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Energy identity for approximations of harmonimaps from surfaesTobias Lamm ∗Marh 26, 2008AbstratWe prove the energy identity for the Saks-Uhlenbek and the biharmoni approxi-mation of harmoni maps from surfaes into general target manifolds. The proof relieson Hopf-di�erential type estimates for the two approximations and on estimates forthe onentration radius of bubbles.Mathematis Subjet Classi�ation (2000): 58E20, 35J60, 53C431 IntrodutionLet (M2, g) be a smooth and ompat Riemannian surfae and let (Nn, h) be a smoothand ompat Riemannian manifold, both without boundary. We assume that Nn →֒ R
misometrially. For u ∈ W 1,2(M, N) we de�ne the Dirihlet energy

E(u) =

∫
M

|∇u|2dvg. (1.1)Critial points of E are alled harmoni maps and they solve the ellipti system
∆u + A(u)(∇u,∇u) = 0, (1.2)where A is the seond fundamental form of the embedding N →֒ R

m. The geometriinterest in harmoni maps from surfaes omes from the fat that if the harmoni mapis additionally onformal (i.e. angle preserving) then the image of the map is a minimalimmersion of M in N . For example it is well known that every harmoni map u : S2 → Nis minimal. It is therefore of interest to �nd ritial points of the Dirihlet energy. Sine
E does not satisfy the Palais-Smale ondition the lassial variational methods do notapply to to E. In order to overome this di�ulty Saks & Uhlenbek [17℄ introdued a
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regularization of the Dirihlet energy. More preisely they onsidered for every α > 1 and
u ∈ W 1,2α(M, N) the funtional

Eα(u) =

∫
M

(1 + |∇u|2)αdvg. (1.3)Sine this funtional satis�es the Palais-Smale ondition they were able to show the ex-istene of a smooth ritial point of Eα for every α > 1 by lassial variational methods.These ritial points uα solve the ellipti system
div((1 + |∇uα|2)α−1∇uα) + (1 + |∇uα|2)α−1A(uα)(∇uα,∇uα) = 0. (1.4)Saks & Uhlenbek then studied sequenes of ritial points uα (α → 1) of Eα with uni-formly bounded energy Eα(uα) ≤ c. They were able to show that for a subsequene αk → 1the maps uαk
onverge weakly in W 1,2(M, N) and strongly away from at most �nitely manysingular points to a smooth harmoni map u1 ∈ C∞(M, N). Moreover they were able toperform a blow-up around these �nitely many singular points and they showed that theblow-up`s are non-trivial minimal two-spheres. As an appliation of this analysis Saks& Uhlenbek proved the existene of a minimal two-sphere in every homotopy lass if

π2(N) = 0.What was left over in their analysis of sequenes of ritial points of Eα was the questionif there is some energy-loss ourring during the blow-up proess.In [6℄ the author onsidered a di�erent regularization of the Dirihlet energy, namely forevery ε > 0 and every u ∈ C∞(M, N) we studied the funtional
Eε(u) =

∫
M

|∇u|2dvg + ε

∫
M

|∆u|2dvg. (1.5)The Euler-Lagrange equation of Eε is given by
∆u − ε∆2u = −A(u)(∇u,∇u) + f [u], (1.6)where f [u] ⊥ TuN and

|f [u]| ≤ c(|u|)ε(|∇u|∇3u| + |∇2u|2 + |∇u|4). (1.7)For every ε > 0 the funtional Eε satis�es the Palais-Smale ondition and therefore ritialpoints exist and they are smooth. Hene, as in the ase of the Saks-Uhlenbek approxima-tion, we studied sequenes uε ∈ C∞(M, N) (ε → 0) of ritial points of Eε with uniformlybounded energy Eε(uε) ≤ c. We were able to show that for a subsequene εk → 0 themaps uεk
onverge weakly in W 1,2(M, N) and strongly away from at most �nitely manysingular points to a smooth harmoni map u0 : M → N . Moreover, by performing a blow-up around the singular points, we showed that at most �nitely many minimal two-sphereswere separating. Additionally we were able to show that there is no energy lost during theblow-up proess if N = Sn →֒ R

n+1. The ase of a general target manifold was left open.In the main result of this paper we show that for both approximations and general targetmanifolds there is no energy-loss ourring. More preisely we have the following2



Theorem 1.1. Let (M2, g) be a smooth, ompat Riemannian surfae without boundaryand let N be a smooth and ompat Riemannian manifold without boundary, whih weassume to be isometrially embedded into R
n. Moreover let uα ∈ C∞(M, N) (α → 1) bea sequene of ritial points of Eα with uniformly bounded energy. Then there exists asequene αk → 0 and at most �nitely many points x1, . . . , xl ∈ M suh that uαk

