common reduction of the Einstein equations.

Assuming hyperboloidal initial data whose maximal development admit a smooth
conformal boundary, I showed that a .#-fixing gauge can be constructed during
the solution of a hyperboloidal initial value problem using a suitable coupling of
the conformal and the coordinate gauge freedom in a general wave gauge. This
result opens up the possibility to attach smoothly a conformally compactified
asymptotic region, where conformal techniques are applied, to successful numer-
ical calculations of the interior domain in a direct way, using the same set of
variables and the same set of equations.

e A numerical test of the introduced method in spherical symmetry,

The main difficulty with the aforementioned method is the appearance of for-
mally singular terms in the evolution equations. Within the class of spacetimes
that admit a smooth conformal boundary and in a .#-fixing gauge, each of these
terms attains at null infinity a regular limit. This limit can, in principle, be cal-
culated by numerical methods. One can not assert without extensive numerical
studies, however, that such a calculation will, in practice, result in a numeri-
cally stable code for highly dynamical spacetimes. As a first test I studied the
spherically symmetric case in a stationary gauge using simple numerical meth-
ods. One could observe, in this special case, that a numerical treatment of the
outer boundary based on extrapolation of the variables allows the calculation of
a piece of null infinity.

Chapter 3. Spatial Infinity

The hyperboloidal approach does not allow us access to spacetimes in their entirety.
To make statements on global properties of spacetimes one would like to get access to
the conformal boundary including spatial infinity. The main problem in this context
is the singular behaviour of conformal initial data at spatial infinity for non-vanishing
ADM-mass. This problem was treated by Friedrich who formulated a regular finite
initial value problem near spatial infinity using the reduced general conformal field
equations. The construction allows a smooth extension of conformal data with non-
vanishing ADM-mass through spatial infinity which is blown up to a sphere on the
initial hypersurface. The development of the data results in a representation of spatial
infinity as a cylinder. Currently the only system that allows a numerical study of
spatial infinity including a piece of null infinity is given by the reduced general confor-
mal field equations. The following steps have been taken in the course of a numerical
implementation of this system.
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e Numerical construction of a conformal Gauss gauge on the Schwarzschild-Kruskal
and the Kerr spacetimes, [3.1}

The reduced general conformal field equations are based on the conformal Gauss
gauge. Though it has been shown analytically that the conformal Gauss gauge
is well-behaved in strong field regions in spherical symmetry [63], the general
behavior of the underlying conformal geodesics is unknown. Besides, it can not
be guaranteed that analytical methods work well in numerical calculations. To
test the numerical feasibility of the conformal Gauss gauge I reproduced the
analytic construction of a conformal Gauss gauge in the Schwarzschild-Kruskal
spacetime covering the entire spacetime in a smooth way. Going beyond avail-
able analytical studies I found out numerically that one can also cover the Kerr
spacetime using conformal geodesics including null infinity, timelike infinity and
the Cauchy horizon.

e Numerical simulation of an entire, asymptotically flat, black hole spacetime, 3.3

As a first test of the numerical feasibility of the reduced general conformal field
equations, I solved a Cauchy problem based on this system in spherical sym-
metry with data from the Schwarzschild-Kruskal spacetime. The equations in
spherical symmetry become a system of ordinary differential equations. This is
a major simplification so that no statements on the applicability of the system
in the general case can be deduced from this study. It should still be noted that
this is the first numerical calculation of an entire, asymptotically flat black hole
spacetime including spacelike, null and timelike infinity and the region close to
the singularity.

e Numerical calculation of a radiative spacetime including spatial infinity and a
piece of null infinity,

In order to study cases with non-vanishing gravitational radiation, I wrote an
evolution code for the reduced general conformal field equations based on a three
dimensional Cartesian grid using the software infrastructures Cactus [I37] and
Kranc [83]. This code can only deal with the one point compactification at
spatial infinity which results in singular conformal data for non-vanishing ADM-
mass. Therefore I calculated asymptotically flat, axisymmetric initial data based
on studies by Friedrich which have vanishing ADM-mass but whose development
has a non-vanishing radiation field. I analyzed the numerical development of this
data and showed that the radiation content of the spacetime does not vanish but
grows towards the interior where presumably a naked singularity resides.

