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1. Introduction

In recent years a wealth of information has become available about general gaugings of

supergravity. In particular, it has become clear that these theories may play an essential

role in probing and exploring M-theory beyond the supergravity approximations considered

so far. The key ingredient in these developments is the so-called embedding tensor, which

defines the embedding of the gauge group generators (up to possible central extensions) in

the rigid symmetry group, which for the maximal supergravities is the duality group that

arises upon dimensional reduction of eleven-dimensional or ten-dimensional (IIB) super-

gravity. With the embedding tensor at hand, all gauged supergravities in various space-time

dimensions can now be classified.

The first maximal gauged supergravity, N = 8 supergravity in four space-time dimen-

sions with compact gauge group SO(8), was constructed in [1], soon followed by similar

gaugings in maximal supergravity in D = 5 [2] and D = 7 [3] dimensions. Also D = 4 gaug-

ings with non-compact versions of SO(8) and contractions thereof were found to exist [4].

Although these results eluded a more systematic understanding for a long time, there were

hints of a deeper group-theoretical structure underlying these constructions, and linking

the existence of gauged supergravities to certain higher-dimensional representations of the

duality groups En(n): it was known already in 1984 that the so-called T -tensor of N = 8

supergravity (essentially a ‘dressed’ version of the embedding tensor) belongs to the 912

representation of E7(7) [5]. The latter group is the invariance group of (ungauged) maximal

supergravity in D = 4 dimensions [6].

The more recent developments allowing for a much more systematic exploration of

gauged supergravities go back to the discovery of maximal gauged supergravities in three

space-time dimensions [7 – 9], and it was in this context that the notion of embedding
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tensor was first introduced. The case of three space-time dimensions is special because

all higher-rank tensor fields present in higher dimensions have been dualized away in the

dimensional reduction of D = 11 supergravity [10] to three dimensions, such that all

propagating degrees of freedom can be described by scalar fields. An immediate puzzle

then (and the reason why these theories had not been found earlier) was the question how

to gauge a theory that apparently does not have any vector fields left from the dimensional

reduction. This puzzle was finally resolved in [7, 8] by introducing a set of 248 ‘redundant’

vector fields transforming in the adjoint representation of E8(8); rather than through the

standard Yang-Mills kinetic term, these gauge fields appear with a Chern-Simons term in

the Lagrangian, ensuring that the number of physical degrees of freedom in the theory

remains the same as before.

The systematic investigation of gauged supergravities in dimensions D ≥ 4 by means

of the embedding tensor was initiated in refs. [11, 12], following the discovery of a new

maximal gauged supergravity in [13] based on Scherk-Schwarz compactification [14] of

D = 5 supergravity. This systematic analysis has meanwhile led to a complete classification

of gauged maximal supergravities in D = 5 [15], D = 7 [16], and, finally, D = 4 [17] and

D = 6 [18] (the situation in an even number of dimensions is more complicated because the

duality group is only a symmetry of the equations of motion, but not of the Lagrangian).

In particular, it can be shown that the known examples of gauged supergravities (including

more recent constructions such as [19 – 28]) can all be accommodated within the systematic

approach based on the embedding tensor. Most recently, gaugings of maximal supergravity

in D = 2 were constructed in [29] — this case being more exotic because the relevant duality

group E9 is infinite dimensional.

The appearance of ‘redundant’ vector fields in D = 3 gauged supergravities and the

(long known) fact that the consistent gauging of maximal supergravity in D = 5 [2] requires

the simultaneous use of vector fields and 2-form potentials, has led to the conclusion that a

systematic understanding of gauged supergravities makes the consideration of higher-rank

tensor fields unavoidable [30]. As pointed out there, and as will be analyzed in further

detail in the present paper, gauged supergravities can be consistently and systematically

formulated by introducing a hierarchy of anti-symmetric tensor fields. The analysis at this

point is independent of the number of space-time dimensions, and the hierarchy contains

in principle an infinite number of anti-symmetric tensors of any rank. Of course, once

the space-time dimension is fixed to some integer D, the maximal rank is also fixed to D.

Maintaining the correct number of propagating degrees of freedom in the presence of these

extra fields requires a subtle interplay of ordinary gauge invariance and higher-rank tensor

gauge transformations. For non-zero gauge coupling the physical degrees of freedom reside

in a finite number of the tensor fields and it is the embedding tensor that determines how

these degrees of freedom are distributed over the various tensor fields. Here it is important

to note that, in the presence of gauge interactions, the possibility for converting rank-p to

rank-(D − p − 2) tensors fields is severely restricted. When the gauge coupling constant

vanishes the hierarchy can in general be truncated.

In an important and independent development [31 – 34], following earlier papers [35,

36], it has been shown that the relevant representations of all higher-rank tensors fields
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can also be obtained via a level decomposition of the indefinite Kac-Moody algebra E11

(if one omits the D-forms, these representations can be equivalently derived from the

hyperbolic Kac-Moody algebra E10). In order to arrive at this decomposition, one first

selects a ‘disabled’ node in the Dynkin diagram, and then decomposes the algebra in

representations of the remaining finite dimensional subgroups of E11, all of which are direct

products SL(D) × E11−D where D ≥ 3 denotes the number of uncompactified space-time

coordinates. Remarkably, it turns out that the low-lying representations in that analysis

coincide with the representations found here by a completely different route. However,

one should keep in mind that ‘higher up’ in the level decompositions of E10 and E11 there

opens up a terra incognita of an exponentially growing spectrum of representations of

ever increasing size and complexity, whose ultimate role and significance remain to be

understood.

What is the physical significance of these results? As we will argue here, the existence

of these gauged supergravities constitutes direct evidence for new M-theoretic degrees of

freedom beyond the known maximal supergravities in space-time dimensions D ≤ 11 (and

possibly also beyond string theory as presently understood). This feature is most evident

for D = 3 gauged supergravities with semi-simple gauge groups: none of these theories

can be obtained from higher-dimensional supergravity by conventional (Kaluza-Klein or

Scherk-Schwarz) compactification. Our claim is supported by the fact that several of

the ‘exotic’ representations of the duality groups exhibited here have also been found to

occur in toroidally compactified matrix theory [37, 38], as well as in the context of del

Pezzo surfaces and compactified M-theory [39]. The process of gauging a given maximal

supergravity can thus be interpreted as the process of ‘switching on’ such new degrees of

freedom, which are here encoded into the embedding tensor. A special role is played by the

(D−1)- andD-forms: we will set up a Lagrangian formulation of three-dimensional maximal

supergravity containing all higher-rank antisymmetric tensor fields with an initially space-

time dependent embedding tensor Θ(x), in such a way that the (D−1)- and D-forms,

respectively, impose the constancy of Θ, and the closure of the corresponding gauge group.

Alternatively, one can eliminate the field Θ which appears at most quadratically in the

Lagrangian by means of its equations of motion, thereby arriving at a Lagrangian that

contains the higher-rank tensor fields in a non-polynomial fashion. Gauging would then

be realized as a kind of spontaneous symmetry breaking,1 and equivalent to the process

of certain D-form field strengths acquiring vacuum expectation values. In this way, the

different maximal gauged supergravities can be interpreted as different ‘phases’ of one and

the same Lagrangian theory.

Finally, we should stress that we consider the deformations mainly from the point of

view of setting up a consistent gauging. On the other hand, additional deformations are

sometimes possible, generated by singlet components in the ‘descendants’ of the embedding

tensor (which, presumably, could induce additional non-singlet terms higher up in the

hierarchy). The embedding tensor by definition specifies how the gauge group is embedded

in the duality group, but it also encodes many of the interactions of the tensor fields. At

1This terminology clearly differs from the usual one, and should thus be understood cum grano salis.

– 3 –



J
H
E
P
0
2
(
2
0
0
8
)
0
4
4

the level of these tensor interactions the embedding tensor may be able to accomodate

additional components which will still fit into the hierarchy. A well-known example of this

phenomenon is the Romans massive deformation of ten-dimensional IIA supergravity [40],

which is induced by a nine-form potential. We will comment on this in due course.

This paper is organized as follows. In section 2 we discuss the hierarchy of tensor gauge

fields in a general context. In section 3 we discuss the relation with M-theory degrees of

freedom. In section 4 we determine the duality representations of the tensor fields in three

space-time dimensions. The corresponding supersymmetry algebra is discussed in section 5

and the general Lagrangian for gauged three-dimensional maximal supergravity in section 6.

Results of the present investigation have already been announced and discussed by us in

several talks.2

2. A hierarchy of vector and tensor gauge fields

Maximal supergravities in various space-time dimensions can be constructed by dimensional

reduction on a torus of supergravity in eleven and/or ten space-time dimensions. In general

these theories contain abelian vector fields and antisymmetric tensor fields of various ranks.

Their field content is not unique as p-rank tensor gauge fields can be dualized to tensor

fields of rank D − p − 2, where D denotes the dimension of space-time of the reduced

theory. However, there always exists an optimal choice of the field configuration that most

clearly exhibits the invariance under a duality group G. This group is listed for space-

time dimensions D = 3, . . . , 7 in the second column of table 1. The symmetry under

the G-transformations is realized non-linearly in view of the fact that the scalar fields

parametrize a G/H coset space, where H is the R-symmetry group of the corrresponding

supersymmetry algebra. This group equals the maximal compact subgroup of G and it is

also listed in table 1. In general the vector and antisymmetric gauge fields transform in

specific representations of G.3 The vector fields, which we denote by Aµ
M, transform in

the fundamental or in a spinor representation of G. These representations are (implicitly)

listed in table 1, as we will explain below. The generators in these representations are

denoted by (tα)M
N , so that δAµ

M = −Λα(tα)N
MAµ

N . Structure constants fαβ
γ of the

duality group are defined according to [tα, tβ ] = fαβ
γ tγ .

Deformations of these maximal supergravities can be constructed by introducing a

non-abelian gauge group, which must be a subgroup of the duality group. The dimension

of this gauge group is obviously restricted by the number of vector fields in the theory. The

discussion in this section will remain rather general and will neither depend on the actual

duality group nor on the space-time dimension (we recall, however, that there may be sub-

tleties in even space-time dimensions related to selfduality of vector or tensor gauge fields).

We refer to [15 – 17] where a number of results were described for maximal supergravity in

various dimensions.

