
ar
X

iv
:0

80
3.

18
27

v1
  [

he
p-

th
] 

 1
2 

M
ar

 2
00

8

The Supermembrane with Central

Charges on a G2 Manifold

A. Belhaj1, M.P. Garcia del Moral2, A. Restuccia3,4, A. Segui1, J.P. Veiro5∗

1 Departamento de F́ısica Teórica, Universidad de Zaragoza
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Abstract

We construct the 11D supermembrane with topological central
charges induced through an irreducible winding on a G2 manifold
realized from the T 7/Z3

2
orbifold construction. The hamiltonian H of

the theory on a T 7 target has a discrete spectrum. Within the discrete
symmetries of H associated to large diffeomorphisms, the Z2×Z2×Z2

group of automorphisms of the quaternionic subspaces preserving the
octonionic structure is relevant. By performing the corresponding
identification on the target space, the supermembrane may be formu-
lated on a G2 manifold, preserving the discretness of the spectrum.
The corresponding 4D low energy effective field theory has N = 1
supersymmetry.
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sions, G2 manifolds.
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1 Introduction

Compactifications of the low energy limit of M-theory to four dimensions
(4D) have received much attention during the past years. Special inter-
est has been given to the compactification over real manifolds of dimension
seven, X7, with non trivial holonomy. This interest is due to the fact that
these manifolds provide a potential point of contact with low energy semi-
realistic physics from M-theory [1, 2]. In particular, one can obtain 4D
N = 1 supersymmetry by compactifying M-theory on X7 with G2 holonomy
group [3, 4, 5]. In this regard, the 4D N = 1 resulting models depend on
geometric properties of X7. For instance, if X7 is smooth, the low energy the-
ory contains, in addition to N = 1 supergravity, only abelian gauge groups
and neutral chiral multiplets. However, non abelian gauge symmetries with
charged chiral fermions can be obtained by considering limits where X7 de-
velops singularities [7, 8, 9, 10, 6]. For a review see for example [11].

Besides the ordinary compactification on G2 manifolds, Calabi-Yau flux
compactifications and twisted toroidal compactifications have been also stud-
ied intensively, see for example, [12]- [21]. Indeed their respectively phe-
nomenological predictions with different signatures on the LHC have also
been considered, see [22, 23] for G2 compactifications, and [24] for large
volume approach in Calabi-Yau compactifications. They have also been con-
sidered as particular cases of non-geometric compactifications. Most of these
approaches follow a bottom-up pattern by studying the N = 1 gauged super-
gravity potentials in 4D and trying to perform the uplift to M-theory. Other
compactifications from 11D supergravity with fluxes have also been done in
a top-down approach [20, 21].

Recently new types of compactifications have appeared involving twisted
boundary conditions or non-trivial fiber bundles over some compact mani-
folds (with or without singularities), T- foldings [25]. In this way, the metric
and the gauge field forms get generically entangled. This kind of compact-
ifications is called non-geometric [26, 27]. Some of these non-geometric
compactifications are related with the ordinary ones by dualities. The non-
triviality of the fiber bundle guarantees the existence of a monodromy, but
usually due to the lack of 1-cycles inside a Calabi-Yau makes it necessary to
include singularities. A simple example of these T-foldings is the twisted tori.
It is a Scherk-Schwarz compactification of the 11D supergravity theory with
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twisted boundary conditions that allows to have a nontrivial monodromy, see
for example in connection with G2 compactifications [28]. When the base
space is a torus it is no longer necessary to include singularities in order to
have a nontrivial monodromy [26, 27]. These twisted compactifications can
have a geometrical dual which corresponds to an orbifold plus a shift, also
known as asymmetric orbifold [29].

The compactification with a duality twist is more general than the orbifold
compactification because it can be carried without restricting the moduli to
special variations. The moduli can have nontrivial variation along the circle
in the spacetime. However, the orbifold is possible for special values of the
moduli where the lattice admits a symmetry and the class of allowed rotations
is finite. All of the lattices admit a Z2 symmetry as the discrete subgroup of
the SL(2, Z) of the torus, and for those cases the geometrical dual exists [30].

