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Spherically symmetric gravitating shell as a reparametrization-invariant system

P. Hájı́ček
Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

~Received 6 August 1997; published 31 December 1997!

The subject of this paper is spherically symmetric thin shells made of a baryotropic ideal fluid which moves
under the influence of its own gravitational field as well as that of a central black hole; the cosmological
constant is assumed to be zero. The general super-Hamiltonian derived in a previous paper is rewritten for this
spherically symmetric special case. The dependence of the resulting action on the gravitational variables is
trivialized by a transformation due to Kucharˇ. The resulting variational principle depends only on shell vari-
ables, is reparametrization invariant, and includes both first- and second-class constraints. Several equivalent
forms of the constrained system are written down. The exclusion of the second-class constraints leads to a
super-Hamiltonian which appears to overlap with that by Ansoldiet al. in a quarter of the phase space. As the
Kuchařvariables are singular at the horizons of both Schwarzschild spacetimes inside and outside the shell, the
dynamics is first well defined only inside of 16 disjoint sectors. The 16 sectors are, however, shown to be
contained in a single, connected symplectic manifold and the constraints are extended to this manifold by
continuity. Poisson brackets between no two independent spacetime coordinates of the shell vanish at any
intersection of two horizons.@S0556-2821~98!00502-5#

PACS number~s!: 04.60.Ds, 04.20.Fy
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I. INTRODUCTION

Spherically symmetric thin shells are popular models u
extensively in the study of a number of phenomena: prop
ties of classical gravitational collapse@1#, properties of clas-
sical black holes@2#, quantum gravitational collapse@3#, the
dynamics of domain walls in the early Universe@4,5#, the
back reaction in the Hawking effect@6#, entropy on black
holes@7#, and the quantum theory of black holes@8#, to men-
tion just a few examples.

Attempts to derive a Hamiltonian formalism for suc
shells are for example Refs.@9,6,10,11,5,12#. The Hamil-
tonian~or super-Hamiltonian! is either guessed directly from
equations of motion~Refs.@9,11#!, or derived from a varia-
tional principle guessed for the spherically symmetric syst
consisting of dust shells and gravity~Refs. @6,10#!, or it is
derived from the Lagrangian formalism based on the sum
the Einstein-Hilbert action and an action for an ideal flu
either after reducing the action by spherical symmetry@5# or
without any assumption about symmetry@12#.

In Ref. @12#, both the super-Hamiltonian and the symple
tic structure are derived from the Einstein-Hilbert-ideal-flu
variational principle. In this sense, the symplectic structur
unique; it contains a boundary term at the hypersurface
the shell and it turns out that the momentum conjugate to
surface area of the shell is the~hyperbolic! angle between the
shell and the foliation hypersurface~‘‘Kijowski momentum’’
@13#; see also Ref.@14#!. This momentum will play an im-
portant role in our calculations.

In the present paper, we shall derive a super-Hamilton
and a symplectic form for the spherically symmetric ide
fluid shells, starting from the general formula of Ref.@12#.
For the sake of simplicity, we shall also assume that
cosmological constant and all fields different from grav
are zero. Our leading principle is the reparametrization
variance. Thus, the result must be a super-Hamiltonian ra
than a Hamiltonian. One problem is then how the variab
describing the gravitational field around the shell can
570556-2821/97/57~2!/936~18!/$15.00
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made to disappear from the action so that the final formal
contains the shell variables only. As most of these grav
tional variables just describe a gauge, one possible metho
to choose a gauge and to reduce the system, as for instan
Refs. @10,15#; then, however, the reparametrization inva
ance is lost. We find a suitable tool in a transformation due
Kuchař@16#. This transformation trivializes the gravitationa
part of the equations of motion to such an extent that they
not contain any more information about the motion of t
shell. The boundary terms that result from the Kucharˇ trans-
formation contribute to the shell part of the symplectic for
They not only modify the Kijowski momentum but provid
additional terms so that this part itself becomes nondege
ate; thus, the symplectic structure of the shell emerges. S
eral equivalent forms of the variational principle can be wr
ten down.

For example, one of the resulting phase spaces is loc
described by four pairs of conjugate quantities, name
(E1 ,T1), (E2 ,T2), (P1 ,R1), and (P2 ,R2), whereT6

and R6 are the Schwarzschild coordinates,E6 is the
Schwarzschild mass, andP6 is the modified Kijowski mo-
menta; the sign1 refers to the outside and2 to the inside
Schwarzchild spacetimes. There are then three constra
~1! the super-Hamiltonian constraintCs50 is ~roughly! the
time-time component of Israel’s matching condition at t
shell and it is a primary constraint,~2! the continuity condi-
tion R12R250 is another primary, and~3! the Poisson
bracketx:5$Cs ,R12R2% fails to vanish, sox50 is a sec-
ondary constraint. The two constraint functionsx and R1

2R2 form a second-class pair. The second-class constra
can be solved for@R# and P̄,1 and the solution can be sub

1We adhere to the usual notation in the theory of thin shells:

any, possibly discontinuous, functionX at the shell X̄:5(X1

1X2)/2 and@X#:5X12X2 , whereX6 are the limits ofX at the
shell,X1 from right, andX2 from left.
936 © 1997 The American Physical Society
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57 937SPHERICALLY SYMMETRIC GRAVITATING SHELL AS . . .
stituted back into the action; in this manner, a partially
duced system with three pairs of conjugate variab
(E1 ,T1), (E2 ,T2), and (@P#,R̄) and just one constrain
Cs

r50 is obtained. In four sectors of the phase space,Cs
r has

a similar form as the super-Hamiltonian of Ref.@5#, which
has been derived in a completely different way. The origin
the second-class constraints is in the additional condition
which the general Einstein-Hilbert-ideal-fluid action must
supplemented in order that the system with a shell be w
defined: the so-called continuity conditions~see Ref.@12#,
and the next section!.

The Schwarzschild coordinates (T6 ,R6) of the shell are
singular at the horizons of the spacetimes inside and out
the shell. Each of these two spacetimes is separated by
horizons into four quadrants. As a consequence of this,
phase space of the system is split up into 16 disjoint sect
The dynamical trajectories that result from the action can
smoothly matched through the horizons, because the s
are regular there. This suggests that there are dynamical
ables which are regular at the horizons; we try t
Eddington-Finkelstein and Kruskal transformations. The fi
one leads to an atlas of 16 overlapping Darboux charts c
ering a single, connected extension of the old phase sp
this extension is not maximal, however, because the poin
the intersections of the horizons are not covered. The sec
transformation leads to one single chart covering the m
mal extension of the old phase space. The constraints h
smooth extensions to new phase space in both cases.
Poisson brackets between the Kruskal coordinatesu andv of
the shell does not vanish and we show that this must be
for anyspacetime coordinates that are regular at the inter
tion of two horizons.

Our super-Hamiltonians are reparametrization invaria
but rather complicated: they depend on momenta thro
exponentials and square roots. Some problems arise imm
ately. For example, the problem of quantizing such com
cated super-Hamiltonians or the problem of relation betw
the super-Hamiltonians of the present paper and that of
@11#, which is not only reparametrization invariant but al
quadratic in momenta. These problems will not be addres
here.

The plan of the paper is as follows. In Sec. II, we intr
duce the general formula for the super-Hamiltonian fro
Ref. @12#. In this way, the paper becomes self-contained.
Sec. III, the assumption of spherical symmetry is formulat
the dynamical variables are adapted to the symmetry, and
action is expressed as a functional of these variables. In
IV, the Kucharˇ transformation is performed and an effecti
shell super-Hamiltonian is derived. Section V is devoted
the study of the shell action obtained in Sec. IV. We che
that correct equations of motion result from it, investigate
structure of the constrained system defined by the action,
remove the second-class constraint by a partial reduct
Finally, Sec. VI addresses the problem of the singularity
the horizons. We use the units such thatc5G51 (c is the
velocity of light in vacuum andG is Newton constant!.

