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Abstract

Despite much recent progress in model building withD-branes, it has been problematic
to find a completely convincing explanation of gauge coupling unification. We extend
the class of models by considering F -theory compactifications, which may incorporate
unification more naturally. We explain how to derive the charged chiral spectrum and
Yukawa couplings in N = 1 compactifications of F -theory with G-flux. In a class of
models which admit perturbative heterotic duals, we show that the F -theory and heterotic
computations match.
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1. Introduction

String theory is an extension of quantum field theory which incorporates quantum
gravity. In the process it reformulates many questions about field theory into questions
about the geometry of extra dimensions. Recently, ten-dimensional string backgrounds
were found that reproduce the MSSM at low energies [1, 2].

However finding realizations of the MSSM is merely an intermediate step, because we
would like to answer questions that the MSSM does not explain. Indeed there are quite a
number of hard issues to tackle. Many of these have to do with the intrinsic difficulties of a
theory of quantum gravity. Thus some of these issues may probably be resolved by a better
conceptual understanding of quantum gravity. However as in [3] we would like to take a
more practical perspective with regards to the phenomenological requirements which have
a direct impact on particle physics. We will assume that they can be understood in a
framework where four-dimensional gravity is effectively turned off. That is, we do not yet
want to be pushed into having to specify a complete model of physics at the Planck scale,
while there are still many issues in particle physics that presumably can be explained
without referring to a full UV completion. Interestingly, string theory allows us to think
in such a framework and in the process provides an intuitive geometric picture through
the brane world scenario.

One of the first coincidences that one would like to address is the issue of gauge coupling
unification. The most natural scenario is still some type of Grand Unified Theory. In
particular, one would like to have realizations of such models in type IIb string theory,
where most of the recent progress in moduli stabilization, mediation of SUSY breaking
and other issues has recently taken place. There have in fact been attempts to construct
D-brane GUT models, but these suffer from a number of inherent difficulties, such as
the lack of a spinor representation for SO(10) or the perturbative vanishing of top quark
Yukawa couplings for SU(5) models. These difficulties arise because past constructions
have relied on mutually local 7-branes. There is however a natural way to evade these
obstacles, which is by incorporating mutually non-local 7-branes. This enlarged class of
models goes under the name of F -theory [4]. In fact, in certain limits F -theory is dual
to the heterotic string, which “explains” why F -theory should be able to circumvent the
no-go theorems.

It is then surprising that, despite the potentially promising phenomenology of the
F -theory set-up, some important issues in F -theory compactifications have not been ad-
dressed. Foremost among these, it is not currently known how to derive the spectrum of
quarks and leptons. It is the purpose of this paper to explain the origin of charged chiral
matter and to provide tools for computing the spectrum and the couplings. Our approach
is to deduce everything from the eight-dimensional Yang-Mills-Higgs theory living on the
7-branes, and our results are therefore quite general. As expected from type IIb string
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theory, we can get chiral matter spread in the bulk of a 7-brane or localized on the inter-
section of 7-branes by turning on suitable fluxes. Also as expected, the Yukawa couplings
are computed simply from the overlap of the chiral zero modes on the 7-brane. These
results should be helpful in putting many extra-dimensional phenomenological models, in
which localization of wave functions was used to explain differences in couplings, on a
firmer footing. In order to make sure that our results are correct, we test our formulae for
F -theory compactifications which are dual to the heterotic string. We will see that the
computations on both sides of the duality match. Along the way we clarify several issues
in heterotic/F -theory duality.

In this paper we emphasize mostly conceptual issues. In section 2 we discuss the
main model building ingredients of F -theory. In particular we explain how charged chiral
matter arises and how we can compute the spectrum and the supersymmetric Yukawa
couplings. We also argue that the D-terms are hard to satisfy in F -theory duals of certain
popular types of heterotic models. In section 3 we specialize mostly to compactifications
which admit a dual heterotic description. After reviewing the spectral cover approach to
constructing heterotic vacua, we show that the heterotic computation of massless matter
matches exactly with the F -theory prescription. We also discuss the matching of superpo-
tentials under the duality. In section 4 we briefly discuss some simple examples. Finally
in section 5 we discuss how to break the GUT group to the SM gauge group. In the
appendices we collect some properties of spinors and the Dirac operator that we will use
in the text.

A new paper by the Harvard group [5] will also address chiral matter and model
building in F -theory.

2. Model building with F -theory

The purpose of this section is to discuss how to engineer gauge groups and charged
chiral matter from F -theory.

2.1. Gauge fields

Let us consider an F -theory compactification to four dimensions withN = 1 supersym-
metry. This consists of a Calabi-Yau fourfold Y4, which is elliptically fibered π : Y4 → B3

with a section σ : B3 → Y4. The base B3, or more precisely the section, is the space-time
visible to type IIB, and the complex structure of the T 2 fibre encodes the dilaton and
axion at each point on B3:

τ = e−φ i+ C(0) (2.1)

It is convenient to represent the four-fold in Weierstrass form:

y2 = x3 + fx+ g (2.2)
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Requiring the four-fold to be Calabi-Yau implies that f and g are sections of K−4
B3

and
K−6

B3
respectively. The complex structure of the fibre is given by

j(τ) =
4(24 f)3

∆
, ∆ = 4f 3 + 27g2 (2.3)

At the discriminant locus {∆ = 0} ⊂ B3 the T 2 degenerates by pinching one of its cycles.
Let us label the one-cycles by (p, q) = p α+ q β, and suppose we pick a local coordinate z
on B3 such that the (1, 0)-cycle pinches as z → 0. Then τ has a monodromy around this
locus:

τ ∼
1

2πi
log(z) (2.4)

This is a shift in the axion. It means that the brane at z = 0 is a source for one unit
of RR-flux, and so we identify it with an ordinary D7-brane, a brane on which a (1, 0)
string (i.e. a fundamental string) can end. For more general (p, q) we can do an Sl(2,Z)
transform, and we find that the brane is a locus where a (p, q)-string can end. This is
called a (p, q) 7-brane.

The worldvolume of an isolated 7-brane contains a U(1) gauge field Aµ, from quantising
an open string with both ends on the brane. In F -theory this gauge field is encoded in the
so-called G-flux [6]. Let us compactify on an extra S1 with radius R. This is dual to M-
theory on Y4, where the area of the elliptic fiber is now proportional to R−1. In M-theory
gauge fields arise from expanding the three-form C3 along harmonic two-forms ω. So we
can formally do the same on the F -theory side by introducing a three-form field C3 and
expanding it along harmonic two-forms. However we should only expand around a subset
of the harmonic two-forms on Y4. The easiest way to see this is by following various BPS
states through the duality. If C3 has both spatial indices on B3 then it couples to an M2-
brane wrapped on a cycle α2 in B3. This gets mapped to a D3-brane wrapping α2 × S1

R,
which becomes a string in four dimensions as R → ∞, therefore couples to a pseudo-scalar
(more precisely its dual two-form field) but not a four-dimensional vector. Similarly if
C3 has two spatial indices on the elliptic fiber, it couples to an M2-brane wrapping this
fiber which gets mapped to a fundamental string with momentum along S1

R. Therefore it
couples to the KK gauge field associated to S1

R, and in the limit R → ∞ we just recover
a component of the four-dimensional metric, not a four dimensional vector field. Finally,
membranes wrapping the remaining cycles of Y4 get mapped to (p, q)-strings. If they
map to open strings, the ends of such a string are electric charges on the worldvolume of
7-branes, therefore they couple to the gauge fields on the 7-branes. If they map to closed
strings, then they couple to some linear combination of the NS and RR two-forms with
one index on B3 and thus we get a gauge field in four-dimensions also. Thus the relevant
harmonic forms constitute the lattice

Λ = {ω ∈ H2(Y4) |ω · α = 0 when α ∈ H2(B3) or α = [T 2] } (2.5)
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This lattice is the coroot lattice of the four-dimensional gauge group originating from the
7-branes.

The intuitive picture is as follows. In supergravity a supersymmetric 7-brane is a
cosmic string solution which can be lifted to an elliptically fibered Calabi-Yau metric in
two dimensions higher [7]. At the center of the cosmic string, where an S1 ⊂ T 2 shrinks
to zero size, the Calabi-Yau geometry is similar to a Taub-NUT space and supports a
harmonic two-form ω of type (1, 1) which peaks when the S1 shrinks to zero. Then the
collective coordinates of the 7-brane may be interpreted from the worldvolume perspective
by expanding in harmonic forms and taking the piece proportional to ω. Thus the U(1)
gauge field on the 7-brane is obtained by expanding C3 as

C3

2π
= A ∧ ω. (2.6)

The G-flux G4 = dC3 then describes the magnetic flux along the 7-brane. The adjoint
field Φ describing deformations of the 7-brane comes from deformations of the discrimi-
nant locus, that is from complex structure deformations δgij of the four-fold. Using the
holomorphic (4, 0) form, these can also be written as harmonic forms α3,1 of Hodge type
(3, 1). Expanding

α3,1 = Φ2,0 ∧ ω (2.7)

we see that the adjoint field corresponds to a section of the canonical bundle of the
surface which the 7-brane wraps. Note this means that the U(1)R symmetry of the
eight-dimensional gauge theory is identified with the structure group of the canonical
bundle, not with the structure group of the normal bundle, as is the case for many
lower dimensional branes. Finally the spinors will be sections of the spinor bundle of the
wrapped surface tensored with the spinor bundle associated to the canonical bundle (to
account for their R-charges). That is, they are sections of the gauge bundle tensored with

Ω0,p(K
1/2
S2

) ⊗ (K
−1/2
S2

⊕K
1/2
S2

) = Ω0,p(S2) ⊕ Ω2,p(S2) (2.8)

for p = 0, 1, 2, and S2 is the surface that the 7-branes wrap. Sections related by Serre
duality correspond to CPT conjugates rather than independent fields. Clearly the unique
generator of h0,0(S2) (together with its CPT conjugate in h2,2(S2)) corresponds to the
four-dimensional gaugino, and the generators of h2,0(S2) and h0,1(S2) yield adjoint valued
four-dimensional chiral superfields from deformations of the 7-branes and Wilson lines on
the 7-branes respectively.

In a cosmic string background the two-form ω is not normalizable. This implies that
the number of massless U(1) gauge fields is always less than the number of singular
fibers, counted with appropriate multiplicity. In fact since a configuration of 7-branes
is labelled asymtotically by its total dyonic (p, q) charge, we expect that at least two
non-normalizable modes will get lifted.
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The G-flux also describes three-form fluxes in IIb backgrounds. We define

H = HRR − τHNS (2.9)

Then the three-form fluxes in type IIb can be encoded in F -theory as [8]

G = H ∧ dz + H̄ ∧ dz̄ (2.10)

In the presence of 7-branes it is not completely clear if there is an invariant distinction
between these fluxes and the gauge field fluxes on the 7-branes. In F -theory it is natural
to treat all these fluxes on the same footing in terms of the G-flux.