The 11D supermembrane is one of the basic elements of M-theory [31, 32].
Classically, it is unstable due to the existence of string-like spikes that leave
the energy unchanged. At the quantum level, its supersymmetric spectrum
is continuous and the theory was interpreted as a second quantized theory
[33, 34]. Compactification on S1 has been explored in order to see if the
continuity of the spectrum is broken by the winding. It has been argued not
to be the case [35] due to the presence of string-like spikes in the spectrum.
In [36, 37, 38, 39, 40, 42] the minimally immersed supermembrane compacti-
fied on a torus associated to the existence of irreducible winding (MIM2) has
been found. It is associated to nontrivial fiber bundles defined on Riemann
surfaces. This MIM2 is classically stable since there are no singular config-
urations with zero energy. The quantum spectrum of the theory is purely
discrete with finite multiplicity [38, 39, 40, 43, 41]. The theory of the super-
membrane minimally immersed in a 7 torus has recently been found in [45].
It has a N = 1 supersymmetry in 4D. A natural question is to look for
a connection with a compactification of the supermembrane in a nontrivial
background of type of G2 manifold. In this paper we will be concerned with
a full-flegged sector of M-theory which is the quantum supermembrane the-
ory minimally immersed MIM2 on a T 6×S1. This type of compactifications
contains nontrivial discrete twists on the fibers as remanent discrete sym-
metries of the hamiltonian. We will show by identifying those symmetries
on the target that the MIM2 can admit a compactification on a G2 manifold.
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The paper is structured as follows: In Section 2 we introduce the super-
membrane with central charges minimally immersed (M2MI) on a T 6 × S1.
We summarize its main spectral properties and symmetries. In Section 3 we
recall the main properties of the compactification on G2 manifolds. In Sec-
tion 4 we construct the MIM2 on a T 7

Z3

2

, by studying the minimal immersions

of the MIM2 on that target, finding the configuration space of states: the
untwisted and twisted sectors of the theory. We also study its connections
with Calabi-Yau compactifications. In Section 5 we present our discussions
and final conclusions.

2 M2 with central charges associated to an

irreducible winding

We start this section by recalling that the hamiltonian of the D = 11 super-
membrane [31] in the light cone gauge (LCG) reads as

∫

Σ

√
W

(
1

2

(
PM√
W

)2

+
1

4
{XM , XN}2 + Fermionic terms

)
. (1)

M runs for M = 1, . . . , 9 corresponding to the transverse coordinates of the
base manifold R × Σ. Σ is a Riemann surface of genus g. The term PM√

W
is

the canonical momentum density and {XM , XN} is given by

{XM , XN} =
ǫab

√
W (σ)

∂aX
M∂bX

N , (2)

where a, b = 1, 2 and σa are local coordinates over Σ. W (σ) is a scalar density
introduced in the LCG fixing procedure. The former hamiltonian is subject
to the two following constraints

φ1 := d(
PM√
W

dXM) = 0 (3)

φ2 :=

∮

Cs

PM√
W

dXM = 0, (4)

where Cs, s = 1, . . . , 2g is a basis of 1-dimensional cycles on Σ. φ1 and φ2 are
generators of area preserving diffeomorphisms. When the target manifold is
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simply connected, the one-forms dXM are exact.

The SU(N) regularized model obtained from (1) was shown to have con-
tinuous spectrum from [0,∞), [33, 34, 32]. This property of the theory relies
on two basic facts: supersymmetry and the presence of classical singular
configurations. The latter is related to string-like spikes which appear with
zero cost energy. These spikes do not preserve neither the topology of the
world-volume nor the number of particles. These properties do not disappear
when the theory is compactified and the spectrum remains continuous [35].