e The development of a three dimensional code to solve Cauchy problems for frame-
based evolution systems with smooth inner and outer boundaries,

I wrote a numerical code within the Cactus infrastructure [I37] using a Cactus
thorn written by Thornburg [136] which implements spherical coordinates using
multiple patches. I extended this infrastructure to include frame rotations so that
Cauchy problems for frame-based evolution systems can be solved numerically.

e Numerical studies of spatial infinity represented as a cylinder, [3.71

In the representation of spatial infinity as a cylinder, the equations degenerate at
the set where the cylinder meets null infinity. This difficulty has been dealt with
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by freezing the evolution in the unphysical domain and choosing a time stepping
that avoided an evaluation of the equations at the critical set. An essential
property of the conformal Gauss gauge which allows us such a treatment of the
problem is the a priori knowledge of the conformal factor in terms of initial data
and grid coordinates. I suggested a convenient choice for the remaining gauge
freedom in the conformal Gauss gauge for numerical calculations. I did numerical
studies of the cylinder in the massless, axisymmetric case which is special in the
sense that the spacetime under study allows the one-point compactification.

The main open problem with this approach is related to the degeneracy of the
equations at the critical set. Extensive studies and sophisticated numerical tech-
niques are required before this approach can be applied to study interesting
mathematical and physical questions concerning the asymptotic behavior of so-
lutions to Einstein equations.

The studies show that the a priori knowledge of the conformal factor is a very
convenient feature in numerical studies. It seems essential that the conformal boundary
and also the conformal factor should be controlled to some degree in a numerical
calculation. One can expect that this feature will play an important role in the future
development of the conformal approach.

4.2 Outlook

The discussed methods suggest a wide range of prospects to study the solution space
to the Einstein equations in a way that has not been possible before. Some suggestions
are listed below.

e A simple but illustrative experiment would be to solve a wave equation on the
Schwarzschild and the Kerr spacetimes written in a .#-fixing gauge using a three
dimensional code that can handle spherical grid topology. This might allow an
accurate study of quasi-normal modes and tail behaviour.

e The method of solving an hyperboloidal initial value problem for the conformally
transformed Einstein equations in a general wave gauge by prescribing the coor-
dinate representation of a conformal factor should be tested in three dimensions
for dynamical spacetimes. The basic infrastructure required for this test is al-
ready available [I06] so that one can concentrate on the main intrinsic problem
of the method, namely the numerical calculation of the formally singular terms
in the course of the evolution.

e The idea of using compactifying coordinates without transforming the metric
seems to work on Cauchy hypersurfaces [I13], although this is very awkward to
study radiation as discussed in[[L4.2] It would be interesting to try the coordinate
compactification technique using a hyperboloidal foliation.

e One should construct hyperboloidal initial data for a radiative spacetime ad-
mitting a smooth conformal boundary. There are many interesting and open
questions related to the interpretation of hyperboloidal data that may be stud-
ied by evolving them.
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e A straightforward test of the numerical techniques presented in chapter 3 would
be to evolve conformal data corresponding to static or stationary spacetimes with
non-vanishing ADM-mass in a neighbourhood of spatial infinity and to check that
their radiation field vanishes.

e One should construct solutions with a complete initial hypersurface so that no
artificial inner boundary needs to be introduced. The question how to construct
numerically initial data for spacetimes which admit a smooth conformal bound-
ary is open. Data whose development leads to some mildly singular behavior at
null infinity can be constructed by solving numerically a Lichnerowicz equation
for the initial conformal factor [43]. To numerically calculate conformal initial
data for the reduced general conformal field equations one needs to build numer-
ical divisions of the data by the conformal factor This might not to be
an easy task, but it seems worth the effort. A numerical study on smoothness
properties of solutions near null infinity has not yet been done. A strong inter-
action between mathematical and numerical studies in this question might give
new impulses in both directions.

