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 ENERGY IDENTITY FOR APPROXIMATIONS
 OF HARMONIC MAPS FROM SURFACES

 TOBIAS LAMM

 Abstract. We prove the energy identity for min-max sequences of the Sacks
 Uhlenbeck and the biharmonic approximation of harmonic maps from surfaces
 into general target manifolds. The proof relies on Hopf-differential type es
 timates for the two approximations and on estimates for the concentration
 radius of bubbles.

 1. Introduction

 Let (M2,g) be a smooth and compact Riemannian surface and let (Nn,h) be
 a smooth and compact Riemannian manifold, both without boundary. We assume
 that Nn <-? Rm isometrically. For u Wl>2(M, N) we define the Dirichlet energy

 (1.1) E(u)= [ \Vu\2dvg. Jm
 Critical points of E are called harmonic maps and they solve the elliptic system

 (1.2) &u + A(u)(Vu,Vu) = 0,

 where A is the second fundamental form of the embedding N <-> Rm. The geometric
 interest in harmonic maps from surfaces comes from the fact that if the harmonic

 map is additionally conformal (i.e., angle-preserving), then the image of the map is
 a minimal immersion of M in N. For example it is well known that every harmonic
 map u : S2 -? N is minimal. It is therefore of interest to find critical points of the
 Dirichlet energy. Since E does not satisfy the Palais-Smale condition the classical
 variational methods do not apply to E. In order to overcome this difficulty, Sacks h
 Uhlenbeck [20] introduced a regularization of the Dirichlet energy. More precisely,
 they considered for every a > 1 and u W1,2a(My N) the functional

 (1.3) Ea(u)= [ (l + \Vu\2)advg. jm

 Since this functional satisfies the Palais-Smale condition they were able to show the
 existence of a smooth critical point of Ea for every a > 1 by classical variational
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 4078  TOBIAS LAMM

 Sacks & Uhlenbeck then studied sequences of critical points ua (a ?> 1) of Ea
 with uniformly bounded energy Ea(ua) < c. They showed that for a subsequence
 a/e ?> 1 the maps uak converge weakly in W1,2(M, N) and strongly away from at
 most finitely many singular points to a smooth harmonic map ui E C??(M, N).
 Moreover they were able to perform a blowup around these finitely many singular
 points and they showed that the blowups are nontrivial minimal two-spheres. As
 an application of this analysis Sacks & Uhlenbeck proved the existence of a minimal
 two-sphere in every homotopy class if ^{N) = 0.
 What was left over in their analysis of sequences of critical points of Ea was the

 question if there is some energy loss occurring during the blow-up process.
 In [7] the author considered a different regularization of the Dirichlet energy;

 namely, for every e > 0 and every u E W2'2(M, N) we studied the functional

 For every e > 0 the functional Ee satisfies the Palais-Smale condition, and therefore
 critical points exist and they are smooth. Hence, as in the case of the Sacks
 Uhlenbeck approximation, we studied sequences u? E C??(M, N) (e ?> 0) of critical
 points of E? with uniformly bounded energy E?(u?) < c. We were able to show that
 for a subsequence ek ?> 0 the maps u?k converge weakly in W1,2(M, N) and strongly
 away from at most finitely many singular points to a smooth harmonic map uq :

 M ? N. Moreover, by performing a blowup around the singular points, we showed
 that at most finitely many minimal two-spheres were separating. Additionally
 we were able to show that there is no energy lost during the blow-up process if
 N = Sn <-> Mn+1. The case of a general target manifold was left open.

 In the main result of this paper we show that for both approximations and
 general target manifolds there is no energy loss occurring if we assume an additional
 entropy-type condition. More precisely we have the following.

 Theorem 1.1. Let (M2,g) be a smooth, compact Riemannian surface without
 boundary and let N be a smooth and compact Riemannian manifold without bound
 ary, which we assume to be isometrically embedded into Rn. Let ua E C?? (M, N)
 (a ?> 1) be a sequence of critical points of Ea with uniformly bounded energy.

 Moreover we assume that ua satisfies

 Then there exists a sequence ak -> 1 and at most finitely many points x1,..., xl E
 M such that uak -> u\ weakly in Wla(M,N) and in C^c(M\{xl,..., x1}, N),
 where u\ : M ?> N is a smooth harmonic map.

 (1.5)

 The Euler-Lagrange equation of E? is given by

 (1.6) Au - eA2u = -A(tx)(Vw, Vu) 4- /[u],

 where f[u] ? TUN and

 (1.7) < c(\u\)e(\Vu\V3u\ + |V2u|2 + |Vu|4).

 j m
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 ENERGY IDENTITY FOR APPROXIMATIONS OF HARMONIC MAPS 4079

 By performing a blowup at each x%, 1 < i < I, one gets that there exist at
 most finitely many nontrivial smooth harmonic maps uj1>3 : S2 ?> N, 1 < j < ji,
 sequences of points x\3 G M, x\3 ?> x1, and sequences of radii r^J G R+, r\? -> 0,
 such that

 (1.9)

 (1.10) limsup^)1-"" = 1 V 1 < i < I, 1 < j < ji and k-+oc

 I Ji

 (1.11) lim Eak(uak) = E(Ul) + vo\(M) ^TTE(u;^). k?>oo z?' '
 i=l j=l

 Remark 1.2. The theorem remains true if we replace everywhere Ea by E?, ua by
 u?, u\ by uq, the assumption (1.8) by

 (1.12) liminf?log(-) / \&u?\2dvg=0,
 the estimate (1.10) by

 (1.13) limsup-ff-=0 Vl<i<Z, l<j<ju ^ (r^)2
 and (1.11) by

 / ji

 (1.14) lim E?k(u?k) = E(u0) + ??E(c^).
 i=l j=l

 Remark 1.3. By the results of Duzaar & Kuwert [4] (Theorem 2), the above theorem
 implies that we also have a decomposition in terms of homotopy classes.