The allowed G-fluxes are constrained by the equations of motion [9, 8]. There is a
superpotential coupling

W =
1

2π

∫

Ω4,0 ∧ G (2.11)

Varying with respect to the complex structure moduli, we see that the flux should be of
type (2, 2) + (4, 0) + (0, 4). If Y4 is compact, supersymmetry and the requirement of a
Minkowski vacuum also imply that W = 0, leading to the vanishing of the (4, 0) and (0, 4)
parts. We also have to satisfy the D-terms

J ∧ G = 0 (2.12)

i.e. G is required to be primitive with respect to J , where J is the Kähler form on B3.
Equivalently we can require that the contraction ıJG = 0. This is a packaging of the D-
terms for many U(1) gauge fields into one equation. Note though that non-abelian gauge
fields are not covered (although morally there should be a non-abelian generalization of
G-flux) and we must additionally set their D-terms to zero. If Y4 is compact, there is a
tadpole cancellation condition

ND3 =
χ(Y4)

24
−

1

8π2

∫

Y4

G ∧ G (2.13)

where ND3 is the number of D3 branes filling R4, not including possible instantons which
are already described by G. Finally, the G-flux must be properly quantized [10]

[

G

2π

]

−
p1(Y4)

4
∈ H4(Y4,Z) (2.14)

There is one important subtlety when we encode the 7-brane gauge fields in C3. Con-
sider the Chern-Simons couplings of the 7-brane to the RR fields. The couplings for the
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three-form field in M-theory are

L ⊃ −
1

8π2

∫

G ∧ ∗G −
1

24π2

∫

C ∧ G ∧ G +
(2π)4

2

∫

C ∧ I8(R) (2.15)

Reducing along a KK monopole [11, 12] and dualizing to F -theory, one finds that a 7-brane
has the following Chern-Simons couplings1:

LCS =

∫

D7

ch(i∗F/2π) ∧ (1 −
1

48
p1(T ) +

1

48
p1(N)) ∧ C (2.16)

where again G/2π = F/2π∧ω is the F -theory G-flux on the four-fold Y4, and C =
∑

i C(i)

is the formal sum of RR potentials. Now because G/2π is generally half-integer quantized
(2.14), we anticipate that i∗F/2π is also half-integer quantized, and so does not generally
correspond to a good line bundle on the 7-brane. Indeed it has been argued in [13] that
the induced flux is half-integer quantized precisely when the tangent bundle to the brane
does not admit a spin structure2. Equivalently, it is not integer quantized precisely when
the normal bundle does not admit a spin structure. Thus it is sometimes useful to split
up the induced gauge field into two pieces:

i∗A = AE −
1

2
AN (2.17)

where AN is the connection on the normal bundle of the D7-brane, and AE is the connec-
tion for a well-defined bundle E. This split is somewhat arbitrary; we could equally well
have shifted by half the connection on the canonical bundle in order to get a connection
on a well-defined bundle. However with this split we can use the conventional formula for
the Chern-Simons couplings of the 7-brane to the RR-forms [14]:

LCS =

∫

ch(i∗E) Â
1

2 (B3) ∧C

=

∫

D7

ch(E) e−
1

2
c1(N) Â

1

2 (T ) Â− 1

2 (N) ∧C (2.18)

1We take a (p, q) = (1, 0) 7-brane for convenience.
2In fact, the induced flux in [13] is defined somewhat differently than we have done here. The authors

of [13] take G/2π = F′/2π ∧ ω′ where
∫

S2 ω
′ = 1 on each fiber of a certain two-sphere bundle defined

over the worldvolume of the brane. This is obtained from the natural three-sphere bundle ‘surrounding’
the brane by taking the S2-base of the fibration S3 → S2, where the S1-fiber is the circle that shrinks
to zero size at the location of the brane. By contrast we take an F1-string stretching from the brane to
infinity, lift it to a two-cycle by adding the S1-fiber on top of it, and require that

∫

F1
ω = +1. With this

definition an F1-string naturally couples to the gauge field of a D7-brane that it ends on with charge +1.
Note that our two-cycle is Poincaré dual to the S2 in each Taub-NUT, so presumably we have F ′ = ∗F
on the 7-brane. Self-duality of the G-flux on Y4 should further give F ′ = F . Also, the 7-brane with the
S2 bundle on top of it should be Poincaré dual to our ω.

8



number of U(1)’s origin

h1,1(Y4) − h1,1(B3) − 1 7-branes and two-forms

h2,1(B3) four-form RR-potential

Table 1: Abelian vector multiplets in F -theory com-
pactifications.

number of moduli origin

h2,1(Y4) − h2,1(B3) − 1 Wilson lines on 7-branes

and two-form periods

h1,1(B3) Kähler moduli of B3

h3,1(Y4) complex structure of B3

and 7-brane deformations

Table 2: Moduli of F -theory. The axio-dilaton is usu-
ally stabilized and so not included here.

Comparing the two expressions for the couplings, and recalling that Â(V ) = 1−p1(V )/24+
. . ., we see that they agree for the split given in (2.17). The shift in the quantization law
of the gauge field on a brane for zero B-field is known as the Freed-Witten anomaly [15].

Similarly we may consider configurations with multiple (p, q) branes. The U(1) gauge
field associated to each (p, q) brane can be decomposed into a well-defined piece and a
correction given by half the connection of the normal bundle of the four-cycle that the
brane is wrapped on. The Cartan generators are linear combinations of these U(1)’s,
so as long as all the branes are wrapped on the same cycle the shifts cancel out when
we compare G-fluxes with line bundles. However if one of the branes is wrapped on a
different four-cycle, the shifts do not cancel.

Besides the U(1) gauge fields from the 7-branes, we get additional U(1) factors from
expanding the RR four-form along harmonic three-forms. This is summarized in table 1.
In addition we will get neutral chiral fields from the moduli of the compactification. This
is summarized in table 2 (see eg. [16, 17, 18]).

We expect to find non-abelian gauge bosons from open strings stretching between 7-
branes. It is well-known that a perturbative open string has two ends and so cannot give
rise to a spinor representation or an adjoint of an exceptional group. This gets evaded
in F -theory because the branes are generically not mutually local, so the dilaton can not
be taken small and there is no perturbative description. Then the missing open string
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Figure 1: Multi-pronged strings in B3 lift to curves in Y4, allowing for matter
and gauge groups which cannot be obtained from ordinary open strings.

states which are needed to get a spinor or an exceptional adjoint can be realized as BPS

junctions, i.e. open strings with multiple ends [19, 20, 21]. They correspond to minimal
area two-cycles C in Y4 which are projected to a multi-pronged string in B3. When 7-
branes approach each other, some of these minimal area cycles shrink to zero size and
create an enhanced singularity. Given a set of generators ~ω of the lattice Λ, the charges
of these BPS states associated to vanishing curves under the Cartan generators in Λ are
given by

~w =

∫

C

~ω. (2.19)

As the notation suggests, these vanishing curves will be in one-to-one correspondence with
weights of some non-abelian Lie algebra (and also, as we will see in the next section, with
weights of matter representations). The dictionary between singularities of the elliptic
fibration and enhanced gauge symmetries has been worked out in some detail. The basic
starting point is the Kodaira classification of singular fibers which we have reproduced
in table 3. To first approximation, we would associate an ADE gauge group to an ADE
singularity. However if the dimension of the base is larger than one then there can be
monodromies which act as automorphisms on the algebra and reduce the group to a non-
simply laced version. We will not review this in detail (see [22]) but we will quote some
results on the form of the singularities in a moment.

Later we will be interested in comparison with the heterotic string. Such a comparison
can be made using heterotic/F -theory duality in eight dimensions, which states that the
heterotic string on T 2 is equivalent to F -theory on an elliptically fibered K3 surface with
a choice of section. By fibering this duality over a complex surface B2, we get a four
dimensional duality between the heterotic string on a Calabi-Yau three-fold Z = (T 2 →
B2) and F -theory on a Calabi-Yau four-fold Y4 = (K3 → B2) where K3 itself is elliptically
fibered. One may match the analytic data on both sides of the duality in a certain limit

10



ord(f) ord (g) ord(∆) fiber type singularity type

≥ 0 ≥ 0 0 smooth −

0 0 n In An−1

≥ 1 1 2 II −

1 ≥ 2 3 III A1

≥ 2 2 4 IV A2

2 ≥ 3 n+ 6 I∗n Dn+4

≥ 2 3 n+ 6 I∗n Dn+4

≥ 3 4 8 IV ∗ E6

3 ≥ 5 9 III∗ E7

≥ 4 5 10 II∗ E8

Table 3: Kodaira classification.

on the boundary of moduli space, where the K3 surface undergoes a stable degeneration
to two DP9-surfaces glued along a common elliptic curve E [23, 24, 25, 26, 17, 27, 28].3

On the heterotic side this corresponds to compactifying on an elliptic curve with the same
complex structure as E and taking the limit where the volume of the T 2 goes to infinity.
More details of this duality will be discussed in section 3 after we review the construction
of bundles on the heterotic side.

In the stable degeneration limit, we may choose good coordinates on the moduli space
by unfolding a DP9 surface with an E8 singularity, keeping fixed a canonical divisor E.
We consider a degree six equation in WP3

(1,1,2,3):

0 = y2 + x3 + α1xyv + α2x
2v2 + α3yv

3 + α4xv
4 + α6v

6

+ pi(v, x, y) u
i (2.20)

This is actually a DP8 surface; one may obtain a DP9 by blowing up the point u = v = 0.
Intersection with the hyperplane u = 0 yields the elliptic curve E that we will keep fixed.
The pi, i > 0, are polynomials of degree 6 − i that describe the unfolding of the E8

singularity, which lives at v = x = y = 0. As discovered in [29, 22], and further elucidated
in [30, 31, 32], the coefficients in the pi depend on the choice of a group H which will play

3The duality map is expected to receive various corrections away from this limit. Indeed, on the het-
erotic side T -dualities mix the bundle and geometric data for finite size T 2, so one can not unambiguously
reconstruct a geometry.
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Figure 2: One can degenerate the K3 surface into two DP9 surfaces glued along
an elliptic curve, with non-abelian gauge symmetries localized at the crosses.
In this limit one may compare with the E8 × E8 heterotic string.

a role similar to the holonomy group in the heterotic string.4 Namely up to a change of
variable they are parametrized by Looijenga’s weighted projective space

MH = WPr
s0,...,sr

(2.21)

The si are the Dynkin indices and are listed in table 4 (the non-simply laced cases will
be relevant for compactifications to less than eight dimensions). This is of course also
precisely the moduli space of flat H-bundles on T 2, which is how it will show up on the
heterotic side. For instance for H = SU(n), one has all pi = 0 except

p1 = v5−n
(

a0 v
n + a2 xv

n−2 + a3 yv
n−3 + . . .+ an x

n/2
)

(2.22)

(the last term being given by yx(n−3)/2 when n is odd). Further dividing by the symmetry
u → λ−1u, the coefficients aj take values in

MSU(n) = WPn
1,...,1 (2.23)

This set of deformations preserves a singularity corresponding to an enhanced gauge group
G, which is the commutant5 of H in E8. Again consider the case H = SU(n). If we turn

4The description using a weighted projective bundle in the following discussion does not quite apply
to E8 [24]. However, for all other cases except E8 there is indeed a description by a weighted projective
bundle.

5To be more precise, in eight dimensions we always have the 18+2 U(1)’s from expansion of C3 along
harmonic forms. On the heterotic side this arises because the holonomy group H on T 2 reduces to an
abelian group, and so the commutator of H in E8 contains extra U(1)’s. These extra U(1)’s are massive
for generic compactifications below eight dimensions.
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1

1

1 1 1 1 1

1

1

2 2 2 2 1

1 1 1 1 1 1

1

2 2 2 2

1

1

1

1 2 1

1 2 3 2 1

1 2 3 2 1

2

1

1 2 3 4 3 2 1

2

1 2 3 4 5 6 4 2

3

An-1=SU(n)

Bn=SO(2n+1)

Dn=SO(2n)

Cn=Sp(n)

G2

F4

E6

E7

E8

Table 4: Dynkin diagrams and Dynkin indices.

off all the ai for i > 0, then the geometry is of the form

y2 = x3 + xv4 + v6 + uv5 (2.24)

Near x = y = v = 0, we may drop the xv4 and v6 terms, and we get to leading order

y2 = x3 + v5 (2.25)

which is an E8 singularity. On the other hand, suppose that we also turn on a5, so that
the geometry is of the form

y2 = x3 + xv4 + v6 + uv5 + uxy (2.26)

After redefining y → y+ 1
2
xu, x→ 2x and dropping subleading terms near v = x = y = 0,

we get

y2 = x2 + v5 (2.27)

which is an SU(5) singularity. Similarly in the intermediate cases we can get SO(10), E6, E7

singularities, which are the commutators of SU(4), SU(3) and SU(2) respectively.

We can further fiber this degeneration over B2, arriving at a stable degeneration of
Y4 into two DP9 fibrations W1,W2 over B2, glued along an elliptically fibered Calabi-Yau
three-fold Z. We can write this as Y4 = W1 ∪Z W2, and Z will eventually be identified
with the heterotic dual in the limit of large volume of the elliptic fiber. Then, {u, v, x, y}
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can be taken as sections of {K−6
B2
,N , K−2

B2
⊗N 2, K−3

B2
⊗N 3} respectively, where N is some

sufficiently ample line bundle on B2. The coefficients in equation (2.20) now become
sections of line bundles over B2 as well. However requiring an enhanced gauge group G
over σB2

implies certain restrictions on these sections. Roughly speaking, just as requiring
a singularity of type G on a DP9 is equivalent to expressing the coefficients of (2.20) in
terms of a reduced number of coefficients aj , which take values MH , so is requiring a
singularity of type G in W1 along σB2

equivalent to expressing the coefficients of (2.20)
in terms of a reduced number of sections aj , such that aj(p) take values in MH for
any point p on the base B2. Now G is allowed to be non-simply laced, and H is still
the commutator of G in E8. This is not an automatic consequence due to the issue of
monodromies mentioned previously, however it turns out to be true anyways. The aj are

sections of the line bundles N sj ⊗K
dj

B2
. The dj turn out to be precisely the degrees of the

independent Casimirs of H (d0 is taken to be zero), so the aj should be thought of as the
Casimirs of the adjoint field of the eight-dimensional gauge theory on the 7-branes.