2See, for instance: http://ggi-www.fi.infn.it/activities/workshops/stringM/talks/dewit.pdf;

http://maths.dur.ac.uk/events/Meetings/LMS/2007/TSAS/Talks/dewit.pdf
3In even space-time dimensions this assignment may fail and complete G representations may require

the presence of magnetic duals. For four space-time dimensions, this has been demonstrated in [41].
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D G H Θ

7 SL(5) USp(4) 10× 24 = 10 + 15 + 40 + 175

6 SO(5, 5) USp(4) × USp(4) 16× 45 = 16 + 144 + 560

5 E6(6) USp(8) 27× 78 = 27 + 351 + 1728

4 E7(7) SU(8) 56× 133 = 56 + 912 + 6480

3 E8(8) SO(16) 248 × 248 = 1 + 248 + 3875 + 27000 + 30380

Table 1: Decomposition of the embedding tensor Θ for maximal supergravities in various space-

time dimensions in terms of irreducible G representations [11, 30]. Only the underlined representa-

tions are allowed by supersymmetry. The R-symmetry group H is the maximal compact subgroup

of G.

The gauge group generators XM, which will couple to the gauge fields Aµ
M in the

usual fashion, are obviously decomposed in terms of the independent G generators tα, i.e.,

XM = ΘM
α tα . (2.1)

The gauging is thus encoded in a real embedding tensor ΘM
α belonging to the product of

the representation conjugate to the representation in which the gauge fields transform and

the adjoint representation of G. This product representation is reducible and decomposes

into a number of irreducible representations as is indicated for the cases of interest in the

last column of table 1. However, as is also shown in the table, supersymmetry requires

most of these irreducible representations to be absent: only the underlined representations

in the table are compatible with local supersymmetry. Actually, for non-supersymmetric

theories one may have to impose similar constraints (see, e.g. [41]). This constraint on the

embedding tensor is known as the representation constraint. Here we treat the embedding

tensor as a spurionic object, which we allow to transform under the duality group so that

the Lagrangian and transformation rules remain formally invariant under G. At the end

we will freeze the embedding tensor to a constant, so that the duality invariance will be

broken. Later in this paper we see that this last step can also be described in terms of a

new action in which the freezing of ΘM
α will be the result of a more dynamical process.

The embedding tensor must satisfy a second constraint, the so-called closure constraint,

which is quadratic in ΘM
α and more generic. This constraint ensures that the gauge

transformations form a group so that the generators (2.1) will close under commutation.

Any embedding tensor that satisfies the closure constraint, together with the representation

constraint mentioned earlier, defines a consistent gauged supergravity theory that is both

supersymmetric and gauge invariant. To spell out the closure constraint in more detail let

us write out (2.1) once more, but now with representation indices in the G-representation

pertaining to the gauge fields written out explicitly, viz.

XMN
P ≡ ΘM

α (tα)N
P = X[MN ]

P + ZP
MN (2.2)

where we will use the notation

ZP
MN ≡ X(MN )

P , (2.3)
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for the symmetric part throughout this paper. The closure constraint is a consequence of

the invariance of the embedding tensor under the gauge group it generates, that is

δPΘM
α = ΘP

βtβM
NΘN

α + ΘP
βfβγ

αΘM
γ = 0 . (2.4)

Contracting this result with tα we obtain

[XM,XN ] = −XMN
P XP = −X[MN ]

P XP , (2.5)

Hence, the gauge invariance of the embedding tensor is equivalent to the closure of the gauge

algebra. It is noteworthy here that the generator XMN
P and the structure constants of the

gauge group are thus related, but do not have to be identical. In particular XMN
P is in

general not antisymmetric in [MN ], as is evident from (2.2). The embedding tensor acts

as a projector, and only in the projected subspace the matrix XMN
P is antisymmetric

in [MN ] and the Jacobi identity will be satisfied. Therefore (2.5) implies in particular

that X(MN )
P must vanish when contracted with the embedding tensor. In terms of the

notation introduced above, this condition reads

ΘP
α ZP

MN = 0 . (2.6)

The gauge invariant tensor ZP
MN transforms in the same representation as ΘM

α, except

when the embedding tensor transforms reducibly so that ZP
MN may depend on a smaller

representation. As may be expected the tensor ZP
MN characterizes the lack of closure of

the generators XM. This can be seen, for instance, by calculating the direct analogue of

the Jacobi identity,

X[NP
RXQ]R

M =
2

3
ZM

R[N XPQ]
R . (2.7)

We emphasize that seemingly strange features, such as the appearance of a symmetric

contribution inXMN
P , or the apparent violation of the Jacobi identity in (2.7), are entirely

due to the redundancy in the description: although the actual gauge group is usually

smaller than G, we nevertheless continue to label all matrices by G indices M, such that

the number of matrices XM in general will exceed the dimension of the gauge group. The

main advantage of this parametrization (and nomenclature) is its universality, which allows

us to treat all gaugings (and gauge groups) on the same footing.

Now we return to the field theoretic description. The gauging requires the replacement

of ordinary space-time derivatives by covariant ones for all fields except the gauge fields,

∂µ → Dµ = ∂µ − g Aµ
MXM , (2.8)

where the generator XM must be taken in the appropriate representation. To write down

invariant kinetic terms for the gauge fields one needs a suitable covariant field strength

tensor. This is an issue because the Jacobi identity is not satisfied. The standard field

strength, which follows from the Ricci identity, [Dµ,Dν ] = −gFµν
MXM, reads,

Fµν
M = ∂µAν

M − ∂νAµ
M + g X[NP]

MAµ
NAν

P , (2.9)
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and is not fully covariant. The lack of covariance can be readily checked by observing that

Fµν
M does not satisfy the Palatini identity 4; rather, we have

δFµν
M = 2D[µδAν]

M − 2g XM
(PQ)A[µ

P δAν]
Q , (2.10)

under arbitrary variations δAµ
M. Assuming the standard gauge transformation,

δAµ
M = DµΛM = ∂µΛM + gAµ

NXNP
MΛP , (2.11)

it follows that Fµν
M transforms under gauge transformations as

δFµν
M = gΛPXNP

MFµν
N − 2g ZM

PQA[µ
P δAν]

Q , (2.12)

which is not covariant — not only because of the presence of the second term on the right-

hand side, but also because the lack of antisymmetry of the structure constants XNP
M

prevents us from getting the correct result (cf. (2.20) below) by simply inverting the order

of indices NP in the first term on the right-hand side

In order to remedy this lack of covariance we now follow the strategy of [15, 30].

Since we know that closure is ensured on the subspace projected by the embedding tensor,

we introduce additional gauge transformations in the orthogonal complement so that all

difficulties associated with the lack of closure can be compensated for by performing these

new transformations. For the gauge fields, this leads to the following transformation rule,

δAµ
M = DµΛM − g ZM

NP Ξµ
NP , (2.13)

where the transformations proportional to Ξµ
NP enable one to gauge away those vector

fields that are in the sector of the gauge generators XMN
P where the Jacobi identity is

not satisfied (this sector is perpendicular to the embedding tensor by (2.6)). Note that

the parameter Ξµ
NP in (2.13) appears contracted with the constant tensor ZM

NP defined

in (2.3) as a linear function of the embedding tensor. It is important, that this tensor

generically does not map onto the full symmetric tensor product (NP) in its lower indices

but rather only on a restricted subrepresentation. In other words, there is a non-trivial

G-invariant projector P such that

ZM
NP = ZM

RS P
RS

NP , (2.14)

for any choice of the embedding tensor. The precise representation content of P can be

determined for any given theory by carefully inspecting (2.3) and we give examples of this

in the later sections (see also [30]). In order not to overburden the formulas with explicit

projectors, we denote the projection corresponding to (2.14) by the special brackets ||⌈NP⌋||,

i.e. we use the notation

A||⌈MAN⌋|| ≡ P
MN

RS A
RAS , etc. (2.15)

Similar notation will be used for other index combination that we will encounter shortly.

4That is, the standard relation δFµν
M = 2 D[µδAν]

M.
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The combined gauge transformations (2.13) generate a group on the vector fields, as

follows from the commutation relations,

[δ(Λ1), δ(Λ2)] = δ(Λ3) + δ(Ξ3) , (2.16)

where

Λ3
M = g X[NP]

M ΛN
2 ΛP

1 ,

Ξ3µ
MN = Λ

||⌈M
1 DµΛ

N⌋||
2 − Λ

||⌈M
2 DµΛ

N⌋||
1 . (2.17)

Here it is crucial that δ(Λ) and δ(Ξ) commute on the vector fields. However, these commu-

tators are subject to change when more fields will be introduced. We return to this issue

in due course.

Under the combined gauge transformations Fµν
M changes as follows,

δFµν
M = gΛPXNP

MFµν
N − 2g ZM

PQ

(

D[µΞν]
PQ + A[µ

P δAν]
Q

)

, (2.18)

which is still not covariant. The standard strategy [15, 30] is therefore to define modified

field strengths,

Hµν
M = Fµν

M + g ZM
NP Bµν

NP , (2.19)

where we introduce tensor fields Bµν
NP , transforming under G in the restricted represen-

tation (2.14) i.e. Bµν
NP = Bµν

||⌈NP⌋||. Actually the restricted index pair ||⌈MN⌋|| will play the

role of a new index belonging to a specific representation, and ZM
NP is an intertwining

tensor between the representations of the vectors and the two-forms. The gauge transfor-

mation rules of Bµν
MN will be chosen such that the field strengths Hµν

M will transform

covariantly under gauge transformations, i.e.,

δHµν
M = −gΛPXPN

M Hµν
N . (2.20)

To do this in a systematic manner we first define generic covariant variations of the

tensor fields,

∆Bµν
MN ≡ δBµν

MN − 2A[µ
||⌈MδAν]

N⌋|| , (2.21)

so that generic variations of Hµν
M take the form

δHµν
M = 2D[µδAν]

M + g ZM
NP ∆Bµν

NP . (2.22)

For a combined gauge transformation we choose for ∆Bµν
MN ,

∆Bµν
MN

∣

∣

∣

gauge
= 2D[µΞν]

MN − 2Λ||⌈MHµν
N⌋|| + · · · , (2.23)

where the unspecified contributions vanish when ∆Bµν
MN is contracted with ZP

MN , so

that they remain as yet undetermined. Substituting this expression and (2.13) into (2.22)

leads indeed to the required result (2.20).5

5Here we note that the present formulae cannot be compared directly to the ones in [30], as those are

derived in a different basis, but they can be compared to later work along the same lines, starting with [16].
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Here it is worth pointing out that the expected gauge transformation on Bµν
MN equal

to

δBµν
MN = −gΛPXP||⌈RS⌋||

||⌈MN⌋||Bµν
RS , (2.24)

where the generator XP||⌈RS⌋||
||⌈MN⌋|| = (XP)||⌈RS⌋||

||⌈MN⌋|| acts in the restricted representation

to which δBµν
MN belongs, is already contained in the second term in (2.23), up to an

additional gauge transformation associated with a three-rank tensor field, that we will

introduce shortly.