II. THE SPACETIME AND THE SHELL

In this section, we describe the spacetime with the sh
introduce the basic ideas and quantities, and collect the e
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tions from Ref.@12# that will be needed as a starting point
our investigation. Let (M,g) be an assymptotically flat glo
bally hyperbolic spacetime and let a thin shell of ideal flu
move along a timelike hypersurfaceS in M; S divides the
spacetime into two parts,M1 andM2 , so thatM1 is
adjacent to the infinity where the observers are. Letx(6)

m be
some coordinates inM6 andja be some inS. No relation
between the coordinatesx(2)

m and x(1)
m is assumed. Let

x(6)
m (j) be the embedding functions ofS in M6 . We as-

sume that~see Ref.@12#!

gab~j!5S g~2 !mn

]x~2 !
m

]ja

]x~2 !
n

]jb
„x~2 !~j !…D

2

5S g~1 !mn

]x~1 !
m

]ja

]x~1 !
n

]jb
„x~1 !~j !…D

1

, ~1!

where the symbols ()6 denote the limits from the four-
volumesM6 towardsS, g(6)mn is the metric inM6 with
respect to the coordinatesx(6)

m , andgab(j) is the metric in
S with respect toja. Equations~1! are calledcontinuity
relations.

Let $St% be a foliation ofM by Cauchy hupersurfacesSt ,
where t runs through some real interval and letS(6)t :
5StùM6 . We assume thatSt are ~continuous! hypersur-
faces inM and thatS(6)t are smooth hypersurfaces inM6 ,
for all t. The Arnowitt-Deser-Misner-~ADM- !like formalism
described in Ref.@12# is based on a choice of coordinate
x(6)

m that are adapted to the foliation$St% on one hand and to
S on the other. Such coordinates satisfy the following
quirements. First,

x~6 !
0 5t, j05t;

then,x(6)
k , k51,2,3, can be considered as coordinates onSt

andjK, K51,2, as coordinates omSùSt . Second, the em-
bedding functionsx(6)

m (j) definingS satisfy

x~6 !
0 ~j0,j1,j2!5j0,

d

dj0
x~6 !

k ~j0,j1,j2!50

for all (j0,j1,j2)PS andk51,2,3. Thus, the vector]/]t is
tangential toS. The functions

y~6 !
k ~j1,j2!:5x~6 !

k ~j0,j1,j2!

can be considered as embedding functions of the sur
SùSt in the hypersurfacesS(6)t ; they are independent o
the time coordinatet. Thus, the dynamics of the shell i
completely determined by the time dependence of the me
and of the matter fields alongS. This leads to a great sim
plification of the formalism and of the variational procedur
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938 57P. HÁJÍČEK
but to no restriction of generality, see Ref.@12# for a discus-
sion of this point. We shall often leave out the indext in the
sequel.

The 311 decomposition of the metricg(6)mn can be de-
scribed as follows~see Ref.@17#!:

g~6 !
00 52N~6 !

22 , g~6 !0k5N~6 !k ,

g~6 !kl5q~6 !kl ,g652N6
2 q6 ,

whereN6 is the lapse andN(6)k the shift inS6 , q(6)kl is the
metric induced inS6 by g(6)mn , g6 is the determinant of
g(6)mn , andq6 that of q(6)kl . ~We work with adapted co-
ordinates.! The 211 decomposition of the metricgab is
analogous:

g0052n22, g0K5nK ,

lKL5gKL , g52ln2,

wherelKL is the metric of the surfaceSùS with respect to
the coordinatesjK and l its determinant. The 211 decom-
position of the continuity relations~1! is

n5AN6
2 2~N~6 !

' !2, ~2!

nK5N~6 !k

]y~6 !
k

]jK
, ~3!

lKL5q~6 !kl

]y~6 !
k

]jK

]y~6 !
l

]jL
, ~4!

where

N~6 !
' 5N~6 !km~6 !

k ,

andm(6)
k is the unit normal vector toSùS tangent toS(6)

and oriented fromS(2) to S(1) ~towards the observers!. This
orientation will be often used, so we call itright orientation.

An important role is played by the~hyperbolic! anglea6

of the two hypersurfacesS andS(6) which is defined by

sinha6 :52g~6 !mnn~6 !
m m̃~6 !

n , ~5!

where n(6)
m is the future-oriented unit normal toS(6) and

m̃(6)
n is the right-oriented unit normal toS in M6 . One

easily proves that

N65ncosha6 , N~6 !
' 5nsinha6 .

Another important quantity is the second fundamen
form l KL of the surfaceSùS in S(6) , which is defined by

l ~6 !KL :5m~6 !ku l
]y~6 !

k

]jK

]y~6 !
l

]jL
;

here the bar denotes the covariant derivative associated
the metricq(6)kl in S(6) . We reserve semicolons for th
covariant derivative defined bygmn inM and colons for that
by gab in S. The tracel KLgKL of l KL will be denoted byl .
l

ith

The matter of the shell is assumed to be relativistic ba
tropic perfect fluid. Its description follows the pattern give
in Refs.@18,12#; let us collect the relevant formulas.

The mass points of the fluid fill the so-called matter spa
Z which is a two-dimensional manifold for a shell. The c
ordinateszA, A51,2, in Z can be thought of as Lagrangia
coordinates of the fluid. The state of the fluid is described
the ‘‘fields’’ zA(j). The matter space carries a scalar dens
h(z), which determines the mole or particle density of t
fluid in the matter space. The mole~particle! current j a in S
is given by

j a5heabgzb
1zg

2 ,

where we use the abbreviation

za
A :5

]zA

]ja
.

The currentj a is identically conserved,j :a
a 50. j a defines

the three-velocityua(j) and the rest mole~particle! density
n(j) in S by

j a5Augunua,

wheregabuaub521.
The information about the consecutive relations of t

fluid is encoded in the quantitye(n) that gives the energy
per mole in the rest frame of the fluid as a function of t
mole densityn. Then, the surface tension2p of the fluid is
determined by~see Ref.@18#!

p5n2
de

dn
.

The dynamics of the fluid in the fixed background thre
spacetimeS can be derived from the Lagrangian

Lm52Augur~n!,

wherer:5ne(n) denotes the rest mass density of the flu
The stress-energy tensor density

Tab5Augu„~r1p!uaub1pgab
… ~6!

satisfies the relation

Tab~x!52
dI m

dgab~x!
, ~7!

whereI m is the action of the fluid,

I m5E
S
d3jLm .

It also satisfies~the Noether identity!

Tb
a5Lmdb

a2
]Lm

]za
A

zb
A . ~8!

The momentapA of the fluid are defined by
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pA :5
]Lm

]z0
A

.

The negative component2T0
0 of the stress-energy tenso

in the adapted coordinatesja is the Hamiltonian of the fluid
@12#. In Ref. @12#, the following important formulas have
been derived:

T0
052nAl T̃''2nKAl T̃K

' ~9!

and

]T0
0

]lKL
5

1

2
TKL, ~10!

where

T̃''5
n

r8~ j 0!2
lKLzK

AzL
BpApB1r, ~11!

T̃K
'5zK

ApA . ~12!

We have introduced the symbols

T̃''5
1

Augu
Tab ña ñb , T̃K

'5
1

Augu
TK

a ña ,

where ña is the future-oriented unit normal to the surfa
SùS in S.

Finally, the master formula, the Hamiltonian of the who
system consisting of the shell and gravity~the gravitational
field being also dynamical! reads~for a derivation, see Ref
@12#!

Ȟ5E
S1

d3x~N1C1N~1 !
k Ck!1E

S2

d3x~N2C1N~2 !
k Ck!

1E
SùS

d2j~nCs1nKCsK!1
1

8pESùS1
d2jL0

0 , ~13!

whereC is the ADM super-Hamiltonian andCk is the ADM
supermomentum,

C5
1

16pS 2pklpkl2p2

2Aq
2AqR~3!D ,

Ck52
1

8p
pku l

l ,

pkl is the ADM momentum for gravity, andR(3) the curva-
ture scalar of the metricqkl . The surface super-Hamiltonia
Cs and the surface supermomentumCsK at the shell are
given by

Cs52
1

8p
@p̃''sinha2 lcosha#1 T̃s

'' ,

CsK52
1

8p
@p̃K

'1a ,K#1 T̃sK
' ,
where

p̃''5
pkl

Aq
mkml , p̃K

'5
pkl

Aq
qlr mk

]yr

]jK
,

p̃KL5
pkl

Aq

]yk

]jK

]yl

]jL
.