e Another interesting study related to the asymptotic behavior of solutions to
the Einstein equations would be to evolve data which might results in different
degrees of smoothness at future and past null infinity as suggested in [142].

e The setting with the cylinder at spatial infinity would allow us to construct
solutions in which pure gravitational radiation collapses to form a black hole as
suggested in [I2] [I3] (see also the discussion in [65]).

e One might try to use use the conformal Gauss gauge in a metric formulation
Einstein equations. This might lead to a simplification in the equations and
require less variables.

e The implementation of a frame-based evolution system should allow us to im-
plement the Friedrich-Nagy system [68]. An interesting study with a successful
implementation of the Friedrich-Nagy system and the reduced general conformal
field equations would be to evolve a simple but radiative spacetime both with
and without an artificial, timelike outer boundary. This would allow us to com-
pare the approximation given by the timelike outer boundary at a finite distance
away from the source with the idealization given by conformal infinity such that
systematic errors can be estimated for different kinds of boundary data. Studies
along these lines have been made without numerical access to null infinity using
solutions for which accurate analytic expectations can be calculated [106] [1T§].

One of the motivations behind the work of this thesis has been to develop techniques
to calculate numerically entire, asymptotically flat, radiative spacetimes. This still
remains an important goal for future work. A combination of numerical calculations
near spatial infinity and null infinity might allow us to accomplish this task. An
achievement of this goal would deliver a starting point for extensive studies of the
solution space to the Einstein equations using numerical methods based on rigorous
analysis.
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4.3 Concluding remarks

A general critique concerning the concept of null infinity and its role in physical ques-
tions holds that null infinity is "too far away”. After all, the Earth where we are doing
our measurements is not infinitely far away from the sources and we do not move along
null geodesics in contrast to an observer along null infinity.

In the Schwarzschild spacetime, we have a length scale m at our disposal, so we
can discuss astrophysical distances in numerical calculations. To give a notion for
the scales in the conformal diagram Fig. 3.2 three curves with constant Schwarzschild
radius 75 = 4m, 12m, 300m have been plotted. The curve at Schwarzschild radius 300m
corresponds to about 1800 km for a black hole with four solar masses but it can hardly
be distinguished from .# T in the conformal diagram. Even if we consider super-massive
black holes, the distance corresponding to 300m is incomparably small contrasted to
the thousands or millions of light years that separates us from the astrophysical sources.
In this representation, the numerical effort for simulating the region from 300m to #+
is very small whereas in the standard approach putting the outer boundary from 300m
to 1000m costs considerable effort in terms of numerical techniques and computational
sources. We note that this behavior depends on the conformal gauge. One has the
freedom to set €2 = 1 initially on a given domain if more resolution is desired in that
domain. Further, we have seen in chapter 2 that a positive smooth function for the
coordinate representation of the conformal factor may be prescribed in the context of
the hyperboloidal initial value problem such that certain spacetime domains can be
emphasized for the calculation while still compactifying the asymptotic region. We
may conclude that the conformal compactification technique is not only promising for
an unambiguous outer boundary treatment and radiation extraction, but also for a
computationally efficient numerical code to deal with the asymptotic region.

If some astrophysically motivated length scale can be determined, as suggested for
example in [37], such that an observer "nearly at rest in the frame of the isotropic
cosmic microwave background radiation” at that distance from the source can regard
the source as isolated, this length scale will naturally be given in astronomical units.
The example above shows that a timelike curve at such a distance away from the
source is almost indistinguishable from .#* in the conformally compactified picture
while the standard approach does not even allow the discussion of such length scales.
Therefore, the arguments presented in [37] can as well be considered as supporting the
notion of conformal infinity. After having calculated the entire spacetime, we can still
discuss the calculation of a field which represents radiation (having a proper limit with
respect to an adapted tetrad at null infinity to which we would have direct access) on a
timelike surface arbitrarily far away from the source of radiation. Within the standard
approach, however, it seems hardly possible to calculate an astronomical domain for
an isolated system.