The above strategy forms the starting point for the construction of a hierarchy of anti-

symmetric tensor gauge fields [30]. To see how one proceeds, let us turn to the construction

of the covariant field strength for the tensor fields Bµν
MN ,6

Fµνρ
MN = 3D[µBνρ]

MN + 6A[µ
||⌈M

(

∂νAρ]
N⌋|| +

1

3
gX[PQ]

N⌋||Aν
PAρ]

Q

)

, (2.25)

where the first two coefficients follow from (2.23) and the terms cubic in the vector gauge

fields are such that generic variations of Fµνρ
MN read as follows,

δFµνρ
MN = 3D[µ ∆Bνρ]

MN + 6H[µν
||⌈M δAρ]

N⌋||

− g YMN
P||⌈RS⌋|| (3B[µν

RS δAρ]
P + 2A[µ

PAν
RδAρ]

S) , (2.26)

where

YMN
P||⌈RS⌋|| = 2 δP

||⌈M ZN⌋||
RS −XP||⌈RS⌋||

||⌈MN⌋|| . (2.27)

Note that this definition can be rewritten as

YMN
P||⌈RS⌋|| = 2

(

δP
||⌈M ZN⌋||

RS −XP||⌈R
||⌈MδS⌋||

N⌋||
)

. (2.28)

Just as before we introduce an extra gauge invariance to eventually deal with the non-

covariant variations in the last term of (2.26), which will then provide the missing variations

in (2.23),

∆Bµν
MN

∣

∣

∣

gauge
= 2D[µΞν]

MN − 2Λ||⌈MHµν
N⌋|| − g YMN

P||⌈RS⌋||Φµν
P||⌈RS⌋|| , (2.29)

where Φµν
P||⌈RS⌋|| is the new gauge parameter. Secondly we introduce a corresponding three-

form gauge field Cµνρ
P||⌈RS⌋||, and define the field strength Hµνρ

MN ,

Hµνρ
MN = Fµνρ

MN + g YMN
P||⌈RS⌋|| Cµνρ

P||⌈RS⌋|| . (2.30)

such that it transforms covariantly, i.e.

δHµνρ
MN = −gΛPXP||⌈RS⌋||

||⌈MN⌋|| Hµνρ
RS , (2.31)

in complete analogy with (2.20). As before, the tensor YMN
P||⌈RS⌋|| does not map onto the

full tensor product P||⌈RS⌋|| in its lower indices but only on a restricted subrepresentation

inside, i.e.,

YMN
P||⌈RS⌋|| = YMN

Q||⌈KL⌋|| P
Q||⌈KL⌋||

P||⌈RS⌋|| , (2.32)

6We use the same letters F for the field strengths of vectors and higher p-forms. From the number of

space-time indices it is always clear to which forms the F belong.
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for a non-trivial projector P independent of the embedding tensor. In principle, this pro-

jector can be worked out from (2.27), but deriving more explicit expressions requires a

case-by-case consideration for each duality group G. As in (2.15) we will denote the corre-

sponding projection by special brackets ||⌈P||⌈RS⌋||⌋||. The tensor YMN
P||⌈RS⌋|| thus represents

an intertwining tensor between the two- and the three-forms. It satisfies the properties

ZQ
MN YMN

P||⌈RS⌋|| = 0 , (2.33)

ZK
PQ Y

MN
K||⌈RS⌋|| = 2Z ||⌈M

PQ Z
N⌋||

RS . (2.34)

which are both consequences of the quadratic constraint (2.5). The first identity represents

the analogue of (2.6). Another identity follows directly from (2.28),

YMN
P||⌈RS⌋||

∣

∣

∣

(PRS)
= 0 , (2.35)

Generic variations of the covariant field strength (2.6) can be written as

δHµνρ
MN = 3D[µ ∆Bνρ]

MN + 6H[µν
||⌈M δAρ]

N⌋|| + g YMN
P||⌈RS⌋||∆Cµνρ

P||⌈RS⌋|| , (2.36)

where

∆Cµνρ
P||⌈RS⌋|| = δCµνρ

P||⌈RS⌋|| − 3 δA[µ
||⌈P Bνρ]

RS⌋|| − 2A[µ
||⌈PAν

||⌈RδAρ]
S⌋||⌋|| . (2.37)

Now we consider again a combined gauge transformation. Requiring that Hµνρ
MN trans-

forms covariantly, it follows that we must choose

∆Cµνρ
P||⌈RS⌋||

∣

∣

∣

gauge
= 3D[µΦνρ]

P||⌈RS⌋|| + 3Hµν
||⌈P Ξρ

RS⌋|| + Λ||⌈PHµνρ
RS⌋|| + · · · , (2.38)

where the unspecified contributions vanish upon contracting ∆Cµνρ
P||⌈RS⌋|| with YMN

P||⌈RS⌋||,

so that they remain as yet undetermined. Here we made use of the Bianchi identity,

D[µHνρ]
M =

1

3
g ZM

NP Hµνρ
NP . (2.39)

Note that the standard Bianchi is obtained upon contraction with the embedding tensor.

At this point we must verify that the algebra of the various gauge transformations

defined so far, will close under commutation. Let us first summarize the various transfor-

mation rules,

δAµ
M = DµΛM − g ZM

NP Ξµ
NP ,

δBµν
MN = 2D[µΞν]

MN − 2Λ||⌈MHµν
N⌋|| + 2A[µ

||⌈MδAν]
N⌋||

− g YMN
P||⌈RS⌋|| Φµν

P||⌈RS⌋|| ,

δCµνρ
P||⌈RS⌋|| = 3D[µΦνρ]

P||⌈RS⌋|| + 3Hµν
||⌈P Ξρ

RS⌋|| + Λ||⌈PHµνρ
RS⌋|| + 3 δA[µ

||⌈P Bνρ]
RS⌋||

+ 2A[µ
||⌈PAν

||⌈RδAρ]
S⌋||⌋|| + · · · . (2.40)
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These tranformations indeed yield a closed algebra,

[δ(Λ1), δ(Λ2)] = δ(Λ3) + δ(Ξ3) + δ(Φ3) ,

[δ(Λ), δ(Ξ)] = δ(Φ4) ,

[δ(Ξ1), δ(Ξ2)] = δ(Φ5) ,

[δ(Λ), δ(Φ)] = · · · ,

[δ(Ξ), δ(Φ)] = · · · ,

[δ(Φ1), δ(Φ2)] = 0 , (2.41)

where we will comment on the two unspecified commutators in a sequal. The transforma-

tion parameters appearing on the right-hand side of (2.41) take the following form,

Λ3
M = g X[NP]

M ΛN
2 ΛP

1 ,

Ξ3µ
MN = Λ

||⌈M
1 DµΛ

N⌋||
2 − Λ

||⌈M
2 DµΛ

N⌋||
1 ,

Φ3µν
P||⌈MN⌋|| = Hµν

||⌈||⌈M
(

Λ2
N⌋||Λ1

P⌋|| − Λ1
N⌋||Λ2

P⌋||
)

,

Φ4µν
P||⌈MN⌋|| = 2D[µΛ||⌈PΞν]

MN⌋|| ,

Φ5µν
P||⌈MN⌋|| = − gZ ||⌈P

RS

(

Ξ1[µ
MN⌋||Ξ2ν]

RS − Ξ2[µ
MN⌋||Ξ1ν]

RS
)

, (2.42)

where the first two equations were already given in (2.17).

Continuing this pattern one can derive the full hierarchy of p-forms by iteration. For

instance, the transformation rule for Cµνρ
P||⌈RS⌋|| contains the expected gauge transformation

δCµνρ
P||⌈RS⌋|| = −gΛQXQ||⌈K||⌈LM⌋||⌋||

||⌈P||⌈RS⌋||⌋|| Cµνρ
K||⌈LM⌋|| , (2.43)

(where again, XQ||⌈K||⌈LM⌋||⌋||
||⌈P||⌈RS⌋||⌋|| = (XQ)||⌈K||⌈LM⌋||⌋||

||⌈P||⌈RS⌋||⌋||) up to a term

δCµνρ
P||⌈RS⌋|| = −g Y P||⌈RS⌋||

Q||⌈P||⌈RS⌋||⌋|| Φµνρ
Q||⌈P||⌈RS⌋||⌋|| , (2.44)

which characterizes a new gauge transformation with parameter Φµνρ
Q||⌈P||⌈RS⌋||⌋||, associated

with a new four-rank tensor field which will again belong to some restricted subrepresen-

tation. It turns out that the two unspecified commutators in (2.41) are precisely given

by these transformations. The tensor Y P||⌈RS⌋||
Q||⌈P||⌈RS⌋||⌋|| acts as an intertwiner between the

three- and four-rank tensor fields, and can easily be written down explicitly,

Y K||⌈MN⌋||
P||⌈Q||⌈RS⌋||⌋|| = − δ

||⌈K
P Y

MN⌋||
Q||⌈RS⌋|| −XP||⌈Q||⌈RS⌋||⌋||

||⌈K||⌈MN⌋||⌋||

= − 2
(

δ
||⌈K
Q δ

||⌈M
S XPR

N⌋||⌋||
+ δ

||⌈K
P δ

||⌈M
Q XSR

N⌋||⌋||
)

+ 2
(

δ
||⌈K
P δ

||⌈M
S XQR

N⌋||⌋||
+ δ

||⌈K
R δ

||⌈M
S XPQ

N⌋||⌋||
)

. (2.45)

To derive the second formula we made use of (2.35). Observe that on the right-hand

side we must apply the projector (2.32) in order to obtain the restricted representations

in the index triples ||⌈K||⌈MN⌋||⌋|| and ||⌈Q||⌈RS⌋||⌋||, respectively; the result is then automatically

projected onto a restricted representation in the indices P||⌈Q||⌈RS⌋||⌋||.
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At this point one recognizes that there exists a whole hierarchy of such tensors.7 They

are defined by (p ≥ 3)

YM1||⌈M2||⌈···Mp⌋||··⌋||
N0||⌈N1||⌈···Np⌋||··⌋|| = − δ

||⌈M1

N0
Y

M2||⌈···Mp⌋||··⌋||
N1||⌈N2||⌈···Np⌋||··⌋||

−XN0||⌈N1||⌈N2||⌈···Np⌋||··⌋||
||⌈M1||⌈M2||⌈···Mp⌋||··⌋|| , (2.46)

where, as before, we employ the notation,

XN0||⌈N1||⌈N2||⌈···Np⌋||··⌋||
||⌈M1||⌈M2||⌈···Mp⌋||··⌋|| = (XN0)||⌈N1||⌈N2||⌈···Np⌋||··⌋||

||⌈M1||⌈M2||⌈···Mp⌋||··⌋|| . (2.47)