To get a 4 dimensional model, we need a target space as M4 × T 6 × S1.
In this way, the configuration maps satisfy the following condition on T 6

∮

cs

dXr = 2πSr
sR

r r, s = 1, . . . , 6. (5)

On the circle, we have the constraint
∮

cs

dX7 = 2πLsR7 (6)

while for non compact directions, we have
∮

cs

dXm = 0 m = 8, 9. (7)

Sr
s , Ls ∈ Z and Rr, R7 represent respectively the radii of the 6-torus and the

radius of the circle. We shall now impose a topological irreducible wrapping
condition to be satisfied by all configurations in the above model. This
generates a non-trivial central charge in the 11D supersymmetric algebra.
The topological condition is

Irs ≡
∫

Σ

dXr ∧ dXs = n(2πRrRs)ωrs (8)

where ωrs is a symplectic matrix on the T 6 which can be taken as

ωrs =




0 1
−1 0

0 1
−1 0

0 1
−1 0




.

(9)
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Each block M =

(
0 1
−1 0

)
defines a sympletic geometry on a T 2. It also

describes the intersection matrix of the homology basis. If we denote by a
and b the two elements of the basis of T 2, Mab is defined by the following
intersection numbers: a.b = −b.a = 1 and a.a = b.b = 0. For simplicity on
our analysis we will take n = 1, the general case only involve some technical
additional details.

The above topological condition leads to a D = 11 supermembrane with
non-trivial central charges generated by its wrapping on the compact part of
the target space. Since the topological constraint commutes with the rest of
the constraints, it represents a sector of the full theory characterized by an
integer n = detωrs, see [38] for a more general discussion. Under such corre-
spondence there exists a minimal holomorphic immersion from the base to the
target manifold. The image of Σ under that map is a calibrated submanifold
of T 6. The spectrum of the theory changes dramatically since it has a pure
discrete spectrum at the classical and the quantum level [38, 39, 40, 41, 43];
see also [45, 42] 1.

The model that we study here involves additional symmetries beyond the
original ones [41] which will be crucial in our coming discussion. In the fol-
lowing the minimally immersed M2 associated to this sector of the theory
will be denoted by MIM2 to distinguish it from the usual one.

We notice that the condition in (8) only restricts the values of Sr
s . From

equation (5) we can see that these values should be integral numbers. The
condition in (8) can be solved by

dXr = M r
s dX̂s + dAr (10)

where we have decomposed the closed one-forms dXr into their harmonic plus
exact parts. Note that dX̂s, s = 1, . . . , 2g is a basis for harmonic one-forms
over Σ. They may be normalized with respect to the associated canonical
basis of homology,

∮

cs

dX̂r = δr
s . (11)

1The geometrical interpretation of this condition has been discussed in previous
work [36],[37]
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We have now considered a Riemann surface with a class of an equivalent
canonical basis. The condition in (5) leads to

M r
s = 2πRrSr

s . (12)

Imposing the condition in (8), we get

Sr
t ω

tuSs
u = ωrs, (13)

which says that S ∈ Sp(2g, Z). This is the most general map satisfying (8).

A sufficient condition in order to have a consistent global construction of
the theory, subject to the topological constraint, is to have a surface Σ of
genus g such that the space of holomorphic one-forms is of the same complex
dimension as the flat torus in the target space. This condition ensures the
existence of a holomorphic immersion, and so minimal, from Σ to T 2g [42].
In [45] we analyzed the theory for genus 3 and the breaking of the SUSY
by the ground state (the holomorphic immersion) for genus 1, 2, 3. It was
also emphasized there that in order to consider the MIM2 from Σ to a given
target space one should consider all possible immersions, in particular all
holomorphic immersions. This consideration will become important in the
following sections when we analyse a T 7

Z3

2

target space.

The theory is invariant not only under the diffeomorphisms generated
by φ1 and φ2 but also under the diffeomorphisms, which are biholomorphic
maps, changing the canonical basis of homology by a modular transformation.