 Of course now one has to ask if there exist sequences of critical points of Ea,
 resp. E?, satisfying (1.8), resp. (1.12). The answer to this question is yes and more
 precisely we have the following.

 Lemma 1.4. Let a > 1 and let T C V(W1,2a(M, N)) be a collection of sets.
 Let 3> : [0, oo[xW1,2a(M, N) -> W1'2a(M,N) be any continuous semi-flow such
 that $(0,-) = id, $(t,-) is a homeomorphism of Wly2a(M,N) for any t > 0 and
 Ea($(t,u)) is nonincreasing in t for any u G W1,2ot(M, N). We assume that
 $(*, F) C F for all t G [0, co) and all F ? J7. We define

 (1.15) j3a? hif sup Ea(u)

 and we assume that /3a < co. Then for almost every a there exists a critical point
 uQ G C??(M,iV) of Ea with Ea(ua) = f3a and such that

 (1.16) liminf(a-l)log(?^-) / log(l + |Vua|2)(l + \S7ua\2)advg = 0. a->l a - 1 JM
 With the obvious modifications the same conclusion remains true for the energy E?.

 Remark 1.5. For examples of subsets T C V(Wli2a(Mi N)) satisfying the hypothe
 ses of the above lemma we refer the reader to [15] (p. 190) or [24] (p. 88).
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 As a corollary of the above theorem and lemma, we obtain a new proof of a result
 of Jost [6] on the energy identity for min-max sequences for the Dirichlet energy.

 Corollary 1.6. Let (M2,#) be a smooth, compact Riemannian surface without
 boundary and let N Rn be a smooth and compact Riemannian manifold without
 boundary. Moreover let A be a compact parameter manifold; for simplicity we
 assume dA = 0, and let ho : M x A -? N be continuous. Let H be the class of all
 maps homotopic to ho and

 (1.17) /3:= inf suPE(/i(^)). h^H teA

 Then there exists a sequence uak G C??(M, N) of critical points of Eak, a harmonic
 map u\ : M ?> N and at most finitely many points xl,..., xl G M such that

 (1.18) Eak(uak) = 0ah = M supEak(h(-,t)),

 (1.19) pak->0 + vo\(M),
 (1.20) uak ux weakly in Wl'2{M, N) and

 (1.21) uak ->?: inCgc(M\{x\...,xl},N).
 Moreover there exist at most finitely many nontrivial smooth harmonic maps ojlyJ :

 S2 ?> N, 1 < i < I, 1 < j < ji, sequences of points xk3 M, xk3 -? x%, and
 sequences of radii rk3 G R+, rk3 ?> 0, such that

 (1.22)

 ma3C{Iil !jt, distK'J' xJk )} v i<i<i KjJ'Kji, j^j',

 (1.23) limsup^')1-"" = 1 V 1 < i < I, 1 < j < ji and k?+oc
 I 3i

 (1.24) lim Eak(uak) = E(Ul) + vol(M) + YY E^'i).

 Remark 1.7. With the obvious modifications the corollary remains true for the
 biharmonic approximation Ee.

 Proof. The proof of this result is quite standard, but we include it here for the sake
 of completeness. It is obvious that for all a > 1 we have

 /3 + vol(M) </3a.

 Let 5 > 0 and choose h e H D C??(M x A, N) such that

 supE(h(-,t)) <0 + 8. teA

 Then for (a ? 1) small enough we have

 supEa(h(-> t))<0 + vol(M) + 5 + c(h)(a - 1)

 < 0 + vol(M) + 28.
 This implies

 lima->i&* =/3 + vol(M).
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 The result now follows from the minimax principle (see [24]), Theorem 1.1 and
 Lemma 1.4.

 In the existing literature there are already some partial results available for the
 energy identity for the Sacks-Uhlenbeck approximation and there are many more
 results available for related problems. In the following we want to mention some of
 these results.

 For the Sacks-Uhlenbeck approximation, Duzaar & Kuwert [4] and Chen & Tian
 [1] proved the energy identity for sequences of minimizers of the energy Ea in a
 given homotopy class. Recently Moore [14] proved the energy identity (he actually
 proved (1.11) with the Dirichlet energy E instead of the full a-energy Ea on the
 left hand side) for min-max sequences of the Sacks-Uhlenbeck approximation under
 the additional assumption that the target manifold has finite fundamental group.
 The additional assumptions made by Chen & Tian and Moore were used to ensure
 that the sequence of minimizers, respectively the min-max sequence, converges to a
 geodesic of finite length on the necks connecting the bubbles and the weak limit (or
 body map) which then implies the energy identity. In our proof we use completely
 different arguments, but we want to mention that it is not directly clear from
 our analysis that the sequence of critical points satisfying the entropy condition
 converges to a geodesic of finite length on the necks.

 In a recent independent work, Li k, Wang [8] proved Theorem 1.1 in the special
 case of sequences of minimizers (in their own homotopy class) of Ea.

 For sequences of harmonic maps and min-max sequences for the Dirichlet energy,
 the energy identity was proved by Jost [6] (see also [16] for an alternative proof of
 the energy identity for sequences of harmonic maps).

 Recently Colding & Minicozzi [2] proved the energy identity for sequences of
 maps with bounded Dirichlet energy which are "almost" conformal and which sat
 isfy a certain replacement property.