In this context, I would like to emphasize that the idea of conformal infinity is an
idealization, in contrast to an approximation. The difference can be illustrated on the
idea of a number, say a real number. We do not have physical access to real numbers.
Results of measurements are in a sense fuzzy. They are given in terms of rational
numbers with error bars regarded as approximations to real numbers. Physics without
real numbers would be, however, very inconvenient. Most physicists would agree that
the notion of a real number is a useful one. The idealization of a real number allows a
clean modeling in various fields of science. Similarly, the concept of conformal infinity
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allows a clean modeling in general relativity.

In [37] it is stated that the conformal approach implies ”introducing an arbitrary
amount of empty space not reflecting astronomical reality”. A similar statement can
be made concerning real numbers by claiming that they imply an arbitrary amount
of accuracy beyond the Planck scale not reflecting physical reality. The question
whether real numbers are real in an ontological sense belongs, however, to the realm
of philosophy. If an idealization allows a clean modeling of the ’actual reality’ we can
observe and if it is of practical use, than it is a viable physical viewpoint to use the
concept while being aware of the limits of its application.

Another argument claims that there is not much motivation for using the idea
of conformal infinity, especially regarding the impressive milestones achieved recently
within the standard approach. While a case can be made that the deficiencies of
the standard approach are not relevant for the detection of gravitational waves as the
accuracy of the waveforms seems to be enough for detection, there is also the viewpoint
holding that interesting physics will be hidden behind the first couple of digits in the
observational data. Having predictions which are accurate only up to a couple of
percents due to systematic errors will most probably not be enough to answer many
interesting questions in the prospective field of gravitational wave astronomy. One
should also not forget that beside the effort of calculating waveforms there remains
the task of exploring the solution space. Here it is unclear how useful the conventional
approaches are if global questions are concerned.

If an objection is to be made against the conformal approach, I believe, it should be
made not on conceptual but rather on practical grounds. Whatever level of conceptual
clarity, geometric appeal or computational efficiency the conformal approach promises,
in the end, its application in numerical relativity must be judged after its practicability
in numerical studies of the solution space to the Einstein equations.

It seems to me that the most important task for future work in the context of
our discussion is to devise from the conformal approach a practical tool for numerical
calculations of asymptotically flat spacetimes. This could not be achieved yet for the
calculation of highly dynamical, asymptotically flat spacetimes. Unfortunately, the
results presented in this thesis also do not allow the conclusion that the suggested
methods can be used in general calculations. I believe that this task can only be man-
aged if insights that have been gained in the standard approach can be conveniently
combined with the calculation of the asymptotic region. The ideas presented in this
thesis, especially the a priori knowledge of the conformal factor in numerical calcula-
tions, seem promising to accomplish this task. One may hope that future work will
allow us to construct from the beautiful idea of conformal infinity a practical tool for
numerical calculations.



Appendix A

Calculation of causal diagrams

In this appendix, we present how Penrose diagrams like Fig. [[.2] or Fig. 2.7 and radial
light rays on the grid like in Fig. or in Fig. for a given Schwarzschild-Kruskal
background are calculated. We omit angular dimensions.

A.1 Penrose diagrams

The two-dimensional Schwarzschild metric in standard coordinates is given by

2 om\ "
gs_—<1— ~m>d52+<1— ~m> 2.
Ts Ts

The coordinate singularity at the event horizon 7 = 2m can be removed by introducing
advanced and retarded null coordinates

b=i+7, a=i—7  where f*:F5+2mln(2T—S—1). (A1)
m

The Schwarzschild metric in these coordinates takes the forms

T's T's

2 2
gs_—<1— m) dv? + 2 dv dr,, gs_—<1— m> da? — 2dadr,.  (A.2)