We may always consider a canonical basis such that

dXr = 2πRrdX̂r + dAr. (14)

In this manner, the corresponding degrees of freedom are described exactly by
the single-valued fields Ar. By using the condition in (6), we perform a similar
decomposition with the remaining 1-form associated to the compactification
on S1

dX7 = 2πRLsdX̂s + dφ̂ (15)

where dφ̂ is a new exact 1-form and dX̂s are the basis of harmonic forms as
before. The final expression of the hamiltonian of the MIM2 wrapped in an
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irreducible way on T 6 × S1 [45] is

Hd =

∫ √
wdσ1 ∧ dσ2[

1

2
(

Pm√
W

)2 +
1

2
(

Πr

√
W

)2 +
1

4
{Xm, Xn}2 +

1

2
(DrX

m)2

+
1

4
(Frs)

2 +
1

2
(Fab

ǫab

√
W

)2 +
1

8
(

Πc

√
W

∂cX
m)2 +

1

8
[Πc∂c(X̂r + Ar)]

2]

+ Λ({ Pm√
W

, Xm} − DrΠ
r − 1

2
Πc∂c(Fab

ǫab

√
W

)) + λ∂cΠ
c]

where DrX
m = DrX

m + {Ar, X
m}, Frs = DrAs − DsAr + {Ar, As}, Dr =

2πRr ǫab
√

W
∂aX̂

r∂b. Pm and Πr are the conjugate momenta to Xm and Ar

respectively. Dr and Frs are the covariant derivative and curvature of a
symplectic noncommutative theory [37, 39], constructed from the symplectic

structure ǫab
√

W
introduced by the central charge. The physical degrees of the

theory are then described by Xm, Ar, and the corresponding spinorial ones
Ψα. They are single valued fields on Σ.

At this level, one might naturally ask the following question. Does there
exist a MIM2 compactified on a seven dimensional manifold with G2 holon-
omy group? In what follows we address this question using a recent result
from algebraic geometry of toroidal compactification in the presence of dis-
crete symmetries.

3 G2 compactification in M-theory

As we mentioned in the introduction, a possible way to get four dimensional
models with four supercharges is to consider the compactification of M-theory
on seven dimensional manifolds with G2 holonomy group2 [6, 47, 48, 49]. We
will refer to them as G2 manifolds. In this manner, different N = 1 models
in four dimensions depend on the geometric realization of the G2 manifold.
As for the Calabi-Yau case, there are many geometric realizations. In what
follows we quote some of them [50].

2G2 is a group of dimension 14 and rank 2.
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3.1 G2 manifolds

Let us consider R7 parametrized by (x1, x2, ...., x7). On this space, one can
define the metric as g = dx2

1
+ .... + dx2

7
. Reducing the group SO(7) to G2,

there is a special real three-form

Ψ = dx127 + dx135 − dx146 − dx236 − dx245 + dx347 + dx567 (16)

where dxijk denotes the exterior form dxi ∧ dxj ∧ dxk. This expression for Ψ
arises from the fact that G2 is the group of automorphisms for the octonionic
algebra structure given by

titj = −δij + fkijtk (17)

which yields the correspondence

fkij → dxkij. (18)

In general if a seven Riemanian metric admits a covariant constant spinor the
holonomy group is G2 and there is exactly one. In such manifolds there exists
an orthogonal frame, êi, in which the octonionic three form φ = fijkê

i∧êj∧êk

and its dual are closed. φ is G2 invariant. It turns out that the simplest
example of G2 manifolds, which we are interested in here, is the orbifold
realization. Let us consider a 7-tori T 7 = R7/Z7, where now x parameterizes
R/Z. A G2 manifold can be constructed from an orbifold action T 7/Γ where
Γ a discrete subgroup of G2, and hence leaving the above three-form Ψ
invariant. A possible choice is given by

Γ = Z2 × Z2 × Z2 (19)

to be defined in the next section.

3.2 Z2 × Z2 × Z2 symmetries of the G2 structure

The Z2 symmetries leaving invariant the 3-form (16), which we will consider,
change signs on certain elements of the basis for the octonions. A change
of sign for one element of the basis condemns the same for other elements.
These combinations are given by the multiplication table. For convenience in
further identifications we have chosen the multiplication table represented in
Figure 1, where the ei are the elements from the basis of the octonions. The
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result for the multiplication of two elements in the basis is the only other
element that shares the line passing through the first two, and the sign is
given by the arrows. For example, e6e7 = e5 while e5e2 = −e4.

Figure 1: Fano plane representing the multiplication table for the octonions used

throughout this paper.

A very quick way to determine such subsets of elements is by considering the
canonical quaternionic subspaces of the octonions.

Figure 2: quaternionic diagram.

