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Spherically symmetric gravitating shell as a reparametrization-invariant system
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The subject of this paper is spherically symmetric thin shells made of a baryotropic ideal fluid which moves
under the influence of its own gravitational field as well as that of a central black hole; the cosmological
constant is assumed to be zero. The general super-Hamiltonian derived in a previous paper is rewritten for this
spherically symmetric special case. The dependence of the resulting action on the gravitational variables is
trivialized by a transformation due to Kuchathe resulting variational principle depends only on shell vari-
ables, is reparametrization invariant, and includes both first- and second-class constraints. Several equivalent
forms of the constrained system are written down. The exclusion of the second-class constraints leads to a
super-Hamiltonian which appears to overlap with that by Anseldil. in a quarter of the phase space. As the
Kucharvariables are singular at the horizons of both Schwarzschild spacetimes inside and outside the shell, the
dynamics is first well defined only inside of 16 disjoint sectors. The 16 sectors are, however, shown to be
contained in a single, connected symplectic manifold and the constraints are extended to this manifold by
continuity. Poisson brackets between no two independent spacetime coordinates of the shell vanish at any
intersection of two horizon§S0556-282(198)00502-5

PACS numbdis): 04.60.Ds, 04.20.Fy

I. INTRODUCTION made to disappear from the action so that the final formalism
contains the shell variables only. As most of these gravita-
Spherically symmetric thin shells are popular models usedional variables just describe a gauge, one possible method is
extensively in the study of a number of phenomena: properto choose a gauge and to reduce the system, as for instance in
ties of classical gravitational collap§&], properties of clas- Refs.[10,15; then, however, the reparametrization invari-
sical black hole$2], quantum gravitational collap$&], the  ance is lost. We find a suitable tool in a transformation due to
dynamics of domain walls in the early Univerf45], the  Kuchar[16]. This transformation trivializes the gravitational
back reaction in the Hawking effe¢6], entropy on black part of the equations of motion to such an extent that they do
holes[7], and the quantum theory of black ho[&, to men-  not contain any more information about the motion of the
tion just a few examples. shell. The boundary terms that result from the Kudans-
Attempts to derive a Hamiltonian formalism for such formation contribute to the shell part of the symplectic form.
shells are for example Ref§9,6,10,11,5,12 The Hamil-  They not only modify the Kijowski momentum but provide
tonian(or super-Hamiltoniahis either guessed directly from aqgitional terms so that this part itself becomes nondegener-
equations of motioriRefs.[9,11]), or derived from a varia-  gte: thus, the symplectic structure of the shell emerges. Sev-

tional principle guessed for the spherically symmetric systemy g equivalent forms of the variational principle can be writ-
consisting of dust shells and gravitRRefs.[6,10)), or it is }en down
derived from the Lagrangian formalism based on the sum o : : ;

i A . . . : F I f th I h locall
the Einstein-Hilbert action and an action for an ideal fluid or example, one of the resulting phase spaces is locally

either after reducing the action by spherical symmeiyor described by four pairs of conjugate quantities, namely,
wihout any assumpion about symmefs2] nd R "are the Schwiarsatiil coordnates. 8 the

In Ref. [12], both the super-Hamiltonian and the Symplec_Schwairzschild mass, arfel. is the modified Ki'gwski mo-
tic structure are derived from the Einstein-Hilbert-ideal-fluid nta: the siant r f'r ttth tside and t Jth insid
variational principle. In this sense, the symplectic structure i enta, the sign- reters 1o the outside a 0 the inside )
unique: it contains a boundary term at the hypersurface o chwarzchild spacetimes. There are then three constraints:
the shell and it turns out that the momentum conjugate to th 1) tht? super-Hamlltc;nla;r} conﬁtralﬁlstth IS (roug.fs_lw th(ta th
surface area of the shell is tlleyperbolig angle between the ime-timé component of ISrael's matching condition at the
shell and the foliation hypersurfa¢&ijowski momentum” shell and it is a primary constrair(?) the continuity condi-

[13]; see also Ref[14]). This momentum will play an im- tion R+__R‘:O IS another' primary, and3) the.P0|sson
portant role in our calculations. brackety:={C,R, —R_} fails to vanish, sg¢=0 is a sec-

In the present paper, we shall derive a super-HamiItoniarﬁ)ndary constraint. The wo cpnstramt functiogsand R.. :
and a symplectic form for the spherically symmetric idea) — R- form a second-class pair. The second-class constraints
fluid shells, starting from the general formula of REf2].  can be solved fofR] and P,* and the solution can be sub-
For the sake of simplicity, we shall also assume that the
cosmological constant and all fields different from gravity
are zero. Our leading principle is the reparametrization in- Iwe adhere to the usual notation in the theory of thin shells: for
variance. Thus, the result must be a super-Hamiltonian rathemy, possibly discontinuous, functioX at the shell X:=(X,
than a Hamiltonian. One problem is then how the variables+X_)/2 and[X]:=X, —X_, whereX.. are the limits ofX at the
describing the gravitational field around the shell can beshell, X, from right, andX_ from left.
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stituted back into the action; in this manner, a partially re-tions from Ref[12] that will be needed as a starting point of
duced system with three pairs of conjugate variableour investigation. Let.(M,g) be an assymptotically flat glo-

(E,,T.), (E_,T.), and {PLR_) and just one constraint bally hyperbolic spacetime and let a thin shell of ideal fluid
Cl=0 is obtained. In four sectors of the phase sp&ehas Move along a timelike hypersurfadein M; % divides the
a similar form as the super-Hamiltonian of Rg5], which ~ SPacetime into two partsM, and M_, so thatM. is
has been derived in a completely different way. The origin ofadjacent to the infinity where the observers are.>tfet be
the second-class constraints is in the additional conditions byome coordinates . and&* be some inx. No relation
which the general Einstein-Hilbert-ideal-fluid action must bebetween the coordinateg(", and x{,, is assumed. Let
supplemented in order that the system with a shell be Welkf‘t)(g) be the embedding functions & in M. . We as-
defined: the so-called continuity conditiofsee Ref[12],  sume thaisee Ref[12])
and the next sectign
The Schwarzschild coordinate$ { ,R..) of the shell are u ,

singular at the horizons of the spacetimes inside and outside _ IX(—) ()

Vaﬁ(g)— (X(—)(f))

the shell. Each of these two spacetimes is separated by the g(‘)‘wa_é:a &P
horizons into four quadrants. As a consequence of this, the

phase space of the system is split up into 16 disjoint sectors.

