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Abstract. The aim of this paper is to collect some facts about the

blowup of Jang’s equation. First, we discuss how to construct solu-

tions that blow up at an outermost MOTS. Second, we exclude the

possibility that there are extra blowup surfaces in data sets with non-

positive mean curvature. Then we investigate the rate of convergence

of the blowup to a cylinder near a strictly stable MOTS and show

exponential convergence near a strictly stable MOTS.

1 Introduction

In the paper [AM07], inspired by an idea of Schoen [Sch04], we constructed
marginally outer trapped surfaces (MOTS) in the presence of barrier surfaces
by inducing a blow-up of Jang’s equation.

In this note, we take a slightly different perspective. Let (M, g, K) be a data
set with non-empty outer boundary ∂+M and assume that we are given an
outermost MOTS Σ in (M, g, K). Outermost means that there is no other
MOTS on the outside of Σ. From [AM07] it follows that (M, g, K) always
contains a unique such surface, or does not contain outer trapped surfaces at
all, provided ∂M is outer untrapped. As stated in theorem 3.1, we show that
there exists a solution f to Jang’s equation that blows up at Σ, assuming
that ∂M is inner and outer untrapped. By blow-up we mean, that outside
from Σ the function f is such that graph f is a smooth submanifold of M×R

with a cylindrical end converging to Σ × R. There is however a catch, as
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f may blow up at other surfaces, too. These surfaces are marginally inner
trapped. In theorem 3.4 we show that the other blow-up surfaces can not
occur if the data set has non-positive mean curvature.

Before turning to these results, we introduce some notation in section 2.
Section 3 proceeds with the construction of the the blow-up. We will not
go into details here, but emphasize the general idea and point to the results
needed from the paper [AM07]. In section 4, we show that near strictly
stable MOTS, the blow-up is at most logarithmic. Turning the picture side-
ways, and writing the blow-up solution as the graph of a function u on the
cylinder, this logarithmic growth turns into an exponential decay of u and
its derivatives.

2 Preliminaries

Let (M, g, K) be an initial data set for the Einstein equations. That is M is
a 3-dimensional manifold, g a Riemannian metric on M and K a symmetric
2-tensor. We do not require any energy condition to hold.

Assume that ∂M is the disjoint union ∂M = ∂−M ∪ ∂+M , where ∂±M are
smooth surfaces without boundary. We refer to ∂−M as the inner boundary
and endow it with the normal vector ν pointing into M . The outer boundary
∂+M is endowed with the normal ν pointing out of M . We denote by H [∂M ]
the mean curvature of ∂M with respect to the normal vector filed ν, and by
P [∂M ] = tr∂M K the trace of the tensor K restricted to the 2-dimensional
surface ∂M . Then the inward and outward expansions of ∂M are defined by

θ±[∂M ] = P [∂M ] ± H [∂M ].

Assume that θ+[∂−M ] = 0, and that θ+[∂+M ] > 0 and θ−[∂+M ] < 0.

If Σ ⊂ M is a smooth, embedded surface homologous to ∂+M , then Σ bounds
a region Ω together with ∂+M . In this case, we define θ±[Σ] as above, where
H is computed with respect to the normal vector field pointing into Ω (that is
in direction of ∂+M). Σ is called marginally outer trapped surface (MOTS),
if θ+[Σ] = 0. We say that ∂M is an outermost MOTS, if there is no other
MOTS in M , which is homologous to ∂+M . In [AM07] it is proved that
for any initial data set (M, g, K) which contains a MOTS, there is also an
outermost MOTS surrounding it.

Let Σ ⊂ M be a MOTS and consider a normal variation of Σ in M , that is
a map F : Σ× (−ε, ε) → M such that F (·, 0) = idΣ and ∂

∂s

∣

∣

s=0
F (p, s) = fν,
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where f is a function on Σ and ν is the normal of Σ. Then the change of θ+

is given by

∂θ+[F (Σ, s)]

∂ds

∣

∣

∣

∣

s=0

= LMf,

where LM is a quasi-linear elliptic operator of second order along Σ. We
will not need the precise formula for LM here, we instead refer to [AMS05]
and [AMS07] for details. The only fact we will need here is that LM has a
principal eigenvalue λ, which is real. If λ is non-negative Σ is called stable,
and if λ is positive, Σ is called strictly stable. In particular, if Σ is strictly
stable as a MOTS, there exists an outward deformation strictly increasing
θ+.