Changing signs for the elements in these subsets or their complements each
preserve the octonionic structure. The former maps Ψ → −Ψ while the
latter leaves Ψ completely unchanged. According to the multiplication table
we have chosen, the indexes of the elements from the basis corresponding to
these sets are given as follows:
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Ψ→ −Ψ 1,2,7 1,3,5 1,4,6 2,3,6 2,4,5 3,4,7 5,6,7
Ψ→ Ψ 3,4,5,6 2,4,6,7 2,3,5,7 1,4,5,7 1,3,6,7 1,2,5,6 1,2,3,4

Table 1.

These seven transformations obtained by changing signs for the elements on
the second file, together with the identity, form a commutative group with
eight elements of order two. This group is Z2 × Z2 × Z2

∼= Z3

2
. There

is a nice geometric interpretation for the operation in this group. Given
two transformations, they correspond to two quaternionic subspaces of the
multiplication table for the octonions and share only one element -see the first
row in the previous table. The composition of these transformations is the
one related to the only other quaternionic subspace that shares this element
in common. Using the same labeling for the multiplication table of the
octonions as the one that determines (16) we can list all the Z2 symmetries
that leave invariant the 3-form Ψ as follows,

elements that change sign the element in Z3

2

x3, x4, x5, x6 ←→ (0,1,1)
x2, x4, x6, x7 ←→ (1,1,1)
x2, x3, x5, x7 ←→ (1,0,0)
x1, x4, x5, x7 ←→ (0,1,0)
x1, x3, x6, x7 ←→ (0,0,1)
x1, x2, x5, x6 ←→ (1,0,1)
x1, x2, x3, x4 ←→ (1,1,0)

Table 2.

and, naturally, the identity transformation is in correspondence with (0,0,0).
Aiming towards a T 2 × T 2 × T 2 × S1 compact space, we shall identify the
coordinates (x1, x2, x3, x4, x5, x6, x7) with (z1, z2, z3, x7) ∈ C × C × C × R

writing zk = x2k−1 + ix2k for k = 1, 2, 3. The transformations given in the
previous table are then expressed as follows.

symmetry transformation the element in Z3

2

(z1, z2, z3, x7)→ (z1,−z2,−z3, x7) (0,1,1)
(z1, z2, z3, x7)→ (z̄1, z̄2, z̄3,−x7) (1,1,1)
(z1, z2, z3, x7)→ (z̄1,−z̄2,−z̄3,−x7) (1,0,0)
(z1, z2, z3, x7)→ (−z̄1, z̄2,−z̄3,−x7) (0,1,0)
(z1, z2, z3, x7)→ (−z̄1,−z̄2, z̄3,−x7) (0,0,1)
(z1, z2, z3, x7)→ (−z1, z2,−z3, x7) (1,0,1)
(z1, z2, z3, x7)→ (−z1,−z2, z3, x7) (1,1,0)

Table 3.
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All these symmetries can be obtained as composition of the three canonical
generators, (1, 0, 0), (0, 1, 0), and (0, 0, 1), for Z3

2
. Nevertheless, there are 28

different subsets of generators for Z3

2
but all geometrically equivalent.

4 MIM2 on a G2 manifold

In this section we will consider the construction of a MIM2 on a G2 manifold.
We start from the MIM2 on a seven torus T 7 and we will perform the identi-
fication of the Z2×Z2×Z2 group, described in Section 3, on the target space.

The MIM2 theory on T 7 is invariant under the area preserving diffeo-
morphisms. The ones homotopic to the identity are generated by the area
preserving constraints (3) and (4). The theory is also invariant under large
area preserving diffeomorphisms, non-homotopic to the identity, associated to
Sp(6, Z) acting on a Teichmüler space of the moduli space of g = 3 Riemann
surfaces as explained in Section 2. We will now show that the Z2 × Z2 × Z2

automorphisms of quaternionic subspaces of the octonionic algebra described
in Section 3.2 are also symmetries of the hamiltonian of the MIM2 on T 7.
Moreover, those are the maximal identifications we can perform on the tar-
get space preserving N = 1 susy. We will see that the remaining symmetries
of the fiber become spureous whenever the orbifold action on the states is
considered.