The dynamical trajectories that result from the action can be = ( 9()ur
smoothly matched through the horizons, because the shells

are regular there. This suggests that there are dynamical vari-

ables which are regular at the horizons; we try the P .
Eddington-Finkelstein and Kruskal transformations. The firsWhere the symbols ) denote the limits from the four

1'\/olumes/\/li towards2, g-),, is the metric inM.. with

one leads to an atlas of 16 overlapping Darboux charts Covr'espect to the coordinateg. ,, and y,,(£) is the metric in

ering a single, connected extension of the old phase spacg: . « : S

this extension is not maximal, however, because the points IW!th respect tog*. Equations(1) are calledcontinuity

the intersections of the horizons are not covered. The secorld ations L

transformation leads to one single chart covering the maxi- Let {S;} be a foliation ofM by Cauphy hupersurfac&:

mal extension of the old phase space. The constraints ha\y}éheret runs through some real mter_val and 1Bf.y,:

smooth extensions to new phase space in both cases. T_estn.Mi' We assume tha, are (continuou$ hypersur-

Poisson brackets between the Kruskal coordinatesdv of aces inM and thatS., are smooth hypersurfaces.m.. ,

the shell does not vanish and we show that this must be trugr aII_t. Th? ArnOW|tt-peser—M|sner€ADM—.)I|ke formah;m

for any spacetime coordinates that are regular at the interse _sscrlbed in Ref[12] is based. on a choice of coordinates

tion of two horizons. X(%, that are adapted to the f(_)l|at|c{l$t} on one hand ar'1d to
Our super-Hamiltonians are reparametrization invariant> On the other. Such coordinates satisfy the following re-

but rather complicated: they depend on momenta througRuirements. First,

exponentials and square roots. Some problems arise immedi-

ately. For example, the problem of quantizing such compli- x?+)=t, O=t;

cated super-Hamiltonians or the problem of relation between a

the super-Hamiltonians of the present paper and that of Ref. K . .

[11], which is not only reparametrization invariant but also then.X(+), k=1,2,3, can be considered as coordinatesSon

quadratic in momenta. These problems will not be addressedd¢", K=1,2, as coordinates oBNS,. Second, the em-

X5y OX(s)
P a_gﬁ(x(ﬂ(g)) +, (1)

here. bedding function(. (&) definingy satisfy
The plan of the paper is as follows. In Sec. I, we intro-
duce the general formula for the super-Hamiltonian from x?+)(§° &L e2)=¢0

Ref.[12]. In this way, the paper becomes self-contained. In

Sec. lll, the assumption of spherical symmetry is formulated,

the dynamical variables are adapted to the symmetry, and the d

action is expressed as a functional of these variables. In Sec. —x(+)(£%,4,69)=0

IV, the Kuchartransformation is performed and an effective d¢

shell super-Hamiltonian is derived. Section V is devoted to

the study of the shell action obtained in Sec. IV. We checKor all (£°,¢£%,£%) e andk=1,2,3. Thus, the vectat/dt is
that correct equations of motion result from it, investigate thetangential to2. The functions

structure of the constrained system defined by the action, and

remove the second-class constraint by a partial reduction.

k 1 £27. K 0 ¢1 £2
Finally, Sec. VI addresses the problem of the singularity at Y() (61,87 =X(4) (67,6769
the horizons. We use the units such thatG=1 (c is the
velocity of light in vacuum ands is Newton constant can be considered as embedding functions of the surface

2 NS in the hypersurfaceS,..); they are independent of
the time coordinate. Thus, the dynamics of the shell is
completely determined by the time dependence of the metric
In this section, we describe the spacetime with the shelland of the matter fields alony. This leads to a great sim-
introduce the basic ideas and quantities, and collect the equafification of the formalism and of the variational procedure,

Il. THE SPACETIME AND THE SHELL
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but to no restriction of generality, see REE2] for a discus-
sion of this point. We shall often leave out the index the
sequel.

The 3+1 decomposition of the metrig;
scribed as followgsee Ref[17]):

+)u» CaN be de-

00 _ -2 _
9=)= — N5, 9=)ok=Nz ks

I ki =d(=)k9+=— Nziqi ;

whereN.. is the lapse antll .., the shiftinS.., g+ is the

metric induced inS.. by g(+),,, 9+ is the determinant of
J(+)ur» @andq. that of g ., . (We work with adapted co-

ordinates. The 2+1 decomposition of the metrig,; is
analogous:

00_ -2

Y ==V 5 YokT VK

AL=7YkL, Y= —N1VP,

where\ g, is the metric of the surfacE N'S with respect to
the coordinateg® and\ its determinant. The 21 decom-
position of the continuity relation€l) is

v=1NZ—(N{.)?, 2)

k
'
VK:N(:)k agK ’ (3)
k |
IY(+y Y (+)
AkL =0+ )kl 2 i (4)

where
1l k
Ny =NeeMis) s

and m‘(‘t) is the unit normal vector t& N'S tangent toS ..,
and oriented frong _ to S, (towards the observersThis
orientation will be often used, so we callright orientation.
An important role is played by thényperbolig anglea -
of the two hypersurfaces andS ., which is defined by

Slnmt .:_g(t)’uvnﬁi)azji), (5)

wheren(., is the future-oriented unit normal t§.., and

M., is the right-oriented unit normal t& in M. . One
easily proves that

N.=wcoshr., Ni.,=vsinha..
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The matter of the shell is assumed to be relativistic baro-
tropic perfect fluid. Its description follows the pattern given
in Refs.[18,12; let us collect the relevant formulas.

The mass points of the fluid fill the so-called matter space
Z which is a two-dimensional manifold for a shell. The co-
ordinatesz®, A=1,2, inZ can be thought of as Lagrangian
coordinates of the fluid. The state of the fluid is described by
the “fields” z*(£). The matter space carries a scalar density
h(z), which determines the mole or particle density of the
fluid in the matter space. The mdlparticle currentj® in 3,
is given by

_ 1.2
J“—he“ﬁyzﬁzy,

where we use the abbreviation
ozt
9Ex

A

"

z

The currentj® is identically conserved]?,=0. | defines
the three-velocityu®(¢) and the rest moléparticle density
n(¢) in 3 by

i*=[ylnue,

where y,gu*uf=—1.

The information about the consecutive relations of the
fluid is encoded in the quantitg(n) that gives the energy
per mole in the rest frame of the fluid as a function of the
mole densityn. Then, the surface tensionp of the fluid is
determined by(see Ref[18])

The dynamics of the fluid in the fixed background three-
spacetime>, can be derived from the Lagrangian

Lm=—]7lp(n),

wherep:=ne(n) denotes the rest mass density of the fluid.
The stress-energy tensor density

T =\[7[(p+p)u®uf+py“*) (6)
satisfies the relation

Sl

aB —o_ 0
=25 X"

)

wherel ,, is the action of the fluid,

Another important quantity is the second fundamental

form I, of the surfac&NSin S, which is defined by

k |
W) WY (+)
age ggt

l(t)KL::m(t)kH

here the bar denotes the covariant derivative associated with
the metricq+yy in S+). We reserve semicolons for the

covariant derivative defined lay,, in M and colons for that
by v.p in 3. The tracel““y,, of I, will be denoted byl.

'm:f d3¢L .
3

It also satisfiegthe Noether identity

a a aLm A
T5=Lm55—gzﬁ. (8)

o

The momenta, of the fluid are defined by



iy,

Pai=—r.
Aot

The negative component T8 of the stress-energy tensor

in the adapted coordinaté&s is the Hamiltonian of the fluid
[12]. In Ref.[12], the following important formulas have
been derived:

T8= - V\/X':I:LL —K \/X:l:ﬁ (9
and
Ty 1
_ ~TKL
e ST (10
where
Tll: 1/:0 ZKKLZQZEpApB—va (11)
p'(j°)
Tk=2Pa- (12)

We have introduced the symbols

~ 1 _
I a
TH =—=T*n,ng,

1
o INE

where n® is the future-oriented unit normal to the surface

>NSin 3.

Finally, the master formula, the Hamiltonian of the whole

system consisting of the shell and gravithe gravitational
field being also dynamicpakeads(for a derivation, see Ref.