→ u1weakly in W 1,2(M, N) and in C∞
loc(M\{x1, . . . , xl}, N) where u1 : M → N is a smoothharmoni map.By performing a blow-up at eah xi, 1 ≤ i ≤ l, one gets that there exist at most �nitelymany non-trivial smooth harmoni maps ωi,j : S2 → N , 1 ≤ j ≤ ji, sequenes of points

xk
i,j ∈ M , xk

i,j → xi, and sequenes of radii rk
i,j ∈ R+, rk

i,j → 0, suh that
max{ rk

i,j

rk
i,j′

,
rk
i,j′

rk
i,j

,
dist(xk

i,j, x
k
i,j′)

rk
i,j + rk

i,j′

} → ∞, ∀ 1 ≤ i ≤ l, 1 ≤ j, j′ ≤ ji, j 6= j′, (1.8)
limsupk→∞(rk

i,j)
1−αk < ∞ ∀ 1 ≤ i ≤ l, 1 ≤ j ≤ ji and (1.9)

limk→∞ Eαk
(uαk

) = E(u1) + vol(M) +
l∑

i=1

ji∑
j=1

E(ωi,j). (1.10)Remark 1.2. The Theorem remains true if we replae everywhere Eα by Eε, uα by uε, u1by u0 , the estimate (1.9) by
limsupk→∞

εk

(rk
i,j)

2
= 0 ∀ 1 ≤ i ≤ l, 1 ≤ j ≤ ji, (1.11)and (1.10) by

limk→∞ Eεk
(uεk

) = E(u0) +

l∑
i=1

ji∑
j=1

E(ωi,j). (1.12)Remark 1.3. By the results of Duzaar & Kuwert [3℄ (Theorem 2) the above Theoremimplies that we also have a deomposition in terms of homotopy lasses.As a Corollary of the above Theorem, we obtain a new proof of a result of Jost [5℄ onthe energy identity for min-max sequenes for the Dirihlet energy.Corollary 1.4. Let (M2, g) be a smooth, ompat Riemannian surfae without boundaryand let N →֒ R
n be a smooth and ompat Riemannian manifold without boundary. More-over let A be a ompat parameter manifold, for simpliity we assume ∂A = ∅, and let

h0 : M × A → N be ontinuous. Let H be the lass of all maps homotopi to h0 and
β := infh∈H supt∈A E(h(·, t)). (1.13)
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Then there exists a sequene uαk
∈ C∞(M, N) of ritial points of Eαk

, a harmoni map
u1 : M → N and at most �nitely many points x1, . . . , xl ∈ M suh that

Eαk
(uαk

) − vol(M) = βαk
= infh∈H supt∈A Eαk

(h(·, t)) − vol(M), (1.14)
βαk

→ β, (1.15)
uαk

⇀ u1 weakly in W 1,2(M, N) and (1.16)
uαk

→ u1 in C∞
loc(M\{x1, . . . , xl}, N). (1.17)Moreover there exist at most �nitely many non-trivial smooth harmoni maps ωi,j : S2 →

N , 1 ≤ i ≤ l, 1 ≤ j ≤ ji, sequenes of points xk
i,j ∈ M , xk

i,j → xi, and sequenes of radii
rk
i,j ∈ R+, rk

i,j → 0, suh that
max{

rk
i,j

rk
i,j′

,
rk
i,j′

rk
i,j

,
dist(xk

i,j , x
k
i,j′)

rk
i,j + rk

i,j′

} → ∞, ∀ 1 ≤ i ≤ l, 1 ≤ j, j′ ≤ ji, j 6= j′, (1.18)
limsupk→∞(rk

i,j)
1−αk < ∞ ∀ 1 ≤ i ≤ l, 1 ≤ j ≤ ji and (1.19)

limk→∞ Eαk
(uαk

) = E(u1) + vol(M) +

l∑
i=1

ji∑
j=1

E(ωi,j). (1.20)Remark 1.5. With the obvious modi�ations the orollary remains true for the biharmoniapproximation Eε.Proof. The proof of this result is quite standard but we inlude it here for sake of om-pleteness. It is obvious that ∀α > 1 we have
β ≤ βα.Let δ > 0 and hoose h̃ ∈ H ∩ C∞(M × A, N) suh that

supt∈A E(h̃(·, t)) ≤ β + δ.Then for α − 1 small enough we have
supt∈A Eα(h̃(·, t)) − vol(M) ≤ β + δ + c(h̃)(α − 1)