 The energy identity for the harmonic map heat flow and Palais-Smale sequences
 for the Dirichlet energy with tension field bounded in L2 was established by Qing
 [17] (in the case N = Sn) and independently by Ding & Tian [3] and Wang [27] in
 the general case. Alternative proofs have been given by Qing & Tian [18] and Lin
 & Wang [10]. See also the paper of Topping [25] for more refined results in this
 case.

 Lin & Wang [11], [12] used a Ginzburg-Landau approximation to regularize the
 Dirichlet energy and proved the energy identity in this situation. The disadvantage
 of the Ginzburg-Landau approximation is that the approximating maps do not have
 to map into the target manifold; only in the limit are they forced to do this.

 For maps from higher-dimensional domains the energy identity for sequences of
 harmonic maps has been proved by Lin &; Riviere [9] for N = Sn. For other related
 problems such as sequences of Yang-Mills fields on a four-dimensional manifold,
 respectively biharmonic maps from a four-dimensional manifold into the sphere,
 the energy identity has been proved by Riviere [19], respectively Wang [28].

 In the following we give a brief outline of the paper.
 In section 2 we prove Theorem 1.1 for the Sacks-Uhlenbeck approximation of

 harmonic maps. We start by recalling the small-energy regularity estimates and
 the blow-up procedure of Sacks & Uhlenbeck [20] in section 2.1. In Proposition 2.3
 we prove the very important estimate for the concentration radius of the bubbles.
 The advantages of having a good estimate for the concentration radius can also
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 be seen in the paper of Topping [25]. In the next two sections we prove a Hopf
 differential type estimate and an estimate for the tangential component of solutions
 of (1.4) on annular regions. These estimates are proved in the same way as the
 corresponding estimates for harmonic maps; see for example [20] and [3]. In section
 2.4 we use the bubbling induction argument of Ding & Tian [3] to reduce the proof
 of the energy identity to the case of one bubble. In this situation we then combine
 the previous estimates with the estimate for the concentration radius to complete
 the proof of the energy identity.

 In section 3 we treat the case of the biharmonic approximation. For this ap
 proximation the estimate for the concentration radius (see (3.7)) has already been
 proved in [7]. In section 3.1 we review the small-energy estimates and the blow-up
 process from [7]. In section 3.2 we use the stress-energy tensor of E? to get a Hopf
 differential type estimate for the biharmonic approximation. The rest of the proof
 of the energy identity then follows as in the case of the Sacks-Uhlenbeck approxi
 mation, and in sections 3.3 and 3.4 we briefly describe the necessary modifications.

 In section 4 we use variational methods to prove Lemma 1.4. We closely follow
 the work of Struwe [23].
 We use the notation Ofc(l), or0(1) and or(1) to denote terms which tend to zero

 as k -? oo, i?o -> 0 and R ?> oo, respectively.

 2. Energy identity for the Sacks-Uhlenbeck approximation
 of harmonic maps

 In this section we prove Theorem 1.1 for the Sacks-Uhlenbeck approximation of
 harmonic maps.

 2.1. Results of Sacks and Uhlenbeck and estimates for the concentration
 radius. We consider sequences of critical points ua g C??(M, N) of the functional
 Ea with uniformly bounded energy Ea(ua) < c and which satisfy the condition
 (1.8). Due to the uniform boundedness of the energy it is easy to see that there
 exists a subsequence ak ?> 1 such that

 (2.1) (ak - 1) / log(l + \Vuak\2)(l + \Vuak\2)akdvg -+ 0 Jm
 and uak ?^ u\ weakly in W1'2. In section 3 of [20], Sacks & Uhlenbeck proved the
 following small energy regularity result for solutions of (1.4).

 Theorem 2.1. There exists Sq > 0 such that if ua (a close to one) is a critical
 point of Ea with fB2R \Vua\2 < Sq (where R > 0), then we have for every m g N,

 (2.2) oscBRua + \\Vmua\\Loo{BR)Rm <c(f |Vua|2)i

 With the help of this theorem, Sacks & Uhlenbeck were able to show that the
 sequence uak converges strongly to a smooth harmonic map u\ : M -> N away
 from finitely many points. These finitely many singular points x% g M, 1 < i < I,
 are characterized by the condition that

 (2.3) limsup^K,,^^)) > e0, k-+oc

 for every R > 0 and every 1 < i < I. Around these finitely many singular points
 they were able to perform a blowup and show that a nontrivial harmonic two
 sphere separates. The blowup can be done as follows: Fix Rq > 0 such that
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 BRo(xi) D BRo(xj) = 0 for every i, j ? {1,... ,Z}, i ^ j. Because of (2.3) there
 exists a sequence of points x\ ? x% and radii r\ ? 0 such that

 (2.4) max E(uak, Br{(y)) = E(uak, Bri{x{)) = yeBRQ(xl) k k 2
 Defining

 4 iB^ -> AT,

 (2.5) 4(x) = uafc(xt + r^),

 we see that v\ solves (1.4) with 1 replaced by (rlk)2 and moreover

 (2.6) max E(vi,B1(y)) = E(vik,B1(0)) = %.

 Therefore we can apply Theorem 2.1 to vlk and get that v\ converges in C1 to a
 smooth harmonic map uj1 from R2 into N. By the point removabilty result of Sacks
 &; Uhlenbeck we can then extend uj% to a smooth harmonic map from S2 to N.

 As a consequence of this blow-up procedure we get the following estimate for the
 concentration radius.

 Lemma 2.2. Using the above notation we have that

 (2.7) 1 < limsup^)1-*" < oo, k?>oo

 for every 1 < i < I.

 Proof Because of (2.4) and Holder's inequality we know that

 ?^ = E(uak,Bri(xi))
 <( / (l + \Vuak\2)a>?)^(riy J M

 2(Qfc-l)
 .- I ' ~I / / \' K /

 IM
 . 2(qfc-l)

 From this the claim follows.