[12))

H:J d3x(N+C+Nt‘+)Ck)+f d*x(N_C+N{_,Cy)
S, S_

2 K 1 24 0
+f dé(vCs+ v Cgy) + f d<¢éLy, (13
sns 87 Jsns*

whereC is the ADM super-Hamiltonian an@, is the ADM
supermomentum,

1 /Z’n'k'md—ﬂ'z
C= —VgrR® |,
1677\ 2\q va
1 |
Cy==g, kil

7~ is the ADM momentum for gravity, anR® the curva-
ture scalar of the metriq,,. The surface super-Hamiltonian
C, and the surface supermomentulyx at the shell are
given by

1 - ~
Co=-— 8—77[7T“sinha— lcoshu]+ T3,

C LI +TL
sK 877[7TK “,K] sK»
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where
_ Kl I ay'
T =—mm, T=—=0,M—,
Va g e
B 7 ayk gy

The symplectic form is

A Ky sy okl
QX X)= 75— de(5ﬂ' Ok~ 6q ")

1
167 o

el NP NNE)
+ f d2&(paz”— 62°pp)
SNy

= 2 + AT T+
167 szer E(Sa™VNT=6YNTa"),

(14

where the quantities with the superscript plus sign concern
the hypersurfac& * and

SX=(8(x), 8q4(x), S a(£)],
X 8N(£),8pa(£),62%(£),6\N 7 (§),6a" (£)),

X = (7(x), a(x). [ ()], VN (E),

X Pa(£),22(€), N T(€),a"(£))

are two vectors tangential to the symplectic manifold of the
system.

The equations of motion follow from the variation for-
mula (cf. Ref.[12])

- . 1
= - 2 af
SH=Q(OXX)+ 1o | @*n 7,59Q", (19

where Q*#:=Ly*#—L*f and L:=L*fy,,. This formula
plays a double role. By deriving it from the Lagrange for-
malism carefully considering all boundary terms, we find
what is the symplectic form of the system. By comparing the
right-hand sideRHS) and the left-hand sideLHS) coeffi-
cients at the variations of the same variable, we obtain the
equations of motion.

The last terms in Eqs(13) and (15) determine the so-
called control mode(see Ref[19]). In fact, there must be
one such term for each infinity, see the next sectibh.is a
timelike surface that forms a boundary 8fand it will be
pushed to infinity eventuallyl, .4 is the second fundamental
form of £ defined by

Lo Xk gx”
o8 =M e Geb
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m* being the externawith respect to the volume closed by ~ 1he components of the unit future-oriented veatanor-
.+ unit normal to3 *, andx“(¢) are the embedding func- mal to S aren, = — N&ﬁ. The corresponding second funda-

tions definingS *. The usual canonical equations hold only mental formKy, can easily be calculated; its two indepen-
if the last term in Eq(15) vanishes. This means that the field dent components are

Q*? must be kept fixed at *. In Ref.[13], a more natural
control mode is described; we obtain it if we perform a Leg-

A
endre transformation fror{ to H by K== A= (AN)"),

H=H~— i d?¢ 7 Q%* (16) R
16m/x*ns Kao=—g(R=N'R"),
so that the boundary term in EQL5) becomes

where the prime denotes the derivative with respect and

1 .
—f d2¢ (000Q%+ 2yok Q%K — QKL Sy, ). the dot that with respect to Then, the ADM momentuna®!
16mJx+ns is determined by
(17)
If the surface. " is shifted to infinity and if the usual falloff " 2Rsiny . )
conditions ongy,, 7', N, andN, are met, then the on-shell m == — N (RN'RY,

value of H is the ADM mass and the expressi@hy) van-
ishes(see Ref[13]). We will pass to this description directly

in the spherically symmetric case. ARZsind[ 1 . 1 .
99 N —(A—(NrA)’)+§(R—NrR’) :

AR?

m =

Ill. SPHERICAL SYMMETRY

In this section, we substitute the spherically symetric val4ne obtain for the Liouville form
ues of the physical fields and foliation into the Hamiltonian
(13) and the symplectic fornt1l4). We start with the trans-
formationv of the volume terms following closely the notation ~ ,_ f drddde mdqy
by Kuchar[16].
There are coordinatds r, ¥, and ¢ such that the space-

. ; R . R .
time metric has the form :_167Tf dr[N(R—N’R’)dA+ N(A—(NrA)’)

ds?=—(N?~N?A~2)dt?+ 2N, dtdr+ A%dr?+ R?d 92

AL
P_N'R!
+ R2sir9d ¢ R NR))dR]'

with the square root of the determinant

V—9g=NARZ?sind,
R

whereN(t,r), N'(t,r), A(t,r), andR(t,r) are some func- Pr=—(R-NR",
tions oft andr. We assume thate (—«,), thatr=*o
are spacelike infinities and that the equatienO defines the
shell. We further assume that the coordinates are continuous R . coo A .
across the shell. We shall leave out the indicesbut we Pr=— N(A_(N A) )_N(R_N R).
will keep in mind that some components of the metiit, (
N,, A, etc) are discontinuous across the shell.
The folii t = const carry the metriq : Hence,

Let us set, with Kuchar

ds?= A2dr?+ R%d 92+ R%sir? 9d p? 2P, Pr
mT=——sind, ='=—TsinY,
with the square root of the determinant

Jg=ARZsing. and
The shell hypersurfac® can be described by the coordinates
t, 9, and ¢ and the metricy,; satisfying the continuity 0=1677J dr(P,dA + PrdR). (18)

relations(1) is

ds?= — (N?~N?A~?)dt?+ R?d 9%+ RZsirf 9d . The volume terms in the super-Hamiltonian become



d®x (NC+NKC))

167 S,
=f dr[Nr(—AP’AJrR’PR)
St
A, 01 AR? o
+ N ﬁPA—ﬁpAPR—TR , (19)
where
R® = 4RN +4A,R, 2R,2 + (20
AR AR A°R?2 R?

is the curvature scalar of the metrg, and the hypersufaces
S. are defined by-r>0.

The surface terms containing only the geometrical quan-

tities are our next task. The shell surfateis defined byr
=0. Thus, for the normain® to 3NSin S, we have

mk=A5r y
and the normam“ to 3, in M is

~ 1 . AN ;
m,= @5#_ \/NZ—erA’Z 5#'

Then
N
NL=N'A= Kr v=NZ—NZA 2
and
. N,
sinha= —.

Av

The definitions of\y, , Ix,, 7 *, and 7y yield

R?, 0 K=Res
AkL= 0. R%si9)’ A =R<sind,
R’ 2R" 2 ~
||<L:ﬁ7\r<|_, “RA’ LLZQPAa mg=0.

Hence, the surface term in the Hamiltoni@r8) becomes

f d?¢ (vCet+ovKCqp)
NS

/

R
— PAsinha+Tcosh)z (21

=V

+M(R)>

r=0

and an analogous term in the symplectic faitd) is
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167 Jsns

A . O\
d%¢ ﬁ(;é{a]—[a]T)

=(8[«]RR-RSR[al]); 0. (22
The matter spac& will carry the coordinateg'=0, 7°
=&, and the mole densitly=sin® [in fact, any scalar factor
in front of h can be swallowed bg(n)]; the matter fields
Z7(&) will simply be

O(t,d,9)=19, P(1,9,9)=¢.