The symplectic form is

V~dX,Ẋ!5
1

16pES
d3x ~dpklq̇kl2dqklṗ

kl!

1
1

16pESùS
d2j~d@a#Al

˙
2dAl@ȧ#!

1E
SùS

d2j~dpAżA2dzAṗA!

2
1

16pESùS1
d2j ~da1Al1˙

2dAl1ȧ1!,

~14!

where the quantities with the superscript plus sign conc
the hypersurfaceS1 and

dX5„dpkl~x!,dqkl~x!,d@a~j!#,

3dAl~j!,dpa~j!,dza~j!,dAl1~j!,da1~j!…,

Ẋ5„ṗkl~x!,q̇kl~x!,@a~ j̇ !#,Al~j!
˙

,

3 ṗa~j!,ża~j!,Al1~j!
˙

,ȧ1~j!…

are two vectors tangential to the symplectic manifold of t
system.

The equations of motion follow from the variation fo
mula ~cf. Ref. @12#!

dȞ5V~dX,Ẋ!1
1

16pESùS1
d2h gabdQab, ~15!

where Qab:5Lgab2Lab and L:5Labgab . This formula
plays a double role. By deriving it from the Lagrange fo
malism carefully considering all boundary terms, we fi
what is the symplectic form of the system. By comparing t
right-hand side~RHS! and the left-hand side~LHS! coeffi-
cients at the variations of the same variable, we obtain
equations of motion.

The last terms in Eqs.~13! and ~15! determine the so-
called control mode~see Ref.@19#!. In fact, there must be
one such term for each infinity, see the next section.S1 is a
timelike surface that forms a boundary ofS and it will be
pushed to infinity eventually,Lab is the second fundamenta
form of S1 defined by

Lab :5m̃m;n

]xm

]ja

]xn

]jb
,
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940 57P. HÁJÍČEK
m̃m being the external~with respect to the volume closed b
S1) unit normal toS1, andxm(j) are the embedding func
tions definingS1. The usual canonical equations hold on
if the last term in Eq.~15! vanishes. This means that the fie
Qab must be kept fixed atS1. In Ref. @13#, a more natural
control mode is described; we obtain it if we perform a Le
endre transformation fromȞ to H by

H5Ȟ2
1

16pES1ùS
d2j gKLQKL ~16!

so that the boundary term in Eq.~15! becomes

1

16pES1ùS
d2j ~g00dQ0012g0KdQ0K2QKLdgKL!.

~17!

If the surfaceS1 is shifted to infinity and if the usual falloff
conditions onqkl , pkl, N, andNk are met, then the on-she
value ofH is the ADM mass and the expression~17! van-
ishes~see Ref.@13#!. We will pass to this description directl
in the spherically symmetric case.

III. SPHERICAL SYMMETRY

In this section, we substitute the spherically symetric v
ues of the physical fields and foliation into the Hamiltoni
~13! and the symplectic form~14!. We start with the trans-
formation of the volume terms following closely the notatio
by Kuchař@16#.

There are coordinatest, r , q, andw such that the space
time metric has the form

ds252~N22Nr
2L22!dt212Nrdtdr1L2dr21R2dq2

1R2sin2qdw2

with the square root of the determinant

A2g5NLR2sinq,

whereN(t,r ), Nr(t,r ), L(t,r ), and R(t,r ) are some func-
tions of t and r . We assume thatr P(2`,`), that r 56`
are spacelike infinities and that the equationr 50 defines the
shell. We further assume that the coordinates are continu
across the shell. We shall leave out the indices6, but we
will keep in mind that some components of the metric (N,
Nr , L, etc.! are discontinuous across the shell.

The folii t 5 const carry the metricqkl :

ds25L2dr21R2dq21R2sin2qdw2

with the square root of the determinant

Aq5LR2sinq.

The shell hypersurfaceS can be described by the coordinat
t, q, and w and the metricgab satisfying the continuity
relations~1! is

ds252~N22Nr
2L22!dt21R2dq21R2sin2qdw2.
-

l-

us

The components of the unit future-oriented vectorn nor-
mal to S arenm52Ndm

0 . The corresponding second fund
mental formKkl can easily be calculated; its two indepe
dent components are

Krr 52
L

N
„L̇2~LNr !8…,

Kqq52
R

N
~Ṙ2NrR8!,

where the prime denotes the derivative with respect tor and
the dot that with respect tot. Then, the ADM momentumpkl

is determined by

p rr 52
2Rsinq

LN
~Ṙ2NrR8!,

pqq52
LR2sinq

N S 1

LR2
„L̇2~NrL!8…1

1

R3
~Ṙ2NrR8!D .

We obtain for the Liouville form

u5E drdqdw pkldqkl

5216pE drH R

N
~Ṙ2NrR8!dL1S R

N
„L̇2~NrL!8…

1
L

N
~Ṙ2NrR8! DdRJ .

Let us set, with Kucharˇ,

PL52
R

N
~Ṙ2NrR8!,

PR52
R

N
„L̇2~NrL!8…2

L

N
~Ṙ2NrR8!.

Hence,

p rr 5
2PL

L
sinq, pqq5

PR

R
sinq,

and

u516pE dr~PLdL1PRdR!. ~18!

The volume terms in the super-Hamiltonian become
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1

16pES6

d3x ~NC1NkCk!

5E
S6

drH Nr~2LPL8 1R8PR!

1NS L

2R2
PL

2 2
1

R
PLPR2

LR2

4
R~3!D J , ~19!

where

R~3!524
R9

L2R
14

L8R8

L3R
22

R82

L2R2
1

2

R2
~20!

is the curvature scalar of the metricqkl and the hypersuface
S6 are defined by6r .0.

The surface terms containing only the geometrical qu
tities are our next task. The shell surfaceS is defined byr
50. Thus, for the normalmk to SùS in S, we have

mk5Ldk
r ,

and the normalm̃m to S in M is

m̃m5
1

Agrr
dm

r 5
LN

AN22Nr
2L22

dm
r .

Then

N'5NrL5
Nr

L
, n5AN22Nr

2L22

and

sinha5
Nr

Ln
.

The definitions oflKL , l KL , p̃'', andp̃K
' yield

lKL5S R2, 0

0, R2sin2q
D , Al5R2sinq,

l KL5
R8

RL
lKL , l 5

2R8

RL
, p̃''5

2

R2
PL , p̃K

'50.

Hence, the surface term in the Hamiltonian~13! becomes

E
SùS

d2j ~nCs1vKCsK!

5nS F2PLsinha1
RR8

L
cosha G1M ~R! D

r 50

~21!

and an analogous term in the symplectic form~14! is
-

1

16pESùS
d2j AlS l̇

l
d@a#2@ȧ#

dl

l
D

5~d@a#RṘ2RdR@ȧ# !r 50 . ~22!

The matter spaceZ will carry the coordinatesz15Q, z2

5F, and the mole densityh5sinQ @in fact, any scalar factor
in front of h can be swallowed bye(n)#; the matter fields
zA(j) will simply be

Q~ t,q,w![q, F~ t,q,w![w.

Thus,zK
A5dK

A , żA50, and we obtain

j a5~h,0,0!, pA50, n5
sinq

Al
5

1

R2
.

The fluid Hamiltonian is

2T0
05nR2sinqr5nesinq

or

2E
SùS

dqdw T0
054pne. ~23!

We introduce the so-calledmass function M(R):
54pe(R22); the meaning of it is the total rest mass of th
shell of radiusR ~see Ref.@11#!. As the momentumpA is
identically zero, there is no contribution to the symplec
form by the matter.

Collecting the results~19!, ~18!, ~21!, ~22!, and ~23!, we
obtain the Hamiltonian for the spherically symmetric syste

H5E
r ,0

dr H Nr~2LPL8 1R8PR!