≤ β + 2δ.This implies
limα→1 βα = β.Sine Eα satis�es the Palais-Smale ondition we know from the minmax priniple (see forexample [19℄, Theorem 4.2 and Example 4.3) that for every α > 1, βα is a ritial value of

Eα − vol(M). This shows that there exists a sequene of ritial points uα of Eα suh that
Eα(uα) − vol(M) → β.The remaining assertions of the Corollary follow from Theorem 1.1.4



In the existing literature there are already some partial results available for the energyidentity for the Saks-Uhlenbek approximation and there are many more results availablefor related problems. In the following we want to mention some of these results.For the Saks-Uhlenbek approximation Chen & Tian [1℄ proved the energy identity forsequenes of minimizers of the energy Eα in a given homotopy lass. Reently Moore [12℄proved the energy identity (he atually proved (1.10) with the Dirihlet energy E insteadof the full α-energy Eα on the left hand side) for the Saks-Uhlenbek approximation forsequenes of ritial points of Eα with bounded Morse index (additional to our situationhe allowed the onformal struture of the domain to vary but it had to remain bounded).The additional assumptions made by the authors were used to ensure that the sequene ofminimizers, respetively ritial points with bounded Morse index, onverges to a geodesiof �nite length on the neks onneting the bubbles and the weak limit (or body map)whih then implies the energy identity. We argue in a somehow more diret way but wewant to mention that it is not lear from our analysis that the sequene of ritial pointsonverges to a geodesi of �nite length on the neks.For sequenes of harmoni maps and min-max sequenes for the Dirihlet energy the energyidentity was proved by Jost [5℄ (see also [13℄ for an alternative proof of the energy identityfor sequenes of harmoni maps).The energy identity for the harmoni map heat �ow and Palais-Smale sequenes for theDirihlet energy with tension �eld bounded in L2 was established by Qing [14℄ (in thease N = Sn) and independently by Ding & Tian [2℄ and Wang [21℄ in the general ase.Alternative proofs have been given by Qing & Tian [15℄ and Lin & Wang [8℄. See also thepaper of Topping [20℄ for more re�ned results in this ase.Lin & Wang [9℄, [10℄ used a Ginzburg-Landau approximation to regularize the Dirihletenergy and proved the energy identity in this situation. The disadvantage of the Ginzburg-Landau approximation is that the approximating maps don`t have to map into the targetmanifold, only in the limit they are fored to do this.For maps from higher dimensional domains the energy identity for sequenes of harmonimaps has been proved by Lin & Rivière [7℄ for N = Sn. For other related problems suhas sequenes of Yang-Mills �elds on a four-dimensional manifold, respetively biharmonimaps from a four-dimensional manifold into the sphere the energy identity has been provedby Rivière [16℄, respetively Wang [22℄.In the following we give a brief outline of the paper.In setion 2 we prove Theorem 1.1 for the Saks-Uhlenbek approximation of harmonimaps. We start by realling the small-energy regularity estimates and the blow-up proe-dure of Saks & Uhlenbek [17℄ in setion 2.1. In Lemma 2.2 we prove the very importantestimate for the onentration radius of the bubbles. The advantages of having a goodestimate for the onentration radius an also be seen in the paper of Topping [20℄. Inthe next two setions we prove a Hopf-di�erential type estimate and an estimate for thetangential omponent of solutions of (1.4) on annular regions. These estimates are provedin the same way as the orresponding estimates for harmoni maps, see for example [17℄and [2℄. In setion 2.4 we use the bubbling indution argument of Ding & Tian [2℄ to5



redue the proof of the energy identity to the ase of one bubble. In this situation we thenombine the previous estimates with the estimate for onentration radius to omplete theproof of the energy identity.In setion 3 we treat the ase of the biharmoni approximation. For this approximationthe estimate for the onentration radius (see (3.6)) has already been proved in [6℄. Insetion 3.1 we review the small-energy estimates and blow-up proess from [6℄. In setion
3.2 we use the stress-energy tensor of Eε to get a Hopf-di�erential type estimate for thebiharmoni approximation. The rest of the proof of the energy identity then follows as inthe ase of the Saks-Uhlenbek approximation and in the setions 3.3 and 3.4 we brie�ydesribe the neessary modi�ations.2 Energy identity for the Saks-Uhlenbek approxima-tion of harmoni mapsIn this setion we prove Theorem 1.1 for the Saks-Uhlenbek approximation of harmonimaps.2.1 Results of Saks and UhlenbekWe onsider sequenes of ritial points uα ∈ C∞(M, N) of the funtional Eα with uni-formly bounded energy Eα(uα) ≤ c. Due to the uniform boundedness of the energy it iseasy to see that there exists a subsequene αk → 1 suh that uαk