Thus,zg= 8¢, 2*=0, and we obtain

ja:(hvoao)v pAZO,

The fluid Hamiltonian is
—To=vR?sindp = vesind

or

—f dode To=4mve. (23
NS

We introduce the so-calledmass function NR):
=4me(R™?); the meaning of it is the total rest mass of the
shell of radiusR (see Ref[11]). As the momentunp, is
identically zero, there is no contribution to the symplectic
form by the matter.

Collecting the result$19), (18), (21), (22), and(23), we
obtain the Hamiltonian for the spherically symmetric system:

H=f dr {Nf(—AP'AJrR'PR)
r<o0

A, 1 AR? o
+N ﬁPA—§PAPR—TR
+J dr { N(—AP,+R'Pg)+N LPZ
r=0 A R 2R2 A
1 AR?
—§PAPR_TR(3) ]
. RR
+v —PAsmm+Tcosm +M(R))
r=0
+E(®)+E(—»), (24

where E(+ =) is the ADM energy atr =+ and R® is
given by Eq.(20). The symplectic form reads
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. sc . . . : R
Q(&X,X)zf dr (8P,A—SAP,+ SPRR— 6RPR) E= 5 (1-FFy),
0
+f0 dr (8P A— SAP, + SPrR— SRPg) _ APa
- B RF,F,’
+(S[a]RR-RSR[a]);—o, (25) o _p  (FiFatD) APy R(Fyf)’
REFRTTE . 2R 2\ R,/
where
where the useful abbreviatiofs, andF, are
oX c R P, c R P,
= (8PA(r),8A(r),8Pg(r),8R(r), 8] @], o, 8(R/2), _o), AR TTRATRY

The inverse transformation is
A=+\—-FPg+F 'R’?
The equation of motion can be obtained from the variation

formula _ RFP:

X=(PA(r),A(r),Pr(r),R(r),[a;—o],(R¥2); _o).

Pa A (27
SH=Q(X,X). '
( ) F+1 R[FPg| R’2
PR:PR+TPE+E —, —2,
The same equations of motion can be obtained from a R A
Hamiltonian actiorl, if we employ the corresponding Liou- h
ville form instead of the symplectic one: where
R—-2E
0 ) ) % _ . F:= , (28
I=f dt(f dr (PAA+PRR)+J dr (PAA+PgR) R
— % 0
and theA’s on the RHSs must be expressed with the help of
; _ the first equation.
+(LalRRr=o H)' (26) The following important relations holflL6]

F=F.F,, Pe=—T'. 29
We have assumed that the fields N, A, R, P, , andPg vl - 29
satisfy the usual falloff conditions as described by R&6]  The transformation of the volume part of the Liouville form
in detail. has the forn{16]

RdR |F;
——In

Ry 2 ) .

The Kuchartransformation is a canonical transformation ’ (30
of the gravitational volume variables so that the new vari- ) ) ]
ables can be neaﬂy Separated into the true degrees of fre@here the dots depote a dlfferen.tlal of some function on the
dom and the variables that indicate a point in the solutiorPhase space, which can be discarded. In Re€], the
Spacetime. An examp'e is given in Rqﬂ_6] where the r-derivative term on the RHS of EC(30) could a|SO_be
spherically symmetric gravity is studied. The transformationthrown away because the asymptotic values of the differen-
leads to a pair of physica' Variab'&ne degree of freedo)'n t|ated fUnCt|0.n.Van|She.d. !n our case, hOWeVer, this .term
and to the remaining variables being the Schwarzschild timgives a nontrivial contribution to the shell part of the Liou-
T(r), the curvature radiuR(r), and the conjugate momenta. Ville form:
The foliation of each spacetime solution remains completely 0 .
arbitrary. As a byproduct, the equations of motion for gravity f dr(R,dA + PrdR) + f dr(P,dA +PrdR)
become trivial. This will help us to express the acti@) — 0
through shell variables alone without restricting the reparam-

. . . . 0 ©
etrization invariance. =f dr(RedE+ Prd R)+f dr(RedE+ PrdR)
— 0

/|22
"V,

1

IV. THE KUCHAR TRANSFORMATION P, dA + PrdR=PLdE+ PsdR+

A. Transformation to E and Pg

+ (31

}RdR

In Ref.[16], the transformation is performed in two steps.
This subsection goes the first one transforming the variables
(PA,A,PR,R) to (Pg,E,PR,R). The transformation can be Let us study the geometrical meaning of the last term. The
written as follows: meaning of any quantity in the canonical formalism is given

r=0
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by the role it plays in the classical solutions. We can, there-

TABLE I. Components of the Schwarzschild frame.

fore, assume that the canonical equations are satisfied. The

only canonical equation we need is Ns mg
P, = — ~(R=R'N"): Q ( ! o) (0TFD
AT N( )l | \/ﬁ, ’
it implies that L
1 9 1/ 9 d QII <_ﬁlo) (0,_ \/m)
Fio=\-——=F=|=—-N—||R. (32
“ \A dr N\t ar
We also have 0—[F io)
a Qu (0 \TFD) =
—=Nn+N"Am,
Qw (O.V[F]) <——,0)
P JIF
—=Am,
or

wherem is the right-oriented unit vector normal 813 and
tangential toS, andn is the future-oriented unit vector nor-
mal to S at SN (these vectors carry, of course, the indices
+ that we are leaving out provisionallywe call (h,m) the
foliation frame It follows that

( )0R
Fi=(m*¥n#)—.
12 "

In\/‘;}RdR:[B]RdR (33
1

and the first step of the Kucharansformation changes the
shell part of the Liouville form as follows:

([@]RAR)—o—([a+ BIRAR), .

The definition(5) implies thata is the angle of the hyper-
bolic rotation from the foliation frame to thehell frame

(see Ref[16]). The meaning of the logarithm in E¢31) (n,m). Here, the vecton 'f future oriented, orthogonal to
will be evident if we introduce the so-callégchwarzschild SN2, and tangential t&, m is right-oriented and orthogo-
frame (ng,mg) defined by the conditions that the frame nal toX atSNX. We have, from Eq(5),

(ng,mg) is orthonormal, future- and right-oriented, and such
that at least one of its vectofas a differential operatpr
annihilates the functiolR. The horizons divide the Kruskal
manifold into four quadrant®,—Q,, . We identify them as
follows: Q, is adjacent to the right infinityQ, to the left ) ) ,
one, Q,, to the future singularity, an@,, to the past one. Thus,a+ B is the angle of the hyperbolic rotation from the
The Schwarzschild frame is well defined oigidethe four ~ Schwarzschild to the shell frame. Let us define
guadrants, and its components with respect to the Schwarzs-
child coordinate§” andR there are given by the Table I. Let

us define the angl@ as the hyperbolic rotation angle from p g independent of the foliation ansingular at the hori-

Clearly, m*¥n* are radial null vectorsf, vanishes at the
left-going (pas) and F, at the right-going(future) horizon

n=ncoshy+ msinha,

m= nsinha+ mcoshu.

P=(a+pB)R;

the Schwarzschild to the foliation frame:

n=ngcoshB+ mgsinhB,

m= ngsSinhB+ mgcoshB.
Then,

m¥*n=e"#(mg¥ng)
and
(M*5n#)d,R=e"A(mk+nk)d,R.

Working with Table I, we obtain from it that

F2

£ =e?B
Flez

in all quadrants. The final result is, therefore, simply

Zons.

