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Quasi-toroidal oscillations in rotating relativistic stars

Yasufumi Kojima

Department of Physics, Hiroshima University, Higashi-Hiroshima 739, Japan

Accepted 1997 August 28. Received 1997 August 27; in original form 1997 May 22

ABSTRACT

Quasi-toroidal oscillations in slowly rotating stars are examined within the
framework of general relativity. Unlike the Newtonian case, the oscillation
frequency to first order of the rotation rate is not a single value, even for uniform
rotation. All the oscillation frequencies of the r-modes are purely neutral and form
a continuous spectrum limited to a certain range. The allowed frequencies are
determined by the resonance condition between the perturbation and the
background mean flow. The resonant frequency varies with the radius according to
the general relativistic dragging effect.
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1 INTRODUCTION

In recent X-ray observations with the Rossi X-ray Timing
Explorer (RXTE), quasi-periodic oscillations are dis-
covered in several sources (e.g. van der Klis et al. 1996 and
the subsequent papers of the same volume). The frequency
ranges from a few Hz to kHz and may be attributed to the
phenomena near a compact object. Several models have
been proposed as the sources of the oscillations: the beat-
frequency between a magnetized neutron star and an accre-
tion disc, stellar oscillation, etc. For example, Strohmayer &
Lee (1996) considered the excitation of the g- and r-modes
as a result of a thermonuclear flash, and discussed the
observational possibility. Their calculations are, however,
based on Newtonian gravity. Unlike the spheroidal modes
(e.g. f-, p- and g-modes), the general relativistic effects are
not clear for the r-mode, since the problem has never yet
been studied. The toroidal motion is trivial in a non-rotating
star, but has a non-vanishing frequency in a rotating star.
The quasi-toroidal mode is called the r-mode and is known
as the Rossby wave in ocean studies. Papaloizou & Pringle
(1978) introduced the r-mode in connection with variable
white dwarfs. See also the subsequent studies by Provost,
Berthomieu & Rocca (1981) and Saio (1982).

In this paper, we will explore the relativistic effect on the
r-mode. We do not discuss the observational implication of
the r-mode in relativistic stars, but theoretical study of the
oscillation frequency may be a useful tool for future obser-
vations. We use the slow rotation approximation and line-
arized Einstein equations. The first-order effect of the
rotation rate is taken into account. In Section 2, we present
the perturbation equations describing the r-mode. In Sec-
tion 3, the eigenvalue problem is solved. Finally, Section 4 is
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devoted to the discussion. Throughout this paper we will use
units of G=c=1.

2 PERTURBATION EQUATIONS

We assume a star with a uniform angular velocity Q~ O (¢),
and consider the rotational effect of order ¢ only. The con-
figuration of the pressure p and the density p is the same as
in a non-rotating star, since the centrifugal force deforming
the shape is of the order ¢° The metric for the slowly
rotating star is given by (Hartle 1967)

ds’= —e"dt?+e” dr’+r?(df*+sin* 0 d¢?)
—2wr?sin® 0 dt d¢, Q)

where o~ O (¢) is a radial function describing the dragging
of the inertial frame. Introducing a function w=Q — w, we
have a differential equation as

(jir'e’)’ —16n(p +p)e‘jriw=0, @
where a prime means a derivative with respect to r, and
j = —(A+ \')/2. (3)

The function w inside the star is a monotonically increasing
function of r, so that the range is limited to

Wy < W< Wg, 4)

where @, and wy are the values at the centre and surface
(r=R), respectively.

The perturbations describing non-radial oscillations with
small amplitudes can be given by the density perturbation
dp, pressure perturbation op, and three components of the
velocity (U, R, V). The metric perturbations can be
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expressed by the 10 functions, but the number is reduced to
six (hy, h,, Hy, H;, H,, K) by the gauge fixing. We here use
the same notation for these perturbation functions as was
used in Kojima (1992), but the explicit forms are not neces-
sary for most of the following discussion. Thus the equations
governing the oscillations are one thermodynamic relation
and 10 components of the linearized Einstein equations for
these 11 functions. In the case of non-rotation, two sets are
completely decoupled. One set (U, h,, h,) is called axial
perturbation (or ‘odd-parity’ mode), while the other set (dp,
op, R, V, H,, H,, H,, K) is called polar perturbation (or
‘even-parity’ mode). Notice that the axial perturbation U
describes the toroidal motion, and has zero frequency in the
non-rotating star (Thorne & Campolattro 1967). We expect
that with rotation the toroidal oscillations of the fluids have
finite frequencies of the order of Q, as in the Newtonian
pulsation theory (Papaloizou & Pringle 1978; Provost et al.
1981; Saio 1982). There is also a ‘gravitational wave’ mode
with a non-vanishing frequency in the axial perturbation
(Chandrasekhar & Ferrari 1991; Kokkotas 1994). The mode
can be distinguished from the r-mode in the non-rotating
limit. We do not further discuss the gravitational wave mode
here.