All these tensors are gauge invariant and they are formed from the embedding tensor

multiplied by invariant tensors of the duality group G, so that they all transform in (a

subset of) the same representations as the embedding tensor. By induction, one can prove

their mutual orthogonality,

Y K2||⌈K3||⌈···Kp⌋||··⌋||
M1||⌈M2||⌈···Mp⌋||··⌋|| Y

M1||⌈M2||⌈···Mp⌋||··⌋||
N0||⌈N1||⌈···Np⌋||··⌋|| = 0 . (2.48)

To see this, one substitutes the expression (2.46) for the second Y -tensor and uses the

gauge invariance of the first Y -tensor to obtain the expression,

(2.48) = − Y K2||⌈K3||⌈···Kp⌋||··⌋||
N0||⌈M2||⌈···Mp⌋||··⌋|| Y

M2||⌈M3||⌈···Mp⌋||··⌋||
N1||⌈N2||⌈···Np⌋||··⌋||

− YM2||⌈M3||⌈···Mp⌋||··⌋||
N1||⌈N2||⌈···Np⌋||··⌋|| XN0||⌈M2||⌈M3||⌈···Mp⌋||··⌋||

||⌈K2||⌈K3||⌈···Kp⌋||··⌋|| . (2.49)

This result vanishes upon expressing the generator X on the right-hand side in terms of the

Y -tensors, using the definition (2.46), and subsequently using the orthogonality constraint

for a lower value of the rank p. The fact that symmetrization over the three last indices

of the restricted representation will vanish as a result of (2.35), implies that higher-rank

tensors will vanish as well under certain index symmetrizations.

The Y -tensors form an (infinite, in principle) hierarchy of intertwiners between suc-

cessive sets of restricted representations of tensor gauge fields. The restrictions on the

representations occurring at the (p+1)-th step of the iteration are determined inductively

via formula (2.46), where on the right-hand side the projectors obtained at the previous

p-th step of the iteration must be applied to the p-tuples of indices M1||⌈M2||⌈ · · ·Mp⌋|| · ·⌋||

and N1||⌈N2||⌈ · · · Np⌋|| · ·⌋||, respectively. We emphasize that no other information is needed

to determine the hierarchy. However, as we pointed out already, working out more ex-

plicit expressions requires a case-by-case study, as we will exemplify for D = 3 maximal

supergravity with duality group G = E8(8) in section 4 of this paper. Consequently, given

the Y -tensors, and specifying the duality group G, the above results enable a complete

determination of the full hierarchy of the higher-rank p-forms required for the consistency

of the gauging. In particular, we can exhibit some of the terms in the variations of the

7From this point we denote the intertwining tensors and p-forms by Y and C, respectively, and the

corresponding gauge transformation parameters by Φ. Their rank will be obvious from the index structure.
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p-form fields that follow rather directly from the previous discussion,

δCµ1...µp

M1||⌈M2||⌈···Mp⌋||··⌋|| = pD[µ1
Φµ2···µp]

M1||⌈M2||⌈···Mp⌋||··⌋||

+ Λ||⌈M1Hµ1···µp

||⌈M2···⌋||··⌋||⌋|| + p δA[µ1

||⌈M1 Cµ2···µp]
||⌈M2···⌋||··⌋||⌋||

− g YM1||⌈M2||⌈···Mp⌋||··⌋||
N0||⌈N1||⌈...Np⌋||.⌋|| Φµ1...µp

N0||⌈N1||⌈...Np⌋||··⌋|| ,

+ · · · . (2.50)

Although the number of space-time dimensions does not enter into this analysis (as

we said, the iteration procedure can in principle be continued indefinitely) there is, for the

maximal supergravities, a consistent correlation between the rank of the tensor fields and

the occurrence of conjugate G-representations that is precisely in accord with tensor-tensor

and vector-tensor (Hodge) duality8 corresponding to the space-time dimension where the

maximal supergravity with that particular duality group G lives. In the next section we

discuss some of the results of this analysis and their implications for M-theory degrees of

freedom.

3. M-Theory degrees of freedom

The hierarchy of vector and tensor gauge fields that we presented in the previous section can

be considered in the context of the maximal gauged supergravities. In that case the gauge

group is embedded in the duality group G, which depends on the space-time dimension

in which the supergravity is defined. Once we specify the group G the representations

can be determined of the various p-form potentials. In principle the hierarchy allows a

unique determination of the higher p-forms, but in practice this determination tends to

be somewhat subtle. To see this, let us first briefly consider the possible representations

for the two-forms. For that we need the representations in the symmetric product of two

representations belonging to the vector fields (we will deal with the case D = 3 separately),

D = 7 : 10×sym 10 = 5 + 50 ,

D = 6 : 16c ×sym 16c = 10 + 126c ,

D = 5 : 27×sym 27 = 27 + 351
′
,

D = 4 : 56×sym 56 = 133 + 1463 .

Hence it seems that the two-forms can belong to two possible representations of the du-

ality group. To see which representation is allowed, we take its conjugate and consider

once more the product with the vector field representation, This product should contain

the representation associated with the tensor ZM
NP . The latter is simply equal to the

representation of the embedding tensor. If this representation is contained in the product,

then we are dealing with an acceptable candidate representation. If this is not the case,

then we must conclude that ZM
NP cannot act as an intertwiner between the corresponding

two-forms and the one-form potentials.

Performing this test9 on each of the two representations in (3.1), it turns out that

8As well as with the count of physical degrees of freedom.
9We used the Lie package [42] for computing such decompositions.
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1 2 3 4 5 6

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(6) 27 27 78 351 27+1728

4 E7(7) 56 133 912 133+8645

3 E8(8) 248 1+3875 3875+147250

Table 2: Duality representations of the vector and tensor gauge fields for gauged maximal super-

gravities in space-time dimensions 3 ≤ D ≤ 7. The first two columns list the space-time dimension

and the corresponding duality group. Note that the singlet two-form in three dimensions is not

induced by the hierarchy. Its presence follows from independent considerations, which are discussed

in the text.

only the first representation is allowed, leading to the entries for the two-forms presented

in the third column of table 2. For the case of D = 3 space-time dimensions the above

approach leads only to a partial determination of the representation assignment. Here

the symmetric product decomposes into six different representations and in section 4 we

will proceed diffently to deduce the correct assignment. The results for the two-forms in

4 ≤ D ≤ 7 dimensions were originally derived in [30], where also the representations of the

three-forms were determined that are shown in the table.

As we stressed already the hierarchy leads to a unique determination of the representa-

tions of the higher-rank tensor fields, but this has only partially been carried out. Already

for lower-rank tensors, table 2 shows remarkable features. We recall that the analysis de-

scribed in section 2 did not depend on the number of space-time dimensions. For instance,

it is possible to derive representation assignments for (D+1)-rank tensors, although these

do not live in a D-dimensional space-time. On the other hand, whenever there exists a

(Hodge) duality relation between fields of different rank at the appropriate value forD, then

one finds that their G representations turn out to be related by conjugation. This property

is already exhibited at the level of the lower-rank tensors and we have simply extrapolated

this pattern to higher-rank fields. Furthermore the diagonals pertaining to the (D−2)-,

(D−1)- and D-rank tensor fields refer to the adjoint representation and the representations

conjugate to those assigned to the embedding tensor and its quadratic constraint, respec-

tively. While not all of these features show up fully for the lower-rank tensors, the pattern

is quite suggestive. The underlying reasons for some of this will become apparent in the

later sections, where we establish that the (D−1)- and D-rank tensors play the special role

of imposing the constancy of the embedding tensor and the closure of the corresponding

gauge group.

It is an obvious question whether these systematic features have a natural explanation

in terms of M-theory. Supergravity may contain some of the fields carrying charges that

could induce a gauging. For instance, in the toroidal compactification there are towers

of massive Kaluza-Klein states whose charges couple to the corresponding Kaluza-Klein

gauge fields emerging from the higher-dimensional metric. This is of direct relevance in
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the so-called Scherk-Schwarz reductions [14]. However, these Kaluza-Klein states cannot

generally be assigned to representations of the duality group and therefore there must

be extra degrees of freedom whose origin cannot be understood within the context of

a dimensional compactification of supergravity.10 This phenomenon was discussed some

time ago, for instance, in [38, 43].

The general gaugings that have been constructed in recent years obviously extend

beyond gaugings whose charges are carried by supergravity degrees of freedom. The em-

bedding tensor can be regarded as a duality covariant tensor that, once it is fixed to some

constant value, selects a certain subsector of the available charge configurations carried by

degrees of freedom that will cover complete representations of the duality group. If this

idea is correct these degrees of freedom must exist in M-theory, and there are indeed indi-

cations that this is the case. In this way the gauging acts as a probe of M-theory degrees

of freedom.

Independent evidence that this relation with M-theory degrees of freedoms is indeed

realized is provided by the work of [37] (see also, [38] and references quoted therein) where

matrix theory [44, 45] is considered in a toroidal compactification. These results are based

on the correspondence between N = 4 super-Yang-Mills theory on a (rectangular) spatial

torus T̃ n with radii s1, . . . , sn, and M-theory in the infinite-momentum frame on the dual

torus T n with radii R1, R2, . . . , Rn, where si = l3p/R11Ri and lp denotes the Planck length

in eleven dimensions. The conjecture then is that the latter should be invariant under

permutations of the radii Ri and under T-duality of type-IIA string theory. The relevant

T-duality transformations follow from making two consecutive T-dualities on two different

circles. When combined with the permutation symmetry, T-duality can be represented by

(i 6= j 6= k 6= i)

Ri →
l3p

RjRk

, Rj →
l3p

RkRi
, Rk →

l3p
RiRj

, l3p →
l6p

RiRjRk

, (3.1)

The above transformations generate a discrete group which coincides with the Weyl

group of En; on the Yang-Mills side, the elementary Weyl reflections correspond to permuta-

tions of the compactified coordinates (generating the Weyl group of SL(n)) and Montonen-

Olive duality geff → 1/geff (corresponding to reflections with respect to the exceptional

node of the En Dynkin diagram). This Weyl group, which leaves the rectangular shape of

the compactification torus invariant, can be realized as a discrete subgroup of the compact

subgroup of En(n), and consequently as a subgroup of the conjectured non-perturbative

duality group En(n)(Z) [46]. Representations of this symmetry can now be generated by

mapping out the Weyl orbits starting from certain states. For instance, one may start with

Kaluza-Klein states on T n, whose masses are proportional to M ∼ 1/Ri. The action of

the Weyl group then generates new states, such as the ones that can be identified with

two-branes wrapped around the torus, whose masses are of order M ∼ RjRk/l
3
p, and so on.