So the upshot is that a DP9 fibration W1 with a fixed hyperplane section Z and a
singularity of type G along the zero section is equivalent to a choice of the aj, that is a
choice of section s : B2 → WH of the weighted projective bundle

WH = WP(O ⊕
⊕

j>0

K
dj

B2
) (2.28)

where the weights are given by aj → λsjaj . The fiber of WH → B2 is given by MH .
However the geometry W1 specifies only part of the data of an F -theory compactification,
because we are also allowed to turn on Wilson lines and fluxes along the 7-branes. That
is, we can turn on periods of C3 (which are typically trivial in a four-fold compactification
however) and G-fluxes. This is called the ‘twisting data’ for the fibration [24] or ‘Deligne
cohomology’. It was first analyzed in the heterotic context in [25] and used in [17]. We will
later return to the issue of which G-fluxes one is allowed to switch on for these geometries,
after discussing how matter is engineered.

2.2. Charged chiral matter from intersecting branes

There are basically two ways to get charged chiral matter from 7-branes. In this
section, we discuss intersecting 7-branes. Some properties of spinors and Dirac opera-
tors in complex geometry that will be heavily used in the following are collected in the
appendices.

Given two 7-branes, with gauge bundles located on them, there will be massless matter
from open string modes living on the intersection. The idea is very simple. The field
content of a 7-brane is that of eight-dimensional maximally SUSY gauge theory. The
fields consist of an eight-dimensional vector field, an adjoint valued complex scalar and a
Weyl spinor with R-charge −1/2. Let us first suppose that the eight-dimensional gauge
theory has gauge group G. We turn on a constant adjoint VEV for the scalar, breaking

14



G to a subgroup H1 ×H2. Let’s suppose that the adjoint representation of G decomposes
under H1 ×H2 as

Radj(G) =
∑

a

Ra(H1) ⊗R′
a(H2) (2.29)

Then the fermions splits into the massless gauginos of H1 and H2 and massive fermions
in the remaining representations appearing in (2.29).

Now instead let’s turn on an adjoint VEV which depends on a complex coordinate z
on the 7-brane, such that the gauge symmetry is restored as z → 0. Geometrically this
corresponds to 7-branes intersecting at an angle. To find the massless fermions, we split
the Dirac operator in a trivial six-dimensional part and a two-dimensional part, and we
solve the Dirac equation on the z-plane with a z-dependent interaction term:

∂̄z̄ ψ
+
2 ψ

−
3 + z [〈Φ〉 , ψ−

2 ψ
+
3 ] = 0, ∂̄z̄ ψ

+
2 ψ

+
3 + z̄ [

〈

Φ̄
〉

, ψ−
2 ψ

−
3 ] = 0 (2.30)

as well as two more equations related by conjugation. Here ψ±
2 are spinors constructed

from the z-plane, and ψ±
3 are spinors constructed from the canonical bundle (to account for

the R-charges of ∓1/2), and we suppressed the gauge indices. Spinors for the remaining
six dimensions are inert, and we only tensor with them in the end. The matrix 〈Φ〉 is the
Cartan generator breaking G to H1 ×H2. Then besides the obvious massless fermions in
the adjoint of H1 andH2, we also find massless fermions in the off-diagonal representations
appearing in (2.29), localized at z = 0, i.e. the location where the 7-branes intersect, and
filling out the fermionic content of a six-dimensional hypermultiplet.6 Therefore to find
the massless open string spectrum living on the intersection of 7-branes, we simply have
to know how the singularity of the elliptic fibration gets enhanced over the intersection
locus of 7-branes. This procedure gives the Katz-Vafa collision rules [33].

Let us consider two examples, which are useful for model building purposes. Suppose
that we have an I5 singularity corresponding to an SU(5) gauge group, and we want to
engineer matter by intersecting it with a matter brane. The minimal version, which does
not introduce any extra gauge groups, is to add a locus of I1 singularities. When the I1
singularity intersects the I5 singularity, it can get enhanced either to an I6 singularity
corresponding to an SU(6) gauge group, or an I∗1 singularity corresponding to an SO(10)
gauge group. The adjoint representation of SU(6) decomposes as

35 = 240 + 5−1 + 51 + 10 (2.31)

Thus we get a six dimensional hypermultiplet in the fundamental of SU(5) on the inter-
section locus with enhanced I6. For the I∗1 enhancement, we use the decomposition

45 = 240 + 102 + 10−2 + 10 (2.32)

6In fact, for the left equation there is a unique normalizable solution of the form ψ+
2 ψ

−

3 (z) ∼
exp(−zz̄)ǫ+2 ǫ

−

3 , ψ
−

2 ψ
+
3 (z) ∼ ± exp(−zz̄)ǫ−2 ǫ

+
3 for every positive/negative root of G not in H1 ×H2. The

equation on the right has no normalizable solutions. Tensoring with six-dimensional spinors, we get
precisely the fermionic field content of a six dimensional hypermultiplet.
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Therefore on this intersection locus we get a six-dimensional hypermultiplet in the 10 of
SU(5).

For the second example, consider an SO(10) singularity enhanced to an E6 singularity.
Using the decomposition

78 = 450 + 10 + 16−3 + 163 (2.33)

we see that we get a hypermultiplet in the 16 on the intersection.

In general the fermions localized along the intersection of 7-branes further couple to
the gauge bundles on the 7-branes.7 We denote by i : D1 → B3, j : D2 → B3 closed
immersions of two holomorphic surfaces in B3, and assume that we have a bundle E
supported on D1 and a bundle F is supported on D2. Using (2.17), the actual gauge

fields are then associated to fake bundles Ẽ = E ⊗N
−1/2
1 and F̃ = F ⊗N

−1/2
2 , where N1

and N2 are the normal bundles to D1 and D2 respectively. Therefore we need to compute
the zero modes of the Dirac operator acting on the spinors, which live in

Ra(Ẽ) ⊗ R′
a(F̃ )|Σ ⊗ S±

Σ (2.34)

where

S+
Σ = K

1/2
Σ , S−

Σ = Ω(0,1)(K
1/2
Σ ) (2.35)

since hypermultiplet fermions do not carry any R-charges. Thus the zero modes corre-
spond to generators of the Dolbeault cohomology groups

H i(Σ,G) (2.36)

where

G = Ra(Ẽ) ⊗R′
a(F̃ )|Σ ⊗K

1/2
Σ (2.37)

As usual, the degree i correlates with the four-dimensional chirality. To see this, let
us also introduce spinors ψ±

1 ∈ S±
Σ constructed from the tangent bundle of Σ, and χ±,

spinors transverse to the lightcone in four-dimensional Minkowski space. A generator of
the Dolbeault cohomology group H0(Σ,G) (i.e. a zero mode ψ+

1a T
a with T a a generator

of G not in H1 × H2) yields a zero mode of the eight-dimensional Dirac operator of the
form

χ−ψ+
1 ψ

+
2 ψ

−
3 + χ−ψ+

1 ψ
−
2 ψ

+
3 (2.38)

whereas a generator of H1(Σ,G) (i.e. a zero mode ψ−
1a T

a) yields a zero mode of the form

χ+ψ−
1 ψ

+
2 ψ

−
3 + χ+ψ−

1 ψ
−
2 ψ

+
3 (2.39)

7Since the existence of solutions is independent of the Kähler moduli, we can always scale up the
intersection Σ and analyze everything locally. Then we get a zero mode of the Dirac equation with
exponential fall-off near Σ for every zero mode of the Dirac equation on Σ.
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where we suppressed the gauge indices. The correlation between the sign of ψ±
1 and

χ± comes from the fact that we started in eight dimensions with a positive chirality
Weyl spinor with R-charge −1/2 and its conjugate, and from the fact that there were no
normalizable solutions near the intersection of the form ψ+

2 ψ
+
3 or ψ−

2 ψ
−
3 .8 Further note

that Serre duality maps a zero mode with i = 0 to a zero mode with opposite charges
and i = 1, i.e. the opposite chirality for the four-dimensional chiral fermion. Because we
started with a single Weyl spinor in eight dimensions, this means that generators related
by Serre duality do not correspond to independent four-dimensional fields, but to fields
related by CPT conjugation. Further, although G appears to contain various ill–defined
bundles, one can always combine them into something sensible. For instance in the case
of mutually local branes, we can write

G = E∗ ⊗ F ⊗N
1/2
1 ⊗N

−1/2
2 ⊗K

1/2
Σ |Σ

= E∗ ⊗ F ⊗N1 ⊗K
1/2
B3

|Σ (2.40)

If we only wish to know the net number of chiral matter, we can use the index theorem:

h0(Σ,G) − h1(Σ,G) =

∫

Σ

ch(G) ∧ Todd(TΣ)

=

∫

Σ

c1(G) −
1

2
c1(KΣ) (2.41)

In the case of mutually local branes, one can check that this is simply the inner product
of the charge vectors

〈qE , qF 〉 =

∫

ch(i∗E
∗) ch(j∗F ) Â(B3) (2.42)

as expected by anomaly inflow arguments [14, 35].

Finally in order to use formula (2.36) we need a method for extracting the fluxes along
the 7-branes from the G-flux. Actually, to compute the chiral spectrum we don’t need
E and F separately, which is just as well since we don’t know a general procedure for
extracting them. All we actually need is the combination R(Ẽ)⊗R′(F̃ )|Σ. To be concrete
let’s discuss the case of SU(5) gauge symmetry with matter in the 10 and 5̄. Consider
first the local geometry for an intersecting I5 and I1 locus which gets enhanced to I6. As
we discussed, there is a vanishing (anti-)holomorphic curve on top of Σ for each weight of
the matter representation associated to it. Let’s assume that we have not turned on any
holonomy for the SU(5) gauge field so that the group is unbroken (if not, the procedure
we will explain can be generalized by using all the vanishing curves instead of just one).
Then the G-flux close to the intersection is of the form

G

2π
∼ F1 ∧ ω1 + F2 ∧ ω2 (2.43)

8If there were such normalizable modes, we would find zero modes of the form χ+ψ+
1 ψ

+
2 ψ

+
3 or

χ−ψ−

1 ψ
−

2 ψ
−

3 on the intersection. These correspond to symmetries rather than deformations, and in
the present context would be interpreted as ghosts [34]. Fortunately we see that we cannot get them for
intersecting branes.
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where ω1,2 are the two non-normalizable harmonic two-forms associated to the overall
U(1)’s for the I5 locus and I1 locus respectively. The U(1)’s may not appear in the low
energy theory, but a linear combination may correspond to a massive U(1) and still appear
in the G-flux as we will see in a later subsection. Since the U(1) charges of the BPS states
associated to the vanishing curves are given by ±1, we have

∫

C

ω1 = +1,

∫

C

ω2 = −1 (2.44)

and we can integrate the G-flux over a vanishing curve to get

∫

C

G = F1 − F2 (2.45)

which we interpret as the curvature of Ẽ∗ ⊗ F̃ .

The other case is when the singularity is enhanced to I∗1 along the intersection of an
I5 and I1 locus. This is not a transversal intersection in B3, however our arguments don’t
depend on this9. Again let us assume unbroken SU(5) symmetry. Then we can pick
one of the extra vanishing curves C over the intersection, and the integral

∫

C
G should be

interpreted as twice the curvature of Ra(Ẽ)⊗R′
a(F̃ ). This is because in the decomposition

of the I∗1 singularity into individual (p, q) 7-branes [21], the BPS junction representing
C has two ends on the I5 locus and one end on each of the two extra I1-singularities.
Dividing by two and adding the flux of K

1/2
Σ , we get a flux that can be lifted to a line

bundle on Σ. 10 Finally plugging into (2.36) we get the chiral matter in the 10 or 10 (for
i = 0), or the anti-chiral matter in the 10 or 10 (for i = 1).