→ u1 weakly in W 1,2. Insetion 3 of [17℄ Saks & Uhlenbek proved the following small energy regularity result forsolutions of (1.4).Theorem 2.1. There exists ε0 > 0 suh that if uα (α lose to one) is a ritial point of
Eα with ∫

B2
|∇uα|2 < ε0 then we have for every x ∈ B1 and every m ∈ N

oscB1 uα + |∇muα|(x)|x|m ≤ c(

∫
B2

|∇uα|2)
1
2 . (2.1)With the help of this Theorem Saks & Uhlenbek were able to show that the sequene

uαk
onverges strongly to a smooth harmoni map u1 : M → N away from �nitely manypoints. These �nitely many singular points xi ∈ M , 1 ≤ i ≤ l, are araterized by theondition that

limsupk→∞ E(uαk
, BR(xi)) ≥ ε0, (2.2)for every R > 0 and every 1 ≤ i ≤ l. Around these �nitely many singular points they wereable to perform a blow-up and show that a non-trivial harmoni two-sphere separates. Theblow-up an be done as follows: Fix R0 > 0 suh that BR0(xi) ∩ BR0(xj) = ∅ for every6



i, j ∈ {1, . . . , l}, i 6= j. Beause of (2.2) there exists a sequene of points xk
i → xi and radii

rk
i → 0 suh that

maxy∈BR0
(xi) E(uαk

, Brk
i
(y)) = E(uαk

, Brk
i
(xk

i )) =
ε0

2
. (2.3)De�ning:

vk
i :BR0

rk
i

→ N

vk
i (x) =uαk

(xk
i + rk

i x) (2.4)we see that vk
i solves (1.4) with 1 replaed by (rk

i )
2 and moreover

maxy∈B R0
2rk

i

E(vk
i , B1(y)) = E(vk

i , B1(0)) =
ε0

2
. (2.5)Therefore we an apply Theorem 2.1 to vk

i and get that vk
i onverges in C1 to a smoothharmoni map ωi from R

2 into N . By the point removabilty result of Saks & Uhlenbekwe an then extend ωi to a smooth harmoni map from S2 to N . As a onsequene of thisblow-up proedure we get the following estimate for the onentration radius (see also [18℄were this was observed for a similar approximation of a di�erent problem).Lemma 2.2. Using the above notation we have that
limsupk→∞(rk

i )
1−αk < ∞, (2.6)for every 1 ≤ i ≤ l.Proof. Beause of (2.3) and Hölder's inequality we know that

ε0

2
= E(uαk

, Brk
i
(xk

i ))

≤ (

∫
M

(1 + |∇uαk
|2)αk)

1
αk (rk

i )
2(αk−1)

αk

≤ c(rk
i )

2(αk−1)

αk .From this the laim follows.2.2 A Hopf di�erential type estimateIn the ase of sequenes of harmoni maps or Palais-Smale sequenes for the Dirihletenergy with tension �eld bounded in L2 an important ingredient in the proof of the energyidentity was an estimate for the Hopf di�erential (see e.g. [2℄, [17℄). In the next lemma weshow that a related result is true for solutions of (1.4).7



Lemma 2.3. Let B ⊂ R
2 be the unit ball and let uα ∈ C∞(B, N) be a solution of (1.4).Then we have for every 0 < r < 1 and every α lose to one

∫
∂Br

r(1 + |∇uα|2)α−1|(uα)r|2 ≤c

∫
∂Br

1

r
(1 + |∇uα|2)α−1|(uα)θ|2 + c

∫
∂Br

r(1 + |∇uα|2)α−1

+ c(α − 1)

∫
Br

(1 + |∇uα|2)α. (2.7)Proof. We multiply equation (1.4) by x ·∇uα and integrate over Br to get (remember that
A(uα)(∇uα,∇uα) ⊥ Tuα