We look for the r-mode oscillations in the relativistic
rotating stars. The perturbation functions are expanded by
appropriate sets of spherical harmonics with index I, m and
exp[ —i(at—mg)]. The linearized Einstein equations in the
slowly rotating star are schematically given by

&{Im—i_édAX‘—;}Iilm:Ol (5)
P+ Eo X A\ 1n=0, (6)

where .«7 and ./ represent some sets of the axial perturba-
tion functions, while 2 and 2 represent those of the polar
perturbation functions (Kojima 1992). The symbols, &, and
&, are some operators of the order ¢. It is clear that the
presence of the rotation induces the couplings between the
axial and polar modes. The coupling is subject to the selec-
tion rule: the axial mode with I, m is coupled with the modes
with | + 1, m and vice versa. This rule is easily understood if
we notice that the slow rotation perturbation corresponds to
the odd-parity perturbation with =1 (Campolattro &
Thorne 1970).

In previous papers (Kojima 1992, 1993a,b), the pulsation
equations in the slowly rotating stars were examined, assum-
ing that the oscillation frequencies in the non-rotating stars
are regarded as non-zero values. This is true for the spher-
oidal modes like f-, p-, g-modes and gravitational wave
modes. The eigenvalue problems are solved for the non-
rotating stars, and the rotational corrections are calculated
for these oscillation modes. We instead assume that the
frequency o is of the order of . A different manipulation is
therefore necessary, since the rotation should be included at
the lowest order to obtain the oscillation frequency of the r-
mode. The perturbation functions should be ordered in the
magnitude as,

ho~0 (U), h,~O(¢'U),

sp~0(:'U),  Sp~0(c'U), @
Hyo~O0(s'U),  H,~0(:'U),  K~O0('U),
H,~0(:?U),  R~0(c?U), V~0(s2U).

The velocity perturbations and the metric perturbations
with h,; are ‘anti-symmetric’ with respect to time, and others
(e.g. density perturbations) are ‘symmetric’. The former
should therefore have an even power of ¢, while the latter
should have an odd power of ¢. The polar perturbation
functions should be of higher order in the quasi-toroidal
oscillations. From the above ordering, the linearized Ein-
stein equations correspond to those for the axial part,
,,=0 at the lowest order. The polar part is induced
through the coupling, equation (6) at higher order level.
The corrections to the axial part are also induced at higher
order level. In proceeding to the higher order, the higher
order rotational corrections for the equilibrium states are
necessary, but the corrections of the order ¢ are sufficient at
the lowest order.

We now solve .«7,,=0 for U, h,, h,. The quasi-toroidal
velocity can be expressed as

—mQ+ 2me
I

The relation between the metric perturbation is

= —4n(c—mQ)(p+p)e "hy,.  (8)

(o mQ)CD+2mw’ ©)
(1 + 1)

ir‘te ="
(I-00+2)

= —

where

h
r

S

d= (10)

N

The master equation governing the quasi-toroidal oscilla-
tions can be written as

1
(@—p) [if_“ (ir'e’) —vd|=q@, (11)
where
e/’,
v=—[1(1+1)—2], (12)
r
1 H A4
q=— (ir'a’) (13)
jr
=16n(p +p)e‘m, (14)
and the eigenvalue
1(1+1)
p= (6 —mQ). (15)
2m

In equation (14), we have used the relation (2).

3 SINGULAR EIGENVALUE PROBLEM

The basic equation (11) is not a regular eigenvalue problem.
The coefficient (w — 1) becomes singular inside the star for
a certain value of u. The coefficient also vanishes outside
the star, but the singularity can be removable because q=0.
This equation is very closely analogous to the Rayleigh’s
equation for the incompressible shear flow (e.g. Lin 1955).
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The perturbation propagating with the wave number k and
speed c in the mean flow with velocity u can be described
as

(u—c) [®" — k2D] =u" . (16)

Similar singular eigenvalue problems appear in many other
fields, e.g. differential rotating fluid discs and plasma oscil-
lations: see, e.g., Balmforth & Morrison (1995) for the
methods of solving the singular eigenvalue problem. The
singular point is called a ‘critical layer’ in fluid dynamics, or
a corotation point with regard to rotating discs. The studies
of the singular eigenvalue problem indicate that unless
there is an inflection point, u”=0, somewhere within the
flow, the eigenvalue is not discrete, but continuous and
neutral against the stability. All neutral modes must have
critical layers (corotation points) that lie within the flow,
and therefore form a continuous spectrum of intrinsically
irregular eigenfunctions.