2.3. Charged chiral matter from coincident branes

There is a second way to get charged chiral matter, by considering coincident 7-branes
rather than intersecting 7-branes. The reasoning is similar. We take a 7-brane with a
non-abelian gauge symmetry wrapping a four-cycle B2. So far we assumed that only fluxes
on the matter brane were turned on, so as not to break any additional gauge symmetry
on the gauge brane. However we can also turn on generally non-abelian holonomy on
the worldvolume of the gauge brane. This corresponds on the heterotic side to turning
on a bundle on the trivial part of the spectral cover. Eg. suppose we have an E6 gauge
symmetry along B2 and we turn on a U(1) bundle E so that the commutant in E6 is given

9The local form of many collisions has been worked out in [36]
10In order to get a unique lift if the genus of Σ is larger than zero, we have to specify the Wilson lines

on Σ in addition to the flux. This can be done by thinking of it as the tensor product of the restrictions of
well-defined bundles as in (2.40). Alternatively, the worldvolume of each of the 7-branes generically has
h0,1 = 0. In this case the one-cycles of Σ become contractible when embedded in each of the 7-branes,
and we should set all the Wilson lines to zero.
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by SO(10) × U(1). The U(1) gauge field will become massive by eating a closed string
axion.11 We decompose the adjoint representation of E6 under SO(10) × U(1) as

Radj(E6) = 78 =
∑

a

R′
a ⊗Ra = 450 + 10 + 16−3 + 163 (2.46)

Then chiral matter transforming in the R′
a representation of SO(10) is given by zero

modes of the eight-dimensional Dirac equation. Using the spinor bundles in (2.8), we get
a four-dimensional fermion for every generator of the cohomology groups

H i(B2, Ra(E) ⊗KB2
) ⊕ H i(B2, Ra(E)) (2.47)

for i = 0, 1, 2.12 As usual, generators related by Serre duality are CPT conjugates, rather
than independent fields. In the above example, we would have

Nχ(16) = h0(B2, L
−3 ⊗KB2

) + h1(B2, L
−3)

Nχ(16) = h0(B2, L
3 ⊗KB2

) + h1(B2, L
3) (2.48)

where L is the line bundle corresponding to the U(1) gauge field we turned on. These
chiral fields clearly correspond to 7-brane deformations and gauge field deformations re-
spectively, and their Serre duals are the corresponding anti-chiral fields. Generators of
H0(B2, L

3) or H0(B2, L
−3) do not correspond to deformations at all, but to symmetries. If

these cohomology groups are non-zero, the compactification has ghosts and is inconsistent.

In addition to this spectrum, we must find the massless matter representations of E6

originating from the intersection with other 7-branes using the procedure we explained
before, and add them to the spectrum. An amusing feature is that this may effectively
increase the number of generations obtained from the intersection with the matter brane.
For instance, if we broke E6 to a group G using an SU(3) bundle, then from Higgsing it
is clear that the number of generations of G obtained from the intersection is three times
the number of generations of E6. A very similar mechanism was used in [2] to obtain the
three generation MSSM from a one generation model with an extended gauge group.

We can also ask about matter in real representations. We have already seen that four-
dimensional adjoint-valued chiral fields come from h0,1(B2) and h2,0(B2). If we turn on a

11Schematically this lifting arises as follows. From the Chern-Simons couplings
∫

C(4) ∧ F ∧ F =
−

∫

dC(4)∧ω3(A) on the 7-brane we deduce the existence of a term
∫

(∗8dC(4)−ω3(A))2. Then if we turn
on a line bundle on B2 with first Chern class c1(E) and denote the dual four-form as α4, the U(1) gauge
field will have a four-dimensional coupling of the form

∫

(Aµ − ∂µa)
2, where a is the RR axion obtained

by expanding C(4) along α4. This is completely analogous to a similar mechanism in the heterotic string.
12More generally, if we also have a non-zero VEV for Φ, we should solve equations of type ∂̄A ψ

+
1 ψ

+
2 ψ

−

3 +
[Φ, a1ψ

+
1 ψ

−

2 ψ
+
3 + a2ψ

−

1 ψ
+
2 ψ

+
3 ] = 0. That is, we have a spectral sequence with Ep,q

2 = Hp(B2, Ra(E) ⊗
Kq

B2
), horizontal differential Ep,q

2 → Ep+1,q
2 given by ∂̄+A0,1, and vertical differential Ep,0

2 → Ep,1
2 given

by Φ2,0. But when the d2 differential E0,1
2 → E2,0

2 of this spectral sequence is zero, then we have E2 = E∞

and we still get (2.47).
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non-abelian bundle M on σB2
, we can ask for the number of bundle moduli. This is given

by the number of zero modes of the Dolbeault operator acting on Ad(M) ⊗Ω0,1(K
1/2
B2

)⊗

K
−1/2
B2

, the last piece accounting for the R-charge, i.e. by the number of generators of
H1(B2,Ad(M)), in agreement with the heterotic result [26].

Finally we have to give a prescription for relating line bundles on B2 and G-flux. This
is easy for coincident branes, the G-flux is simply of the form Tr(F/2π)∧ω where ω ∈ Λ.

2.4. Yukawa couplings

The form of the SUSY Yukawa couplings can be deduced from the reduction of the
interaction terms in the ten-dimensional Yang-Mills action (B.1). Schematically they are
given by

∫

d2θ d4xTr(Φ1Φ2Φ3)

∫

Tr(ϕ1ξ2ξ3). (2.49)

where ϕi, ξi denote bosonic and fermionic zero modes on the 7-branes. Let us discuss the
various special cases.

For coincident branes, the chiral fields came from generators of the form A0,1 or Φ2,0.
We can compose two generators of type (0, 1) and one of type (2, 0) to get a number:

∫

dabc A
a ∧Ab ∧ Φc (2.50)

A similar coupling for matter in real representations was already discussed in [26]. We see
that it holds more generally provided the three-fold tensor product of the group indices
contains a singlet.

Next let us consider intersecting 7-branes. As we discussed around (2.30), chiral
fermions living on the intersection Σ can be lifted to fermions on the 7-branes, i.e. to A0,1

and Φ2,0, by dressing them up with the normalizable wavefunction for ψ+
2 ψ

−
3 and ψ−

2 ψ
+
3 .

Let us explain this in some more detail. The point is that (2.30) can be decomposed into
equations on the individual 7-branes. In the following, it may be helpful to keep in mind
the case of two intersecting I1 singularities with an I2 enhancement over the intersection,
and

Φ =

(

1 0
0 −1

)

, α+ =

(

0 1
0 0

)

, α− =

(

0 0
1 0

)

. (2.51)

Suppose that our bundle indices correspond to one of the positive roots of G not in
H1 × H2. Then we can effectively forget all the entries in the Cartan generator Φ that
do not act on the positive roots. In this case the coordinate z is interpreted as a local
coordinate along the 7-brane with gauge symmetry H1, but normal to Σ, i.e. it can be
taken as a section of OD1

(Σ), and ψ±
3 are sections of K

∓1/2
D1

. The equation (2.30) then
corresponds to an equation on the 7-brane with gauge symmetry H1. Therefore the zero
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modes

χ−ψ+
1 ψ

+
2 ψ

−
3 + χ−ψ+

1 ψ
−
2 ψ

+
3 = χ−Φ2,0 + χ−A0,1

χ+ψ−
1 ψ

+
2 ψ

−
3 + χ+ψ−

1 ψ
−
2 ψ

+
3 = χ+A0,1 + χ+Φ2,0 (2.52)

live on the first 7-brane D1 if the gauge indices correspond to a positive root, as promised.
Similarly, by forgetting the parts of equation (2.30) that do not act on the negative roots,
generators of H i(Σ,G) get lifted to A0,1 and Φ2,0 on the 7-brane with gauge symmetry
H2.

Using these lifts the formula for the Yukawa couplings is the same as (2.50). The
same formula also applies for the overlap of zero modes which are localized around the
intersection with zero modes which are spread over all of the 7-branes. More precisely, we
can localize the integral (2.50) to the intersection of the supports of the three zero modes
and get a well-defined computation on the intersection, which can easily be interpreted as
a product in the Dolbeault cohomology living on the intersection. Although we are now
not in the realm of perturbative string theory, clearly this is very analogous to computing
a tree level three-point function in the heterotic string.

This picture implies some intriguing results. Suppose for instance we have an E6 gauge
group on D1 = B2 and a matter curve Σ27 where chiral 27’s are localized. Suppose that
we want the Yukawa couplings for three of these 27’s. Then we should pick three zero
modes from the first line of (2.52), and localize to get a triple product in the Dolbeault
cohomology on Σ27. However we need the sum of the ± charges for each ψi to be equal
to +1, and we have seen that there are no localized zero modes of the form ψ−

1 ψ
+
2 ψ

+
3 .

Therefore, the charges are unbalanced and we cannot get a form of the right degree on Σ27.
That is to say, this three-point function is always zero. In order to get a non-zero Yukawa
coupling, we need to have at least one 27 with support on all of B2. Such features are
very interesting for phenomenology. By taking the third generation to live in the bulk of
the 7-brane rather than localized on a matter curve, we can naturally engineer hierarchies
in the Yukawa couplings. Such ideas have played important roles in the phenomenology
literature on extra-dimensional models (see eg. [37]).

As another example, suppose we have an SO(10) gauge group on B2, and chiral matter
on Σ16 and Σ10. The Yukawa coupling for 16×16×10 clearly gets localized on Σ16∩Σ10.
If we denote the coordinate along Σ16 by w and the coordinate along Σ10 by z, then we
can let ψ1 be the spinor for the w plane and ψ2 the spinor for the z plane. In this case,
chiral matter on Σ16 will give rise to zero modes of the form ψ+

1 ψ
+
2 ψ

−
3 + ψ+

1 ψ
−
2 ψ

+
3 as

before, but chiral matter on Σ10 now gives zero modes of the form ψ+
1 ψ

+
2 ψ

−
3 + ψ−

1 ψ
+
2 ψ

+
3 .

Thus in this case we can balance the charges of all the ψi and localize the integral, leaving
us simply with a contribution from each intersection point of Σ16 ∩ Σ10. Again we may
envisage geometric configurations that explain hierarchies in the Yukawa couplings.

There are several other phenomenological scenarios that depend on localization in the
extra dimensions, and that can in principle be implemented in F -theory. Localization
can be helpful in suppressing dangerous higher dimensions operators such as

∫

d2θ QQQL
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[37]. It also provides scenarios for mediation of supersymmetry breaking, such as gaugino
mediation [38, 39]. For a review of some of the possibilities of extra-dimensional models,
see [40].

2.5. D-terms

Up to now we have discussed purely holomorphic properties of F -theory. However we
have to check that our configurations also satisfy the D-term constraints, which require
that the G-flux must be primitive. We naturally expect this condition to be equivalent
to:

i∗J ∧ F = i∗J ∧ (FE −
1

2
FN) = 0. (2.53)

on each of the 7-branes. Note however that many fluxes are linear combinations of fluxes
of individual 7-branes wrapped on the same cycle, in which case the correction involving
the normal bundle cancels. We expect this condition applies also to non-abelian bundles.
Since we did not give a functorial prescription to relate the G-flux to the flux on the
7-branes however, in case of doubt the correct condition is always that the G-flux be
primitive. Further we should make sure that all the fermion zero modes that parametrize
symmetries correspond to gauginos. If not then the compactification has ghosts and is
inconsistent [34].

Let us specialize to the K3 fibrations over B2 which are dual to the heterotic string.
Then the available Kähler forms are

JB3
= t1π

∗JB2
+ t2J0 (2.54)

where J0 is the Poincaré dual of the zero section σB2
. For F -theory to be valid, both the

volume of B2 and the P1-base of the K3 should be large in the ten-dimensional Einstein
frame. On the other hand, the heterotic coupling is identified with the volume of the P1.
To see this, a D3-brane wrapped on the base of the elliptically fibered K3 gets mapped
to the fundamental string of the heterotic theory compactified on T 2. Its tension is

T ∼ l−2
8 (VP1)2/3, T ∼ l−2

8 λ
2/3
8 (2.55)

on the F -theory side and on the heterotic side respectively, where l8 is the eight-dimensional
Planck length, VP1 is measured in ten-dimensional Planck units (or string units, which is
the same thing as the dilaton is generically order one), and λ8 is the eight-dimensional
heterotic string coupling. Thus we find that λ8 = VP1 up to numerical factors. As ex-
pected, F -theory and the heterotic string have non-overlapping regimes of validity. In
particular it is possible that heterotic constructions that were previously discarded cor-
respond to valid F -theory compactifications. Further, at tree level the four-dimensional
gauge coupling is given by

1

g2
YM,4

∼
VB2

(VP1)2
(2.56)
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where again all volumes are expressed in ten-dimensional Planck units. The fastest way
to see this is by reducing the heterotic string from ten to four dimensions and translating
to F -theory variables. Thus in order to keep gYM,4 small and preserve gauge coupling
unification, we need B2 to be large compared to P1. Note that there is a decompactifi-
cation limit in which we keep an interacting gauge theory but decouple four-dimensional
gravity13. Namely we use

1

g2(Λ)
=

1

g2(MP l)
−

b0
8π2

log

(

MP l

Λ

)

(2.57)

where b0 is positive, and then take the limit

gYM,4(Λ) fixed, VP1 → ∞,
MPl,4

Λ
→ ∞ (2.58)

This is consistent with the philosophy of local model building explained in the introduc-
tion.