These line elements can be analytically extended beyond the event horizon to r > 0.
_ We introduce the Kruskal-Szekeres coordinates for 75 > 2m by V = e?/4m > 0 and
U = —e %% < (. The metric written in double-null coordinates becomes

Ts Ts

2 32m3 - -~
gs = = (1 - m) dadp = — 22" o=Ts/2m giray,

where 75 = 74(@,0) = fs([z V) respectively. The Kruskal-Szekeres coordinates can be
analytically extended to U > 0 und V' < 0. The Schwarzschild coordinates are given
by the implicit relations

[V — _oFe/2m (T_s _ 1) 7 % -
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Compactifying coordinates can be introduced by U = arctanU and V = arctanV.
These are defined in the range (—7/2 < U,V < 7/2). We define new time and space
coordinates by setting

1 1
In the Penrose diagrams, the t-axis runs vertically and the r-axis runs horizontally.

Summarizing the coordinate relations, we have tanV = e?/4™ tanU = Fe ¥/4m,
and

- Is t -
tan U tan V = —e™=/2™ <2T—m - 1> ; tzﬁ‘(j = Fel/2m, (A4)

The compactifying coordinates (V, U) have been used to plot the Penrose diagrams of
the Schwarzschild-Kruskal spacetime in Fig. or the extended Schwarzschild space-
time in Fig. [L4

A.1.1 Ingoing Eddington-Finkelstein coordinates

We introduce the coordinate 7 = v — 5. The metric becomes

2 4 2
Gs = — (1 - f") a7 + 1 dFdi, + (1 + f") dr2. (A.5)
Ts Ts Ts
These coordinates are sometimes referred to as ingoing Eddington-Finkelstein coordi-
nates in the numerical literature. The spatial surfaces that are used in a simulation
based on ingoing Eddington-Finkelstein coordinates are given by the level sets of the
function

FEF) =0 —Fs =L+ 7, —Fs =1+ 2m In <T5 —1>.
2m

To plot the surfaces 7 = const. in the Penrose diagram of the extended Schwarzschild
spacetime in Fig. [[L4 we use (A4) and write (see also [98])

V(7s) = arctan (e%/‘lme’zs/‘lm) , U(7s) = arctan (—e_%/‘lmei*‘/‘lm (7‘_5 - 1)) .

2m

The Schwarzschild coordinate 7, is regarded as a parameter along the curves
(V(7s),U(7s)) with constant values of 7. We transform the above expressions using
the compactifying time and space coordinates (t,7) from (A3]). The resulting curves
are plotted on the (¢,7)-plane with Mathematica using the function ParametricPlot.
For plotting the hypersurfaces 7y = const. we can write a similar parametric rep-

resentation. Using the relations (AJ) and (A4]), we write
tanV = el/4mefs/4m s s

- 17 tanU = —e_£/4mefs/4m 1.

2m 2m

We regard t to be the parameter along the curves (V (), U(f)) with constant values of
Ts.
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A.1.2 Constant mean curvature foliation

In Fig. and Fig. 27 we plotted constant mean curvature surfaces in the extended
Schwarzschild spacetime using compactifying coordinates. The properties of these
surfaces have been discussed in [96].

Surfaces in the Schwarzschild spacetime that are dragged along the timelike Killing
vector field 0; can be written as level sets of a function ®(¢,7s) = t — h(7s). Here,
h(7s) is referred to as the height function. To find a CMC-slicing of the Schwarzschild
spacetime one requires that the mean extrinsic curvature K of the surfaces ® = const.
is constant. We get

o . 2w (1 2m)
K = Vit = =05, :

A

For K = const. this can be integrated once with an integration constant C'. A following
algebraic manipulation results in the differential equation

Ki? C
(N ey

where P(7,) is as defined in We can not integrate this equation explicitly
to get h(7s) in closed form but we can integrate it numerically. A difficulty is the
numerical integration for the function h at the horizon for 74 — 2m. The integral can
be calculated in the Cauchy principal value sense [96]. We build the integral in the
regions 75 > 2m and 7 < 2m respectively via