 In the next proposition we use (2.1) to improve the above estimate for the con
 centration radius (see also [23] where this was observed for a similar approximation
 of a different problem).

 Proposition 2.3. We have that

 (2.8) lim (4)1""* = 1, AC?>00

 for every 1 <i <l.

 Proof. We let eo be as above and we assume without loss of generality that 1 = 1.
 Furthermore we let r\ = r&, x\ = Xk and uak = Uk. For every k ? N we define the
 set

 (2.9) Vk = {xe Brk(xk)\\Vuk(x)\ >
 and we claim that there exists a constant c > 0 such that for every A; N we have

 (2.10) |n*| >crl
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 If this is not the case we can find a subsequence fcm such that

 (2-11) |fifcJ<^
 Prom (2.4) and Theorem 2.1 we get

 (2-12) l|V?fcm|U?(Brfc (xfcro))<^. Km

 Prom the definition of Qkrn we see that for every x E BTkm (^A;m)\^fem we have the
 estimate

 (2.13) |Vt*J(*) <

 Using (2.11), (2.12) and (2.13) we get from (2.4),

 |2

 < ce0\nkJ ^2 e0 ~ r? krn 47rr?

 m 4

 7'
 as m ?> oo. This contradiction proves the estimate (2.10).

 Now we use (2.1), Lemma 2.2, the definition of Qk and (2.10) to estimate

 0= limK-1) / log(l + |V^|2)(l + |Vtxfc|2rfc

 > lim (afc - 1) / log(|Viifc|2)|Vtxfc|2Qfc

 >climK-lK--'l?g(i^)
 = c lim (1 - afc)rfe(1-Q't)(21ogrfe - loge0 + log47r) k??oo

 = c lim r?_2Qfclogr^2afc

 > c lim logr2_2afc

 >0,
 and hence the desired convergence result for the concentration radius follows.

 2.2. A Hopf-differential type estimate. In the case of sequences of harmonic
 maps or Palais-Smale sequences for the Dirichlet energy with tension field bounded
 in L2 an important ingredient in the proof of the energy identity was an estimate
 for the Hopf differential (see e.g. [3], [20]). In the next lemma we show that a
 related result is true for solutions of (1.4).
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 Lemma 2.4. Let B C R2 be the unit ball and let ua G C??(B, N) be a solution of
 (1.4). Then we have for every 0 < r < 1 and every a close to one,

 f (i + iv^r^iK),-!2<cf (i + + iv^i2)"-1 JdBr JdBr r

 (2.14) +?^ZI) / (i + |Vu0|2)".
 Proof. We multiply equation (1.4) by x-Vua and integrate over Br to get (remember
 that A(ua)(Vua, Vua) ? Tu<xN for every x G B)

 0 = / div((l + \Vua\2)a-lVua)x Vua

 = - [ (l + \Vua\2r~l\Vua\2+ [ r(l + \Vua\2r~l\(ua)r\2 JBr JdBr

 -l-f (l + iv^pr-^.va + iv^i2). J Br

 Next we integrate by parts and get

 %\ (l + |VUQ|2r-1x-V(l + |Vna|2) = - / (l + \VuQ\2)a 1 JBr JBr

 + [ r(i + |vUa|2r. JdBr Z

 Using the identity

 \Vua\2 = \(ua)r\2 + ^\Me\2
 and combining everything, we end up with

 f r(i + tv^l2)"-1!^).!2 <c [ 1(1 + IVtial2)"-1!^)^2 JdBr JdBrr

 + c(a-l) / (l + |Vti?|2)a

 + c / ra + IVttal2)0"1.

 2.3. Estimate for the tangential component. In this section we show that if
 the Dirichlet energy is small on all annular regions with bounded geometry, then
 the tangential derivative of ua converges to zero on the annular region which is the
 union of all the annuli with bounded geometry. The proof of this fact closely follows
 the previous work of Sacks & Uhlenbeck [20] and Ding & Tian [3]. In the following
 we use for 0 < ai < a2 < 1 the notation A(a\, 02) = {x G R2 | a\ < \x\ < CI2}.

 Lemma 2.5. There exists do > 0 such that for all 6 < So and all solutions ua G

 C??(B,N) of (1.4) with fA{rar) |VuQ|2 < 5 for every r G (#1, we have for
 a ? 1 small enough,

 (2.15) / 4 -\{ua)e\2drd0 < cVd(l + (logflj-*)). J2R1 Jo r
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 Proof. Let S0 < e0 and let y G A(2RU Then we have that ^ (Ry, ^)
 and BmQ/) C Bii^i\B2]^i. From our assumption and Theorem 2.1 we therefore 3

 conclude that

 (2.16) ^l&nV^aKx) <cV5,
 for every z G A(2RU ^). Now we let = 2* + I G N and g > 0, and define
 Ak = A(2kR1)2k+1R1) for all 1 < A; < Z - 1 and we let At = A(2lRu ^). Next we
 note that equation (1.4) can equivalently be written as

 Aua + A(tza)(Vixa, V-Ua) = -2(a - 1) l + |Vua|2
 (2.17) =: /a.

 Now we let h = /i(r) be a piecewise linear function which equals the mean value of
 ua on {^} x S1 and {2kRx} x S1 for all 1 < k < I - 1. With the help of this we
 have

 A(ua -h)+ A(ua)(Vua, Vua) = fa.