1NS L

2R2
PL

2 2
1

R
PLPR2

LR2

4
R~3!D J

1E
r .0

dr H Nr~2LPL8 1R8PR!1NS L

2R2
PL

2

2
1

R
PLPR2

LR2

4
R~3!D J

1nS F2PLsinha1
RR8

L
cosha G1M ~R! D

r 50

1E~`!1E~2`!, ~24!

where E(6`) is the ADM energy atr 56` and R(3) is
given by Eq.~20!. The symplectic form reads
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V~dX,Ẋ!5E
0

`

dr ~dPLL̇2dL ṖL1dPRṘ2dRṖR!

1E
2`

0

dr ~dPLL̇2dL ṖL1dPRṘ2dRṖR!

1~d@a#RṘ2RdR@ȧ# !r 50 , ~25!

where

dX

5„dPL~r !,dL~r !,dPR~r !,dR~r !,d@a# r 50 ,d~R2/2!r 50…,

Ẋ5„ṖL~r !,L̇~r !,ṖR~r !,Ṙ~r !,@ȧ r 50#,~R2/2!r 50
.

….

The equation of motion can be obtained from the variat
formula

dH5V~dX,Ẋ!.

The same equations of motion can be obtained from
Hamiltonian actionI , if we employ the corresponding Liou
ville form instead of the symplectic one:

I 5E dtS E
2`

0

dr ~PLL̇1PRṘ!1E
0

`

dr ~PLL̇1PRṘ!

1~@a#RṘ!r 502HD . ~26!

We have assumed that the fieldsN, Nr , L, R, PL , andPR
satisfy the usual falloff conditions as described by Ref.@16#
in detail.

IV. THE KUCHARˇ TRANSFORMATION

The Kucharˇ transformation is a canonical transformatio
of the gravitational volume variables so that the new va
ables can be neatly separated into the true degrees of
dom and the variables that indicate a point in the solut
spacetime. An example is given in Ref.@16# where the
spherically symmetric gravity is studied. The transformat
leads to a pair of physical variables~one degree of freedom!
and to the remaining variables being the Schwarzschild t
T(r ), the curvature radiusR(r ), and the conjugate moment
The foliation of each spacetime solution remains comple
arbitrary. As a byproduct, the equations of motion for grav
become trivial. This will help us to express the action~26!
through shell variables alone without restricting the repara
etrization invariance.

A. Transformation to E and PE

In Ref. @16#, the transformation is performed in two step
This subsection goes the first one transforming the varia
(PL ,L,PR ,R) to (PE ,E,PR ,R). The transformation can b
written as follows:
n

a

-
ee-
n

n

e

ly

-

.
es

E5
R

2
~12F1F2!,

PE5
LPL

RF1F2
,

PR5PR2
~F1F211!

F1F2

LPL

2R
2

R

2S lnUF1

F2
U D 8

,

where the useful abbreviationsF1 andF2 are

F15
R8

L
1

PL

R
, F25

R8

L
2

PL

R
.

The inverse transformation is

L5A2FPE
21F21R82,

PL5
RFPE

L
, ~27!

PR5PR1
F11

2
PE1

R

FS FPE

R8
D 8 R82

L2
,

where

F:5
R22E

R
, ~28!

and theL ’s on the RHSs must be expressed with the help
the first equation.

The following important relations hold@16#

F5F1F2 , PE52T8. ~29!

The transformation of the volume part of the Liouville for
has the form@16#

PLdL1PRdR5PEdE1PRdR1S RdR

2
lnUF1

F2
U D 8

1•••,

~30!

where the dots denote a differential of some function on
phase space, which can be discarded. In Ref.@16#, the
r -derivative term on the RHS of Eq.~30! could also be
thrown away because the asymptotic values of the differ
tiated function vanished. In our case, however, this te
gives a nontrivial contribution to the shell part of the Lio
ville form:

E
2`

0

dr~RLdL1PRdR!1E
0

`

dr~PLdL1PRdR!

5E
2`

0

dr~REdE1PRdR!1E
0

`

dr~REdE1PRdR!

1S F lnAUF2

F1
UGRdRD

r 50

. ~31!

Let us study the geometrical meaning of the last term. T
meaning of any quantity in the canonical formalism is giv
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by the role it plays in the classical solutions. We can, the
fore, assume that the canonical equations are satisfied.
only canonical equation we need is

PL52
R

N
~Ṙ2R8Nr !;

it implies that

F1,25X1

L

]

]r
7

1

NS ]

]t
2Nr

]

]r D CR. ~32!

We also have

]

]t
5Nn1NrLm,

]

]r
5Lm,

wherem is the right-oriented unit vector normal toSùS and
tangential toS, andn is the future-oriented unit vector nor
mal to S at SùS ~these vectors carry, of course, the indic
6 that we are leaving out provisionally!; we call (n,m) the
foliation frame. It follows that

F1,25~mm7nm!
]R

]xm
.

Clearly, mm7nm are radial null vectors;F1 vanishes at the
left-going ~past! and F2 at the right-going~future! horizon
~see Ref.@16#!. The meaning of the logarithm in Eq.~31!
will be evident if we introduce the so-calledSchwarzschild
frame (nS ,mS) defined by the conditions that the fram
(nS ,mS) is orthonormal, future- and right-oriented, and su
that at least one of its vectors~as a differential operator!
annihilates the functionR. The horizons divide the Kruska
manifold into four quadrantsQI–QIV . We identify them as
follows: QI is adjacent to the right infinity,QII to the left
one,QIII to the future singularity, andQIV to the past one.
The Schwarzschild frame is well defined onlyinsidethe four
quadrants, and its components with respect to the Schwa
child coordinatesT andR there are given by the Table I. Le
us define the angleb as the hyperbolic rotation angle from
the Schwarzschild to the foliation frame:

n5nScoshb1mSsinhb,

m5nSsinhb1mScoshb.

Then,

m7n5e7b~mS7nS!

and

~mm7nm!]mR5e7b~mS
m7nS

m!]mR.

Working with Table I, we obtain from it that

UF2

F1
U5e2b

in all quadrants. The final result is, therefore, simply
-
he

zs-

F lnAUF2

F1
UGRdR5@b#RdR, ~33!

and the first step of the Kucharˇ transformation changes th
shell part of the Liouville form as follows:

~@a#RdR!r 50→~@a1b#RdR!r 50 .

The definition~5! implies thata is the angle of the hyper
bolic rotation from the foliation frame to theshell frame

( ñ ,m̃). Here, the vectorñ is future oriented, orthogonal to
SùS, and tangential toS, m̃ is right-oriented and orthogo
nal to S at SùS. We have, from Eq.~5!,

ñ5ncosha1msinha,

m̃5nsinha1mcosha.

Thus,a1b is the angle of the hyperbolic rotation from th
Schwarzschild to the shell frame. Let us define

P5~a1b!R;

P is independent of the foliation andsingular at the hori-
zons.

The constraintsC andCr are written down in terms of the
new variables in Ref.@16#. More interesting for us is tha
these constraints can be replaced by an equivalent paiC1
andC2 that is much simpler@16#:

C15E8~r !, C25PR~r !.

The shell constraint contains the expression

C̃:52PLsinha1
RR8

L
cosha

that reads in the new variables as follows@cf. Eqs.~27! and
~29!#:

C̃5
RFT8

L
sinha1

RR8

L
cosha.

TABLE I. Components of the Schwarzschild frame.

nS mS

QI S 1

AuFu
,0D (0,AuFu)

QII S2
1

AuFu
,0D (0,2AuFu)

QIII (0,2AuFu) S 1

AuFu
,0D

QIV (0,AuFu) S2
1

AuFu
,0D
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This can be expressed by means of the anglea1b5P/R.
The foliation frame has the following components with r
spect to the Schwarzschild coordinates:

n5S R8

FL
,
FT8

L D , m5S T8

L
,
R8

L D ,

and this holds in all quadrants. It follows that sinhb and
coshb is related toT8 and R8 as given in Table II. The
following notation will enable us to write formulas valid i
all quadrants simultaneously: let

sh1x:5coshx, sh2x:5sinhx,

and leta andb be signs defined by Table III. Then,

C̃5bRAuFu sha

P

R
.