The constraint€ andC, are written down in terms of the
new variables in Ref[16]. More interesting for us is that
these constraints can be replaced by an equivalent@air
andC, that is much simplef16]:

Ci=E'(r), Cy=Pg(r).

The shell constraint contains the expression

/

~ R
C:=—-P,sinha+ Tcosm

that reads in the new variables as folloje$. Egs.(27) and

(291

~ RFT RR
C= sinha +

A A coshu.
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TABLE II. sinhB and cosl8 by means of the canonical vari-
ables.

Q| Q|| Q||| Q|V
sinh3 TVF[ TV R R’
A A AFT AVIFT
cosip R’ __K T'VF[ G
AVFT AVF A A

This can be expressed by means of the argle8=P/R.
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Each given boundary term at the infinities assume some
particular boundary condition; in our case, the lapse function
N(=*=) must be kept equal to 1. We need more freedom,
however. Such a freedom is achieved in R&6] by param-
etrizing the system at the infinities. This can be done by

introducing the coordinateB( =) of the hypersurfac&; at
r==*o, In Ref.[16], it is shown that

N(Fw)=+T(*®)

and the termE(«)+E(—=) in the Hamiltonian(24) or in
the action(34) is to be replaced b¥(®)T(%)—E(—)T
(—). Then, all variations can be performed, including ar-

The foliation frame has the following components with re- pitrary variation ofN at both infinities, and the result are

spect to the Schwarzschild coordinates:

B TI RI
) m= X,X )
and this holds in all quadrants. It follows that sgkand
cosiB is related toT’ and R’ as given in Table Il. The

following notation will enable us to write formulas valid in
all quadrants simultaneously: let

_ R FT’
"=lFA A

sh, x:=coslx, sh_x:=sinhx,

and leta andb be signs defined by Table Ill. Then,

~ P
C=bR\/ﬁsha§.

To summarize, the Hamiltonian actidnof the system
reads

0 . .
|:f dl’{f dr(PEE+PRR_N1C1_N2C2)
+f dr(PgE+PzR—N;C;—N,C,)+([PIR),_o
0

]

P
bRWF|sm§

+M(R)) —E(OO)—E(—OO)}.

r=0
(34)

whereE(«~) andE(—«) are the ADM masses at each of the

spacelike infinities.

B. Transformation to T and Pt

The second step of the Kuch&mansformation concerns

the variable€€ andP¢ and the boundary terms at the infini-

valid equationg16].

The termE()T(%) —E(—)T(—«) in the action can
of course be considered as a part of the Liouville form; thus,
the parametrized action contains the Liouville term:

o= fo dr(PEE+PRR)+fmdr(PEE+PRR)+([l!f]RR)r:0
— 0
—E(o0) () + E(—2) T(—). (35

The next step is to introduce the new varialblg) that
satisfies the relatioRg=—T' [see Eq(29)] and to find the
corresponding conjugate momentum. This can be done by a
transformation that concerns only the variables P,
E(xx), and T(=). The relevant parts of the Liouville
form are

'a+:f:dr PeE—E(%)T(x)
and
. 0 . .
0_=f dr PeE+E(—)T(—).

Let us substitute- T’ for Pg in 6, and transfer the primes
and overdots as follows:
- f dr ET’) .
0

'a;—f dr E'T—(ET),_o+
0

Similarly one obtains, fol_

. 0 . .
0,=—f dr E'T+(ET),_o+

0 .
—f drET’).

ties. We shall use a slightly modified version of the Kuchar

procedure in this section.

TABLE lll. The signsa andb.

QI QII QIII QIV
a + + - -
b + - - +

Hence,Pt=—E’, and the constraints simplify even further:

C]_:_PT, CZZPR. (36)
If we introduce the notation
lim T(r)=T., |limE(r)=E.,
r=0x r=0=x

then the action{34) in the new variables reads
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0 . . a.=sgrF. . (42

The action(40) describes the motion inside the sectors and it
o . . . . . becomes singular at sector boundaries. The varidbleand
+ fo dr(PtT+PgR)+([P]IR-E T, +E_T_),—o T+ diverge anda. andb. are not defined at the bound-
aries.

0 o
- f_wdr('\'lcﬁ N2C2) = fo dr(N;Cy+N2Co) V. PROPERTIES OF THE SHELL ACTION

In this section, we study the properties of the acti40).
+ M(R)) ] (37)  We derive the equations of motion, clarify the structure of
r=0 constraints and reveal a geometrical meaning of the super-
Hamiltonian.

P
bR\/|F| sh, ﬁ

-V

whereC, andC, are given by Eq(36) anda andb by Table
1.

The dynamical equations for the variablésR, Pt and _ o .
Pr describing the gravitational field around the shell that Let us vary the actiort40). The variation ofv gives the

A. The equations of motion

result from the actiorf37) are Hamiltonian constraint
: - P P_
T=-N;, R=N; (39) b, RV[F,] sni+ﬁ+—b,R\/|F,| sh, & +M(R)=0,
and (43
P;=0, Py=0. (390  and the variations oP.. result in
The first pair(38) does not impose any limitations dhand ;:b+\/F_+| sma+%, (44)

R because the Lagrange multiplieds andN, are arbitrary.
The second paif39) implies thatE(r) is constant along each )
slice,E(t,r)=E, (t) andE(t,r)=E_(t). This together with R P_
Pr=0 does not even imply that the spacetime outside the Z:b— VIF-| Sh‘a—ﬁ’
shell is Schwarzschild one.

The nontrivial part of the dynamics is completely con- which implies another constraint,
tained in the shell equations. The shell Hamiltonian depends

on the variables’ R, E.., P.. and on the discrete variables P, P_
a. andb. . It does not depend ofi.. . It follows immedi- by VIF.| sh_a+?—b_ VIF-| Sh-afﬁ_o' (46)

ately thatE. =0. This, together with the volume equations o . .
(38) and (39) is equivalent to Schwarzschild solution being The variation with respect t&.. yields
the spacetime outside the shell.
We can, therefore, replace the acti@7) by an effective T b R sh, P. d|F.|
. — =V .
shell action of the form * “2JF.] = R JE.

(45)

'S:f dt(P,R—E.T,-P_R+E_T_—wC,), (40) For t_he calculation of the derivative oF .|, we take Eq.
(42) into account:

where J|F .| 2a.
P, p JE. R
Cs=b,Ry[F,| sh, = —b_Ry[F_| sh, = +M(R), _ _
* R R Then, the following equation results:
(41
. I . T. a.b. P.
is the super-Hamiltonian of the shell afd. are given by — = sh, —. (47)
Eq. (28). We interpret the solutiong.. , T.(t), P.(t) and N
R(t) as embedding formulas in two Schwarzschild space- o
times with energie€ . and coordinatesT|R). The variation ofT.. leads to
The discrete variablea. andb. describe the different .
sectors of the extended phase space. If the shell crosses a E.=0. (48
horizon in the spacetime to its left or right, some of the signs
will change. There are 16 sectors; some of these, howevekinally, varyingR, we obtain
will have empty intersection with the constraint surface. Ob-
serve that.. is not an independent variable, but a function _p.ap _ Va_CS (49)
of R andE. : T TR
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Equations(43)—(49 form the complete set of dynamical
equations for the shell. Some discussion of these equations is

in order.