 Testing this equation with ua ? h and integrating over Ak we get

 / IV(txa -h)\2= I (ua - h)(A(ua)(Vua, Vua) - fa) JAk JAk

 + 2k+lR1 / (ua - h)(ua - h)r{2k+1Rue)de Jo
 / 27T

 - 2kRx / (ua - h)(ua - h)r(2kRl,9)de. Jo

 We remark that the boundary integrals of (ua ? h)hr vanish since h is equal to
 the mean value of ua on these boundaries and hr is piecewise constant. Because
 of (2.16) and the Sobolev embedding (which we only apply on the annuli AK) we
 know that for every x G AK we have

 2

 (2.18) \ua - h\(x) + kHVSial < ctf*.
 2=1

 This implies that

 / \V(ua-h)\2<cSi [ (\Vua\2 + \fa\) J Ak J Ak

 + 2k+1R1 / (ua - h)(ua)r(2k+lRu6)d6 Jo

 -2kR1 / (ua -h)(ua)r(2kRud)d6. Jo
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 Taking the sum over k we get

 / Mua-h)\2<c6* [ (|Vua|2 + |/a|)
 r r2n /?

 + YJ (ua-h)(ua)r(tf,e)dO
 p2n

 -2Ri / (ua -h)(ua)r(2Rue)de Jo
 <c*i(l + (logi2j-a)),

 where we used (2.18) to estimate

 / |/?|<c(a-l) / |V2t*a|
 < (logR\-a).

 This finishes the proof of the lemma.

 2.4. Proof of the energy identity.

 Proof. Because of the induction argument of Ding & Tian [3] we know that it is
 enough to prove the energy identity in the presence of one bubble. Since we are
 dealing with a local problem we assume from now on that ua : R2 D B\ ?> TV
 and that we have only one energy concentration point x1 = 0. Using the notation
 from section 2.1 we assume that we obtain the bubble by rescaling with the factor
 r\ =rk. Prom the smooth convergence uatc ?> u\ away from 0 we conclude that

 Ea^Ua^B^BRo) -> E(uu Bi\BRq) + vol(?i\B#0),

 for every 0 < Ro < 1. Similarly, from the local C1 -convergence v\ = Vk =
 uak (rk') ?> w, we have for every R > 0,

 Eak(Uak,BRrk) -> E(u).

 Moreover this also implies that for every R > 0 and M > 0,

 (2.19) Eak(uak;BRo\BRz) + Eak(uak; BMrkR\BrkR) 0,

 as k -> oo and Ro ?> 0. Therefore it is easy to see that the proof of the energy
 identity in the case of one bubble is reduced to showing that

 (2.20) lim lim lim Eak(uak, A(Rrk, Ro)) = 0. R-+oc R0->0 fc?>oc

 Next we claim that due to the fact that we have only one bubble we can assume
 that for any S > 0 there exists ko > 0 such that for all k > ko we have

 (2.21) E(uak,B2r\Br) <8,

 for every Rrk < r < To see this we argue by contradiction. If the claim is

 false, we may assume that as k -> oo there exists Sk (Rrk, ^) such that

 E(uak;B2sk\BSk) = max E(uak;B2r\Br)
 r (Rrk,Q)

 >s.
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 Prom (2.19) we get that

 Rq ?> oo and
 Sk

 (2.22) ^ -+ 0. Sk

 By defining

 vk : JSRaXBr^R -> JV

 vfe(x) = uak(skx)

 we have that solves (1.4) with 1 replaced by (sk)2 and

 (2.23) / ((8k)2 + \Wk\2)ak <c4(afc-1},

 (2.24) e{vk;B2\B1)>6.

 By (2.23), (2.22), Proposition 2.3 and the arguments of section 2.1 we may assume

 that vk % weakly in W^*'c2(R2\{0}, N), where vq : R2 -? N is a harmonic map
 with finite Dirichlet energy.

 We have two possibilities. The first one is that there exists r > 0 such that

 SUp SUp e(vk\Bf{x)) < ?q.
 4

 With the help of Theorem 2.1 and a covering argument, this implies that vk ?> vo in
 c??(B2\B1, N). Since R2\{0} is conformally equivalent to S2\{AT, S} we conclude
 from (2.24) and the point removability result of Sacks & Uhlenbeck [20], that vq
 can be lifted to a smooth nontrivial harmonic map from S2 to JV, contradicting the
 assumption that we have only one bubble oj.

 The second possibility is that we have at least one energy-concentration point
 y e B^\Bx. Now we can apply the blow-up procedure of section 2.1 to conclude
 that there must exist a nontrivial harmonic two-sphere, again contradicting the
 assumption that there is only one bubble. This proves (2.21) and hence we can
 combine Theorem 2.1, Proposition 2.3, Lemma 2.4 and Lemma 2.5 (with R\ = Rrk
 and J?2 = Rq) to estimate

 I B (1 + |Vu0J2)? < c / \Vuak\2 + ORo(l)
 / ^ /-27T 1

 c / (r|KJr|2 + -\{uak)e\2)drdd + oRo(l) J2Rrk JO r

 r2* i
 / / -\(uak)e\2drdO + oRo(l) J2Rrk JO r

 Rq

 + c(afe-l)/4 -([ |VuaJ2afcdx)dr J2Rrk r JBr

 >2Rrk JO

 < c

 '2Rrk

 < ofc(l) + oRo (1) + cV6 + c(l - ak) log{Rrk)

 <ok(l) + oRo(l) + cy/6,
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 which, combined with (2.19), proves (2.20) (since S > 0 was arbitrary) and therefore
 the main theorem in the case of one bubble.

 Remark 2.6. By a careful inspection of the above proof it is easy to see that the
 energy identity remains true for general sequences of critical points of Ea if and
 only if

 lim (r^)1-** = 1,

 for all 1 < i < I and all 1 < j < ji. This fact has also been observed by Li & Wang
 [8].

 3. Energy identity for the biharmonic approximation
 of harmonic maps

 In this section we prove Theorem 1.1 for the biharmonic approximation of har
 monic maps.