In M̄ = M ×R, we consider Jang’s equation [Jan78, SY81] for the graph of
a function f : M → R. Let N := graph f = {(x, z) : z = f(x)}. The mean
curvature H[f ] of N with respect to the downward normal is given by

H[f ] = div

(

∇f
√

1 + |∇f |2

)

define K̄ on M̄ by K̄(x,z)(X, Y ) = Kx(πX, πY ), where π : TM̄ → TM

denotes the orthogonal projection onto the horizontal tangent vectors. Let

P[f ] = trN K̄.

Then Jang’s equation becomes

J [f ] = H[f ] −P[f ] = 0. (2.1)

3 The blowup

The main result of this paper is that we can construct a solution to Jang’s
equation which blows up at the outermost MOTS in (M, g, K) and has zero
Dirichlet boundary data at ∂+M . In fact, we chose the assumptions on
the outer boundary ∂+M so that we can prescribe arbitrary Dirichlet data
there. The focus here lies on the blow-up in the interior, so that we do not
investigate the optimal conditions for ∂+M .

Theorem 3.1. If (M, g, K) be an initial data set with ∂M = ∂−M ∪ ∂+M

such that ∂−M is an outermost MOTS, θ+[∂+M ] > 0 and θ−[∂+M ] < 0,
then there exists an open set Ω0 ⊂ M and a function f : Ω0 → R such that
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1. M \ Ω0 does not intersect ∂M ,

2. θ−[∂Ω0] = 0 with respect to the normal vector pointing into Ω0,

3. J [f ] = 0,

4. N = graph f is asymptotic to the cylinder ∂−M ×R
+,

5. N = graph f is asymptotic to the cylinder ∂Ω0 ×R
−, and

6. f |∂+M = 0.

For data sets (M, g, K) which do not contain surfaces with θ− = 0, the above
theorem implies the following result.

Corollary 3.2. If (M, g, K) is as in theorem 3.1, and in addition there are

not subsets Ω ⊂ M with θ−[∂Ω] = 0 with respect to the normal pointing out

of Ω, then there exists a function f : M → R such that

1. J [f ] = 0,

2. N = graph f is asymptotic to the cylinder ∂−M ×R
+,

3. f |∂+M = 0.

Remark 3.3. Analogous results hold if (M, g, K) is asymptotically flat with
appropriate decay of g and K instead of having an outer boundary ∂+M .
Then the assertion f |∂+M = 0 in theorem 3.1 has to be replaced by f(x) → 0
as x → ∞.

The proof of theorem 3.1 is largely based on the tools developed in [SY81] and
[AM07]. Thus we will not include all details here, but provide a summary,
which facts will have to be used.

Proof. We will assume that (M, g, K) is embedded into (M ′, g′, K ′) which
extends M beyond the boundary ∂−M such that ∂−M lies in the interior of
M ′.

Let ∂−M = ∪N
i=1Σi where the Σi are the connected components of ∂M . As

∂M is an outermost MOTS, each of the Σi is stable [AM07, Corollary 5.3].

Following the proof of [AM07, Theorem 5.1], we deform ∂−M to a surface
Σs by pushing the components Σi out of M , into the extension M ′. To this
end, let φi > 0 be the principal eigenfunction of the stability operator of
Σi and extend the vector field Xi = −φiνi to a neighborhood of Σi in M ′.
Flowing Σi by Xi yields a family of surfaces Σs

i , s ∈ [0, ε) so that the Σs
i form
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a smooth foliation for small enough ε with Σs
i ∈ M ′ \ M . If Σi is strictly

stable then

∂

∂s

∣

∣

∣

∣

s=0

θ+[Σs] = −λφ < 0,

where λ is the principal eigenvalue of Σi. Thus, for small enough ε, we have
θ+[Σs

i ] < 0 for all s ∈ (0, ε).