Now let’s consider the available G-fluxes for DP9 fibrations over B2. We could turn on
fluxes for the Cartan generators of the non-abelian gauge group localized on σB2

. As we
discussed in the context of coincident branes, this would partially break the gauge symme-
try. One may consider this as a mechanism for breaking the GUT group to the Standard
Model gauge group. However for testing our formula for chiral matter in F -theory by
comparing with the heterotic string, we will also be interested in compactifications where
such fluxes are not turned on. Generically, the remainder of the discriminant locus

∆′ = ∆ − n[σB2
] (2.59)

is an I1 locus and does not generate a massless four-dimensional U(1) vector multiplet,
due to non-normalizability of the associated local harmonic two-form14, so it may seem
at first sight that there are no other fluxes we could turn on.

However the heterotic/F -theory duality map which we will discuss in section 3 shows
that there is always an additional rank one lattice of G-fluxes, generated by a flux we
will call Gγ . In specific models it is possible that there are additional G-fluxes besides
this generic rank one lattice. The flux Gγ is guaranteed to be of Hodge type (2, 2) and
integral, however it is not a priori clear that Gγ is also primitive. Indeed, in appendix C
we show that

π∗JB2
∧Gγ = 0, J0 ∧Gγ 6= 0. (2.60)

13This is not the heterotic M -theory limit, since we keep ten-dimensional IIb gravity interacting.
14For duality with the heterotic string, we also assume that real codimension two singularities of the

elliptic fibration are not localized on B2, as this would correspond to a non-perturbative gauge symmetry
on the heterotic side.
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Therefore if we turn on some (half-)integer multiple of Gγ in order to engineer chiral
matter, or even solely to satisfy the quantization condition (2.14) for duals of SU(m)
spectral covers with m odd, then the D-terms are not satisfied. There is a classical
potential which wants to shrink the P1 to zero size, towards the heterotic regime.

There are several remarks we would like to make about this. First, if quantization
allows us to turn off Gγ, we have seen we can still get chiral matter. Further, in non-
generic local models there may be additional fluxes besides the generically defined Gγ ,
and they may be useful for getting a supersymmetric minimum in the F -theory regime.
Another possibility may be to use G-flux from a hidden sector. If we compactify by
embedding into a K3-fibration over B2, then we could get another contribution to the
G-flux from the hidden E8, and perhaps it is possible to arrange it so that the total flux
is primitive. Secondly, the D-terms are not protected. In fact when the P1 is small the
heterotic theory becomes valid, and we will see in the next section that the D-terms are
generically easily satisfied for the heterotic duals of the models considered here15. So one
might imagine engineering some kind of correction which grows for small P1, for instance
a contribution of a D3-instanton wrapping the P1, so that t2 is stabilized. But using
only quantum corrections it will likely not be easy to stabilize the Kähler moduli in the
F -theory regime.

It would be interesting to investigate these issues in more detail. It’s important to
point out however that supersymmetry is broken by D-terms, and not by F -terms. The
comparison of the chiral spectrum in F -theory with the heterotic string later in the paper
only depends on the analytic structure and is independent of the D-terms.

2.6. Summary of a class of F -theory constructions

To summarize, we can construct a particular class of local F -theory compactifications
for intersecting 7-branes with only the following three ingredients:

1. The four-fold will be a DP9 fibration over a base B2. For duals of heterotic spectral
cover constructions B2 can be an Enriques surface, a Del Pezzo surface, a Hirzebruch
surface or blow-up thereof.

2. The DP9 fibration is specified by a section s : B2 → W of a weighted projective
bundle W → B2. This determines the P1 fibration B3 → B2 and the discriminant
locus ∆, and hence the positions and intersections of the 7-branes.

3. In addition we can turn on a G-flux, where [G/2π] is of type (2, 2), (half-)integral,
primitive. This specifies the magnetic fluxes on the 7-branes. There is a lattice of
fluxes which do not further break the gauge symmetry, however primitiveness is not
guaranteed and may depend on the model.

15An analogous line bundle which appears in the heterotic data is required to be stable rather than
primitive.
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3. Duality between F -theory and the heterotic string

3.1. Spectral cover construction for heterotic bundles

3.1.1. Fourier-Mukai transform

To specify an N = 1 heterotic compactification in the supergravity approximation we
need a Calabi-Yau three-fold Z, and two bundles V1, V2 on Z with structure group in
E8 × E8 and satisfying the Hermitian Yang-Mills equations16:

F 2,0 = F 0,2 = 0, Fij̄ g
ij̄ = 0. (3.1)

We must further satisfy

dH =
α′

4
tr(R ∧ R) −

α′

4
trE8×E8

(F ∧ F ) (3.2)

The topological obstruction to solving this equation is

c2(Z) = c2(V1) + c2(V2) (3.3)

However even if this topological condition is satisfied, clearly we generally must turn on
non-zero H . One may argue that a solution may be constructed order by order in the
α′ expansion starting with a Calabi-Yau metric and a solution of the Hermitian Yang-
Mills equations (3.1) [41]. For some special cases the existence of exact solutions may be
inferred from dualities or even proved mathematically [42]. In addition one sometimes
adds some five-branes wrapped on effective curves in Z, even though this does not lead to
a smooth supergravity background. Such five-branes correspond to zero size instantons
and give further singular contributions to (3.2) and (3.3).

In general constructing bundles satisfying (3.1) is not an easy matter. However if the
three-fold admits an elliptic fibration π : Z → B2 with a section σB2

: B2 → Z, then
an interesting class of bundles can be constructed using spectral covers. The idea is very
simple: suppose we have a stable SU(n)-bundle V over Z. First we restrict V to the
elliptic fibers and learn how to describe bundles on each T 2, and then we fiber this data
over the base.

16The first equation is the F -term associated to the four-dimensional superpotential W =
∫

CY
Ω3,0 ∧

ω3
CS(A), and the second can be interpreted as a four-dimensional D-term F ∧ J ∧ J = 0 [41].
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Restricting (3.1) to a T 2-fiber, we see that the bundle should be flat. Flat bundles on
T 2 are classified by a map π1(T

2) → SU(n), that is by the Wilson lines around the T 2.
The fundamental group of T 2 is abelian, so these Wilson loops commute, and by a gauge
transformation the Wilson loops can be taken to lie in the Cartan of SU(n). Therefore,
the restriction of V to the generic elliptic fibre splits as a sum of n line bundles of degree
zero. Each line bundle is characterized by a point on the dual T 2 (which parametrizes the
holonomies), up to residual symmetries which form the Weyl group, therefore the moduli
space is

MSU(n) = [Λc
SU(n) ⊗ T 2]/W = WPn

1,1,...,1 (3.4)

where Λc
SU(n) is the coroot lattice of SU(n). The restriction that the bundle be SU(n)

rather than U(n) means that the n points on the dual torus are required to sum to zero
under the group law. Also, we may canonically identify the torus with its dual. Similar
results hold for bundles with other structure groups.

Fibering this data over the base, we see that an SU(n) bundle can be described by a
set of n points on the elliptic fibre summing to zero, varying holomorphically over the base
B2, and thus sweeping out a holomorphic surface C which is an n-fold cover of B2. This
is called the spectral cover. Intuitively this is familiar to string theorists from T-duality
of D-branes, which in this case maps an SU(n) “9-brane” to a “7-brane” by T-dualizing
along the elliptic fibre. Even though there are no physical branes in the game, it is useful
to keep this picture in mind. Moreover, as also familiar from T-duality, a proper analysis
of how the Wilson lines vary over B2 shows that one also gets a non-trivial U(1) connection
on C.

Figure 3: Part of the heterotic compactification data consists of an elliptically
fibered Calabi-Yau, together with a set of points on each elliptic fibre describing
the Wilson lines of the ten-dimensional gauge group.

In order to describe this more explicitly, we may proceed as follows [24]. We represent
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the three-fold Z as a Weierstrass equation:

y2 = x3 + f xv4 + gv6 (3.5)

Here {v, x, y} are taken as sections of {O, K−2
B2
, K−3

B2
} respectively, and {f, g} are sections

of {K−4
B2
, K−6

B2
} respectively. Then the data of n points on each elliptic fiber summing to

zero can be encoded by writing an equation on the fiber which has exactly these points as
its solutions, and a pole of order n at v = 0 which we identify with the intersection of the
elliptic curve with the section σB2

. Such an equation is a generic nth order polynomial in
x and y:

a0 v
n + a2 xv

n−2 + a3 yv
n−3 + . . .+ an x

n/2 = 0 (3.6)

(if n is odd, the last term is yx(n−3)/2). In order for this equation to make sense globally
on B2, it follows that the ai must be sections of N ⊗Ki

B2
where N is a line bundle on

B2. Since the ai’s are defined only up to multiplication on each fiber, they determine a
section of the weighted projective bundle over B2

WSU(n) = P(O ⊕K2
B2

⊕ ...⊕Kn
B2

) (3.7)

with fiber MSU(n). An analogous construction also works for more general bundles. Thus
the spectral cover C is equivalent to a section s : B2 → WSU(n). This description will
provide an easy comparison of the analytic data under F -theory/heterotic duality.

The relation between the spectral cover and the bundle V on Z can be put in a precise
algebraic-geometric form which is known as the Fourier-Mukai transform. The homology
class of the spectral cover C can be expressed as

[C] = n[B2] + π∗[η] ∈ H1,1(Z,C) ∩H2(Z,Z) = Pic(Z) (3.8)

where [η] is a class in H2(B2,Z), and we used Poincaré duality to identify the dual
cohomology class. Comparing with the description of C using projective bundles over B2,
the homology class of the zero set of a section agrees with (3.8) provided c1(N ) = [η].
Further, we need a line bundle L on C. In order for the bundle V to have holonomy
SU(n) rather than U(n), the line bundle L is required to satisfy

c1(V ) = π∗c1(L) +
1

2
(c1(C) − π∗c1(B2)) ≡ 0 (3.9)

Therefore, c1(L) is of the form

c1(L) = −
1

2
(c1(C) − p∗Cc1(B2)) + λ γ, π∗γ = 0, γ ∈ Pic(C) (3.10)
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where pC is the natural projection C → B2, and λ is a (half-)integer. Generically the
Picard group of C is two dimensional: one generator for the pull-back of the Kähler class
of Z, and the other generator given by Σ = C ∩ σB2

which must be effective. Therefore
the only ‘traceless’ classes satisfying π∗γ = 0 that exist in general must be multiples of
the natural generator:

γ = n [σB2
· C] − p∗C [η − n c1(B2)] (3.11)

For completeness let us briefly indicate how the bundle V may be reconstructed from
this data in the case of SU(n) holonomy. We first introduce the space Ẑ = Z×B2

Z. There
are three natural divisors given by σ1 = σ ×B2

Z, σ2 = Z ×B2
σ, and the diagonal divisor

∆ (not to be confused with the discriminant locus). We further define Ĉ = C ×B2
Z and

the Poincaré line bundle P on Ĉ as

P = O(∆ − σ1 − σ2) ⊗ p∗B2
KB2

|Ĉ (3.12)

Then the bundle V may be reconstructed by the Fourier-Mukai transform

V = pZ∗(p
∗

Ĉ
L⊗ P) (3.13)

where pZ , pĈ denote the natural projections. With this expression for V one may compute
the Chern classes of V [24, 43]. The result for c1(V ) was quoted in (3.24), and one finds
π∗c2(V ) = η. For the third Chern class one finds

c3(V ) = 2λ η · (η − nc1(B2)) (3.14)

The third Chern class is an important characteristic of the model as we will review in a
moment.