N for every x ∈ B)
0 =

∫
Br

div((1 + |∇uα|2)α−1∇uα)x · ∇uα

= −
∫

Br

(1 + |∇uα|2)α−1|∇uα|2 +

∫
∂Br

r(1 + |∇uα|2)α−1|(uα)r|2

− 1

2

∫
Br

(1 + |∇uα|2)α−1x · ∇(1 + |∇uα|2).Next we integrate by parts and get
1

2

∫
Br

(1 + |∇uα|2)α−1x · ∇(1 + |∇uα|2) = −
∫

Br

(1 + |∇uα|2)α +

∫
∂Br

r

2
(1 + |∇uα|2)α

− α − 1

2

∫
Br

(1 + |∇uα|2)α−1x · ∇(1 + |∇uα|2).Using the identity
|∇uα|2 = |(uα)r|2 +

1

r2
|(uα)θ|2and ombining everything we end up with

∫
∂Br

r(1 + |∇uα|2)α−1|(uα)r|2 ≤c

∫
∂Br

1

r
(1 + |∇uα|2)α−1|(uα)θ|2

+ c(α − 1)

∫
Br

(1 + |∇uα|2)α + c

∫
∂Br

r(1 + |∇uα|2)α−1.

2.3 Estimate for the tangential omponentIn this setion we show that if the Dirihlet energy is small on all annular regions withbounded geometry then the tangential derivative of uα onverges to zero on the annularregion whih is the union of all the annuli with bounded geometry. The proof of this fatfollows losely the previous work of Saks & Uhlenbek [17℄ and Ding & Tian [2℄. In thefollowing we use for 0 < a1 < a2 < 1 the notation A(a1, a2) = {x ∈ R
2|a1 ≤ |x| ≤ a2}.8



Lemma 2.4. There exists δ0 > 0 suh that for all δ < δ0 and all solutions uα ∈ C∞(B, N)of (1.4) with ∫
A(r,2r)

|∇uα|2 < δ for every r ∈ (R1,
R2

2
), we have for α − 1 small enough

∫ R2
4

2R1

∫ 2π

0

1

r
|(uα)θ|2drdθ ≤ c

√
δ(1 + (ln R1)

1−α). (2.8)Proof. Let δ0 < ε0 and let y ∈ A(2R1,
R2

4
). Then we have that 2|y|

3
,

4|y|
3

∈ (R1,
R2

2
) and

B |y|
3

(y) ⊂ B 4|y|
3

\B 2|y|
3

. From our assumption and Theorem 2.1 we therefore onlude that
2∑

i=1

|x|i|∇iuα|(x) ≤ c
√

δ, (2.9)for every x ∈ A(2R1,
R2

4
). Now we let R2

4R1
= 2l + q, l ∈ N and q ≥ 0, and de�ne

Ak = A(2kR1, 2
k+1R1) for all 1 ≤ k ≤ l − 1 and we let Al = A(2lR1,

R2

4
). Next we notethat equation (1.4) an equivalently be written as

∆uα + A(uα)(∇uα,∇uα) = −2(α − 1)
〈∇2uα,∇uα〉∇uα

1 + |∇uα|2
=: fα. (2.10)Now we let h = h(r) be a pieewise linear funtion whih equals the mean value of uα on

{R2

4
} × S1 and {2kR1} × S1 for all 1 ≤ k ≤ l − 1. With the help of this we have

∆(u − h) + A(uα)(∇uα,∇uα) = fα.Testing this equation with uα − h and integrating over Ak we get
∫

Ak

|∇(uα − h)|2 =

∫
Ak

(uα − h)(A(uα)(∇uα,∇uα) − fα)

+ 2k+1R1

∫ 2π

0

(uα − h)(uα − h)r(2
k+1R1, θ)dθ

− 2kR1

∫ 2π

0

(uα − h)(uα − h)r(2
kR1, θ)dθ.We remark that the boundary integrals of (uα − h)hr vanish sine h is equal to the meanvalue of uα on these boundaries and hr is pieewise onstant. Beause of (2.9) and theSobolev embedding (whih we only apply on the annuli Ak) we know that for every x ∈ Akwe have

|uα − h|(x) +
2∑

i=1

|x|i|∇iuα| ≤ cδ
1
2 . (2.11)9



This implies that
∫

Ak

|∇(uα − h)|2 ≤cδ
1
2

∫
Ak

(|∇uα|2 + |fα|) + 2k+1R1

∫ 2π

0

(uα − h)(uα)r(2
k+1R1, θ)dθ

− 2kR1

∫ 2π

0

(uα − h)(uα)r(2
kR1, θ)dθ.Taking the sum over k we get

∫
A(2R1,

R2
4

)

|∇(uα − h)|2 ≤cδ
1
2

∫
A(2R1,

R2
4

)

(|∇uα|2 + |fα|)

+
R2

4

∫ 2π

0

(uα − h)(uα − h)r(
R2

4
, θ)dθ

− 2R1

∫ 2π

0

(uα − h)(uα − h)r(2R1, θ)dθ

≤cδ
1
2 (1 + (ln R1)