First, we show that Eq(49) is a consequence of Egs.
(43)—(45), (48), and ofR#0 (the last relation is generically
satisfied along each trajectgryndeed, the time derivative of
the super-Hamiltonial€; must vanish as a consequence of

Eq. (43):
dCs. . aCSE . aCSE +(9csp . acsp 0
IR O9E, Y 9E_ " 9P, T oP_ —

The second and third terms on the LHS vanish because of

Eq. (48). For the last two terms, we obtain from Edg4)
and (45):

aCs R
P, v’ IP_ v’

Hence,

aCs P, P_).
_+_—_ =
(r?R v v )R 0.

and this shows the claim.
Second, manipulating Eq&14), (45), and(47), we arrive

T.
_|Fi| 7

A useful identity is

at

2 S\ 2

1R P. P.
=] =- —+ .
+|Fi|(v) R e,

shy(x+y)=cosh shyy+shx sh_,y, (52
which can easily be derived from the definition

e&+ae X

ShaX: T, (52)

and which implies that $x—st? ,x=a, independently ok.
Thus, the RHS of Eq50) is —a. . Multiplying the equation
by a.. and using Eq(42) yield

F Ti2+1R2— 1
%) TFA\y T

This is the “time equation”(see Ref[11]) saying that

(1151

is a unit timelike vector. It also implies that

(53

2
: (54)

. R
Fi_:Ti Fi+ -
14

where
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(55

T.
T :=sgr(F+7‘).

Finally, we obtain, from Eqs(43) and (47),

T, T_ M(R)
Py P R

substituting into this equation frortb4) yields the “radial
equation”

This is the Israel equation for spherically symmetric shells
written in a way that is valid for all sectors in the case of
future-oriented shell motiorisee Ref[11]). Thus, the dy-
namical equations implied by the actidd0) are as they
should be.

—M(R) (56)

B. Structure of the constraints

Two constraint functions have been obtained directly
from the action(40) by varying it: the super-Hamiltonia@
and the LHS of Eq.(46), which we denote byy. The
Lagrange multiplier that give€; is v, that for y is P, de-
fined by

— P.+P_
Pi=—s—.

The Poisson bracket betwe€h and y requires a longer
calculation; we quote just the result

E.-E_[ a/b.b [P]
,Co}~— + s —
x.Cst >R2 \ F.F | r!a+a_ R
259® (M’ M/R)
N
a_b,b_sgmB . M(R)
—arc an
REEAZ 5
[P]
|F+F—|Sh—a+a,?’
where
A:=b.|F |sha —a_b_v|F ISha
B:=b,|F,| sh. —a_b_VJF LP]
* a+ 2R ~VIF-[sha 2R’
(58)
and[P]=P_,.—P_ is the momentum conjugate fR. We

have used the constraints in calculating the bracket, so the
equality is only weak £). The Poisson bracket is nonzero at
the constraint surface, so our system cannot be purely first
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class and the value of some Lagrange multipliers will be  TABLE IV. The vector{ and the Schwarzschild frame.
determined by the equations of motidesee, e.g.,[20]).

Clearly, it is P which is determined, fox depends on it and Qi Qi Qu Qu
can, therefore be used to calculate it: ¢ neV[F] N mev[F| —ms\[F

X=AcoshE+Bsinh; 5 5
C.=RAsinh= +RBcosh= + M(R),
. : he by +M(R)

L A where A and B are given by Eqs(57) and (58). Equation
P=-R arctanhB—. (59 (59) can be written in the form

The Lagrange multipliew is not restricted by the equa- sinh;: —sgrB
tions of motion. This means that the system is mixed, con- JBZ—AZ’
taining both first- and second-class constraints. To prove
that, we extend the phase space by another conjugate pair, B

a P
(P, ) and constraint the momentumto be zero, COS*‘R—ZSQFB\/ﬁ-
7=0. .
Hence, we obtain, fo€,,
This constraint must be enforced by another Lagrange mul- —
tiplier 7, say, and the corresponding additional term in the Cs=sgrBRYB —A"+M(R).
action is— v . The new system is clearly equivalent to the ciearly, the constraint surface intersects only those sectors,

old one, but it has three constrair@lg, x, and7. We obtain  \ynere the following conditions are satisfied:
easily

c sgB=—-1, |B|>]A|. (62)
S
{m.Cs= a_P_:X The definitions(57) and (58) lead to
and 2 A2 [P]
B°-A*=F,+F_—2a_b,b_\|F,F_| sha+a_?.
ax M(R) 1
xom= a_P_: - R? +§Cs- where we have used the identityl); we obtain the partially

reduced super-Hamiltonian, which we denoteQly,
Thus, the pair g, ) represents the second-class part of the

= =R sgrB
constraint system, and a modificati@g of C, defined by Cs =g
P
- {x,CsR? ><\/F++F_—2a_b+b_\/|F+F_| sh, 4 tP]
Cs:=Cet—F——7 +*- R
M(R)
+M(R); (62

has weakly vanishing Poisson brackets with bgtland 7.

The equation€C,=0 and7=0 are primary constraints and the corresponding action, which is independentPofand

x=0 is a secondary constraint. implies only one constraint, reads
Let us write down the action of the extended system

. . . — |f=fdt PIR-E,T.+E_T_—»Cl}. 63
I§=Jdt([P]R—E+T++E,T,+7TP— yar—vCy), s {[PIR-E.T, vCsl ©3

(60 The super-Hamiltoniari62) in the four sectors whera.,
= =a_=1 seems to be the same as the zero cosmological
where we have to substitu=[P]/2 for P... The method  constant case of the super-Hamiltonian derived in R&f.

of the Dirac brackets can be applied . An (equivalent The expression under the square root in &) reminds
alternative is to get rid oP by solving the constrainy=0 of the cosine theorem, and, indeed, it has a simple geometri-
for it and inserting the solution back into the acti@tD). cal interpretation. Consider the vectdr generating the
Schwarzschild time shift. There is a simple expressionéfor
C. Partial reduction in terms of the Schwarzschild frame, because one leg of this

. . . frame is always parallel tg; for each quadrang is given by
In this subsection, we reduce the system partially by SUbTable IV. Let us find the components éfwith respect to the

stituting Eq.(59) for P into the action(40). First, we make  shell frame using the transformation between the shell and
the dependence @& on P explicit: the Schwarzschild frame
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_ P - P sectors; they do not say, at least directly, what happens at the
Ng= ncoshﬁ - msmhﬁ, boundary.
The form of the singularity ifP.. can be inferred from
Eq. (64): both the vector¢ and the shell framer(,m) are

- P _ P
Mg= — nsmI'EercosIE. smooth objects, so the components are to be smooth, too. It
follows that
The result can be summarized by the formula P 1 b 1
shy, = ~-——, sh, —~ (65)
~ P - P = R & R
£=Tiby[F[ sy —mb\[F] sha) (64) VIF| VIF|

at the horizons.
which is valid in all quadrants; we have left out the indices This section will be based on a transformation of the ex-
+. Comparing Eq(64) with the original form of the con- tended actiorf60) that may be interesting for other purposes,

straintsCq and y, we can see immediately that too. First, we introduce the variabl&s. by
_p0 _ 0
Cs=R(&4) &)+ M(R) ae R+42—R, | €8
and
m=—R,+R_. (67)
X=E =& i

1 The meaning of the variablé®, andR_ is simply that they
where the shell frame componeriand¢* of the vectoré give the values of the functioR at the shell from the right

are given by Eq(64). The geometrical meaning of the con- anq from the left, respectively. Thus, the constraint 0 is
straint y=0 is, therefore, that the space component of the,ihing but the only remaining continuity condition from Eg.