So far we have discussed solving the F -terms on Z, that is we have discussed the
construction of holomorphic bundles V whose curvature satisfies F 2,0 = F 0,2 = 0 and
which admit a connection which satisfies Fij̄ g

ij̄ = 0 when restricted to elliptic fibers. We

must further show that it is possible to solve the D-terms, Fij̄ g
ij̄ = 0 on all Z. As is well

known, in an algebro-geometric setting one may argue that there exists a unique solution
provided the bundle V is stable. Since Fourier-Mukai is an equivalence of categories, the
bundle V is stable with respect to an appropriate Kähler class when L has rank 1 and C
is irreducible. According to [44, 45], stability holds for

J = t1 π
∗JB2

+ t2 J0 (3.15)

where J0 is the Poincaré dual of the section, and t1 >> t2. That is, the base should
be large compared to the T 2 fiber. Note that both the fiber and base need to be large
compared to the string scale in order to keep α′-corrections small.
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Given a Calabi-Yau Z and a bundle V satisfying the Hermitian Yang-Mills equations,
we may deduce the low energy spectrum as follows. We start with the ten-dimensional
gaugino which transforms in the adjoint of E8, and we will concentrate on one E8 factor
only. Then the four-dimensional fermions are zero modes of the Dirac operator on Z in
the background with SU(n) holonomy. Since Z is a complex manifold, the zero modes
of the Dirac operator are zero modes of the Dolbeault operator coupled to the bundle V .
Let us denote the commutator of H = SU(n) in E8 as G, and decompose the adjoint
representation of E8 as

248 =
∑

a

Ra(H) ⊗ R′
a(G) (3.16)

Then the zero modes of the Dolbeault operator are given by the generators of the coho-
mology groups

Hp(Z,Ra(V )) ⊗ R′
a(G) (3.17)

Assuming V stable, zero modes of grade p = 0, 3 occur only when Ra is the trivial
representation. These are paired with four-dimensional gauginos in the adjoint of G.
Zero modes with p = 1 get paired with a left-handed four-dimensional chiral fermion in
the representation R′

a(G), and zero modes with p = 2 get paired with a right-handed
chiral fermion. Since supersymmetry was preserved, we get a four-dimensional N = 1
SUSY gauge theory with a gauge group G and matter in various representations R′

a(G).
The net number of generations is given by

Ngen = H1(Z, V ) −H2(Z, V ) = −
1

2
c3(V ) (3.18)

assuming Hp(Z, V ) = 0 for p = 0, 3, which holds for stable bundles. In addition, the
reduction of the gravity multiplet on Z gives various other fields neutral under G.

As would be expected from the brane-like interpretation for elliptically fibered Calabi-
Yaus Z, chiral matter is localized on the intersection of the ‘7-branes.’ This can easily be
seen from the Leray spectral sequence:

H1(Z, V ) ∼ H0(B2, R
1) (3.19)

where for each point p on B2

R1
p = H1(T 2

p , V |T 2
p
). (3.20)

Now recall that V |T 2 splits as a sum of degree zero line bundles
∑

i Li, and Hp(T 2, Li)
vanish unless Li is the trivial line bundle. So the only contributions come from the locus
where one of the Li becomes a trivial line bundle, so that its Wilson lines around the
cycles of the T 2 vanish. This is precisely the locus Σ = C ∩ σB2

where the spectral cover
intersects the section, and it is sometimes called the ‘matter curve’. More precisely one
can show that [46, 47]

H1(Z, V ) = Ext1(i∗OB2
, j∗L) = H0(Σ, L⊗NB2

|Σ). (3.21)
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Here NB2
is the normal bundle of B2 in Z, and NC is the normal bundle to C. Since Z

is Calabi-Yau, we have NB2
= KB2

, NC = KC . For later comparison with F -theory, it is
useful to decompose the line bundle L by separating out the traceless piece:

L|Σ = Lλ
γ ⊗N

−1/2
B2

⊗N
1/2
C |Σ, c1(Lγ) = γ (3.22)

so that we can express the number of chiral fields as

h0(Σ, Lλ
γ |Σ ⊗K

1/2
Σ ). (3.23)

3.1.2. Summary of the heterotic construction

Suppose we are given a Calabi-Yau three-fold Z with an elliptic fibration π : Z → B2,
and a section σB2

: B2 → Z. Then an interesting class of SU(n) bundles (and in fact also
bundles with more general structure groups) can be constructed with only the following
ingredients:

1. An elliptically fibred threefold π : Z → B2, and a section σB2
: B2 → Z.

2. An n-fold covering pB2
: C → B2 with the homology class [C] = n[σB2

] + [π∗η] ∈
H4(Z,Z). Equivalently, we may specify a section of a weighted projective bundle
s : B2 → WSU(n). This involves specifying a line bundle N on B2 with c1(N ) = η.
The spectral cover describes the Wilson lines of the bundle V along the T 2 fibres.

3. A line bundle L over C. Generically the only allowed line bundles on C have a first
Chern class of the form

c1(L) = −
1

2
(c1(C) − p∗c1(B2)) + λ γ (3.24)

with γ defined in (3.11). Thus choosing the line bundle L amounts to specifying
λ, which must be an integer or half-integer, so that c1(L) is integer quantized. In
addition, one may turn on bundles on σB2

(the reducible part of the spectral cover),
which will further break the observed four-dimensional gauge symmetry.

3.2. Duality map in the stable degeneration limit
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3.2.1. Matching the holomorphic data

The heterotic string compactified over T 2 is characterized by a vector in an even self-
dual lattice of signature (18, 2). However we are only interested in a subset of this data,
namely a bundle with holonomy in a subgroup H of E8. This data may be isolated from
the other geometric data in the limit of large T 2. Recall that the moduli space of stable
H-bundles on T 2 is given by the Looijenga weighted projective space

MH = WPr
s0,...,sr

(3.25)

where si are the Dynkin indices of the affine Dynkin diagram of H , and r is the rank of
H . We can further fiber this data over a base B2, yielding a weighted projective bundle
called WH . An H bundle over Z (which is semi-stable on fibers) determines a holomorphic
section s : B2 → WH , or equivalently a spectral cover C which is identified with the zero
locus of the section. To reconstruct the bundle on Z, we also need the twisting data.
This is given by a line bundle on C. The line bundle can be represented through its first
Chern class. To make the correspondence with F -theory clearer, the fiber of the covering
C → B2 is a discrete set of points which we denote by f . We can use the Leray spectral
sequence to identify

H2(C,Z) ∼ H2(B2, H
0(f)) (3.26)

This means that the flux can be represented as

F = FI ∧ ω
I
0 (3.27)

where FI is a flux on B2, and ωI
0 is a set of generators of H0(f) which vary over B2. It

will be convenient to take ω0
0 to be the diagonal generator which is the pull-back of a

zero-form on B2, and let the remaining generators satisfy π∗ω
I
0 = 0. In particular, with

c1(L) = −
1

2
(c1(C) − p∗c1(B2)) + λγ (3.28)

then the first two terms are proportional to ω0
0, and γ is built of the ωI

0 with I 6= 0.

On the F -theory side we recovered the same ingredients, but with a different inter-
pretation. In the stable degeneration limit, the K3 fibration degenerates into two DP9

fibrations W1,W2 over B2, glued along an elliptically fibered Calabi-Yau three-fold Z
which is identified with the heterotic three-fold. Concentrating on W1, we consider the
unfolding of a DP9 surface with an E8 singularity, keeping a canonical divisor fixed. This
can be expressed by the degree six equation in WP1,1,2,3:

0 = pi(v, x, y) u
i (3.29)
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Figure 4: To every DP9-surface we may associate an elliptic curve with a set
of points on it by intersecting a fixed elliptic fiber of the DP9 with the set of
−1-curves. Conversely by taking an elliptic curve with a set of points and
thickening the points to P1’s, we obtain a DP9 surface.

where pi is of degree 6−i and p0 = 0 describes the distinguished T 2-fiber. As we discussed
in section 2, requiring a section of singularities corresponding to an enhanced gauge group
G implies certain restrictions on the pi, i > 0. The coefficients in the pi are also determined
by a choice of section s : B2 → WH , up to a change of variables. In fact if u appears only
linearly, we can integrate out the variable u without loosing any information about the
complex structure moduli [31, 32]. That is, the same information is contained in the pair
of equations

p0(v, x, y) = 0, p1(v, x, y) = 0 (3.30)

This yields a collection of points on the T 2 at u = 0, which we interpret as the spectral
cover. Conversely the DP9 surface may be obtained as follows: we take the elliptic curve
p0 = 0 with a collection of points in it determined by the heterotic bundle and encoded as
an equation p1 = 0. Then we thicken each of these points to lines by adding the variable
u, with each line intersecting the T 2 at u = 0 in a point17. This yields p0 +up1 = 0. Thus
we have a completely explicit dictionary.

The twisting data is interpreted as turning on a C3 field with non-zero G-flux. We
have seen very explicitly above that there is a canonical map which associates to each
point in the fiber f of the spectral cover C → B2 a P1 ⊂ DP9, and dually with each
zero-form in H0(f) a two-form in H1,1(DP9). Thus we have a natural map

H i,j(C) −→ H i+1,j+1(Y4)

l ↑

H i,j(B2, H
0(f)) −→ H i,j(B2, H

1,1(DP9))

(3.31)

17This construction generalizes for spectral covers for groups other than SU(n), and is called the
cylinder map [17].
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The map is actually somewhat ambiguous for ω0, because DP9 has two two-forms (dual
to the base and the fiber) that it could get mapped to, but as we discussed in section 2
the corresponding G-fluxes do not exist in F -theory anyways. In particular the ‘traceless’
piece of the magnetic flux on the spectral cover gets mapped unambiguously to a non-
zero G-flux on the DP9 fibration. For more details of the mapping between the spectral
line bundle and the G-flux, see [17]. In a similar vein, the Wilson lines of the spectral
line bundle, which live in h0,1(C), and deformations of the spectral cover, which live in
h2,0(C), get mapped in F -theory to Wilson lines on the 7-branes and deformations of the
7-branes, which live in h1,2(Y4) and h3,1(Y4) respectively as was summarized in table 2.

3.2.2. Matching the spectrum and Yukawa couplings

Now we would like to argue that the computation of the spectrum agrees with heterotic
computations for F -theory duals of spectral cover constructions, in the stable degeneration
limit.

In F -theory we have a DP9 fibration over a base B2, with a certain section of singu-
larities leading to a four dimensional gauge group G, but of generic type I1 elsewhere.
Suppose we want to compute the number of chiral fields in the representation R(G). As we
have discussed in section 2, these are localized along a curve Σ where the singularity gets
enhanced. This means that the 7-branes wrapping B2 (which we called the gauge branes)
intersect another 7-brane (which we called the matter brane) over a curve Σ ⊂ B2. On
the heterotic side we must get the corresponding gauge symmetry enhancement over the
same curve Σ ⊂ B2. Thus it coincides with one of the matter curves on the heterotic side,
the locus where one of the spectral covers C (analogous to our matter brane) intersects
the section σB2

(analogous to the gauge 7-branes).

Now we need the magnetic fluxes on the 7-branes, restricted to Σ. We consider first
the matter curves where the 10 of SU(5), the 16 of SO(10), the 27 of E6 and the 56 of
E7 are localized. On the heterotic side this corresponds to the intersection of σB2

with the
spectral cover for the fundamental representation of the SU(n) holonomy group, where
n = 5, 4, 3, 2 respectively. The F -theory fluxes were described on the heterotic side by a
line bundle L on the spectral cover, with first Chern class

c1(L) = −
1

2
(c1(C) − p∗c1(B2)) + λγ (3.32)

According to the discussion in the previous subsection, using the identification H1,1(C) ∼
H1,1(B2, H

0(f)), the flux γ gets mapped to

γ = FI ∧ ω
I
0 → Gγ = FI ∧ ω

I
2 ∈ H2,2(Y4) (3.33)

where FI is a flux on B2, and the index I labels the generators of H0(f). Further, the
remaining piece of c1(L) gets mapped to zero. Thus it is evident that the magnetic flux
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for Ra(Ẽ) ⊗ R′
a(F̃ )|Σ extracted from the G-flux, using the rules described in section 2, is

exactly given by λγ|Σ = −λη · Σ. As for the heterotic string, we denote the line bundle
on Σ whose first Chern class is γ as Lγ . Now plugging into our formula for the number
of zero modes (2.36), we get

hi(Σ, Lλ
γ ⊗K

1/2
Σ |Σ) (3.34)

This is exactly the same as the answer we obtained on the heterotic side (3.23).

In the SU(5) case it is also interesting to consider the spectral cover C10 for the
anti-symmetric representation of SU(5). The intersection Σ′ = C10 ∩ σB2

is the locus in
B2 where the gauge symmetry gets enhanced from SU(5) to SU(6), so this corresponds
on the F -theory side to the locus where I5 and I1 collide transversally to create an I6
singularity.