To summarize, the Hamiltonian actionI of the system
reads

I 5E drH E
2`

0

dr~PEĖ1PRṘ2N1C12N2C2!

1E
0

`

dr~PEĖ1PRṘ2N1C12N2C2!1~@P#Ṙ!r 50

1nS FbRAuFu sha

P

RG1M ~R! D
r 50

2E~`!2E~2`!J ,

~34!

whereE(`) andE(2`) are the ADM masses at each of th
spacelike infinities.

B. Transformation to T and PT

The second step of the Kucharˇ transformation concern
the variablesE andPE and the boundary terms at the infin
ties. We shall use a slightly modified version of the Kuchˇ
procedure in this section.

TABLE II. sinhb and coshb by means of the canonical var
ables.

QI QII QIII QIV

sinhb T8AuFu
L

2
T8AuFu

L
2

R8

LAuFu

R8

LAuFu

coshb R8

LAuFu
2

R8

LAuFu
T8AuFu

L
2

T8AuFu
L

TABLE III. The signsa andb.

QI QII QIII QIV

a 1 1 2 2

b 1 2 2 1
r

Each given boundary term at the infinities assume so
particular boundary condition; in our case, the lapse funct
N(6`) must be kept equal to 1. We need more freedo
however. Such a freedom is achieved in Ref.@16# by param-
etrizing the system at the infinities. This can be done
introducing the coordinatesT(6`) of the hypersurfaceSt at
r 56`. In Ref. @16#, it is shown that

N~6`!56Ṫ~6`!

and the termE(`)1E(2`) in the Hamiltonian~24! or in
the action~34! is to be replaced byE(`)Ṫ(`)2E(2`)Ṫ
(2`). Then, all variations can be performed, including a
bitrary variation ofN at both infinities, and the result ar
valid equations@16#.

The termE(`)Ṫ(`)2E(2`)Ṫ(2`) in the action can
of course be considered as a part of the Liouville form; th
the parametrized action contains the Liouville term:

u̇5E
2`

0

dr~PEĖ1PRṘ!1E
0

`

dr~PEĖ1PRṘ!1~@c#RṘ!r 50

2E~`!Ṫ~`!1E~2`!Ṫ~2`!. ~35!

The next step is to introduce the new variableT(r ) that
satisfies the relationPE52T8 @see Eq.~29!# and to find the
corresponding conjugate momentum. This can be done b
transformation that concerns only the variablesE, PE ,
E(6`), and T(6`). The relevant parts of the Liouville
form are

u̇15E
0

`

dr PEĖ2E~`!Ṫ~`!

and

u̇25E
2`

0

dr PEĖ1E~2`!Ṫ~2`!.

Let us substitute2T8 for PE in u̇1 and transfer the primes
and overdots as follows:

u̇152E
0

`

dr E8Ṫ2~EṪ!r 501S 2E
0

`

dr ET8D .

.

Similarly one obtains, foru̇2

u̇252E
2`

0

dr E8Ṫ1~EṪ!r 501S 2E
2`

0

dr ET8D .

.

Hence,PT52E8, and the constraints simplify even furthe

C152PT , C25PR . ~36!

If we introduce the notation

lim
r 506

T~r !5T6 , lim
r 506

E~r !5E6 ,

then the action~34! in the new variables reads
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I 5E dtH E
2`

0

dr~PTṪ1PRṘ!

1E
0

`

dr~PTṪ1PRṘ!1~@P#Ṙ2E1Ṫ11E2Ṫ2!r 50

2E
2`

0

dr~N1C11N2C2!2E
0

`

dr~N1C11N2C2!

2nS FbRAuFu shaS P

RD G1M ~R! D
r 50

J , ~37!

whereC1 andC2 are given by Eq.~36! anda andb by Table
III.

The dynamical equations for the variablesT, R, PT and
PR describing the gravitational field around the shell th
result from the action~37! are

Ṫ52N1 , Ṙ5N2 ~38!

and

PT50, PR50. ~39!

The first pair~38! does not impose any limitations onṪ and
Ṙ because the Lagrange multipliersN1 andN2 are arbitrary.
The second pair~39! implies thatE(r ) is constant along eac
slice,E(t,r )5E1(t) andE(t,r )5E2(t). This together with
PR50 does not even imply that the spacetime outside
shell is Schwarzschild one.

The nontrivial part of the dynamics is completely co
tained in the shell equations. The shell Hamiltonian depe
on the variablesn R, E6 , P6 and on the discrete variable
a6 andb6 . It does not depend onT6 . It follows immedi-
ately thatĖ650. This, together with the volume equation
~38! and ~39! is equivalent to Schwarzschild solution bein
the spacetime outside the shell.

We can, therefore, replace the action~37! by an effective
shell action of the form

I s5E dt~P1Ṙ2E1Ṫ12P2Ṙ1E2Ṫ22nCs!, ~40!

where

Cs5b1RAuF1u sha1

P1

R
2b2RAuF2u sha2

P2

R
1M ~R!,

~41!

is the super-Hamiltonian of the shell andF6 are given by
Eq. ~28!. We interpret the solutionsE6 , T6(t), P6(t) and
R(t) as embedding formulas in two Schwarzschild spa
times with energiesE6 and coordinates (T,R).

The discrete variablesa6 and b6 describe the differen
sectors of the extended phase space. If the shell cross
horizon in the spacetime to its left or right, some of the sig
will change. There are 16 sectors; some of these, howe
will have empty intersection with the constraint surface. O
serve thata6 is not an independent variable, but a functi
of R andE6 :
t

e

s

-

s a
s
er,
-

a65sgnF6 . ~42!

The action~40! describes the motion inside the sectors an
becomes singular at sector boundaries. The variablesP6 and
T6 diverge anda6 and b6 are not defined at the bound
aries.

V. PROPERTIES OF THE SHELL ACTION

In this section, we study the properties of the action~40!.
We derive the equations of motion, clarify the structure
constraints and reveal a geometrical meaning of the su
Hamiltonian.

A. The equations of motion

Let us vary the action~40!. The variation ofn gives the
Hamiltonian constraint

b1RAuF1u sha1

P1

R
2b2RAuF2u sha2

P2

R
1M ~R!50,

~43!

and the variations ofP6 result in

Ṙ

n
5b1AuF1u sh2a1

P1

R
, ~44!

Ṙ

n
5b2AuF2u sh2a2

P2

R
, ~45!

which implies another constraint,

b1AuF1u sh2a1

P1

R
2b2AuF2u sh2a2

P2

R
50. ~46!

The variation with respect toE6 yields

2Ṫ62nb6

R

2AuF6u
sha6

P6

R

]uF6u
]E6

.

For the calculation of the derivative ofuF6u, we take Eq.
~42! into account:

]uF6u
]E6

52
2a6

R
.

Then, the following equation results:

Ṫ6

n
5

a6b6

AuF6u
sha6

P6

R
. ~47!

The variation ofT6 leads to

Ė650. ~48!

Finally, varyingR, we obtain

2 Ṗ11 Ṗ22n
]Cs

]R
. ~49!
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Equations~43!–~49! form the complete set of dynamica
equations for the shell. Some discussion of these equatio
in order.

First, we show that Eq.~49! is a consequence of Eqs
~43!–~45!, ~48!, and ofṘÞ0 ~the last relation is generically
satisfied along each trajectory!. Indeed, the time derivative o
the super-HamiltonianCs must vanish as a consequence
Eq. ~43!:

]Cs

]R
Ṙ1

]Cs

]E1
Ė11

]Cs

]E2
Ė21

]Cs

]P1
Ṗ11

]Cs

]P2
Ṗ250.

The second and third terms on the LHS vanish becaus
Eq. ~48!. For the last two terms, we obtain from Eqs.~44!
and ~45!:

]Cs

]P1
5

Ṙ

n
,

]Cs

]P2
52

Ṙ

n
.