According to [46], the non-perturbative states should combine into multiplets of En(n)(Z);

10In view of the fact that the Kaluza-Klein states are 1/2-BPS, also these extra degrees of freedom must

correspond to 1/2-BPS states.
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if the representation has weights of different lengths, one needs several different Weyl orbits

to recover all states in the representation.

Following this procedure one obtains complete multiplets of the duality group (taking

into account that some states belonging to the representation will vanish under the Weyl

group and will therefore remain inaccessible by this construction). More specifically, using

the relation n = 11 − D, it turns out that the first two columns of table 2, respectively,

correspond to the so-called flux and momentum multiplets of [37]. However, as already

pointed out above, the conjecture of [46] is essential in that one may need extra states from

different Weyl orbits in order to get the full representation; for instance, there are only

2160 momentum states for E8(8), which must be supplemented by 8-brane states to obtain

the full 3875 representation of E8(8).

The representations in the table were also found in [39], where a ‘mysterious duality’

was exhibited between toroidal compactifications of M-theory and del Pezzo surfaces. Here

the M-theory dualities are related to global diffeomorphisms that preserve the canonical

class of the del Pezzo surface. Again the representations thus found are in good agreement

with the representations in table 2.

For n ≥ 9, the flux and momentum multiplets of [37] have infinitely many components.

Indeed, there are hints that the above considerations concerning new M-theoretic degrees

of freedom can be extended to infinite-dimensional duality groups. Already some time

ago [31] it was shown from an analysis of the indefinite Kac-Moody algebra E11 that the

decomposition of its so-called L1 representation at low levels under its finite-dimensional

subalgebra SL(3) × E8 yields the same 3875 representation that appears for the two-

forms as shown in table 2. This analysis has meanwhile been extended [32 – 34] to other

space-time dimensions and higher-rank forms, and again there is a clear overlap with the

representations in table 2. Nevertheless it remains far from clear what all these (infinitely

many) new degrees of freedom would correspond to, and how they would be concretely

realized. Concerning the physical interpretation of the new states, a first step was taken

in [47], where an infinite multiplet of BPS states is generated from the M2 brane and M5

brane solutions of D = 11 supergravity by the iterated action of certain A
(1)
1 subgroups

of the E9 Weyl group. In the context of gauged supergravities, the significance of these

states may become clearer with the exploration of maximal gauged supergravities in two

space-time dimensions [29], where the embedding tensor transforms in the so-called basic

representation of E9 (which is infinite dimensional).

4. Tensor field representations in three space-time dimensions

Here and in the following two sections we will illustrate the preceding discussion and con-

sider maximal supergravity in three space-time dimensions, where the full tensor hierarchy

of p-forms is short enough to obtain all relevant information from the explicit results given

in section 2. This example will show all the characteristic features that are generic for

gauged supergravities. In this section we will determine the representation assignments for

the tensor fields. The relevant duality group is equal to E8(8), which is of dimension 248.

Its fundamental representation coincides with the adjoint representation, so that the gener-
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ators in this representation are given by the E8(8) structure constants, (tM)N
P = −fMN

P .

Indices may be raised and lowered by means of the Cartan-Killing form ηMN . The vector

fields Aµ
M transform in the 248 representation and the embedding tensor ΘMN is a sym-

metric matrix belonging to the 3875 + 1 representation [7, 8]. Using these data, we may

evaluate the general formulas of section 2 for this particular theory.

The gauge group generators are obtained by contracting E8(8) generators with the

embedding tensor XM ≡ ΘMN tN . In the adjoint representation we thus have

XMN
P = −ΘM

Q fQN
P = ΘMQ f

QP
N . (4.1)

The tensor ZP
MN defined in (2.3) is then given by

ZP
MN = ΘQ(M fQP

N ) . (4.2)

Because this tensor is a group invariant contraction of the embedding tensor, its represen-

tation must overlap with some of the representations of the embedding tensor. Obviously,

the singlet component drops out so that we may conclude that (4.2) must belong to the

3875 representation.

As discussed before (cf. (2.14)), the tensor ZK
MN generically does not map onto the

full symmetric tensor product (MN ), which decomposes according to

248 ×sym 248 = 1 + 3875 + 27000 , (4.3)

but only on a restricted representation. Since (4.2) represents an infinitesimal E8(8) trans-

formation on the embedding tensor ΘMN which leaves the representation content invariant,

it follows that the indices (MN ) in (4.2) are restricted to the 3875 representation, so that

the relevant projector is precisely P
(3875) acting on the symmetric tensor product. This

projector can be written as [49]

(P(3875))RS
MN =

1

7
δ
(R
Mδ

S)
N −

1

56
ηMN ηRS −

1

14
fPM

(R fPN
S) . (4.4)

According to the general discussion, it follows that closure of the vector field gauge algebra

requires the introduction of two-forms in the 3875 representation. Hence the two-forms

transform in the same representation as the embedding tensor. As noted in the previous

section, this is a general pattern in gauged supergravities: the embedding tensor in D

dimensions transforms in the representation which is conjugate to the (D−1)-forms. More

precisely, the field strength of the (D−1)-forms is dual to the embedding tensor. We will

discuss the explicit relation in the next sections. In three dimensions there is a subtlety

related to the fact that the embedding tensor is not irreducible but contains an additional

singlet 1 besides the 3875. The associated two-form can be defined but does not yet

show up in the tensor hierarchy at this point. In order to keep the discussion as simple as

possible, we will in the following restrict to the gaugings induced by an embedding tensor

in the irreducible 3875.

Continuing the tensor hierarchy according to the general pattern discussed above, the

next intertwining tensor YMN
K||⌈PQ⌋||, defined in (2.28), takes the form

YMN
K||⌈PQ⌋|| ≡ 2

(

δ||⌈P
||⌈R
f
S⌋||||⌈M

Q⌋|| δK
N⌋||

− δK
||⌈R
f
S⌋||||⌈M

||⌈P δQ⌋||
N⌋||

)

ΘRS . (4.5)
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In view of the group-invariant contractions, the tensor YMN
K||⌈PQ⌋|| transforms again in the

3875 representation. It controls the appearance of three-forms in the gauge transformations

of two-forms and thereby determines the (minimal) field content of three-forms required for

consistency of the algebra. Again it does not map onto the full tensor product K||⌈PQ⌋|| but

only onto a restricted subrepresentation, as in (2.14). To determine this subrepresentation,

we observe that the expression in parentheses in (4.5) is symmetric under exchange ||⌈RS⌋|| ↔

||⌈MN⌋||, and thus transforms in

3875 ×sym 3875 = 1 + 3875 + 27000 + 147250 + 2450240 + 4881384 . (4.6)

On the other hand, by its index structure, the tensor product K||⌈PQ⌋|| is given by

248 × 3875 = 248 + 3875 + 30380 + 147250 + 779247 , (4.7)

Comparing (4.6) and (4.7), it follows that the index combination K||⌈PQ⌋|| is indeed restricted

to certain irreducible representations so that the three-forms transform in the representa-

tion11

Cµνρ
K||⌈PQ⌋|| ∼ 3875 + 147250 . (4.8)

In principle, the argument so far does not exclude the possibility that the image of

YMN
K||⌈PQ⌋|| is restricted to only one of the two irreducible representations in (4.8). To

show that both irreducible parts are present, one may e.g. compute and diagonalize the

action of the E8(8) Casimir operator on YMN
K||⌈PQ⌋||.

At this point, it is instructive to have a closer look at the quadratic constraint. In

three dimensions, this constraint implies that the tensor

QM||⌈PQ⌋|| ≡ ΘMN ZN
PQ = −XM||⌈P

N ΘQ⌋||N , (4.9)

must vanish. Let us determine, in which representation QM||⌈PQ⌋|| transforms. As we have

seen above, the tensor ZN
PQ in its indices PQ projects onto the 3875 representation. As

a consequence, QM||⌈PQ⌋|| transforms in the tensor product 248 × 3875 given in (4.7). On

the other hand, as QM||⌈PQ⌋|| is quadratic in Θ it transforms in the symmetric tensor product

3875 ×sym 3875 given in (4.6). Comparing (4.6) and (4.7), it follows that also QM||⌈PQ⌋||

transforms in the representation,

Cquad = 3875 + 147250 , (4.10)

and thus in the very same representation as the three-forms (4.8). This is in accord with

the general pattern in gauged supergravities noted in the previous section: the quadratic

constraint transform in a (reducible) representation whose conjugate is equal to (or at least

contained in) the representation of the D-forms. We will propose a natural interpretation

for this in the last section, where the D-forms act as Lagrange multipliers for the quadratic

constraint.

11The absence of the 248, 30380 and 779247 representations is in accord with equation (2.35) because

those are contained in the fully symmetrized product of three 248 representations.
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Let us finally continue the tensor hierarchy one last step further, i.e., to the four-

forms. Although four-forms cannot live in three dimensions, their tensor gauge freedom

shows up in the three-dimensional tensor gauge algebra by the shift transformation of the

three-forms (2.44). For a complete picture we thus need to work out also their structure.

Again, Y K||⌈MN⌋||
P||⌈Q||⌈RS⌋||⌋|| does not map onto the full tensor product P||⌈Q||⌈RS⌋||⌋|| but only onto

a restricted subrepresentation of 248× (3875 + 147250), which we do not explicitly work

out here. It is interesting to note, that apart from the standard othogonality relations (2.48)

which follow as a consequence of the quadratic constraint (2.5), the tensor Y K||⌈MN⌋||
P||⌈Q||⌈RS⌋||⌋||

also identically satisfies the relation

QK||⌈MN⌋|| Y
K||⌈MN⌋||

P||⌈Q||⌈RS⌋||⌋|| = 0 , (4.11)

with QK||⌈MN⌋|| from (4.9). This identity will also play an important role in the last section.

Its proof is not entirely straightforward, as (4.11) involves expressions cubic in Θ and

quadratic in the E8 structure constants, and is therefore most easily checked on a computer.

To summarize, we have explicitly worked out the tensor hierarchy of gauged three-

dimensional supergravity and shown that consistency requires two- and three-forms to

transform in the 3875 and 3875+147250 representation, respectively. The representation

content of the (evanescent) four-forms is implicitly defined by (2.45) as a subrepresenta-

tion of 248 × (3875 + 147250) and shows up through the shift transformations (2.44) of

the three-forms. In principle,the precise representation content of the index combinations

in (2.45) can be worked out further, but these details are not necessary in what follows.