 3.1. Estimates and blowup. In the following we consider sequences of critical
 points u? e C??(M, N) (e 0) of the functional E? with uniformly bounded energy
 E?(u?) < c and which satisfy (1.12). First of all we choose a subsequence ek -> 0
 such that

 (3-1) ek\og(?) f |Auejk|a = ofc(l).
 Due to the uniform bound on the W1,2-norm of u?k we get the existence of a further
 subsequence (still denoted by ek) such that u?k ?^ uq weakly in W1,2(M1 N). In
 [7] we were able to show the following small energy estimate (see Corollary 2.10 in
 [7])

 Theorem 3.1. There exists 50 > 0 and c > 0 such that if u? C??(M,N) is a
 solution of (1.6) with Jb2r(\^u\2 + ?|Au|2) < ^o, then we have for e small enough
 and every m N,

 (3.2) oscBRu? + Rm\\Vmu?\\Loo{BR) <c(f (\Vu\2 + e\Au\2))1*. Jb2r
 Hence, as in section 2.1, the sequence u? converges strongly to uo away from

 finitely many singular points x% M, 1 < i < I, which are characterized by the
 condition

 (3.3) lim sup E?k (u?k ,?#(?*)) > 50, k-*oc

 for every R > 0 and every 1 < i < I. Around these finitely many singular points
 we were able to perform a blowup similar to the one of section 2.1 (see section 3 of
 [7]). Namely, for R0 > 0 such that Br^x1) n BRo(x3) = 0 for every 1 < i ^ j < /,
 there exists a sequence of points x\ ?> x% and a sequence of radii rlk -? 0 such that

 (3.4) max E?k(u?k, Br{(y)) = E?k(u?k, Br{(4)) - ^.
 Defining

 w\ iBr^ -> JV,

 (3.5) 4(x)=wefc(4+4x),
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 we see that w\ solves (1.6) with eK replaced by eK = and

 (3.6) max ESk(wl B^y)) = Eih{w\,BM) =

 Hence we can apply Theorem 3.1 to w\ and conclude that w\ converges smoothly
 to some map uj1 ? C?? fl VT1,2(R2, N). Then we were able to show (Lemma 3.1 in
 [7]) that for every 1 < i < Z,

 and therefore ul is a harmonic map with finite Dirichlet energy and can therefore
 be lifted to a smooth harmonic map from S2 to N.

 3.2. Stress-energy tensor. For a smooth map u we have the well-known stress
 energy tensor S^(u) given by

 (3.8) Slpiu) = \\Vu\26a(} - (VoU, V/jtt).
 An easy calculation shows that if it is a harmonic map, then we have

 (3.9) daSlp(u) = -<Ati, Vpu) = 0.

 Again for a smooth map u we have the stress-energy tensor S2p(v) defined by (see
 [5] and [13])

 (3.10) Slp{u) = ^\Au\26a^ + (V7u, V7Au)5a/3 - (Vau, VpAu) - (Vpu,VaAu).
 By another easy calculation we see that if u is an extrinsic biharmonic map (i.e. a
 solution of A2u _L TUN), then we have

 (3.11) daSlp(u) = -<V^, A2u) = 0.
 Combining (3.9) and (3.11) we see that

 (3.12) da{Si0{uE) - eSlp{ue)) = (V0ue, (eA2 - A)ue) = 0
 if u? is a solution of (1.6). As in the case of harmonic maps (see [20]) we use
 this divergence-free quantity to get a Hopf-differential type estimate for solutions
 of (1.6).

 Lemma 3.2. Let uE G C??(B,N) be a solution of (1.6). Then we have for all
 0 < r < 1,

 (3.13)

 / \(u?)r\2 <\ [ \(u?)e\2 + - I \Au?\2 + ce [ (\Au?\2 + |Vix?||V3ii?|). JdBr rz JdBr r JBr JdBr

 Proof Multiplying (3.12) by x& and integrating by parts we get for every 0 < r < 1,

 / (S^(ue) - eSlp{ue))&ap = / (Si0(u?) - sS2a0(u?))x^a,
 where v is the outer unit normal to dBr. Now we calculate

 {S^(u?) - eSZf,{ue))5ap = -e\AUi
 2

 'el
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 and

 (S^(u?) - eSle{u?))x?v? = -\Vu?\2 - r\(u?)r\2

 - re(^\Au?\2 + (Vu?,VAu?) - 2((u?)r, (Au?)r))
 = l\(ue)e\2-^\(u?)r\2

 - re(^\Au?\2 + (Vu?y VAu?) - 2((u?)r, (Au?)r)),
 where we used the identity \Vu\2 = \ur\2 + ^\ue\2. This finishes the proof of the
 lemma.

 3.3. Estimate for the tangential component. In this subsection we prove an
 estimate for the biharmonic approximation similar to the one given in section 2.3
 for the Sacks-Uhlenbeck approximation.

 Lemma 3.3. There exists Si > 0 such that for all S < Si and all solutions u? of

 (1.6) with JA^r2r^(\Vu?\2+e\Au?\2) < S for every r G (i?i, we have for e small
 enough,

 r2n i e
 (3.14) / / \(U?)e\2drde<cVS(l + -^). J2R1 JO r \K1)
 Proof The proof follows directly from that of Lemma 2.5. Namely instead of using
 Theorem 2.1 we use Theorem 3.1 to conclude that

 4

 (3.15) SM'lVSiel <cVS
 i=l

 for every x G A(2Ri, ^-). Moreover we note that equation (1.6) can equivalently
 be written as

 Au? + A{u?)(Vu?, Vu?) = eA2u? + f[u?)
 (3.16) = fe.