Hence,

S ]Cs

]R
1

P1̇

n
2

P2̇

n
D Ṙ50,

and this shows the claim.
Second, manipulating Eqs.~44!, ~45!, and~47!, we arrive

at

2uF6uS Ṫ6

n
D 2

1
1

uF6uS Ṙ

n
D 2

52 sha6

2 P6

R
1sh2a6

2 P6

R
.

~50!

A useful identity is

sha~x1y!5coshx shay1shx sh2ay, ~51!

which can easily be derived from the definition

shax5
ex1ae2x

2
, ~52!

and which implies that sha
2x2sh2a

2 x5a, independently ofx.
Thus, the RHS of Eq.~50! is 2a6 . Multiplying the equation
by a6 and using Eq.~42! yield

2F6S Ṫ6

n
D 2

1
1

F6
S Ṙ

n
D 2

521. ~53!

This is the ‘‘time equation’’~see Ref.@11#! saying that

XS Ṫ6

n
D ,S Ṙ

n
D C

is a unit timelike vector. It also implies that

F6

Ṫ6

n
5t6AF61S Ṙ

n
D 2

, ~54!

where
is

f

of

t6 :5sgnS F6

Ṫ6

n
D . ~55!

Finally, we obtain, from Eqs.~43! and ~47!,

F1

Ṫ1

n
2F2

Ṫ2

n
52

M ~R!

R
;

substituting into this equation from~54! yields the ‘‘radial
equation’’

2t1AF11S Ṙ

n
D 2

1t2AF21S Ṙ

n
D 2

5
M ~R!

R
. ~56!

This is the Israel equation for spherically symmetric she
written in a way that is valid for all sectors in the case
future-oriented shell motion~see Ref.@11#!. Thus, the dy-
namical equations implied by the action~40! are as they
should be.

B. Structure of the constraints

Two constraint functions have been obtained direc
from the action~40! by varying it: the super-HamiltonianCs
and the LHS of Eq.~46!, which we denote byx. The
Lagrange multiplier that givesCs is n, that for x is P̄, de-
fined by

P̄:5
P11P2

2
.

The Poisson bracket betweenCs andx requires a longer
calculation; we quote just the result

$x,Cs%'2
E12E2

2R2 S 11
a1b1b2

AuF1F2u
sha1a2

@P#

R

2
2sgnB

AB22A2
~M 82M /R!D

2
a2b1b2sgnB

R2AB22A2
arctanh

A

B
M ~R!

3AuF1F2ush2a1a2

@P#

R
,

where

A:5b1AuF1u sha1

@P#

2R
2a2b2AuF2u sha2

@P#

2R
, ~57!

B:5b1AuF1u sh2a1

@P#

2R
2a2b2AuF2u sh2a2

@P#

2R
,

~58!

and @P#5P12P2 is the momentum conjugate toR. We
have used the constraints in calculating the bracket, so
equality is only weak ('). The Poisson bracket is nonzero
the constraint surface, so our system cannot be purely
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class and the value of some Lagrange multipliers will
determined by the equations of motion~see, e.g.,@20#!.
Clearly, it is P̄ which is determined, forx depends on it and
can, therefore be used to calculate it:

x5Acosh
P̄

R
1Bsinh

P̄

R

or

P̄52R arctanh
A

B
. ~59!

The Lagrange multipliern is not restricted by the equa
tions of motion. This means that the system is mixed, c
taining both first- and second-class constraints. To pr
that, we extend the phase space by another conjugate
( P̄,p) and constraint the momentump to be zero,

p50.

This constraint must be enforced by another Lagrange m
tiplier ñ , say, and the corresponding additional term in
action is2 ñ p. The new system is clearly equivalent to th
old one, but it has three constraintsCs , x, andp. We obtain
easily

$p,Cs%5
]Cs

] P̄
5x

and

$x,p%5
]x

] P̄
52

M ~R!

R2
1

1

R2
Cs .

Thus, the pair (x,p) represents the second-class part of
constraint system, and a modificationC̃s of C2 defined by

C̃s :5Cs1
$x,Cs%R

2

M ~R!
p

has weakly vanishing Poisson brackets with bothx and p.
The equationsCs50 andp50 are primary constraints an
x50 is a secondary constraint.

Let us write down the action of the extended system

I s
e5E dt~@P#Ṙ2E1Ṫ11E2Ṫ21p Ṗ̄2 ñ p2nCs!,

~60!

where we have to substituteP̄6@P#/2 for P6 . The method
of the Dirac brackets can be applied toI s

e . An ~equivalent!

alternative is to get rid ofP̄ by solving the constraintx50
for it and inserting the solution back into the action~40!.

C. Partial reduction

In this subsection, we reduce the system partially by s
stituting Eq.~59! for P̄ into the action~40!. First, we make
the dependence ofCs on P̄ explicit:
e

-
e

air,

l-
e

e

-

Cs5RAsinh
P̄

R
1RBcosh

P̄

R
1M ~R!,

whereA and B are given by Eqs.~57! and ~58!. Equation
~59! can be written in the form

sinh
P̄

R
52sgnB

A

AB22A2
,

cosh
P̄

R
5sgnB

B

AB22A2
.

Hence, we obtain, forCs ,

Cs5sgnBRAB22A21M ~R!.

Clearly, the constraint surface intersects only those sec
where the following conditions are satisfied:

sgnB521, uBu.uAu. ~61!

The definitions~57! and ~58! lead to

B22A25F11F222a2b1b2AuF1F2u sha1a2

@P#

R
,

where we have used the identity~51!; we obtain the partially
reduced super-Hamiltonian, which we denote byCs

r ,

Cs
r5R sgnB

3AF11F222a2b1b2AuF1F2u sha1a2

@P#

R

1M ~R!; ~62!

the corresponding action, which is independent ofP̄ and
implies only one constraint, reads

I s
r5E dt$@P#Ṙ2E1Ṫ11E2Ṫ22nCs

r%. ~63!

The super-Hamiltonian~62! in the four sectors wherea1

5a251 seems to be the same as the zero cosmolog
constant case of the super-Hamiltonian derived in Ref.@5#.

The expression under the square root in Eq.~62! reminds
of the cosine theorem, and, indeed, it has a simple geom
cal interpretation. Consider the vectorj generating the
Schwarzschild time shift. There is a simple expression foj
in terms of the Schwarzschild frame, because one leg of
frame is always parallel toj; for each quadrant,j is given by
Table IV. Let us find the components ofj with respect to the
shell frame using the transformation between the shell
the Schwarzschild frame

TABLE IV. The vectorj and the Schwarzschild frame.

QI QII QIII QIV

j nSAuFu 2nSAuFu mSAuFu 2mSAuFu
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nS5 ñcosh
P

R
2m̃sinh

P

R
,

mS52 ñsinh
P

R
1m̃cosh

P

R
.

The result can be summarized by the formula

j5 ñbAuFu sha

P

R
2m̃bAuFu sh2a

P

R
, ~64!

which is valid in all quadrants; we have left out the indic
6. Comparing Eq.~64! with the original form of the con-
straintsCs andx, we can see immediately that

Cs5R~j~1 !
0 2j~2 !

0 !1M ~R!

and

x5j~1 !
1 2j~2 !

1 ,

where the shell frame componentsj0 andj1 of the vectorj
are given by Eq.~64!. The geometrical meaning of the con
straint x50 is, therefore, that the space component of
‘‘vector difference’’ j12j2 vanishes, and ofCs50 that the
time component of this vector difference equals2M (R)/R.

In the case thatx50, we have

uj12j2u5uj~1 !
0 2j~2 !

0 u,

where uj12j2u is the ‘‘length’’ of the ‘‘vector’’ j12j2 ,
defined by

uj12j2u5Au2~j~1 !
0 2j~2 !

0 !21~j~1 !
1 2j~2 !

1 !2u.

It follows that

Cs5R sgn~j~1 !
0 2j~2 !

0 !uj12j2u1M ~R!.

Let us calculate the value of (j12j2)2 using Eq.~64!.
The result is

2~j~1 !
0 2j~2 !

0 !21~j~1 !
1 2j~2 !

1 !2

52F12F212a2b1b2AuF1F2u sha1a2

@P#

R
.