The heterotic prediction for the amount of chiral matter in the 5 or 5 of SU(5) is

Hp(Z,Λ2V ) = Hp−1(Σ′,M ⊗KB2
|Σ′) (3.35)

where M is a rank one sheaf on C10 obtained by Fourier-Mukai transform from Λ2V .
The spectral cover C10 is singular along a codimension one locus and M may fail to
be a line bundle there. This singular locus intersects Σ′ in a finite number of points so
M |Σ′ may also fail to be a line bundle. Nevertheless because the holonomy group is SU(5)
rather than U(5), the anti-symmetric sits in SU(10) rather than U(10), and we may again
decompose

c1(M) = −
1

2
(c1(C10) − p∗C10

c1(B2)) + λ′ κ (3.36)

where κ is a class in H1,1(C10) with pC10 ∗κ = 0, and λ′ is a (half-)integer. Since M is
not a line bundle, its first Chern class is somewhat ambiguous, but with the appropriate
definition this formula should be satisfied. The G-flux constructed from λ′ κ should be
the same as the G-flux constructed from the class λ γ on the spectral cover associated
to the fundamental representation. Thus the difference between the 7-brane fluxes on
the F -theory side should be given by λ′ κ|Σ′. Following our previous arguments then, the
cohomology groups on both sides of the duality simplify to

Hp−1(Σ′, Lλ′

κ ⊗K
1/2
Σ′ ) (3.37)

for p = 1, 2, where Lκ satisfies c1(Lκ) = κ|Σ′.

We can also check that the chiral spectrum from coincident 7-branes agrees with the
chiral spectrum computed on the heterotic side. The Freed-Witten shift can be ignored
in this case because the branes are wrapped on the same four-cycle. On the heterotic side
we have a reducible spectral cover consisting of multiple copies of σB2

, together with the
bundle Ra(E) on it. The sheaf σB2∗Ra(E) is the Fourier-Mukai transform18 of the bundle

18This differs slightly from some of the literature because we included a factor of KB2
in our Poincaré

sheaf P (3.12).
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V = π∗Ra(E) on Z, so the heterotic answer in this case is

Hp(Z, π∗Ra(E)) = Extp(OZ , π
∗Ra(E))

= Extp(σB2∗OB2
, σB2∗Ra(E))

∼ Hp(B2, Ra(E)) ⊕Hp−1(B2, Ra(E) ⊗KB2
) (3.38)

Here we used the fact that the Fourier-Mukai transform preserves the Ext groups. Again
this agrees with what we obtained in F -theory.

Finally, me may check that the Yukawa couplings computed on both sides must agree.
After Fourier-Mukai transform, the Yukawa couplings on the heterotic side take the same
form as (2.50):

∫

B2

dabcA
a ∧ Ab ∧ Φc (3.39)

Here Φ takes values in KB2
on both sides of the duality. Further, the procedure we have

given for computing the wave functions of A0,1 and Φ2,0 on B2 only used B2 itself, the
data of where on B2 gauge symmetry gets enhanced (i.e. the matter curves), and the
fluxes on the matter curves. Thus we manifestly end up with the same wave functions on
B2, and the Yukawa couplings must agree as well.

3.3. Classical moduli stabilization with G-fluxes

We would like to briefly discuss the behaviour of the flux superpotential under F -
theory/heterotic duality. Recall that on the F -theory side we had

Wflux =
1

2π

∫

Ω4,0 ∧ G (3.40)

and further, classically we had a set of D-terms

J ∧ G = 0 (3.41)

Note that this does not provide a potential for the volume modulus, because if J ∧G = 0,
then xJ ∧ G = 0 for all x. However this equation is not protected and will receive
corrections.

Now consider F -theory on K3. First note that it is not possible to turn on any internal
fluxes, since K3 has only even dimensional harmonic forms and flux proportional the
volume form of K3 is forbidden. Moreover a G-flux that lives purely in eight-dimensions
does not exist in F -theory. So all G-fluxes can be interpreted as gauge field fluxes for the
18 + 2 gauge fields in eight dimensions19. Similarly, the Ω(4,0) form must be decomposed

19This includes the possibility of fluxes for the NS and RR three-forms.
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into the internal (2, 0) form of the K3 and a (2, 0) form in eight dimensions. The flux
superpotential reduces to the natural pairing of this (2, 0) form and the 18 + 2 abelian
fluxes. This data can be further fibered over a base B2.

Analogously, in the heterotic string in ten dimensions we have the superpotential:

W =

∫

Ω3,0 ∧ (H + i dJ) +

∫

Ω3,0 ∧ ω3(A), (3.42)

where dJ 6= 0 allows for the possibility of torsion [48, 49], and ω3(A) is the holomorphic
Chern-Simons form

ω3(A) = ǫīj̄k̄(Aī∂j̄Ak̄ +
2

3
AīAj̄Ak̄) (3.43)

It simply reduces to ǫīj̄k̄AīFj̄k̄ for abelian gauge fields. After compactification on T 2, we
can turn on certain fluxes corresponding to ∂λgµν or ∂λBµν with two indices on the T 2,
or Fµν with one index on the T 2. However this corresponds to varying the Narain moduli
over the eight-dimensional space-time and the same data exists on the F -theory side also
as we have discussed, but is not interpreted as G-flux. Flux of type Fµν with two indices
on the T 2 might be allowed a priori, but is of type (1, 1) and the superpotential doesn’t
depend on it. The remaining fluxes can be interpreted as fluxes for the 18+2 gauge fields
in eight dimensions coming from the Cartan of E8 × E8 and from modes of the metric
and B-field on T 2. The (3, 0) form reduces to a (2, 0) form in eight dimensions, and from
reduction of the ten-dimensional superpotential we get a pairing between this (2, 0) form
and the 18 + 2 fluxes. The data can be further fibered over B2. Thus it seems that the
flux superpotentials match naturally under duality.

This brings up the following issue: the moduli of the heterotic bundle V translate
into Wilson lines on the spectral cover, which generically do not exist, and deformations
of the spectral cover. Such bundle moduli are flat directions for the holomorphic Chern-
Simons superpotential, and so they are not stabilized perturbatively. Analogously on the
F -theory side, varying the flux superpotential we find that

0 = DW =
1

2π

∫

S2

Φ2,0 ∧ F + . . . (3.44)

Again, once the complex structure of B3 is adjusted so that F0,2 = 0 (or more precisely
G1,3 = 0), the 7-brane moduli (which look like additional complex structure moduli of
Y4 of the form Φ2,0 ∧ ω) are still not stabilized. So the KKLT procedure would not be
sufficient for duals of heterotic models, at least near the stable degeneration limit.

The heterotic string also has a set of D-terms F ∧ J ∧ J = 0 in ten dimensions. In
eight dimensions we get a term J ∧ F = 0 where F are E8 fluxes. Compatibility with
T -duality suggests there should be such a term for all 18 + 2 fluxes.
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3.4. Non-perturbative corrections to the superpotential

The classical superpotential in F -theory does not receive corrections to any order
in perturbation theory, however it may receive non-perturbative corrections due to D-
instantons. Let us discuss the possibilities and their heterotic analogues. Our discussion
is similar to [50].

The easiest way to get the correspondence is to follow BPS states across a chain of
dualities in seven dimensions:

F-theory/K3 × S1
R = M-theory/K3 = Heterotic/T 3

which we will further compactify to four dimensions by fibering over a base B2 and taking
R → ∞. Let us first consider the equivalence on the left. We could get non-trivial
instanton effects from M2-branes wrapping a three-cycle which includes one of the circles
of the T 2. These would correspond to instantons made of (p, q) strings on the F -theory
side. Such three-cycles are rare however. If the three-cycle lives in B3 completely then
the instanton will have infinite action as R → ∞. Therefore we can concentrate on the
M5-branes. An M5-brane wrapped on K3 gets mapped to a D3-brane wrapping the P1

base of the K3, and we can wrap it on an additional curve α2 ⊂ B2 to get an instanton.
The other option is to wrap the M5-brane on the T 2 fiber of the K3 and some additional
four-cycle α4 which does not contain the P1-base of the K3. This gets mapped to a
D3-brane instanton which wraps the four-cycle α4. If this coincides with the location of
gauge 7-branes and if the bundles on the four-cycle also agree, such instantons may be
interpreted as gauge theory instantons.

Now we consider the equivalence on the right. The M2-brane instantons, if they exist,
get mapped to instanton versions of Dabholkar-Harvey states, whose worldline wraps
a (possibly trivial) one-cycle in B2. This includes ordinary worldsheet instanton effects
obtained from wrapping a string worldsheet on a geometric curve. An M5-brane wrapped
onK3 gets mapped to the heterotic fundamental string. AnM5-brane wrapping any other
cycle of the K3 gets mapped to an NS5-brane wrapping some cycle in T 3. Therefore, the
D3-instantons wrapping α2×P1 get mapped to worldsheet instantons wrapping α2 in the
heterotic string, and the D3-instanton wrapping α4 get mapped to space-time instanton
effects in the heterotic string.

The rules for D-instanton calculus in type IIb backgrounds have recently been clarified
[51, 52], using the concept of ‘Ganor strings’ [53], which give collective coordinates of the
instanton. We note that the spectrum of Ganor strings and their interactions may be
calculated with the methods in this paper.
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4. Examples with GUT groups

In this section we consider some three generation SU(5) and SO(10) models. One may
easily come up with some models by lifting from the heterotic literature and translating
into F -theory language. There are two basic problems with these examples. Firstly as we
discussed the G-flux we turn on is not primitive, so the classical D-terms are not satisfied
in the regime of validity of F -theory. Secondly, one still has to invent a mechanism to
break these GUT groups to the Standard Model gauge group. Nevertheless we think these
examples are useful to illustrate the ideas.

4.1. Example with SU(5) gauge group

We take a DP9 fibration over a base B2, and denote by NB2
the normal bundle for B2

in B3, with Chern class c1(NB2
) = −t (for ‘historical’ reasons [24]). We use s to denote a

coordinate on the normal bundle. In section 2 the singularity was located at v = 0 and
v/u can be taken the coordinate on the normal bundle. Comparing the line bundles, we
see that NB2

= K6
B2

⊗ N|σB2
and hence t = 6c1(B2) − η. The Weierstrass equation for

DP9 is of the form

y2 = x3 + f x+ g (4.1)

where f and g are sections of K−4
B3

and K−6
B3

respectively. Near σ(B2) we have KB3
∼

KB2
⊗N−1

B2
and we can expand the Weierstrass equation

y2 = x3 + x

4
∑

i=0

f4c1+(i−4)t s
i +

6
∑

j=0

g6c1+(j−6)t s
j (4.2)

The f4c1−nt are sections of a line bundle over B2 with Chern class 4 c1(B2) − n t, and the
g6c1−nt are sections of line bundles with Chern class 6 c1(B2) − n t. In order to specify an
SU(5) singularity along B2, we need a section of the projective space bundle WSU(5) → B2

with fibers

MSU(5) = WP4
(1,1,1,1,1) (4.3)

That is, we need to specify five sections of line bundles with appropriate Chern classes as
discussed in section 2. In [22] these sections are denoted as

hc1−t, H2c1−t, q3c1−t, f4c1−t, g6c1−t (4.4)

The f ’s and g’s are expressed in terms of these five sections as [22]

g6c1−6t ∼ h6
c1−t, f4c1−4t ∼ h4

c1−t, . . . (4.5)
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The full expressions may be found in appendix D of [54], but will not be needed here.
Near σB2

, i.e. to leading order in s, the discriminant locus can be expressed as [22]

∆ ∼ s5 h4
c1−t P8c1−3t + O(s6), f ∼ h4

c1−t, g ∼ h6
c1−t (4.6)

where P is a section of a line bundle with c1 = 8c1(B2) − 3t. Using the Kodaira clas-
sification, the zero locus of hc1−t, denoted by Σ, then corresponds to an enhancement
from SU(5) → SO(10), so anti-symmetric matter is localized here. The zero locus of
P8c1−3t, denoted by Σ′, corresponds to the enhancement SU(5) → SU(6), so this is where
fundamental matter is localized.

As an example [55], let us take B2 to be a DP8 surface, and η = 6c1(B2). Then there
exist holomorphic sections (4.4) with the required Chern classes, so the spectral cover
exists, and [Σ] = η − 5c1(B2) = c1(B2) is effective, in fact it is just the canonical class
(which is an elliptic curve). The net number of generations is given by

Ngen = −λη · (η − 5c1(B2)) = −6λ (4.7)

so taking λ = −1
2

we get three generations.