5. The supersymmetry algebra in three space-time dimensions

In this section we present the complete determination of the supersymmetry transforma-

tions and the corresponding algebra for the p-forms in three dimensions. Already in a

number of cases supersymmetry variations of p-forms that do not appear in the ungauged

action, have been determined. This was done by making an ansatz for these variations

based on their tensorial structure, which involves some undetermined coefficients. These

constants are subsequently fixed by imposing the supersymmetry algebra, after which one

proceeds by iteration. Here we go one step further and consider also the supersymmetry

variations of those p-forms that are not required for writing down the most general gaugings,

in order to determine what their possible role could be. In three space-time dimensions this

implies that we will now also consider the two-, three-, and four-form potentials. Although

four-form potentials do not exist in four dimensions, their symmetries will still play a role

as they act on the three-form potentials. We note that a somewhat similar investigation of

maximal supergravity in five dimensions, in the context of a framework based on E11, has

recently appeared in [48].

We use spinor and E8(8) conventions from [7, 8].12 In particular, the E8(8) generators

tM split into 120 compact ones XIJ = X [IJ ], associated with the group SO(16), and 128

12To be precise: the only change in notation with respect to [7, 8] is the sign of the vector fields,

i.e., Aµ
M → −Aµ

M. The tangent space metric and gamma matrix conventions are as follows: ηab =

diag(+,−,−), {γa, γb} = 2ηab
1, and γabc = −iεabc

1.
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non-compact ones denoted by Y A. Here I, J, . . . and A,B, . . . , respectively, label the 16v

and 128s representations of SO(16). Eventually we will also need indices Ȧ, Ḃ, . . . labelling

the conjugate spinor representation 128c. Naturally we will also encounter SO(16) gamma

matrices ΓI
AȦ in what follows. We will freely raise and lower SO(16) indices.

The scalar fields parametrize the E8(8)/SO(16) coset space in terms of an E8(8)-valued

matrix VM
P , which transforms as

δV(x)MP = −gN
M V(x)NP + V(x)MQ h(x)P

Q , (5.1)

under global E8(8) and local SO(16), characterized by the matrices g and h(x) which take

their values in the Lie algebra of the two groups. Note that underlined E8(8) indices and

indices [IJ ], A and Ȧ are always subject to local SO(16). The one-forms associated with

the scalars are given by

V−1DµV =
1

2
Qµ

IJ XIJ + Pµ
A Y A , (5.2)

where the derivative Dµ on the left-hand side is covariant with respect to the chosen gauge

group (cf. (2.8)). As is well-known, Qµ
IJ will play the role of a composite SO(16) gauge

connection. Both Pµ and Qµ will implicitly depend on the gaugings introduced in section 2,

through the defining relation (5.2).

For simplicity of the formulas we use the abbreviating notation,

VMN
P|R ≡ VM

P VN
R , VMNK

P|R|S ≡ VM
P VN

R VK
S , etc. (5.3)

for multiple tensor products of these matrices. The fermionic field content is given by 16

gravitinos ψµ
I and 128 spin-1/2 fermions χȦ transforming under SO(16). In the presence

of a gauging their supersymmetry variations are given by

δ ψµ
I = Dµǫ

I + ig A1
IJ γµǫ

J , δ χȦ =
1

2
i γµǫI ΓI

AȦ
PA

µ + g A2
IȦ ǫI , (5.4)

with the tensors A1, A2 given by

AIJ
1 =

1

7
VMN

IK|JK ΘMN , AIȦ
2 = −

1

7
ΓJ

AȦ
VMN

IJ |A ΘMN . (5.5)

The bosonic fields on the other hand transform as

δeµ
α = iǭIγαψµ

I , V−1δV = ΓI
AȦ

χ̄ȦǫI Y A , (5.6)

δAµ
M = 2VM

IJ ǭ
Iψµ

J − iΓI
AȦ VM

A ǭIγµχ
Ȧ .

The supersymmetry transformations are expected to close into the various local sym-

metries, up to field equations. The supersymmetry comutator takes the form,

[δǫ1 , δǫ2 ] = ξµD̂µ + δΛ + δΞ + δΦ + · · · , (5.7)

where the unspecified terms denote local Lorentz transformations, local supersymmetry

transformations and other symmetries which will be discussed below. By ξµD̂µ we denote
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a covariant translation: a general coordinate transformation with parameter ξµ accompa-

nied by other field-dependent gauge transformations such that the combined result is fully

covariant. In the context of this work we are mostly interested in the field-dependent vector

and tensor gauge transformations,

ξµD̂µ ≡ ξµ∂µ + δΛ(ξ) + δΞ(ξ) + δΦ(ξ) + · · · , (5.8)

where the vector and tensor gauge parameters are equal to

Λ(ξ)M ≡ −ξρAρ
M ,

Ξ(ξ)µ
MN ≡ −ξρ

(

Bρµ
MN +Aρ

||⌈MAµ
N⌋||

)

,

Φ(ξ)µν
K||⌈MN⌋|| ≡ −ξρ

(

Cρµν
K||⌈MN⌋|| −Aρ

||⌈KBµν
MN⌋|| −

2

3
A[µ

||⌈KAν]
||⌈MAρ

N⌋||⌋||
)

, (5.9)

so that

ξρD̂ρAµ
M = ξρ Hρµ

M ,

ξρD̂ρBµν
MN −Aµ

||⌈MξρD̂ρAν
N⌋|| +Aν

||⌈MξρD̂ρAµ
N⌋|| = ξρ Hρµν

MN , (5.10)

take a fully covariant form in terms of the covariant variations and field strengths of sec-

tion 2. Note that we have suppressed the supercovariantizations in this result, as we restrict

attention to the terms of lowest order in the fermion fields. Calculating closure of the su-

persymmetry algebra on the p-form tensor fields will determine the parameters ξ, Λ, Ξ, Φ

in (5.7).

Let us start from the supersymmetry commutator on vector fields. A short computa-

tion starting from (5.4) and (5.6) yields

[δǫ1 , δǫ2 ]Aµ
M = −2Dµ(VM

IJ ǭ[1
Iǫ2]

J) + i ǫµνρ V
M

A Pν A ǭ[1
Iγρǫ2]

I

+ 2ig
(

ΓI
AȦ

A2
JȦ VM

A − 2A1
JK VM

IK

)

ǭ[1
Iγµǫ2]

J . (5.11)

The first term is a gauge transformation, while the last term proves to be the dressed

version of the constant tensor ZM
PQ defined in (2.3). Indeed, we note the identity,

Γ
(I

AȦ
A2

J)Ȧ VM
A −A1

JK VM
IK −A1

IK VM
JK =

2

7
VPQ

IK|JK ZM
PQ . (5.12)

Upon contraction with ΘMN , the right-hand side of this equation vanishes, and we re-

obtain the identity (3.18) of [8]. The second term in (5.11) shows up in the duality equation

relating vector and scalar fields in three dimensions,

Xµν
M ≡ Hµν

M + e ǫµνρ V
M

A Pρ A , (5.13)

which, at least in the ungauged theory, vanishes on-shell. Hence, we find that

[δǫ1 , δǫ2 ]Aµ
M = ξρ Hρµ

M +Dµ ΛM − g ZM
PQ Ξµ

PQ − ξρ Xρµ
M , (5.14)
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with parameters

ξµ = −i ǭ[1
Iγµǫ2]

I ,

ΛM = −2VM
IJ ǭ[1

Iǫ2]
J ,

Ξµ
MN = −

4

7
iV ||⌈MN⌋||

IK|JK ǭ[1
Iγµǫ2]

J . (5.15)

Except for the last term in (5.14) the supersymmetry algebra closes precisely as expected.

Usually, this last term is disregarded as the supersymmetry algebra is expected to close

modulo the first-order (duality) equations of motion (that is, Xµν
M = 0). Nowever, matters

are more subtle here, as only a projection of the duality equation with the embedding tensor

is expected to correspond to an equation of motion. For the moment, let us just keep this

term: we will interpret it later as an additional local symmetry of the Lagrangian.

Let us continue with the two-forms. The supersymmetry variation of Bµν
MN is deter-

mined by its tensor structure up to two constants, α1 and α2,

∆Bµν
MN = iα1 V

||⌈MN⌋||
IK|JK ǭIγ[µψν]

J − α2 V
||⌈MN⌋||

A|IJ ΓI
AȦ

ǭJγµνχ
Ȧ . (5.16)

Requiring that the commutator closes into a gauge transformation with parameter Ξµ
MN

as given in (5.15), leads to α1 = −8/7, α2 = −4/7. From (5.16), we obtain after some

further computation,

[δǫ1 , δǫ2 ]Bµν
MN = 2D[µΞν]

MN +
4

7
ǫµνρ P

ρ B V ||⌈MN⌋||
IJ |A (ΓIΓK)AB ǭ[1

Jǫ2]
K

−
8

7
g

(

V ||⌈MN⌋||
IK|LK A1

JL +
1

2
V ||⌈MN⌋||

IK|A ΓK
AȦA2

JȦ
)

ǭ[1
Iγµνǫ2]

J

+ 2A[µ
||⌈M [δǫ1 , δǫ2 ]Aν]

N⌋|| . (5.17)

The first term denotes the tensor gauge transformation. To understand the second term

we need to make explicit use of the projection of ||⌈MN⌋|| onto the 3875, which induces

relations such as [7, 8],

V ||⌈MN⌋||
IJ |A =

1

14

(

(ΓIΓK)AB V ||⌈MN⌋||
KJ |B − (ΓJΓK)AB V ||⌈MN⌋||

KI|B

)

. (5.18)

After some calculation, the second term in (5.17) then reduces to 2Λ||⌈M (Xµν
N⌋|| −Hµν

N⌋||),

where we again introduced the expression for the duality relation (5.13). The term pro-

portional to Hµν
N then yields a term belonging to the tensor gauge transformation (2.29).