This coincides, up to the sign, with the expression under
square root in Eq.~62!. It is also clear that the constraintx
50 must imply, first, that

sgnB5sgn~j~1 !
0 2j~2 !

0 !

and, second, thatB22A2.0, if the vector differencej1

2j2 is timelike. This finishes the clarification of a geomet
cal meaning of the constraints.

VI. MATCHING THE SECTORS

The actions~40!, ~60!, and~63! are singular at each hori
zonR52E6 , because the coordinateT6 and the momentum
P6 diverge. Thus, the actions can be used only inside the
e

e

6

sectors; they do not say, at least directly, what happens a
boundary.

The form of the singularity inP6 can be inferred from
Eq. ~64!: both the vectorj and the shell frame (ñ ,m̃) are
smooth objects, so the components are to be smooth, to
follows that

sha6

P6

R
;

1

AuF6u
, sh2a6

P6

R
;

1

AuF6u
~65!

at the horizons.
This section will be based on a transformation of the e

tended action~60! that may be interesting for other purpose
too. First, we introduce the variablesR6 by

R5
R11R2

2
, ~66!

p52R11R2 . ~67!

The meaning of the variablesR1 andR2 is simply that they
give the values of the functionR at the shell from the right
and from the left, respectively. Thus, the constraintp50 is
nothing but the only remaining continuity condition from E
~1!. Let us substitute Eqs.~66! and ~67! into the Liouville
part of the actionI s

e :

@P# Ṙ̄2@R# Ṗ̄2E1Ṫ11E2Ṫ2

5@P# Ṙ̄1 P̄@Ṙ#2E1Ṫ11E2Ṫ22~ P̄@R# ! .

5P1Ṙ12E1Ṫ12P2Ṙ21E2Ṫ22~ P̄@R# ! .,

where we have used the well-known formula@XY#5 X̄@Y#

1 Ȳ@X#, valid for any two functionsX andY.
The terms

b6R̄AU12
2E6

R̄
U sha6

P6

R̄

that result in the super-Hamiltonian after the substitut
~66! can be replaced by

b6R6AuF6u sha6

P6

R6
,

where

F6512
2E6

R6
.

Indeed,R65R̄7p/2, so the replacement amounts to usi
the constraintp50 in the super-Hamiltonian; such a proc
dure does not change the equations of motion becaus
preserves the constraint surface~see Refs.@20# and @21#!.
Finally, we arrive at the action

I s
f5E dt~P1Ṙ12E1Ṫ12P2Ṙ21E2Ṫ21 n̄ @R#2nCs

f !,

~68!
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where

Cs
f5b1R1AuF1u sha1

P1

R1
2b2R2AuF2u sha2

P2

R2

1M ~ R̄!. ~69!

The Liouville part in the action~68! is split up into two
pieces, each being of the formPṘ2EṪ, whereT andR are
coordinates in a spacetime—the Schwarzschild space
left or right to the shell—andP and 2E are the conjugate
momenta. This enables us to generate transformations o
coordinates on the phase space from transformations of
ordinates (T,R) on the Schwarzschild spacetime.

We observe first that the transformation from t
Schwarzschild coordinates (T,R) to the Eddington-
Finkelstein coordinates (U,R) or (V,R) can be completed to
a canonical transformation. This is not as trivial as it m
seem: the problem is that the transformation of the coo
nates contains the momentum2E. The dependence onE is
harmless for the Eddington-Finkelstein transformation; it
more serious for the transformation to the Kruskal coor
nates.

A. Eddington-Finkelstein coordinates

Let us study the Eddington-Finkelstein transformatio
As these transformations do not change the coordinateR, it
is not necessary to distinguishR1 from R2 if we are per-
forming it. Thus, we can substitutep50 everywhere into the
action ~68!: R15R25R and R̄5R. In this way, we return
to the action~40!. In the following formulas, we shall also
suppress the annoying indices6.

The first Eddington-Finkelstein transformation, in ea
quadrant and on each side of the shell, is given by

RU5R,

U5T2R22ElnU R

2E
21U;

a suitable ansatz for the new momentaPUR andPU is

PUR5P1RlnAuFu, ~70!

PU5PT52E.

A similar ansatz for the second transformation is

RV5R,

V5T1R12ElnU R

2E
21U,

PVR5P2RlnAuFu, ~71!

PV5PT52E.

To show that the transformations are canonical, we calcu
dU anddV:
e

he
o-

y
i-

s
-

.

te

dU5dT2
R

R22E
dR22S lnU R

2E
21U2 R

R22EDdE,

dV5dT1
R

R22E
dR12S lnU R

2E
21U2 R

R22EDdE,

and substitute this into the Liouville form. We obtain

PURdR1PUdU2PdR2PTdT5dG,

where

G5E2lnU R

2E
21U1 RE

2
1

R2

2
lnAuFu.

Similarly,

PVRdR1PVdV2PdR2PTdT52dG.

The transformation of the super-HamiltonianCs depends
on the transformation of the term

bRAuFu sha

P

R
.

We obtain in each of the four quadrants that

bRAuFu sha

P

R
5

bR

2
~ePU/R1Fe2PU/R!

for the transformation to theU charts~we have left out the
indicesU andV at R). From the definition ofb in Table III,
we can see thatb is continuous inside eachU chartU I and
U II . Let us define the sgnbU by bU :5b so that

bU511 in U I :5QIøQIV̄\H
1

and

bU521 in U II :5QIIøQIIĪ\H
1.

At the future horizonsH1, where T51`, U→1` and
PU→2` in such a way thatFexp(2PU /R) is smooth.

The transformation to theV chartsVI and VII is analo-
gous:

bRAuFu sha

P

R
5

abR

2
~e2PV /R1FePV /R!.

We definebV :5ab so that we have

bV511 in VI :5QIøQIIĪ\H
2

and

bV521 in VII :5QIIøQIV̄\H
2.

Again, the super-Hamiltonian has continuous extension
eachV chart. At the past horizonH2, whereT52`, V→
2` andPV→1` in such a way thatFexp(PV /R) is smooth.

The result of this section can be interpreted as a n
connected phase space that is covered by 16 charts w
overlap and that contains all of the 16 disjoint sectors of
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old phase space; the super-Hamiltonian has a continuou
tension to the new phase space. The origins of the Kru
manifolds remain excluded, however.

B. Kruskal coordinates

The Kruskal coordinatesu andv are regular everywhere
inside the Kruskal manifold~but they are ‘‘singular’’ at the
infinity!. Thus, they are suitable to cover the missing poi
where the horizons intersect.

In each quadrant, the transformation between
Schwarzschild coordinates (T,R) and the Kruskal coordi-
nates (u,v) is given by~see, e.g., Ref.@17#!

R

2E
5K~2uv !, ~72!

T

2E
5 lnUvuU, ~73!

where the functionK:(21,̀ )°(0,̀ ) is a smooth bijection
defined by its inverse

K21~x!5~x21!ex, ~74!

and where the signs of the Kruskal coordinates are define
be

u,0 in QIøQIV , u.0 in QIIøQIII ,

v,0 in QIIøQIV , v.0 in QIøQIII .

To begin with, we derive some useful relations. Equat
~72! implies

F5
K21

K
~75!

~we leave out the argument ofK; it will always be 2uv).
Equations~72! and ~74! imply

2uv5K21S R

2ED5S R

2E
21DeR/2E5F

R

2E
eR/2E

or

F52
uv

KeK
. ~76!

Combining Eqs.~75! and ~76!, we obtain that

K2152e2Kuv. ~77!

The next step is to find a smooth ‘‘momentum’’ to repla
P6 . We know from the previous subsection thatPUR is
smooth at the past horizonH2, wherev50, andPVR at the
future horizonH1, where u50. Equations~70! and ~76!
give

PUR5P1
R

2
lnuvu1smooth atH2,

and, analogously,
x-
al

s

e

to

n

PVR5P2
R

2
lnuuu1smooth atH1.

Accordingly, the functionP̃ defined by

P̃:5P1
R

2
lnUvuU

might be smooth everywhere. This suggests that we try
following transformation of momenta:

P5 P̃2ẼK lnUvuU, ~78!