 Using this form of the equation it is easy to see that the proof of Lemma 2.5 carries
 over to this situation once we notice that because of (1.7) and (3.15) we have

 VS [ |/?| < cVSe [ (|VV| + |Vtie||VV| + |VV|2 + |Vu?|4) JA(2RU^) JA(2R1,^)

 3.4. Proof of the energy identity.

 Proof Following the remarks of section 2.4 (using the results of section 3.1) we can
 assume that we have only one energy concentration point x1 = 0 G Bi CE2 and
 one bubble uj1 which is obtained by rescaling u?k by the factor r\ = r^. Again the
 proof of the energy identity is reduced to showing that

 (3.17) lim limn lim E?k(u?k, BRo\BRrk) = 0. /???oc Ro?>0 /c?>oo
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 Using similar arguments as in section 2.4 we can moreover assume that for any
 S > 0 there exists fco > 0 such that for all k > k0 we have

 (3.18) E?k(u?k,B2r\Br)<6,

 for every Rrk < r < Hence we can apply (3.15) with i?i = Rrk and R2 = Rq
 to get

 ek f \Au?k\2 <c6ek [ ^ JA(2Rrk^) JA{2Rrk^) \x\
 <cS Sk R2r2

 (3.19) =ofc(l),

 where we used (3.7) in the last line. Combining (3.1), Lemma 3.2, Lemma 3.3,
 (3.18), (3.19) and (3.7) we get

 Eek (u?k,A(2Rrk^))< [4 /^r|(tieJr|2 + i|(iieJ,|Vd9 + ofc(l) 4 JRrk J0 T

 <cf4f hu?k)e\2drd6 + cek f \\ ( \Au?k\2)dr jRrk Jo r JRrk r JBr !Rrk JO 1 JRrk

 + cek /4 / (\Au?k\2 + \Vu?k\\V\ek\) + ok(l) JRrk JdBr

 <
 c?k iog(^) L1A^ |2++?k{1)+c^

 <c6felog(?) / \Auek\2 + Ok(l) + ?k Jm
 (3.20) <ok(i) + cy/6,

 which proves (3.17).

 4. Proof of Lemma 1.4

 We closely follow the work of Struwe [23] (see also [21], [22] and [24]),

 Proof. Since the methods are very similar for both approximations we only prove
 the lemma for Ea

 First of all we note that the minimax principle (see for example [24], Theorem
 4.2) guarantees the existence of a critical point ua of Ea with Ea(ua) = /3a. The
 difficult part now consists of showing that we can also find a sequence of critical
 points satisfying (1.8).

 We note that it is easy to see that the function

 & -> /3a = inf sup?TQ(u)

 is nondecreasing and hence differentiable almost everywhere with differential 0 <

 ^ eLx([l, ai]) for ai > 1. Therefore it follows that

 (4.1) 2B==liminf(a-l)logC-^)^2L=0. a ? 1 da
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 To see this we assume that B > 0 and we get for (A ? 1) very small,

 iAW?A ^ o fA da

 which contradicts the fact that ^ ? ^([l, ai)). Next we let a > 1 be a point of
 differentiabilty of /3a and we choose a sequence ak ?> a (ctk+i < &k)- For every
 k ? N we choose Fk ? T such that

 sup Eak (u) < /3ak + (ak - a).
 ueFk

 Since fia is differentiable in a we get that for sufficiently large k we have

 0?k < Pa + + 1)(?* - ?)
 Combining the above two estimates we get

 pa < sup Ea{u) < sup Eak(u) < pak + (ak - a) < /3a + (~ -f 2) (a* - a).

 Next we choose v ? Fk such that

 ~ [oik-ot) < EQ(v).

 Combining all this gives the existence of a map v such that

 Pa - (a* - ot) < Ea(v) < Eak(v) < sup E*k(u} < f}ak + ak - a ueFk

 (4.2) </3a + (^+2)(a,-a).
 Now we prove three intermediate steps.

 Step 1. For every v ? W1,2ak(M,N) which satisfies (4.2) we have the estimate

 (4.3) daEa(v)<^+3.'
 From (4.2) we get

 Eak(v)-Ea(v) ,d/3? -^ _-1_ ^
 ak ? ot da

 and hence by the mean value theorem there exists a number a < a' < ak such that

 (4.4) daEaiv)<^+3.
 Since moreover

 daEQ(u) = / log(l + |Vu|2)(l + \Vu\2)<* Jm

 < [ log(l + |Vti|2)(l + tVu|2)a' Jm
 = daEa<(u)

 for every u ? Wli2ak(MyN) we finish the proof of Step 1.
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 Step 2. We have

 (4.5) sup{|(d?7afc(ix),i;) - (dEa(u),v)\ \ \\v\\wi,2ak{u*TN) < 1} -> 0,
 where

 W1'2ak(u*TN) = {ve Wh2ak(M,Rm)\v(x) eTu{x)N V x G M},

 uniformly for all u G ^'^(M,^) satisfying (4.2).
 To see this we note that for every v G W1,2oik (u*TN) with \ \v||vr1'2afc(u*TiV) < 1

 we have

 \(dEak(u),v) - (dEQ(u),v)\

 < [ (2afc(l + |Vii|2)afc-1-2a(l + |Vii|2)a-1)|Vix||Vi;| JM
 =: I.