If Σi has principal eigenvalue λ = 0, then the Σs
i satisfy

∂

∂s

∣

∣

∣

∣

s=0

θ+[Σs] = 0.

In this case it is possible to change the data K ′ on Σs
i as follows

K̃ = K ′ − 1
2
φ(s)γs. (3.1)

where γs is the metric on Σs and φ is a smooth function φ : [0, ε] → R. The
operator θ̃+, which means θ+ computed with respect to the data K̃ instead
of K ′, satisfies

θ̃+[Σs
i ] = θ+[Σs

i ] − φ(s).

It is clear from equation (3.1) that φ can be chosen such that φ(0) = φ′(0) = 0
and θ̃+[Σs

i ] < 0 for all s ∈ (0, ε) provided ε is small enough. Then K̃ is C1,1

when extended by K to the rest of M .

Replace each original boundary component Σi of M by a surface Σε
i as

constructed above, and replace K ′ with K̃, such that the following properties
are satisfied. Let M̃ denote the manifold with boundary components Σε

i

resulting from this procedure. Thus we construct from (M, g, K) a data set
(M̃, g′, K̃) with the following properties:

1. M ⊂ M̃ with g′|M = g, K̃|M = K, and ∂+M = ∂+M̃ ,

2. θ+[∂−M̃ ] < 0, and

3. the region M̃ \ M is foliated by surfaces Σs with θ+(Σs) < 0.

The method developed in section 3.2 in [AM07] now allows the modification
of the data (M̃, g′, K̃) to a new data set, which we also denote by (M̃, g̃, K̃),
although K̃ changes in this step. This data set has the following properties

1. M ⊂ M̃ with g′|M = g, K̃|M = K, and ∂+M = ∂+M̃ ,
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2. θ+[∂−M̃ ] < 0,

3. H [∂−M̃ ] > 0 where H is the mean curvature of ∂−M with respect to
the normal pointing out of ∂−M̃ ,

4. the region M̃ \ M is foliated by surfaces Σs with θ+(Σs) < 0.

By section 3.3 in [AM07] this enables us to solve the boundary value problem











J [fτ ] = τfτ in M̃

fτ = δ
2τ

on ∂−M̃

fτ = 0 on∂+M̃

(3.2)

where δ is a lower bound for H on ∂−M . The solvability of this equa-
tion follows, provided an estimate for the gradient at the boundary can be
found. The barrier construction at ∂−M̃ was carried out in detail in [AM07],
whereas the barrier construction at ∂+M̃ is standard due to the stronger re-
quirement that θ+[∂+M ] > 0 and θ−[∂+M ] < 0.

The solution fτ to equation (3.2) satisfies an estimate of the form

sup
M̃

|fτ | + sup
M̃

|∇fτ | ≤
C

τ
, (3.3)

where C is a constant depending only on the data (M̃, g̃, K̃) but not on τ .

The gradient estimate implies in particular that there exists an ε > 0 inde-
pendent of τ such that

fτ (x) ≥ δ
4τ

∀x with dist(x, ∂−M̃)

The graphs Nτ have uniformly bounded curvature in M̃ ×R away from the
boundary. This allows the extraction of a sequence τi → 0 such that the Nτi

converge to a manifold N , cf. [AM07, Proposition 3.8], [SY81, Section 4].
This convergence determines three subsets of M̃ :

Ω− := {x ∈ M : fτi
(x) → −∞ as i → ∞},

Ω0 := {x ∈ M : lim sup
i→∞

|fτi
(x)| < ∞},

Ω+ := {x ∈ M : fτi
(x) → ∞ as i → ∞}.

From the fact that the fτ blow up near ∂−M̃ , we have that Ω+ 6= ∅ and
Ω+ contains a neighborhood of ∂−Ω̃. As already noted in [SY81] ∂Ω+ \ ∂M̃

consists of MOTS. As the region M̃ \M is foliated by surfaces with θ+ < 0,
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we must have that Ω+ ⊃ (M̃ \ M) and hence ∂Ω+ is a MOTS in M . As
∂−M was assumed to be an outermost MOTS in M , we conclude that the
closure of Ω+ is M̃ \ M .