E5Ẽ, ~79!

and check whether or not the symplectic form expressed
means of the variablesu, v, P̃, andẼ is regular everywhere
~from now on, we shall leave out the tilde overE). Recall
that all equations are written without the indices6; in fact,
Eq. ~78! reads, if written properly,

P65 P̃62Ẽ6K6lnUv6

u6
U,

whereK65K(2u6v6), etc.
Let us transform the action to the variable

(u6 ,v6 ,P̃6 ,E6). Equations~72! and ~73! yield

dR52KdE22EK8~vdu1udv !,

dT52lnUvuUdE12ES 2
du

u
1

dv
v D .

This together with Eq.~78! implies

PdR2EdT5 P̃dR22E~K211!lnUvuUdE1E2S 2KK8v lnUvuU
1

2

uDdu1E2S 2KK8ulnUvuU2 2

v Ddv.

The first term on the RHS is smooth and the rest is singu
To get rid of it, we observe that

dS 2E2~K211!lnUvuU D522E~K211!lnUvuUdE

1E2S 2KK8v lnUvuU1 K211

u Ddu

1E2S 2KK8ulnUvuU2 K211

v Ddv.

This identity implies

PdR2EdT522EKdP̃1E2~K221!S 2
du

u
1

dv
v D

1dS 2E2~K211!lnUvuU12EKP̃D .

The second term on the RHS is regular; indeed, Eq.~77!
gives
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E2~K221!S 2
du

u
1

dv
v D5E2~K11!e2K~vdu2udv !.

Hence, finally, the Liouville form becomes

@PdR2EdT#5@22EKdP̃1E2~K11!e2K~vdu2udv !#

1dF2E2~K211!lnUvuU12EKP̃G . ~80!

The singular part is contained entirely within the last ter
which can be discarded without changing the symple
structure. We postpone the study of the resulting symple
structure to the next section.

The last nontrivial step in the transformation of the acti
is to transform the term

bRAuFu sha

P

R

in the super-Hamiltonian~69! ~the indices6 are again left
out!. Using Eqs.~72!, ~76!, and~78!, we obtain

bRAuFu sha

P

R

5bEAKe2K/2Auuvu shaS P̃

2EK
2 lnAUvuU D .

Equations~51! and ~52! lead then to

bRAuFu sha

P

R

5EAKe2K/2XbuuuexpS P̃

2EK
D 1abuvuexpS 2

P̃

2EK
D C.

The signs of the Kruskal coordinates as defined at the be
ning of this subsection combine with Table III giving th
buuu52u andabuvu5v in each quadrant. Thus, we arrive
the expression

bRAuFu sha

P

R

5EAKe2K/2X2uexpS P̃

2EK
D 1vexpS 2

P̃

2EK
D C. ~81!

Collecting the results~80! and ~81!, we obtain the final
form of the action

I s
K5E dt~@22EKṖ̃1E2~K11!e2K~vu̇2uv̇ !#

12ñ @EK#2nCs
K!, ~82!

where
,
c
ic

n-

Cs
K5FEAKe2K/2X2uexpS P̃

2EK
D 1vexpS 2

P̃

2EK
D CG

1M ~E1K11E2K2!. ~83!

Let us recall that@X#5X12X2 and thatK65K(2u6v6),
etc. The action~82! as well as all variables on which it de
pends, are smooth everywhere in the new phase space.
phase space is covered by the coordinatesu6 , v6 , P̃6 , and
E6 with ranges 2`,u6v6,1 ~Kruskal manifold! P̃6

P(2`,`), andE6P(0,̀ ); it is the maximal extension o
the old phase space. The super-Hamiltonian~69! as well as
the function@R#52@EK# have continuous extensions to th
new phase space.

C. The symplectic form and Poisson brackets

In this subsection, we investigate the properties of
symplectic structure defined by the Liouville form~80!. Tak-
ing the external derivative of the form~80!, we obtain

V~dX,Ẋ!5@22K~dE Ṗ̃2d P̃ Ė!24E2e2K~du v̇2dv u̇!

12E~K11!e2K~vdE u̇2vdu Ė2udE v̇

1udv Ė!22EK8~vd P̃ u̇2vdu Ṗ̃1ud P̃ v̇

2udv Ṗ̃!#. ~84!

In the calculation, we have used Eq.~77! and the identity

K85
1

KeK
, ~85!

which follows from the definition~74! of K.
The form V must be nondegenerate in order to define

symplectic structure. The calculation of the determinant
the corresponding matrixVm can be simplified by writing it
in the 232 block form

Vm5S A C

2CT BD . ~86!

Multiplying the second double row by the matrix2CB21

and adding the result to the first double row, one can
immediately that

detVm5det~A1CB21CT!detB.

After some easy calculation, this leads to

detVm5S 8E2

KeKD
2

2 S 8E2

KeKD
1

2

5~8E2K8!2
2 ~8E2K8!1

2 .

The determinant is nonzero at all points of all Kruskal spa
times.

The block form~86! helps also to fasten the calculation
the matrix Vm

21 , which defines the Poisson brackets.2 We
look for Vm

21 in the form

2I shorten the subsequent exposition, because most people t
may prefer aMAPLE or MATHEMATICA routine.
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Vm
215S U W

2WT V D
and observe that the matricesA, B, U and V all must be
proportional to the matrix

e:5S 0 21

1 0D .

The equationVmVm
2151 now decomposes into four equ

tions:

AU2CWT51, AW2CV50, ~87!

2CTU2BWT50, 2CTW1BV51. ~88!

From the second equation of Eq.~87! and the well-known
identities fore,

e2521, eMTe52~detM ! M 21, ~89!

valid for all 232 matricesM , we find thatW is proportional
to CT21. The rest of Eqs.~87! and ~88! contains only two
independent linear equations, which determineU and V. A
straightforward calculation using Eqs.~85! and ~89! then
leads to the result

Vm
215S 0

K

2
2

u

4E

v
4E

0
K~K11!u

4E

K~K11!v
4E

0
K2eK

4E2

0

D ~90!

~the order of the coordinates isE,P̃,u,v).
With the help of Eq.~90!, we can study Poisson bracket

We observe first that

$u,v%5
K2eK

4E2
Þ0, ~91!

and, second, that

$u,E%u5v5050, $v,E%u5v5050. ~92!

This has interesting consequences. First, there is no Darb
chart such thatu andv would be two of the correspondin
coordinates. Second, a stronger version of inequality~91!
ux

can be proved. Consider an arbitrary pair (x,y) of coordi-
nates in a neighborhood of the horizon crossingu5v50. If
x andy are to be independent, they must satisfy

]x

]u

]y

]v
2

]x

]v
]y

]u
Þ0. ~93!

If they are to be coordinates on the spacetime where the s
moves, they must be independent onP̃:

x5x~u,v,E!, y5y~u,v,E!.

Let us calculate the Poisson bracket of the two coordinate
the horizon crossing. If we take Eqs.~92! into account, we
obtain

$x,y%uu5v505
KeK

4E2S ]x

]u

]y

]v
2

]x

]v
]y

]uDU
u5v50

.

Equations~91! and ~93! then imply that this expression i
nonzero. We have shown the following theorem.

Theorem 1. Any two independent spacetime coordinat
of the shell that are regular at an intersection of two horizo
have a nonzero Poisson bracket with each other in a ne
borhood of the intersection.

Can this be interpreted as saying that a spacetime m
fold is necessarily fuzzy near a horizon in the quantu
theory? There are at least two caveats. First, any gen
point of any horizon~that is, a point that does not lie at a
intersection of two horizons! has a neighborhood, wher
thereare commuting coordinates. An example is given in t
Sec. VI A. Second, the way from the classical to a quant
theory is longer than it may seem: we had also to defi
observables, and the observables must satisfy some req
ments. For example, their classical counterparts are to h
vanishing Poisson brackets with the constraints~for a discus-
sion of this point, see Ref.@21#!. The functionsu and v as
they stand fail to be so. We can safely conclude that so
more work is necessary to understand the implications of
theorem.
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