4.2. Examples with SO(10) gauge group

We can repeat much of the discussion for SU(5) with few changes. Again we consider
the Weierstrass equation

y2 = x3 + x

4
∑

i=0

f4c1+(i−4)t s
i +

6
∑

j=0

g6c1+(j−6)t s
j (4.8)

In order to get an enhanced SO(10) symmetry for s = 0, we need to specify a section of
the weighted projective bundle W → B2 with fiber

MSU(4) = WP3
(1,1,1,1) (4.9)

That is we need to specify four sections

h2c1−t, q3c1−t, f4c1−t, g6c1−t (4.10)

The f ’s and g’s are recovered as

f4c1−2t ∼ h2
2c1−t, g6c1−3t ∼ h3

2c1−t, g6c1−2t = q2
3c1−t − f4c1−th2c1−t (4.11)
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The leading terms in s are

∆ = s7h3
2c1−tq

2
3c1−t + O(s8), f ∼ s2h2

2c1−t, g ∼ s3h3
2c1−t (4.12)

The 16’s are localized at h2c1−t = 0 where the symmetry is enhanced to E6, and the 10’s
are localized at q3c1−t = 0 where the symmetry is enhanced to SO(12).

As an example (not present in the literature as far as we know), let us take the base
to be any Del Pezzo surface with at least two −1-curves, denoted E1 and E2, and take
η = 4c1(B2) + H − E1 − E2 where H is the hyperplane class. Then there exist sections
(4.10) with the required Chern classes, and

Ngen = −λη · (η − 4c1(B2)) = −3λ (4.13)

so we can take λ = −1.
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5. Breaking the GUT group to the SM

So far we have discussed how to engineer GUT groups. To get a realistic model however
we need some way to break the GUT group to the SM gauge group. As is well-known,
it is typically hard in string theory to obtain representations that are large enough to
achieve this. For instance in the heterotic string let’s suppose we would like to get four-
dimensional fields in the adjoint representation of the GUT group. These would originate
from Wilson lines on the Calabi-Yau. But on manifolds of SU(3) holonomy there are no
harmonic one-forms, so in this setting we cannot get any four-dimensional fields in the
adjoint of the GUT group.

On the F -theory side, we could get adjoint matter in four dimensions from zero modes
of the gauge field or of the adjoint field of the eight-dimensional gauge theory. In duals of
the heterotic string, the gauge 7-brane is wrapped on a base B2 which has h0,1 = h2,0 = 0,
hence we get no such zero modes. In order to get adjoint fields we must wrap our gauge
brane on a surface of general type. Presumably the DP9 fibered models with B2 of general
type provide a local model for such constructions, but it is not so clear to us if this can
be embedded in a compact Calabi-Yau.

Another idea, which was already considered in the early days of heterotic model build-
ing (see eg. [41]), is to turn on certain U(1) fluxes. We have essentially already seen this
in the context of coincident branes. For instance in the case of an SU(5) model, we could
turn on an internal flux on σB2

for the gauge field that corresponds to hypercharge. The
commutant of this U(1) in SU(5) is clearly SU(3) × SU(2) × U(1). However turning on
such a flux will typically spoil gauge coupling unification. As we discussed earlier, the
U(1) generator whose flux is turned on will swallow an RR axion and become massive.
This can be avoided by turning on a U(1) flux in the same cohomology class in the hidden
sector. The axion then couples to the sum of these U(1)’s, and the difference will remain
massless. As discussed in [41], because hypercharge is now a linear combination of the
‘original’ hypercharge generator and a U(1) in the hidden sector, the model is not truly
unified and this mechanism would typically change the relation of the U(1) coupling to
the SU(2) and SU(3) couplings at the GUT scale20.

A third approach for breaking the GUT group, which does not have the usual baggage
of four-dimensional GUTs and has the cleanest phenomenological features, is to use dis-
crete Wilson lines. Namely if B2 admits a non-trivial fundamental group, then we could
turn on a discrete G-flux, or we could fiber the DP9 over B2 in such a way that the GUT
group is globally broken to the Standard Model group. Unfortunately if we restrict to
the usual B2 for which we know how to embed in a compact Calabi-Yau, then the only
allowed B2 which has non-trivial fundamental group is the Enriques surface, which does

20On the other hand, such a coupling to the hidden sector provides an interesting possibility for
mediation of SUSY breaking [56].
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not lead to consistent models due to lack of stability in the hidden sector21.

This raises a puzzle though. On the heterotic side one may construct elliptically
fibered three-folds with a finite fundamental group. These three-folds do not have a
section, only a multi-section. However they are quotients of elliptically fibered Calabi-
Yaus with a section, so we can construct the F -theory dual of the cover. What does the
automorphism get mapped to?

Consider a freely acting involution τ from the elliptically fibered three-fold to itself.
Then τ can be decomposed as

τ = tξ ◦ α (5.1)

where α maps the zero section of the elliptic fibration to itself and tξ is translation by a
section ξ different from σB2

. The automorphism α induces an involution αB2
on the base

B2 which necessarily has fixed points. Now tξ acts trivially on the Wilson lines on each
T 2 fiber, so it does not appear to induce any action on the dual T 2 or the DP9 surface
constructed from the dual T 2 and the Wilson lines of the E8 bundle. Therefore the action
of τ on the heterotic side seems to induce only the action of αB2

on the F -theory side,
which has fixed points, and we would have to understand how to deal with the fixed
points.
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Appendix A: Spinors and complex geometry

In this appendix we would like to review some properties of spinors on complex man-
ifolds. We will not be very rigorous; instead we will use the fastest route available. See
[57] for a more thorough treatment.

Let us first consider one-dimensional complex spaces. We define a spinor to be an
object which gets mapped to minus itself under a 2π rotation on every holomorphic
tangent plane. This identifies it as a section of the bundle S = T−1/2 ⊕ T 1/2 where T is
the holomorphic tangent bundle. Under a rotation by π (i.e. a reflection z → −z) spinors
transform by ±i. The sign is called its chirality. The bundle T−1 is also known as K, the
canonical bundle. Moreover if we have a Kähler metric then we can identify T with the
bundle of (0, 1) forms Ω(0,1) by mapping sections as f z ∂z → f zgzz̄ dz̄. Therefore we can
also write

S = K1/2 ⊕ Ω(0,1)(K1/2). (A.1)

The Dirac operator 6D is a first order operator whose square is the Laplacian with positive
eigenvalues and interchanges positive and negative chirality spinors. This identifies it as
∂̄+ ∂̄†. We can also couple the spinors to additional gauge fields. Thus we write the Dirac
operator as

6D =

(

0 −∂z + Az

∂̄z̄ + Az̄ 0

)

(A.2)

We can generalize this to higher dimensions by using a splitting principle. That is we
decompose the holomorphic tangent bundle for a complex n-fold formally into a sum of
n line bundles and tensor the corresponding spinor bundles together. For instance on a
complex three-fold we would decompose T = T1 ⊕ T2 ⊕ T3 and tensor the T

−1/2
i ⊕ T

1/2
i

together. The result, after reconstructing representations of the full U(n) holonomy, is

S+ =
∑

p even

Ω(0,p)(K1/2) S− =
∑

p odd

Ω(0,p)(K1/2) (A.3)

The Dirac operator is then formally thought of as the sum of the Dirac operators associated
to each Ti.

Appendix B: Branes and twisted Yang-Mills-Higgs theory

In this appendix we briefly review the Yang-Mills theories living on branes in string
theory, with an emphasis on curved embeddings of the brane in space-time.

The collective coordinates of Dp-branes are are given by the field content of maximally
supersymmetric Yang-Mills theory in p+1 dimensions. They may all be obtained by start-
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ing with N = 1 Yang-Mills theory in ten dimensions and reducing it to p+ 1 dimensions.
For applications to F -theory we would like to understand how to reduce ten-dimensional
Yang-Mills theory to a complex submanifold denoted B. The ten-dimensional action is
of the form

∫

d10x −
i

2g2
Tr(ψ̄ 6Dψ) −

1

4g2
Tr(FµνF

µν) (B.1)

To do the reduction we again use the splitting principle and express the tangent bundle
as T = T1 ⊕ T2 ⊕ N1 ⊕ TR1,3, taking the case of a 7-brane wrapped on a surface in
a three-fold as an example. Every component of the ten-dimensional gauge field with
an index in the normal direction is replaced by an adjoint valued section of the normal
bundle, Az̄ → gzz̄Φ

z. Spinors now becomes sections of

(T
− 1

2

1 ⊕ T
1

2

1 ) ⊗ (T
− 1

2

2 ⊕ T
1

2

2 ) ⊗ (N
− 1

2

1 ⊕N
1

2

1 ) =
∑

p

Ω(0,p)(K
1/2
B ) ⊗ (N

− 1

2

1 ⊕N
1

2

1 ) (B.2)

tensored with four-dimensional spinors. Thus in a straightforward reduction, the R-
symmetry group is identified with the structure group of the normal bundle. As we
discuss in the main text, a proper analysis of the collective coordinates of the soliton
shows that this is not necessarily the correct bundle; for 7-branes, we have to replace N1

by KB. The ten-dimensional gaugino variation is of the form

δψ ∼ FµνΓ
µνǫ, (B.3)

which we can also reduce to eight dimensions:

δψ ∼
(

FµνΓ
µν + 2DµΦaΓ

µa + [Φa,Φb]Γ
ab

)

ǫ (B.4)

The F -terms and D-terms of the effective four-dimensional gauge theory can be read off
from the right-hand side. In particular the F -terms come from the lack of integrability of
D̄ = ∂̄+A0,1 +Φ. Preservation of supersymmetry thus requires D̄2 = 0. By decomposing
we get the following equations:

F 0,2 = 0, ∂̄Φ + [A0,1,Φ] = 0, [Φ,Φ] = 0 (B.5)

If A0,1 = 0, then Φ is a holomorphic section of the bundle whose structure group is the
R-symmetry; more generally it is a holomorphic section of this bundle tensored with
the gauge bundle. This form of the Dirac operator was used in section 2. For a more
mathematical perspective see [58, 59].
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Appendix C: Non-primitiveness of Gγ

In this appendix we would like to calculate π∗JB2
∧Gγ and J0 ∧Gγ , where Gγ is the

G-flux dual to the γ-class on the heterotic spectral cover.

We first fix the notation:

π : Y4 → B3 elliptic fibration

σ : B3 → Y4 the section

ρ : B3 → B2 P 1 fibration

Z ⊂ Y4 π−1 of a section of ρ.

p : Y4 → B2 dP9 fibration.

πC : C → B2 the heterotic spectral cover

pR : R → C the “cylinder”, or union of lines in the dP8
′s

(i.e. sections of dP9
′s, disjoint from σ) parametrized

by points of C.

j : (C = R ∩ Z) ⊂ R the inclusion “at infinity”

i : R →֒ Y the natural inclusion.

(C.1)

and finally

G = i∗p
∗
Rγ ∈ H4(Y,Z) : the G−flux obtained from γ. (C.2)

Our claims are that the G-flux is orthogonal to any class p∗(JB2
) in the image of

p∗ : H2(B2,Z) → H2(Y,Z), but not to π∗J0 where J0 is a class in H2(B3) not in the
image of ρ∗ : H2(B2) → H2(B3).

For the first claim:

G ·Y p
∗(JB2

) = i∗p
∗
Rγ ·Y p

∗(JB2
)

= i∗[p
∗
Rγ ·R i

∗p∗(JB2
)]

= i∗[p
∗
Rγ ·R p

∗
Rπ

∗
C(JB2

)]

= i∗[p
∗
R(γ ·C π

∗
C(JB2

)]

= deg(πC) i∗[p
∗
R(πC∗γ ·B2

JB2
)]

= deg(πC) i∗[p
∗
R(0 ·B2

JB2
)]

= 0. (C.3)

For the second claim, we may as well take J0 to be the class in H2(B3) of the divisor
B2, so π∗J0 is the class in H2(Y ) of the divisor Z. Then:

G ·Y π
∗(J0) = i∗p

∗
Rγ ·Y π

∗(J0)

= i∗(p
∗
Rγ ·R i

∗π∗(J0))
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= i∗(p
∗
Rγ ·R i

∗[Z])

= i∗(p
∗
Rγ ·R [j(C)])

= i∗(j∗[γ]). (C.4)

So we need to show that the image of γ ∈ H2(C) under the composition

i∗ ◦ j∗ : H2(C) → H4(R) → H6(Y ) (C.5)

is non-zero. This follows from injectivity of the composed map on the span S of the
classes of interest to us, namely the class of the matter curve Σ ⊂ C and the image of
H2(B2). Since the intersection pairing of C is non degenerate on S, this is equivalent to
surjectivity of the dual map H2(Y ) → H2(R) → H2(C) onto S. But the image of H2(B2)
in H2(Y ) clearly goes isomorphically to the image of H2(B2) in H2(C), while the divisor
σ = σ(B3) in Y clearly goes to the matter curve Σ in H2(B2).

So the conclusion is: the G-flux is orthogonal to Kähler classes from the base B2, but
not to J0.
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