The barriers near ∂+M are so that they imply that the fτ are uniformly
bounded near ∂+M . Thus Ω0 contains a neighborhood of ∂+M and Ω0 ⊂ M .

The limit manifold N over Ω0 is a graph satisfying J [fτ ] = 0, and has the
desired asymptotics. �

We will now discuss another possibility to assert that the resulting graph is
nonsingular on M that is that M = Ω0 in theorem 3.1.

Theorem 3.4. Let (M, g, K) be as in theorem 3.1 with tr K ≤ 0. Then in

the assertion of theorem 3.1 we have that Ω0 = M , that is f is defined on

M and has no other blow-up than near ∂−M .

Proof. This follows from a simple argument using the maximum principle.
Let fτ be a solution to the regularized problem

H[fτ ] − P[fτ ] − τfτ = 0 (3.4)

in M̃ , as in the proof of theorem 3.1. We claim that fτ can not have a
negative minimum in the region where the data is unmodified. Assume that
x ∈ M is such a minimum. There we have H[fτ ] ≥ 0, and since graph f is
horizontal at x we have that

P[fτ ] = tr K ≤ 0.

thus the right hand side of (3.4) is non-negative, whereas τfτ is assumed to
be negative, a contradiction.

Since we know that in the limit τ → 0, the functions fτ must blow-up in
the modified region which lies in Ω+, we infer a lower bound for fτ from the
above argument. Thus Ω0 = M as claimed. �

4 Asymptotic behavior

Here, we shall discuss a refinement of [SY81, Corollary 2], which says that
N = graph f converges uniformly in C2 to the cylinder ∂−M × R for large
values of f . A barrier construction allows us to determine the asymptotics
of this convergence. Before we present our result, recall the statement of
[SY81, Corollary 2]:
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Theorem 4.1. Let N = graph f the manifold constructed in the proof of

theorem 3.1 and let Σ be a connected component of ∂−M . Let U be a neigh-

borhood of Σ with positive distance to ∂−M \ Σ.

Then for all ε > 0 there exists a z̄ = z̄(ε), depending also on the geometry of

(M, g, K), such that N ∩U × [z̄,∞) can be written as the graph of a function

u over Σ × [z̄,∞), so that

|u(p, z)| + | C∇u(p, z)| + | C∇2u(p, z)| < ε.

for all (p, z) ∈ Σ× [z̄,∞). Here, C∇ denotes covariant differentiation along

Σ × R.

If Σ is strictly stable, we can in fact say more about u.

Theorem 4.2. In the situation of theorem 4.1, where in addition Σ is strictly

stable, we have that

|u(p, z)| + | C∇u(p, z)| + | C∇2u(p, z)| ≤ C exp(−δz).

Here C and δ > 0 are constants depending only on the data (M, g, K).

Proof. Let φ > 0 be the principal eigenfunction on Σ and denote by ν the
normal vector field of Σ pointing into M . Extend the vector field X = φν

to a neighborhood of Σ and consider the flow of Σ along X. That is let
Ψ : Σ × (−ε, ε) → M the map solving

∂Ψ

∂s
(x, s) = X(Ψ(x, s)). (4.1)

This generates a family of surfaces Σs = Ψ(Σ, s) which form a local foliation
near Σ with lapse β such that for s small enough, say s ∈ [0, s̄],

θ+[Σs] ≥ κs

for some positive κ > 0. Denote the region swiped out by these Σs by
U . Note that ∂U = Σ ∪ Σs̄ and dist(Σs̄, Σ) > 0. We can assume that
dist(Σs̄, ∂M) > 0. On U we consider functions w which are constant on the
Σs. Denote this constant by φ(s). For such functions Jang’s operator can
be computed as follows

J [w] =
φ′

βσ
θ+ −

(

1 +
φ′

βσ

)