The parallel argument holds for our problem. The essen-
tial points are that the potential v is positive definite for | > 2
and that there is no inflection point (g > 0) inside the stars.
We can conclude that the eigenvalue of equation (11) is a
real number and the range is limited to

1(1+1)
2m

Ty< U= — (6 —mQ) <@g, an

where the range of @ from equation (4) is used.

We shall simply show the conclusion by reductio ad
absurdum. If there is a non-trivial solution of which the
eigenvalue p is not located within the domain (17), then we
have the integral relation

O:J' (' +v|®]) jr* dr
0
Ro1
+J ——q|®[jr dr, (18)
o TTH

where we have assumed that the function ® tends to zero
both at the centre and at infinity. The imaginary part of
equation (18) gives

R

0=3 () J qlop jr* dr. (19)

@—uf’

Since q is positive definite for 0<r<R as seen in equation
(14), we have I (1) =0, except for the trivial case ®=0. That
is, the eigenvalue u must be real number. In a similar way,
we introduce ®=(w — u)f to have another integral rela-
tion,

o |l

0=J%<w—u)2(|f'|2+v|f|2)jr“dr. (20)

0

The function within the integral is positive at least for
0<r<R. We therefore have the contradiction.

If the eigenvalue is located within the domain (17), the
eigenfunction has a singular point, say r,, inside the star.
The function is approximated by the delta-function as
f~d(r—r,). The quasi-toroidal fluid velocity has the form
U~o(r—r,) from equation (8). The function represents a
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steep resonance between the perturbation and the mean
flow. The resonance may be more clear if we consider the
so-called Cowling approximation. In Newtonian pulsation
theory, gravitational perturbations are sometimes neglected
in the oscillations. This gives good results for the spheroidal
mode as well as for the r-modes. The relativistic Cowling
approximation is given by 6T /=0 with 4g,,=0. One com-
ponent of the equations is reduced in the slow rotation case
to

(@ —w)U=0. (21)

It is clear that the solution of this equation is U~ (r—r,,),
and that the range of eigenvalues is given by equation
).

Finally, we consider the Newtonian limit, in which @w — Q.
The frequency therefore corresponds to a single value as

mQ. (22)

2
o=1———
{ 1(1+1)

This is the frequency of the r-mode oscillation measured by
inertial frame.

4 DISCUSSION

In this paper, the r-mode oscillation is examined as the
consistent first-order solution to the quasi-toroidal motion.
The frequency forms a continuous spectrum. The oscillation
is caused by a certain resonance between the perturbation
and the background rotating flow. The resonance condition
is that the corotating frequency, (¢ — mQ)e ~*? of the wave
should be — 2m/[I (I + 1)] times the angular velocity, we ~*?
measured by a ZAMO (zero-angular-momentum observer).
The angular velocity depends on the position of the local
inertial frame as a result of the dragging effect. In this way,
the r-mode oscillations in relativistic stars are closely
analogous to those in differential rotating discs, although
the angular velocity, Q, is uniform. The mechanism works
everywhere within the rotating star, but the resultant fre-
quency, ¢, measured at infinity is not identical. This is the
physical meaning of the continuous spectrum of the r-
mode.

The eigenfunction of the Newtonian r-mode is not deter-
mined to first order of the rotation, since any functions for
the same u satisfy the equation governing the oscillation,

(u—Q)U=0. (23)

The modes are degenerate in this sense. In order to deter-
mine the radial structure of the r-modes, the calculation of
the next order is necessary. The higher order corrections to
the frequency will remove the degeneracy. As for the rela-
tivistic r-mode, the frequencies are distinguished corre-
sponding to the resonance points. All the positions are on
an equal footing to the first order of the rotation. Therefore,
the normal frequency forms a continuous spectrum. We
expect that some favoured resonance points are selected as
a result of the higher order corrections. That is, the axial
part of the first order drives the density and pressure pertur-
bations at the second order. The gravitational radiation may
be also associated with the density perturbations. The polar
perturbations react on the frequency at the third order. The
internal structure will strongly affect the modes through the
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coupling. The relevant second-order rotational corrections
~0(e?), like rotational deformation, are of course neces-
sary in order to solve the problem. The study beyond the
first order of the rotation is very important, not only for the
radial structure, but also for the stability, although the cal-
culations are significantly complicated.

The frequency at the first order is a real number, and the
mode represents a standing ripple in the rotating flow. The
wave will decay or grow as a result of the dissipation. The
gravitational radiation reacton and/or the viscosity cause
the instability of spheroidal modes in the rotating star. A
similar instability may set in for the r-mode, according to the
general argument (Friedman & Schutz 1978; Friedman &
Morsink 1997). Recent numerical calculations suggest the
instability of the r-mode (Andersson 1997). However, these
works are not in agreement as to the growth rate, which is a
higher order consequence of ¢"(n>2).

In conclusion, the second-order effect to the r-mode
oscillation in a relativistic star is a complicated but quite
interesting problem.
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