1−α),where we used (2.11) to estimate
∫

A(2R1,
R2
4

)

|fα| ≤c(α − 1)

∫
A(2R1,

R2
4

)

|∇2uα|

≤(ln R1)
1−α.This �nishes the proof of the Lemma.2.4 Proof of the energy identityProof. Beause of the indution argument of Ding & Tian [2℄ we know that it is enoughto prove the energy identity in the presene of one bubble. Sine we are dealing with aloal problem we assume from now on that uα : R

2 ⊃ B1 → N and that we have onlyone energy onentration point x1 = 0. Using the notations from setion 2.1 we assumethat we obtain the bubble by resaling with the fator rk. From the smooth onvergene
uαk

→ u1 away from 0 we onlude that
Eαk

(uαk
, B1\BR0) → E(u1, B1\BR0) + vol(B1\BR0), (2.12)for every 0 < R0 < 1. Similarly, from the loal C1-onvergene vk = uαk

(rk·) → ω, wehave for every R > 0

Eαk
(uαk

, BRrk) → E(ω). (2.13)Moreover this also implies that for every R > 0 and M > 0

Eαk
(uαk

; BR0\BR0
M

) + Eαk
(uαk

; BMrkR\BrkR) → 0, (2.14)10



as k → ∞ and R0 → 0. Therefore it is easy to see that the proof of the energy identity inthe ase of one bubble is redued to showing that
limR→∞ limR0→0 limk→∞ Eαk

(uαk
, A(Rrk, R0)) = 0. (2.15)Next we laim that due to the fat that we have only one bubble we an assume that forany δ > 0 there exists k0 > 0 suh that for all k > k0 we have

E(uαk
, B2r\Br) < δ, (2.16)for every Rrk ≤ r ≤ R0

2
. To see this we argue by ontradition. If the laim is false, wemay assume that as k → ∞ there exists sk ∈ (Rrk, R0

2
) suh that

E(uαk
; B2sk\Bsk) = max

r∈(Rrk ,
R0
2

)
E(uαk

; B2r\Br)

≥ δ. (2.17)From (2.14) we get that
R0

sk
→ ∞ and

Rrk

sk
→ 0. (2.18)By de�ning

ṽk : BR0
sk

\B rkR

sk

→ N

ṽk(x) = uαk
(skx) (2.19)we have that ṽk solves (1.4) with 1 replaed by (sk)2 and

∫
B R0

sk

\B
rkR

sk

((sk)2 + |∇ṽk|2)αk ≤ c(sk)2(α−1), (2.20)
E(ṽk; B2\B1) ≥ δ. (2.21)By (2.20), (2.18), Lemma 2.2 and the arguments of setion 2.1 we may assume that ṽk ⇀ ṽ0weakly in W

1,2
loc (R2\{0}, N), where ṽ0 : R

2 → N is a harmoni map with �nite Dirihletenergy.We have two possibilities. The �rst one is that there exists r̃ > 0 suh that
supk∈N

supx∈B4\B 1
4

Eαk
(ṽk; Br̃(x)) < ε0.With the help of Theorem 2.1 and a overing argument this implies that ṽk → ṽ0 in

C∞(B2\B1, N). Sine R
2\{0} is onformally equivalent to S2\{N, S} we onlude from(2.21) and the point removability result of Saks & Uhlenbek [17℄, that ṽ0 an be lifted to11



a smooth non-trivial harmoni map from S2 to N , ontraditing the assumption that wehave only one bubble ω.The seond possibility is that we have at least one energy-onentration point y ∈ B4\B 1
4
.Now we an apply the blow-up proedure of setion 2.1 to onlude that there must exist anon-trivial harmoni two-sphere, again ontraditing the assumption that there is only onebubble. This proves (2.16) and hene we an ombine Theorem 2.1, Lemma 2.2, Lemma2.3 and Lemma 2.4 (with R1 = Rrk and R2 = R0) to estimate

∫
A(2Rrk ,

R0
4

)

(1 + |∇uαk
|2)α ≤ c||(1 + |∇uαk

|2)αk−1||L∞(A(Rrk ,R0))

∫
A(2Rrk ,

R0
4

)

(1 + |∇uαk
|2)

≤ c

∫
A(2Rrk ,

R0
4

)

|∇uαk
|2 + o(R0)

= c

∫ R0
4

2Rrk

∫ 2π

0

(r|(uαk
)r|2 +

1

r
|(uαk

)θ|2)drdθ + o(R0)