: (A.6)

h(fs)z/; W(z)de, and h(fs):/jm_éh’(:c)dx,

m-e s

where € is a positive small constant. We subsequently match the resulting curves
together at the event horizon. The embedding of the foliation is calculated as follows.
We define the embedded surfaces by level sets of a function which can be written as

® =1—h(Fs) =t+ 7 — 7 — h(Fs) =

S}

— 7 — h(7).

so that © = ® + (7. + I(7s)). We use the relations (A4]) and write

tan V= e®/Am g /am [ Ts ) /am
2m

tanl  — e ®/Amgri/am [ Ts 4 h(r)/4m
2m

The numerical integration gives us a list of pairs of (7, h(7s)). The surfaces corre-
sponding to different values of ® can be plotted with Mathematica using the function
ListPlot.
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A.2 Null rays on the grid

To visualize the causal structure on a numerical grid for a spherically symmetric space-
time in a stationary gauge we calculate the ingoing and outgoing radial null rays with
respect to grid coordinates (¢,7). The metric can be written as

g = gue(r) dt* + 294, () dt dr + gy (r) dr.
A parametrized null curve ¢(r) fulfills the relation

dt dt

2
- 2 r 3 rr:O-
Gt (dr) +29¢ dr+g

For g+ # 0, we can calculate the curve ¢(r) by integrating

- r:I: 2 — rr
t(r) = / Iir = N Jiw = GitGrr g, (A.7)
Gt

The positive sign corresponds to ingoing null rays. In the following we discuss the
visualisation of the causal structure on the grid for the Schwarzschild spacetime based
on different coordinates.

A.2.1 Ingoing Eddington-Finkelstein coordinates

For Fig. L5 we use the form of the metric in ingoing Eddington-Finkelstein coordinates

(A5) and integrate (A7) to get
7:177,(7:5) - _Fs + Cin, %out(Fs) = 7:5 +4m 1n|7:s - 2m| + Cout

for ingoing and outgoing null rays. We plot different light rays by varying the constants
Cin and Coye To include the excision region in Fig. we plot the null rays inside and
outside the event horizon separately and match them together.

A.2.2 Coordinate compactification at spatial infinity

To generate the plots in Fig. and Fig. [ we introduce a compactifying radial
coordinate in (A.5) by

1
Fo(r) = 1;, diry =

2
T

The domain 75 € [3/2,00) corresponds to r € [3/5,1] and the event horizon is at
r = 2/3. The metric (A5]) becomes

g:—(1—27m(1—r)) d%2+r(147ﬂ_1ﬂ

This metric is singular at 7 = 1 as expected. Integration of (A7) results in long
expressions that can be written in explicit form. Note that the ingoing null rays in
Fig. [ 7 that seem to come in from spatial infinity start at a small vicinity of spatial
infinity.

- 2m 1 9
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A.2.3 Cauchy-Characteristic Matching

The left part of Fig. has been plotted using the timelike ingoing Eddington-
Finkelstein coordinates as described above. For the right part we write the Schwarz-
schild metric in the advanced null coordinate @ as in (A.2)) and subsequently introduce
a compactifying radial coordinate r via 75 = r/(1 —r) to get

2 2
g5:—<1——m(1—r)) da® — = dudr.

r —Tr

The light cones in the parametrization @(r) are then given by solutions to the differ-

ential equation
L2 (& 2+ 2 di_,
r " dr 1—7rdr
The solutions are given by

dmIn|lr — 2m(1 —r
Uin(r) =2 In|]l —r| — | T 2775 ) + Cin Uout (1) = Cout-

Note that we need these light rays only outside the event horizon in the matching
region.

A.2.4 Constant mean curvature slicing

Fig. [L11] and Fig. have been plotted using the form of the Schwarzschild metric
given in (ZI3)). For this metric we can not integrate (A1) to get a closed form for the
ingoing and outgoing light rays. One needs to calculate the integrals numerically.
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