“vector difference” £, — ¢ vanishes, and dfs=0 thatthe (1) | et us substitute Eq€66) and (67) into the Liouville
time component of this vector difference equal$/ (R)/R. part of the action ®:
In the case thag=0, we have s

€ -6 |=1€0 -, [PIR—[RIP-E.T,+E_T_

where|&, —&_| is the “length” of the “vector” &, —&_, =[PIR+P[R]-E, T, +E_T_—(P[R])
defined by =P.R,—E,T,-P_R_+E_T_—(P[R]),

&&= V1= (&)= &)+ (&L — £ )7

where we have used the well-known formlﬂMY]=X_[Y]

It follows that +Y_[X], valid for any two functionsX and Y.
o o The terms
Cs=Rsgnél ) —¢-)|és—E- [+ M(R). i}
: — 2E. P.
Let us calculate the value of( —&_)? using Eq.(64). b.R 1-—| sh,, =
The result is R "R
0 0 \2 1 1 42 that result in the super-Hamiltonian after the substitution
— — + —
(600 &)+ (&~ 6) (66) can be replaced by
[P]
=—F,-F_+2a_b,b_V|F,F_|s —. P.
+ + IFF-| Mo, a R b.R.V|F.] ShaiR_*,
This coincides, up to the sign, with the expression under the )
square root in Eq(62). It is also clear that the constraigt ~ Where
=0 must imply, first, that o 2E.
sgrB=sgr(¢l,,— &) . R.

and, second, thaB®>—A2>0, if the vector differencet . Indeed,R. =R 7/2, so the replacement amounts to using
—&_ is timelike. This finishes the clarification of a geometri- the constraintr=0 in the super-Hamiltonian; such a proce-

cal meaning of the constraints. dure does not change the equations of motion because it
preserves the constraint surfat@e Refs[20] and [21]).
VI. MATCHING THE SECTORS Finally, we arrive at the action

The actiong40), (60), and(63) are singular at each hori-  ; . : : : — f
zonR=2E.. , because the coordinafe. and the momentum ls= | di(P+R, =B, T, =P _R_+E_T_+2[R]=+Cy),
P. diverge. Thus, the actions can be used only inside the 16 (68)
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where R R
; dU=dT- =—=dR- 2( T ZE)dE
Ci=b,R,VIF,] Sha _b R_V[F_| Sr’b,R_i R R R
. B dv=dT+ —=———dR+2 In——l‘ )dE
+M(R). 69) R-2E R-2E

L . . . . ) and substitute this into the Liouville form. We obtain
The Liouville part in the action68) is split up into two

pieces, each being of the formR—ET, whereT andR are PyrdR+PydU—PdR-P{dT=dG,
coordinates in a spacetime—the Schwarzschild spacetime

left or right to the shell—and® and —E are the conjugate where

momenta. This enables us to generate transformations of the R RE
coordinates on the phase space from transformations of co- G=E?n|==-1|+ —+—In\/_
ordinates T,R) on the Schwarzschild spacetime. 2E 2

We observe first that the transformation from the
Schwarzschild coordinates T(R) to the Eddington-
Finkelstein coordinatedJ,R) or (V,R) can be completed to PyrdR+P,dV—PdR-P;dT=—dG.

a canonical transformation. This is not as trivial as it may

seem: the problem is that the transformation of the coordi- The transformation of the super-Hamiltoni@y depends
nates contains the momentunE. The dependence dais  on the transformation of the term

harmless for the Eddington-Finkelstein transformation; it is 5

r‘mati(rees.senous for the transformation to the Kruskal coordi bR\/_l sh—

Similarly,

A. Eddington-Finkelstein coordinates We obtain in each of the four quadrants that

Let us study the Eddington-Finkelstein transformations. B b /R bR
As these transformations do not change the coordiRaté bRy[F] Sha__ (e vE+Fe U
is not necessary to distinguidR, from R_ if we are per-
forming it. Thus, we can substitute=0 everywhere into the for the transformation to th&) charts(we have left out the
action(68): R, =R_=R andR=R. In this way, we return indicesU andV atR). From the definition ob in Table III,
to the action(40). In the following formulas, we shall also Wwe can see that is continuous inside eadd chartU, and

suppress the annoying indices U, . Let us define the sghy by by :=b so that
The first Eddington-Finkelstein transformation, in each _
quadrant and on each side of the shell, is given by by=+1 in U;:=QUQu\H"
Ry=R, and
R by=—1 in U;:=QUQu\H"
U=T—R-2EIn E—l
At the future horizonsH™, where T=+%, U—+% and

Py— —« in such a way thaFexp(—Py/R) is smooth.

a suitable ansatz for the new momefigz andPy is The transformation to th& chartsV, and V, is analo-

ous:
PUR:P+RIn\/|F|, (70) g
Py,=P;=—E. bR\/ | Sha—z (e PV/R+FePV/R)
A similar ansatz for the second transformation is We defineb,, : =ab so that we have
RV:R, bV:+l in V|::Q|UQ|||\H7
R and
V=T+R+2EIn E_l”
b\/:_l in V||::Q||UQ|V\H7.
Pyr=P—RIny|F|, (7))  Again, the super-Hamiltonian has continuous extension to
eachV chart. At the past horizohl ~, whereT=—o, V—
P,=P;=-E. —o andPy— + o0 in such a way thaFexpP,,/R) is smooth.

The result of this section can be interpreted as a new,
To show that the transformations are canonical, we calculateonnected phase space that is covered by 16 charts which
dU anddV: overlap and that contains all of the 16 disjoint sectors of the
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old phase space; the super-Hamiltonian has a continuous ex-
tension to the new phase space. The origins of the Kruskal

manifolds remain excluded, however.

B. Kruskal coordinates

The Kruskal coordinates andv are regular everywhere

inside the Kruskal manifoldbut they are “singular” at the
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R
Pyr=P— Eln|u|+smooth atH™.

Accordingly, the functiorP defined by

B.=pt ~in|"
= Ena

infinity). Thus, they are suitable to cover the missing pointamight be smooth everywhere. This suggests that we try the

where the horizons intersect.
In each quadrant,

nates (1,v) is given by(see, e.g., Ref.17))

R p—

>E =K(—uv), (72
T L
2E Mgl (73

where the functiorK:(—1,0)—(0,°) is a smooth bijection
defined by its inverse

K~ 3(x)=(x—1)€, (74

following transformation of momenta:

the transformation between the
Schwarzschild coordinatesT(R) and the Kruskal coordi-

P=P—EKIn|—, (78)

v
u

E=E, (79

and check whether or not the symplectic form expressed by

means of the variables, v, P, andE is regular everywhere
(from now on, we shall leave out the tilde ovE). Recall
that all equations are written without the indices in fact,
Eq. (78) reads, if written properly,

and where the signs of the Kruskal coordinates are defined t@hereK .. =K(—u.v.), etc.

be

u<o u>0

in QUQy,
in QUQyy,

in QuUQy,

v<0 v>0 in Q|UQ|||.

To begin with, we derive some useful relations. Equation

(72) implies
(79

(we leave out the argument &f; it will always be —uv).
Equations(72) and(74) imply

R R R
Cup=K- 1 | = _ /2E _ /2E
uv=K (2E) <2E 1)eR F2EeR
or

F=m 20 (76)
O KeS

Combining Egs(75) and(76), we obtain that

K—1=—e Kup.