≤ c

∫ R0
4

2Rrk

∫ 2π

0

1

r
|(uαk

)θ|2drdθ + o(R0) + c(αk − 1)R0Eαk
(uαk

)

≤ o(k) + o(R0) + c
√

δ,whih, ombined with (2.14), proves (2.15) (sine δ > 0 was arbitrary) and therefore themain Theorem in the ase of one bubble.3 Energy identity for the biharmoni approximation ofharmoni mapsIn this setion we prove Theorem 1.1 for the biharmoni approximation of harmoni maps.3.1 Estimates and blow-upIn the following we onsider sequenes of ritial points uε ∈ C∞(M, N) (ε → 0) of thefuntional Eε with uniformly bounded energy Eε(uε) ≤ c. Due to the uniform bound onthe W 1,2-norm of uε we get the existene of a subsequene uεk
suh that uεk

⇀ u0 weakly in
W 1,2(M, N). In [6℄ we were able to show the following small energy estimate (see Corollary
2.10 in [6℄).Theorem 3.1. There exists δ0 > 0 and c > 0 suh that if uε ∈ C∞(M, N) is a solution of(1.6) with ∫

B2
(|∇u|2 + ε|∆u|2) < δ0 then we have for ε small enough and every m ∈ N

oscB1 uε + |∇muε|(x)|x|m ≤ c(

∫
B2

(|∇u|2 + ε|∆u|2)) 1
2 , (3.1)for every x ∈ B1. 12



Hene, as in setion 2.1, the sequene uε onverges strongly to u0 away from �nitelymany singular points xi ∈ M , 1 ≤ i ≤ l, whih are haraterized by the ondition
limsupk→∞ Eεk

(uεk
, BR(xi)) ≥ δ0, (3.2)for every R > 0 and every 1 ≤ i ≤ l. Around these �nitely many singular points we wereable to perform a blow-up similar to the one of setion 2.1 (see setion 3 of [6℄). Namely,for R0 > 0 suh that BR0(xi)∩BR0(xj) = ∅ for every 1 ≤ i 6= j ≤ l, there exists a sequeneof points xk

i → xi and a sequene of radii rk
i → 0 suh that

maxy∈BR0
(xi) Eεk

(uεk
, Brk

i
(y)) = Eεk

(uεk
, Brk

i
(xk

i )) =
δ0

2
. (3.3)De�ning

wk
i :BR0

rk
i

→ N,

wk
i (x) = uεk

(xk
i + rk

i x) (3.4)we see that wk
i solves (1.6) with εk replaed by ε̃k = εk

(rk
i )2

and
maxy∈B R0

2rk
i

Eε̃k
(wk

i , B1(y)) = Eε̃k
(wk

i , B1(0)) =
δ0

2
. (3.5)Hene we an apply Theorem 3.1 to wk

i and onlude that wk
i onverges smoothly to somemap ωi ∈ C∞∩W 1,2(R2, N). Then we were able to show (Lemma 3.1 in [6℄) that for every

1 ≤ i ≤ l

ε̃k =
εk

(rk
i )

2
→ 0, (3.6)and therefore ωi is a harmoni map with �nite Dirihlet energy and an therefore be liftedto a smooth harmoni map from S2 to N .3.2 Stress-energy tensorFor a smooth map u we have the well-known stress-energy tensor S1

αβ(u) given by
S1

αβ(u) =
1

2
|∇u|2δαβ − 〈∇αu,∇βu〉. (3.7)An easy alulation shows that if u is a harmoni map then we have

∂αS1
αβ(u) = −〈∆u,∇βu〉 = 0. (3.8)Again for a smooth map u we have the stress-energy tensor S2

αβ(v) de�ned by (see [4℄ and[11℄)
S2

αβ(u) =
1

2
|∆u|2δαβ + 〈∇γu,∇γ∆u〉δαβ − 〈∇αu,∇β∆u〉 − 〈∇βu,∇α∆u〉. (3.9)13



By another easy alulation we see that if u is an extrinsi biharmoni map (i.e. a solutionof ∆2u ⊥ TuN) then we have
∂αS2