P − σ−2K(ν, ν) +
φ′′

β2σ3
−

φ′

β3σ3

∂β

∂s
,

where σ2 = 1 + β−2(φ′)2, and φ′ denotes the derivative of φ with respect
to s. As already mentioned β is the lapse of the foliation of the Σs. The
quantities θ+, K(ν, nu) and P are computed on the respective Σs.
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Assuming a lower bound on φ′, an upper bound on β, β−1 and |∂β
∂s
| we can

estimate J [w] as follows, using θ+[Σs] ≥ κs,

J [w] ≤ −c1κs +
c2

|φ′|2
+ c3

φ′′

|φ′|3
, (4.2)

with c1 > 0.

Choosing φ(s) = a log s for some constant a, we first find that

φ′(s) =
a

s
φ′′(s) = −

a

s2

so that

1

|φ′|2
=

s2

a2

φ′′

|φ′|3
=

s

a2
.

For small s and large enough a, depending only on c1, c2, c3 and κ, the first
term on the right hand side of (4.2) dominates the other terms, so that
J [w] ≤ 0 for this choice of φ. Hence, we obtain a super-solution w with

Jτw ≤ 0

at least where w ≥ 0, that is near Σ.

As w blows up near the horizon, and the fτ are bounded uniformly in τ on
∂+U , we can translate w vertically to w̄ = w + b with a suitable b > 0 so
that

fτ |∂+U ≤ w̄|∂+U

for all τ > 0. Then the maximum principle implies that fτ ≤ w̄ for all
τ > 0 in U and consequently the function f constructed in theorem 3.1 also
satisfies f ≤ w̄.

Near Σ, the graph of w̄ can be written as the graph of a function v̄ over
Σ × (z̄,∞) where v decays exponentially in z. This is due to the fact that
by the assumptions β, the parameter s is comparable to the distance to Σ.
By the above construction u ≤ v, where u is the function from theorem 4.1.
Thus we find the claimed estimate for u.

Getting the desired estimates for the derivatives of u is then a standard
procedure, but as it is a little work to set the stage, we briefly indicate how
to proceed.
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We choose coordinates of a neighborhood Σ × R as follows. Let Ψ : Σ ×
(−ε, ε) → M be the map from equation (4.1). Then extend Ψ to Ψ̄ as follows

Ψ̄ : Σ × (−ε, ε) × R → M × R : (x, s, z) 7→ (Ψ(x, s), z).

For a function h on Σ × R we let graphΨ̄ h be the set

graphΨ̄ h = {Ψ̄(x, h(x), z) : (x, z) ∈ Σ × R}.

From theorem 4.1, it is clear that for large enough z̄ the set N ∩M × [z̄,∞)
can be written as graphΨ̄ h, where h decays exponentially by the above
reasoning. We can compute the value of Jang’s operator for h as follows

H̄ − P̄ = Lh

where L is a quasi-linear elliptic operator of mean curvature type. To be
more precise, Lh has the form

Lh = aij∂i∂jh + B(∂h) + θ+[Σh(x,z)]

where aij depends on ∂h and B is quadratic in ∂h. By freezing coefficients,
we therefore conclude that h satisfies a linear, uniformly elliptic equation of
the form

aij∂i∂jh + bi∂ih + θ+[Σh(x,z)] = 0.

By construction we have that |θ+[Σs]| ≤ κs for some fixed κ. Thus θ+[Σh(x,z)]
decays exponentially in z.

Now we are in the position to use standard interior estimates for linear
elliptic equations to conclude the decay of higher derivatives of h. This
decay translates back into the decay of the first and second derivatives of u

as the coordinate transformation is smooth and controlled by the geometry
of (M, g, K). �

Remark 4.3. If Σ is not strictly stable, but has positive k-th variation, we
find that the foliation near Σ satisfies θ+(Σs) ≥ κsk. Then a function of the
form φ(s) = as−p with large a and p = k−1

2
yields a super-solution. This

super-solution can be used to prove that |u| ≤ Cz2/(1−k) as above.
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