(77

The next step is to find a smooth “momentum” to replace

P.. We know from the previous subsection thagy is
smooth at the past horizad™, wherev =0, andP, at the
future horizonH*, whereu=0. Equations(70) and (76)
give

R
Pur=P+ §|n|u|+smooth atH™,

and, analogously,

Let us transform the action to the variables
(u.,v-,P. ,E.). Equations72) and(73) yield

dR=2KdE—2EK'(vdu+udv),

v dv
dT=2In|—|dE+2E| — —+—].
u u v
This together with Eq(78) implies
~ U [
PdR—EdT=PdR—2aK2+1nnﬂdE+E2ZKKuunﬂ
2 v| 2
+—|du+E?| 2KK'uln|—| — — | dv.
u u v

The first term on the RHS is smooth and the rest is singular.
To get rid of it, we observe that

1 v
d(—E%K%ﬂMnGD=—2Eu@+1ﬂnadE
| K%+1
+E?| 2KK vIn|—|+ du
u u
vl K2+1
+E?| 2KK uln|—| — dv.
u v
This identity implies
~ o du dov
PdR—EdT=—-2EKdP+E?(K?-1) TR
v _~
+d —E%K2+1nna~+2EKP.

The second term on the RHS is regular; indeed, E&q)
gives
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o8

Hence, finally, the Liouville form becomes +M(E K, +E_K_). (83

P

EVKe™ K’Z(— uexp( —

=E%(K+1)e X(vdu—udv). K_
(K+1)e™™( ) Cs SEK

du d
E2(K2—1)( =
u v

Let us recall thafX]=X, —X_ and thatKk . =K(—u-v),
etc. The action(82) as well as all variables on which it de-
pends, are smooth everywhere in the new phase space. This

. (800 phase space is covered by the coordinatesv . , P- , and

E. with ranges —~<u.v.<1 (Kruskal manifold P.
The singular part is contained entirely within the last term, € (—%,%), andE.. € (0°); it is the maximal extension of
which can be discarded without changing the symplecti¢he old phase space. The super-Hamiltor(é® as well as
structure. We postpone the study of the resulting symplectiéhe function[R]=2[EK] have continuous extensions to the

[PdR-EdT]=[—2EKdP+E4K+1)e X(vdu—udv)]

v ~
— +2EKP
u

+d| —E?(K?+1)In

structure to the next section. new phase space.
The last nontrivial step in the transformation of the action
is to transform the term C. The symplectic form and Poisson brackets

In this subsection, we investigate the properties of the
bR\/m E symplectic structure defined by the Liouville fori®0). Tak-
ShaR ing the external derivative of the for80), we obtain
in the super-Hamiltoniaii69) (the indices* are again left ~ (8X,X)=[—2K(SE P— 6P E)—4E"€ "(du v—duv u)

out). Using Egs.(72), (76), and(78), we obtain +2E(K+1)e K(uE u—vdu E—usE v

—_ +udv E)—2EK'(v6P u—véu P+udP v
bRV|F| sh, = '
—udv P)]. (84)
P v In the calculation, we have used E@7) and the identit
_ —K/2 _ Y ) . y
bEVKe |uv| Sha(_ZEK In/ y ) )
. K'=—r- 85
Equations(51) and (52) lead then to KK 9
p which follows from the definition(74) of K.
bRV|F| shaﬁ The form ) must be nondegenerate in order to define a
symplectic structure. The calculation of the determinant of
_ _ the corresponding matri® ,, can be simplified by writing it
_EK KIZ(b P ab P ) in the 2x 2 block form
= e |ulex 5ER] T2 |v|ex 5EK) ) A c
The signs of the Kruskal coordinates as defined at the begin-

ning of this subsection combine with Table Il giving that pjyitiplying the second double row by the matrixCB~1
bu[ = —u andablv|=v in each quadrant. Thus, we arrive at and adding the result to the first double row, one can see

the expression immediately that
P det),,=de{A+CB C")deB.
bRV[F] shy "
After some easy calculation, this leads to
~ ~ 2 2
P P 8E2\“ [ 8E?
- K2 _ — - de),=| —| |—| =(8E2K")%(8E%K')?%.
EKe ( uexp( SER +vexp( 2EK))' (81) m (KeK ke ( )Z( )%
Collecting the result$80) and (81), we obtain the final The determinant is nonzero at all points of all Kruskal space-

form of the action times.
The block form(86) helps also to fasten the calculation of

K . EPUITA the matrixQ,,', which defines the Poisson brack&teve
Is:f dt([—2EKP+E%(K+1)e “(vu—uv)] look for Q' in the form

+27 [EK]—vCY), (82
2| shorten the subsequent exposition, because most people today
where may prefer auAPLE or MATHEMATICA routine.
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and observe that the matricéds B, U andV all must be
proportional to the matrix
_1>
ol

o

The equatioanQr;l=l now decomposes into four equa-
tions:
AU-CW'=1,

AW-CV=0, (87)

-C'U-BW'=0, —-C'wW+BV=1. (89
From the second equation of E@7) and the well-known
identities fore,

€’=

-1, eMTe=—(detM) M1, (89
valid for all 2X 2 matricesM, we find thatw is proportional
to CT"1. The rest of Eqs(87) and (88) contains only two
independent linear equations, which determihandV. A
straightforward calculation using Eq$85) and (89) then

leads to the result

K u v

0o — _ _
2 4E 4E

K(K+1)u K(K+1)v
K2el
0

4E?

0

(the order of the coordinates &P,u,v).

With the help of Eq(90), we can study Poisson brackets.

We observe first that

2

{u,v}= #0, (91

4E?
and, second, that
{U’E}U:U:():O'

{v:E}u=y=0=0. 92

P. HAJICEK
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can be proved. Consider an arbitrary pairy) of coordi-
nates in a neighborhood of the horizon crosgirgy =0. If
x andy are to be independent, they must satisfy

IX dy  IX Ay

Ju dv dv du (93

If they are to be coordinates on the spacetime where the shell
moves, they must be independenti®n

x=x(u,v,E), y=y(u,v,E).

Let us calculate the Poisson bracket of the two coordinates at

the horizon crossing. If we take Eq®2) into account, we
obtain

{ny}|u=v=oz Jdu dv Jdv du

4E2 u=v=0
Equations(91) and (93) then imply that this expression is
nonzero. We have shown the following theorem.

Theorem 1 Any two independent spacetime coordinates
of the shell that are regular at an intersection of two horizons
have a nonzero Poisson bracket with each other in a neigh-
borhood of the intersection.

Can this be interpreted as saying that a spacetime mani-
fold is necessarily fuzzy near a horizon in the quantum
theory? There are at least two caveats. First, any generic
point of any horizon(that is, a point that does not lie at an
intersection of two horizonshas a neighborhood, where
thereare commuting coordinates. An example is given in the
Sec. VI A. Second, the way from the classical to a quantum
theory is longer than it may seem: we had also to define
observables, and the observables must satisfy some require-
ments. For example, their classical counterparts are to have
vanishing Poisson brackets with the constraifts a discus-
sion of this point, see Ref21]). The functionsu andv as
they stand fail to be so. We can safely conclude that some
more work is necessary to understand the implications of the
theorem.
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