 Now we estimate

 I<2{ak-a)([ (l + IVtil2)0*)2^1^/ |Vu|2afc)^(/ |Vu|2<*fc)^ 7m 7m 7m

 + 2a / ((I + IVuI^^-U + IVuI^-^IVuIIVvI JM

 < c(ak - a) + 2a / ((1 + iVixp)^"1 - (1 + |Vn|2)?x)|Vtx||V^|. 7m
 Next we use the estimate 2|Vu||Vv| < |(1 + |Vtx|2) + 5|Vf |2, (4.2) and Young's
 inequality to get

 2a [ ((1 + IVixI2)0*-1 - (1 + |VtA|2)ae-1)|Vtx||Vt7| 7m

 < %(Eak(u)-Ea(u)) + a8 I (1 + IVul2)^"1^!;!2 d JM

 < cK-a) +Sa{at-1 E {u) + l_ f pv\*?). o ak ak JM
 Choosing 8 = y/ak ? a we conclude that

 I < cy/ak ? a ?>> 0

 and this proves (4.5).

 Step 3. There exists a sequence uk G W1,2afc(M, N) satisfying (4.2) and

 (4.6) \\dEak(uk)\\{wi,2ak(MN)y -> 0.
 If this is not the case we can find 8 > 0 such that

 \\dEak(u)\\(Wi,2ak(MN)y >A8

 for all u satisfying (4.2) and all k large enough. For these k we let ek : W1,2ak (M, JV)
 ?> W1'2ak(u*TN) be a locally Lipschitz continuous pseudo-gradient vector field for
 Eak with \\ek(u)\\wi,2ak(u*TN) < 1 and

 (dEak(u),ek(u)) < -^||dSafc(u)||(wi,2?fc(MjiV))* < -25,
 for all u satisfying (4.2).
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 Let ip G C??(R) be a cutoff function such that 0 < ip < 1, ip(s) = 0 for s < 0,
 i/>(s) = 1 for s > 1 and for k large enough we let

 <Ea(u) - (/3a - (ak -a))\
 %pk(u) = ip(J  otk ? a /

 Since ek is Lipschitz continuous the vector field

 h(u) = $k(u)ek(u)
 then also defines a Lipschitz continuous tangent vector field. Finally we let </>k :
 Rj x W^2ock(M,N) -> W^2ak(M,N) be the flow generated be ek:

 ^(f>k(t, u) = ek(<t>k(t, u)), t > 0,
 (4.7) <t>k(0,u) = u.

 Let Fk G T be chosen as above and define for v ? Fk, vt = <t>k(t. Then we know
 from the assumptions of the lemma that vt G Fk for all t G Rj and that

 SUp Eak(vt) < SUp ?afc(f) < Pak + (?* ~ v Fk v?Fk
 for alH > 0. Hence

 (4.8) M(t) = sup ?a(t/t) > ?Q

 is attained only at points v$ for which (vo)t satisfies (4.2). By noting that this
 implies ipk((vo)t) = 1 we calculate

 ?tEa((V0)t) = {dEa((v0)t)> Jt(vo)t)
 = ipk((vo)t)(dEa((v0)t), ek((v0)t))

 < (dEak((vo)t),ek((v0)t)) + \(dEa((vo)t) - dEak((vo)t),ek((v0)t))\
 <-25 + o*(l),

 where we used (4.5) in the last step. This shows that for k large enough we get

 (4.9) < < 0  at

 and hence M(?) < pa for large contradicting the definition of Pa- Altogether this
 finishes the proof of Step 3.
 To finish the proof of the lemma we consider a sequence uk G W1,2ak(M} N)

 satisfying (4.2) and (4.6). We know that ||^fc||vy1'2Qfc(M,iV) ^ c and therefore we
 may assume that uk ua weakly in Wli2a(M, N) and strongly in L2aDC?^(M, N)
 for some 0 < P < 1. Since C??(M,N) is dense in Wli2a(M,N) we can moreover
 find a sequence vr G C??(M,N) such that ul -> ua strongly in W1,2a(M, N).
 Next we define the functional FQ : W1,2a(M, Rm) R by

 (4.10) Fa(u)= f (l + |Vu|2)". JM

 Clearly we have that

 Ea(u) = Fa(u)
 for all u G W1'2a(M, N)> For v G W1,2a(M, N) we define the projection

 Pv : W1,2a(M,Rm) -> W^^TiV).
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 Following the proof of Lemma 3.26 in [26] we get that

 11(id - PUk)(Uk ~ ^)||wl'2ofc(Af,R"*) ?>
 as k, I ?> oo. Hence we get from (4.6) as in Lemma 3.7 of [26] that

 (4.11) |<dFttfc(ixjb), tifc - tx1)! -> D,

 as fc, I -> oo. By convexity we know that for every fc, I G N we have

 / (1 + IVtifr* > [ (l+1Vtifc|2)afc+afc /(l + IVufcH^VufeV^-tifc) Jm Jm Jm

 + afc / |V(nfcTul)|2.

 For any fixed Z G N we use this together with (4.11) to get

 Ofe(l) = (dFak(uk),uk - uz)

 > ((1 + \Vuk\2r* - (1 + IVtifr* + afe|V(ufc - t*')|2)

 > / ((l + |Viifc|2r-(l + |Vixz|2r + a|V(txfc~iiZ)|2) 7m v 7
 - c(||V^||Loo(M?Rm))(Q:fc - a).

 By letting first k -? oo and then I ? oo we conclude that Vix^ -> Vna pointwise
 a.e. and that Ea(uk) ?> Ea(ua). Hence we finally get that uk ^a strongly
 in Wl>2a(M,N). By (4.2) we have Eak(uk) -> ?a(ua) = /3a and by Steps 2
 and 3 we conclude that ua is a critical point of Ea. Since the function s ??
 log(l + 52)(1 + 52)a is convex we know that daEa is lower semi-continuous on

 W1'2a(M) N) and therefore we can use Step 1 to get

 daEa(ua) < liminf daEa(uk) < ^j^- + 3. A;?>oo aa

 Combining all this with (4.1) we finish the proof of the lemma.
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