The second line in (5.17) can be simplified in a similar way. Its (IJ) traceless part may be

brought into the form

1

7
g YMN

K||⌈PQ⌋|| V
||⌈K||⌈PQ⌋||⌋||

IK|KL|LJ ǭ[1
Iγµνǫ2]

J , (5.19)

and thus constitutes the shift transformation of (2.29) with parameter13

Φµν
K||⌈MN⌋|| = −

1

7
V ||⌈K||⌈MN⌋||⌋||

IK|KL|LJ ǭ[1
Iγµνǫ2]

J . (5.20)

13Note that not only the coefficient is determined. There exists yet another independent term with the

correct tensor structure, ΓIK
AB V ||⌈K||⌈MN⌋||⌋||

A|B|JK ǭ[1
Iγµνǫ2]

J , which turns out to be absent. One may verify

by explicit calculation that ΦK||⌈MN⌋|| defined in (5.20) has contributions in both irreducible representations

3875 and 147250.
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It remains to consider the (IJ) trace part of the second line in (5.17) which reduces to

4 eg εµνρ ξ
ρ

V
||⌈MN⌋||,||⌈KL⌋|| ΘKL , (5.21)

where V
||⌈MN⌋||,||⌈KL⌋|| equals the symmetric scalar-dependent matrix defined by

V
||⌈MN⌋||,||⌈KL⌋|| =

1

392

(

7V ||⌈MN⌋||||⌈KL⌋||
IJ |A|IJ |A − 2V ||⌈MN⌋||||⌈KL⌋||

IK|JK|IL|JL

)

. (5.22)

Putting everything together, the supersymmetry commutator on two-forms takes the form,

[δǫ1 , δǫ2 ]Bµν
MN = 4ge ξρ εµνρ V

||⌈MN⌋||,||⌈KL⌋|| ΘKL + 2D[µΞν]
MN − 2Hµν

||⌈M ΛN⌋||

− gYMN
K||⌈PQ⌋|| Φµν

K||⌈PQ⌋|| + 2Xµν
||⌈M ΛN⌋|| + 2A[µ

||⌈M [δǫ1 , δǫ2 ]Aν]
N⌋|| .

=
(

ξρD̂ρ + δΛ + δΞ + δΦ

)

Bµν
MN − ξρYρµν

MN

+ 2Xµν
||⌈M (ΛN⌋|| + Λ(ξ)N⌋||) − 2 ξρ Xρ[µ

||⌈MAν]
N⌋|| , (5.23)

where in the second equation we introduced the tensor,

Yµνρ
MN ≡ Hµνρ

MN − 4 g e εµνρ V
||⌈MN⌋||,||⌈KL⌋|| ΘKL − 6A[µ

||⌈MXνρ]
N⌋|| . (5.24)

This tensor takes the form of a duality relation between the field strength of the two-

forms (2.30) and the embedding tensor. The supersymmetry commutator thus closes ac-

cording to (5.7) modulo terms proportional to the duality relations (5.13) and (5.24).

These terms are interpreted as follows. The term proportional to Yµνρ
MN corresponds to

a new symmetry transformation of the two-form potential. The last term proportional to

Xρµ
M accompanies the extra transformation in the vector fields represented by the last

term in (5.14). Finally the preceding terms proportional to Xµν
M are interpreted as defor-

mations of the vector gauge transformation acting on the two-form potential (cf. (2.40)).

Hence we change this transformation according to,

δmod(Λ)Bµν
MN = − 2Λ||⌈MHµν

N⌋|| + 2Λ||⌈MXµν
N⌋|| + 2A[µ

||⌈M δ(Λ)Aν]
N⌋||

= 2e εµνρ Λ||⌈MVN⌋||
A PρA + 2A[µ

||⌈M δ(Λ)Aν]
N⌋|| . (5.25)

This deformation is reminiscent of what happens, for instance, in D = 4 gauged supergrav-

ity [41, 26, 17], where the two-form fields acquire also additional variations once they couple

to other fields in the Lagrangian. Of course, it remains to see whether this interpretation

is correct, but we will present further evidence of this in section 6.

The duality relation (5.24) is remarkable. On-shell, (i.e. for XM = 0 = YMN ) it reads

Hµνρ
MN = 4g e εµνρ V

||⌈MN⌋||,||⌈KL⌋|| ΘKL , (5.26)

and it relates the field strengths of the two-forms to the embedding tensor. The scalar

matrix V
||⌈MN⌋||,||⌈KL⌋|| defined in (5.22), which shows up in this equation, is related to the

scalar potential of the gauged theory in a simple way. With the explicit expression for the

scalar potential V from [7, 8] one finds the expression

V = −
1

8

(

AIJ
1 AIJ

1 −
1

2
AIȦ

2 AIȦ
2

)

=
1

2
V
||⌈MN⌋||,||⌈KL⌋|| ΘMN ΘKL . (5.27)
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In other words, the matrix V
||⌈MN⌋||,||⌈KL⌋|| precisely encodes the scalar potential of the gauged

theory. This appears to be a generic pattern for the (D−1)-forms in the gauged supergrav-

ities, and we shall see its natural interpretation in the next section. We emphasize that

the matrix V
||⌈MN⌋||,||⌈KL⌋|| is not positive definite — unlike the scalar matrices that show up in

the lower-rank p-form dualities. This lack of positivity is in accord with the fact that the

potentials of gauged supergravities are generically known to be unbounded from below.

At this point let us briefly comment on a similar result in [48] where the form fields

are considered for D = 5 gauge maximal supergravity. In that work an equation (4.27)

appears which seems the direct analogue of (5.26), but now for the field strength of the

four-form potential. Although it has the same structure as (5.26), its right-hand side is

not related to the potential in the way we described above. However, a direct comparison

is subtle as (5.13) only vanishes on shell upon projection with the embedding tensor, so

that (5.26) will not be realized as a field equation.

The duality equation (5.26) in particular provides the E8(8) covariant field equation for

two-forms in the three-dimensional ungauged theory:

∂µ
(

V||⌈MN⌋||,||⌈KL⌋||Hµνρ
KL

)

+ fermions = 0 , (5.28)

with V||⌈MN⌋||,||⌈KL⌋|| the inverse matrix to V
||⌈MN⌋||,||⌈KL⌋||.

To close this section, we also compute the commutator of supersymmetry transforma-

tions on the three-forms. Equation (5.20) suggests to define the supersymmetry variation

of the three-forms as

∆Cµνρ
K||⌈MN⌋|| =

3

7
V ||⌈K||⌈MN⌋||⌋||

IK|KL|LJ ǭ
Iγ[µνψρ]

J + · · · , (5.29)

where the dots refer to the ǭ χ variations. Indeed,

2δǫ[1

(3

7
V ||⌈K||⌈MN⌋||⌋||

IK|KL|LJ ǭ
I
2]γ[µνψ

J
ρ]

)

= 3D[µΦνρ]
KMN (5.30)

+
3

7
D[µ

(

V ||⌈K||⌈MN⌋||⌋||
IK|KL|LJ

)

ǭ[1
Iγµνǫ2]

J + · · · ,

thus reproducing the correct Φ term given in (5.20). Evaluating the derivatives of the

second term and using the duality equation (5.13), eventually brings this term into the

form (modulo X [M]),

(

3

14
V ||⌈K||⌈MN⌋||⌋||

A|KM |JM−
3

7
V ||⌈K||⌈MN⌋||⌋||

JM |KM |A

)

(ΓKΓN )AB PB
[µ ǭ

N
[1γνρ]ǫ

J
2]+3H[µν

||⌈K Ξ
MN⌋||
ρ] .

(5.31)

In order to arrive at this result, we need to make use of the explicit projection onto the

3875 + 147250 within the tensor product ||⌈K||⌈MN⌋||⌋||. This gives rise to a number of

non-trivial identities, like

14ΓK
AȦ

V
||⌈K||⌈MN⌋||⌋||

A|KM |JM
+ 16ΓK

AȦ
V
||⌈K||⌈MN⌋||⌋||

JM |KM |A

−(ΓKΓMN )AȦV
||⌈K||⌈MN⌋||⌋||

MN |JK|A = 0 , (5.32)
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which results from the projection of a triple product of V’s onto the 147250 + 3875

representation in the same way as (5.18) is obtained by applying (4.4) to a double product

of V’s. From (5.31) we can infer the full supersymmetry transformation of the three-forms.

While the last term is precisely expected from the tensor gauge transformations (2.29), the

rest must be cancelled by δχ variations in δC. Together, this determines the supersymmetry

variation of the three-forms to be given by

∆Cµνρ
K||⌈MN⌋|| =

3

7
V ||⌈K||⌈MN⌋||⌋||

IK|KL|LJ ǭ
Iγ[µνψ

J
ρ] (5.33)

−
1

14
i
(

V ||⌈K||⌈MN⌋||⌋||
A|KM |JM − 2V ||⌈K||⌈MN⌋||⌋||

JM |KM |A

)

ΓK
AȦ ǭ

Jγµνρχ
Ȧ .

To summarize, we have determined the supersymmetry variations of all p-forms in

three dimensions by closure of the supersymmetry algebra. The full algebra is given by

[δǫ1 , δǫ2 ] = ξµD̂µ + δΛ + δΞ + δΦ + δX + δY , (5.34)

up to supersymmetry and local Lorentz symmetry transformations. The last two terms cor-

respond to additional local symmetries proportional to Xµν and Yµνρ, that have appeared

in (5.14) and (5.23) for the one- and two-forms, respectively. Furthermore, we recall that

we have made a modification in the vector gauge transformation rule for the two-forms.

Of course, we have to justify both the presence of this deformation and the fact that

the two new variations can indeed be regarded as symmetries of a specific Lagrangian.

In this respect it is important to recall that Xµν and Yµνρ take the form of first-order

duality equations between p-forms in three dimensions and, as it turns out, there are

indeed field equations proportional to Xµν and Yµνρ. This feature plays an important role

in realizing the invariance. To understand this issue further we turn to the construction of

the Lagrangian in the next section.

6. The Lagrangian with all p-forms in three dimensions

Finally, we give a Lagrangian which contains all p-forms in three dimensions. To this end

we start from the gauged Lagrangian of [7, 8],

Lgauged = −
1

4
eR +

1

4
ePµAPA

µ +
1

2
εµνρψ̄I

µDνψ
I
ρ −

1

2
ieχ̄ȦγµDµχ

Ȧ

−
1

4
g εµνρAµ

M ΘMN (∂νAρ
N +

1

3
gX[RS]

N Aν
RAρ

S)

−
1

2
e χ̄ȦγµγνψI

µ ΓI
AȦP

A
ν +

1

2
eg A1

IJ ψ̄I
µ γ

µν ψJ
ν + ieg A2

IȦ χ̄Ȧγµ ψI
µ

+
1

2
eg A3

ȦḂ χ̄Ȧ χḂ −
1

2
eg2

V
||⌈MN⌋||,||⌈KL⌋|| ΘMN ΘKL + L4−fermi , (6.1)

where,

A3
ȦḂ =

1

48
(ΓIJKL)ȦḂ VMN

IJ |KL ΘMN . (6.2)
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This is the Lagrangian that describes all consistent gaugings with a constant, symmetric,

embedding tensor ΘMN that belongs to the 3875 + 1 representation and is subject to the

quadratic constraint QK||⌈MN⌋|| = 0.

Now consider ΘMN not as a constant tensor but as an x-dependent field ΘMN (x)

satisfying the representation constraint (i.e. living in the 3875; for convenience we suppress

the singlet representation in what follows), but not the quadratic constraint on ΘMN .