αβ(u) = −〈∇βu, ∆2u〉 = 0. (3.10)Combining (3.8) and (3.10) we see that
∂α(S1

αβ(uε) − εS2
αβ(uε)) = 〈∇βuε, (ε∆

2 − ∆)uε〉 = 0, (3.11)if uε is a solution of (1.6). As in the ase of harmoni maps (see [17℄) we use this divergene-free quantity to get a Hopf di�erential type estimate for solutions of (1.6).Lemma 3.2. Let uε ∈ C∞(B, N) be a solution of (1.6). Then we have for all 0 < r < 1

r

∫
∂Br

|(uε)r|2 ≤
1

r

∫
∂Br

|(uε)θ|2 + cε

∫
Br

|∆uε|2 + cεr

∫
∂Br

(|∆uε|2 + |∇uε||∇3uε|). (3.12)Proof. Multiplying (3.11) by xβ and integrating by parts we get for every 0 < r < 1∫
Br

(S1
αβ(uε) − εS2

αβ(uε))δαβ =

∫
∂Br

(S1
αβ(uε) − εS2

αβ(uε))x
βνα, (3.13)where ν is the outer unit normal to ∂Br. Now we alulate

(S1
αβ(uε) − εS2

αβ(uε))δαβ = −ε|∆uε|2and
(S1

αβ(uε) − εS2
αβ(uε))x

βνα =
r

2
|∇uε|2 − r|(uε)r|2

− rε(
1

2
|∆uε|2 + 〈∇uε,∇∆uε〉 − 2〈(uε)r, (∆uε)r〉)

=
1

2r
|(uε)θ|2 −

r

2
|(uε)r|2

− rε(
1

2
|∆uε|2 + 〈∇uε,∇∆uε〉 − 2〈(uε)r, (∆uε)r〉),where we used the identity |∇u|2 = |ur|2+ 1
r2 |uθ|2. This �nishes the proof of the Lemma.3.3 Estimate for the tangential omponentIn this subsetion we prove an estimate for the biharmoni approximation similar to theone given in setion 2.3 for the Saks-Uhlenbek approximation.Lemma 3.3. There exists δ1 > 0 suh that for all δ < δ1 and all solutions uε of (1.6) with∫

A(r,2r)
(|∇uε|2 + ε|∆uε|2) < δ for every r ∈ (R1,

R2

2
), we have for ε small enough

∫ R2
4

2R1

∫ 2π

0

1

r
|(uε)θ|2drdθ ≤ c

√
δ(1 +

ε

(R1)2
). (3.14)14



Proof. The proof follows diretly from the one of Lemma 2.4. Namely instead of usingTheorem 2.1 we use Theorem 3.1 to onlude that
4∑

i=1

|x|i|∇iuε| ≤ c
√

δ (3.15)for every x ∈ A(2R1,
R2

4
). Moreover we note that equation (1.6) an equivalently be writtenas
∆uε + A(uε)(∇uε,∇uε) = ε∆2uε + f [uε]

= fε. (3.16)Using this form of the equation it is easy to see that the proof of Lemma 2.4 arries overto this situation one we notie that beause of (1.7) and (3.15) we have
√

δ

∫
A(2R1,

R2
4

)

|fε| ≤ c
√

δε

∫
A(2R1,

R2
4

)

(|∇4uε| + |∇uε||∇3uε| + |∇2uε|2 + |∇uε|4)

≤ c
√

δ
ε

(R1)2
.

3.4 Proof of the energy identityProof. Following the remarks of setion 2.4 (using the results of setion 3.1) we an assumethat we have only one energy onentration point x1 = 0 ∈ B1 ⊂ R
2 and one bubble ω1whih is obtained by resaling uεk

by the fator rk. Again the proof of the energy identityis redued to showing that
limR→∞ limR0→0 limk→∞ Eεk

(uεk
, BR0\BRrk) = 0. (3.17)Using similar arguments as in setion 2.4 we an moreover assume that for any δ > 0 thereexists k0 > 0 suh that for all k > k0 we have

Eεk
(uεk

, B2r\Br) < δ, (3.18)for every Rrk ≤ r ≤ R0

2
. Hene we an apply (3.15) with R1 = Rrk and R2 = R0 to get
εk

∫
A(2Rrk ,

R0
4

)

|∆uεk
|2 ≤cδεk

∫
A(2Rrk ,

R0
4

)

dx

|x|4

≤cδ
εk

R2r2
k

=o(k), (3.19)15



where we used (3.6) in the last line. Combining Lemma 3.2, Lemma 3.3, (3.18), (3.19) and(3.6) we get
Eεk

(uεk
, A(2Rrk,

R0

4
)) ≤

∫ R0
4

Rrk

∫ 2π

0

(r|(uεk
)r|2 +

1

r
|(uεk

)θ|2)drdθ + o(k)

≤c

∫ R0
4

Rrk

∫ 2π

0

1

r
|(uεk

)θ|2drdθ + o(k) + o(R0)

≤o(k) + o(R0) + c
√
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