To the Lagrangian (6.1) we add a new Lagrangian describing the couplings to two-forms

Bµν
MN and three-forms Cµνρ

K||⌈MN⌋||,

LBC = −
1

8
g εµνρBµν

MN DρΘMN +
1

12
g2 εµνρ Cµνρ

K||⌈MN⌋|| QK||⌈MN⌋|| . (6.3)

The two- and three-form potentials thus act as Lagrange multipliers to ensure that ΘMN

is constant and satisfies the quadratic constraint. As ΘMN is a field now, the quadratic

constraint can no longer be imposed by hand but must be implemented in this way.

Since the Lagrangian (6.1) is supersymmetric and gauge invariant for a constant ten-

sor ΘMN satisfying the quadratic constraint, the new Lagrangian Lgauged + LBC with

x-dependent ΘMN can be made supersymmetric and gauge invariant by introducing the

proper local transformation laws for the potentials Bµν
MN and Cµνρ

K||⌈MN⌋||, while keeping

δΘMN = 0 . This construction thus shows that the supersymmetry algebra can be extended

to two- and three-forms transforming in 3875 and the 3875 + 147250, respectively. The

same construction can be applied in higher dimensions and gives a natural explanation of

why in general the (D−1)-forms and theD-forms transform in the conjugate representations

of the embedding tensor and the quadratic constraint, respectively.

As a first exercise, we can compute the new field equation obtained by varying the full

Lagrangian with respect to ΘMN . Neglecting fermions, we find,

δLgauged = −eg

(

1

2
VM

A Pµ AAµ
N + gV

||⌈MN⌋||,||⌈KL⌋|| ΘKL

)

δΘMN

−
1

4
g εµνρAµ

M

(

∂νAρ
N +

2

3
gX[RS]

N Aν
RAρ

S

)

δΘMN , (6.4)

and (modulo a total derivative),

δLBC =
1

24
g ǫµνρ

(

3DρBµν
MN − 6gZM

PQAρ
NBµν

PQ

+ gYMN
K||⌈PQ⌋||Cµνρ

K||⌈PQ⌋||
)

δΘMN , (6.5)

where we used the identity δQK||⌈MN⌋|| = 1
2δΘPQ Y

PQ
K||⌈MN⌋||. Therefore the variation of the

full Lagrangian L = Lgauged + LBC takes the form,

δL =
1

24
g εµνρ Yµνρ

MN δΘMN , (6.6)

so that we obtain precisely the duality relation Yµνρ
MN defined in (5.24). In particular,

this shows why the scalar matrix that relates the field strength of the (D−1)-forms to

the embedding tensor according to (5.26) is precisely the (non-positive definite) matrix
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V
||⌈MN⌋||,||⌈KL⌋|| of the scalar potential. Clearly the analogue of this relation will hold in any

dimension.

Under general variations of vector and tensor fields, the full Lagrangian varies as (again

neglecting fermions),

δL = −
1

4
g εµνρ ΘMN δAµ

MXνρ
N −

1

8
g εµνρ

(

δBµν
MN + 2A[µ

M δAν]
N

)

DρΘMN

+
1

12
g2 εµνρ

(

δCµνρ
K||⌈MN⌋|| + 2Aµ

KAν
MδAρ

N
)

QK||⌈MN⌋|| . (6.7)

Thus, varying the Lagrangian with respect to all p-form tensor fields and ΘMN , one obtains

the set of first order and algebraic field equations

ΘMN Xµν
N =0 , Yµνρ

MN = 0 , ∂µΘMN = 0 , QK||⌈MN⌋|| = 0 , (6.8)

and we recover the duality relations XM and YMN that appeared in the computation of

the supersymmetry algebra (5.13) and (5.24), respectively.

Let us further remark that the full Lagrangian is invariant under the additional sym-

metry

δXAµ
M = ξν

XXνµ
M , δXBµν

MN = −2A[µ
||⌈M δXAν]

N⌋|| , (6.9)

δXCµνρ
K||⌈MN⌋|| = −2A[µ

||⌈KAν
||⌈M δXAρ]

N⌋||⌋|| ,

with an arbitrary vector field ξν
X . This follows directly from (6.7):

δXL ∝ εµνρ ΘMN Xµν
M Xρσ

N ξσ
X = 0 . (6.10)

Likewise, the Lagrangian is invariant under the additional symmetry

δYBµν
MN = ξρ

Y Yρµν
MN , δYΘMN = ξρ

Y DρΘMN , (6.11)

with another arbitrary vector field ξµ
Y . The extra symmetries (6.9) and (6.11) are those

which have shown up already in the supersymmetry algebra and correspond to the last two

terms in (5.34). The second one is a standard equations-of-motion symmetry’, whereas the

first one is a little more subtle as its corresponding field variations do not vanish completely

upon imposing the equations of motion.

Note that although there are of course no four-forms present in the three-dimensional

Lagrangian, their tensor gauge freedom shows up as a shift transformation on the the

three-forms (2.43). Since these are the only fields transforming under this symmetry, the

Lagrangian must be invariant under the mere shift of three-forms according to (2.43).

Fortunately, this invariance is precisely ensured by the additional orthogonality (4.11),

showing that the combination Cµνρ
K||⌈MN⌋|| QK||⌈MN⌋|| entering the Lagrangian is invariant

under these shifts.

A rather lengthy but straightforward calculation now shows that the full Lagrangian

L = Lgauged + LBC is invariant under supersymmetry provided the fields transform

as (5.4), (5.6), (5.16), and (5.33). Here no supersymmetry variation is assigned to the field
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ΘMN , which can still satisfy the supersymmetry variations by virtue of the existence of the

new symmetry (6.11). Furthermore we precisely recover the new transformation rules for

the higher p-forms that we have derived in section 5. A somewhat similar construction has

been carried out in [50] to describe Roman’s massive deformation of ten-dimensional IIA

supergravity [40] in terms of a nine-form potential and an x-dependent parameter m(x)

rather than a constant deformation parameter m. What is new here is the non-trivial

representation structure of the deformation parameters and the need to simultaneously

implement on them the quadratic constraint, hence the need for D-forms acting as the

corresponding Lagrange multipliers.

We now return to the possible interpretation of our results, and especially the ones

of the present section, in the framework of infinite-dimensional duality symmetries. Let

us recall that the representations found in the level decompositions of E11 [32 – 34] are in

one-to-one correspondence with the various p-form fields identified in course of our analysis

and displayed in table 2. By contrast, the embedding tensor itself does not show up in

this level decomposition, but must be added as an ‘extraneous’ quantity, even though it

is to be treated as a ‘field’ in the present analysis (otherwise there would be no need for

extra p-form fields in the Lagrangian (6.3)). In order to better understand the link with

infinite-dimensional dualities, it would therefore be desirable to re-formulate the theory

entirely in terms of only the fields appearing in the group theoretical analysis, and thus

without Θ.

At least in principle, it is possible to pass from the total Lagrangian L ≡ Lgauged +LBC

to another Lagrangian which does not depend on Θ, by noting that L depends on Θ at

most quadratically. Accordingly, we now regard the field equation Yµνρ
MN = 0 as an

algebraic equation for the (auxiliary) field ΘMN ,

4 g e εµνρ V
||⌈MN⌋||,||⌈KL⌋|| ΘKL = 3D[µBνρ]

MN + 6A[µ
||⌈M

(

∂νAρ]
N⌋|| +

1

3
gX[PQ]

N⌋||Aν
PAρ]

Q

)

+ g YMN
P||⌈RS⌋|| Cµνρ

P||⌈RS⌋|| − 6A[µ
||⌈M Xνρ]

N⌋|| , (6.12)

and use it to eliminate ΘMN from the Lagrangian. Although this equation is linear in

ΘMN , its solution is rather complicated due to the hidden Θ dependence of the tensors

XPQ
N , YMN

PRS and Xµν
M on the right-hand side. Consequently, the solution cannot

be written in closed form, but only given as an infinite series in the p-forms and their

derivatives.14 We therefore exhibit only the lowest-order term of the solution which reads

ΘMN =
3

4
e−1εµνρ

V||⌈MN⌋||,||⌈KL⌋|| ∂µBνρ
KL + · · · . (6.13)

Plugging (6.13) back into (6.1) and (6.3) we derive the bosonic kinetic term for the two-form

fields in lowest order, with the result

Lkin = e ∂[µBνρ]
MN ∂[µBνρ]KL

V||⌈MN⌋||,||⌈KL⌋|| + . . . , (6.14)

14Observe that the matrix V
||⌈MN⌋||,||⌈KL⌋|| will have zero eigenvalues at certain points of the scalar field

configuration space.
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We thus see that the inverse scalar potential matrix V||⌈MN⌋||,||⌈KL⌋|| shows up as the kinetic

matrix of the (D−1)-forms, as would have been expected from (5.28). As we already pointed

out above (after (5.27)) this matrix is not positive definite, unlike the kinetic matrices of

the lower p-forms. Fortunately, we need to require positive definite kinetic terms only for

those fields which carry propagating degrees of freedom, whence the non-positivity of the

kinetic term for the 2-form fields in the above formula is entirely harmless.

In conclusion it is possible to re-formulate the theory in terms of a Lagrangian that

contains only the scalars and p-forms, but no embedding tensor. The price we have to

pay is that the resulting structure is rather complicated, with non-polynomial interactions

and gauge transformations. Nevertheless, the Lagrangian obtained by elimination of Θ

is ‘universal’ in the sense that it would incorporate all gaugings, in such a way that any

specific gauging would correspond to the 3-form field strength ∂[µBνρ]
MN acquiring a

vacuum expectation value according to (6.13). One may view this as a kind of ‘spontaneous

symmetry breaking’, but of a novel kind: rather than simply breaking the rigid G invariance

of the original theory to some subgroup, this mechanism generates non-abelian gaugings

from a theory with purely abelian p-forms and interactions!

By construction, the constraints on the embedding tensor exhibited and studied in the

foregoing sections must also be consistently encoded into this new Lagrangian. Unfortu-

nately, due to the the non-polynomiality of the latter, it appears difficult to extract this

information directly and without explicit use of Θ. For this reason, it would be desirable to

go beyond the mere kinematics of level decompositions, and to ‘test’ this non-polynomial

Lagrangian (or at least some of its pieces, and in particular the dependence of (6.14) on

the scalars via the kinetic matrix) directly either against the E11 proposal of [35], or al-

ternatively, against the E10 proposal of [51, 52]. Because the latter admits a Lagrangian

formulation (but without D-forms as these do not appear in the decomposition of E10),

such tests are possible in principle. Although this will require much more work, we are con-

fident that the present results can serve as useful probes of M theory, or, more succinctly,

of the specific proposals made in [35] and [51, 52], respectively, and thereby shed new light

on the unresolved issues with them.
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