4.1 Minimal immersions on the target space

The maps (14,15) from the base Σ (g=3) to the compact sector of the tar-
get space T 7. The requirement introduced in [45], to consider all possible
immersions from the base manifold to the target space. It has a natural
interpretation in terms of the existence of fluxes on the compact sector of
the target space. In fact, the existence of fluxes is equivalent to the existence
of a bundle gerbe or higher order bundle on the target space[54], [55][56],
and [57],[58], [59],[60]. Given a closed p-form Wp satisfying the quantization
condition ∫

Σp

Wp = 2πn (20)

for any Σp submanifold there always exists a bundle gerbe or higher order
bundle with its corresponding transition functions on p−1, . . . , 1 forms such
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that Wp is the field strength of a generalized connection. The consistency
condition on the transition functions is now satisfied on the overlapping of
p + 1 open sets of an atlas. For the case p = 2, it is a U(1) principle bundle
and the quantization condition ensures the existence of a connection on it
such that W2 is its curvature. In the case of the MIM2 on a T 7 target we
should then consider all possible immersions and impose for each of them the
topological or central charge condition. This is a geometrical argument em-
phasizing that we should consider the summation of all possible immersions
from Σ to the target, see also [61].

We now proceed to consider all possible immersions from Σ, a genus 3
Riemann surface to T 7 = S1×· · ·×S1. The reason to consider a genus 3 sur-
face was explained in Section 2, they are the relevant ones when considering
the wrapping of a supermembrane on a T 6 target. We consider all decom-
positions of T 7 into T 6 × S1, by changing the S1 we obtain the complete set
of seven sectors. On each sector the supermembrane wraps in an irreducible
way to the T 6, we ensure this by imposing the topological condition on all
configurations of the supermembrane on that sector. We distinguish each
sector by an integer i = 1, . . . , 7 and denote the corresponding maps to the
T 6 by Xr

i , r = 1, . . . , 6

dXr
i = 2πRSr

isdX̂s + dAr
i (21)

while the remaining one to the S1 by Xi

dXi = 2πRmirdX̂r + dAi (22)

where Sr
is ∈ Sp(6, Z) for each i=1,. . . ,7, dAr

i and dAi are exact one-forms.
These ones are completely general without restrictions and as well as the
spinor fields on the target which are also scalars on the worldvolume. They
carry the local degrees of freedom of the supermembrane. For each T 6 we
provide a symplectic structure in order to define the topological condition on
Section 2, we will give them in the following analysis. The hamiltonian of the
MIM2 supermembrane is invariant under area-preserving diffeomorphisms
homotopic to the identity generated by the constraints in Section 2 and
by the large diffeomorphisms associated to the change of the basis of the
harmonic one-forms by a Sp(6, Z) matrix. Under these transformations the
fields Ar, Xm, Ψ transforms as scalars. The harmonic part of dXr transforms
as a one-form under diffeomorphisms and in addition

dX
′r
h (σ) = Sr

sdXr
h(σ) (23)
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Sr
s ∈ Sp(6, Z). The transformation in the harmonic part is only through a

constant Sp(6, Z) matrix. The MIM2 theory is also invariant under SO(7)
transformations, acting on the target indices, which preserve the lattice and
the topological condition.

Among these symmetries the ones transforming the quaternionic sub-
spaces of Table 1 are relevant. We will denote by Γ ≡ Z3

2
the discrete group

whose elements change the sign of the maps from Σ to T 7 according to the
second row in Table 1. We will denote by Λ ≡ Z4

2
the discrete group whose

elements change the sign of the maps from Σ to T 7 according to the complete
Table 1. Γ is a discrete subgroup of G2 and Λ. For each sector i identified by
the elements of the first row of Λ associated to the triplets, take for exam-
ple i = 7: (1, 2, 7), (4, 3, 7), (5, 6, 7) there is a Z2 × Z2 subgroup of Γ, whose
corresponding elements are (3, 4, 5, 6), (1, 2, 5, 6), (1, 2, 3, 4) respectively. The
transformations on this Z2 × Z2 subgroup map the sector into itself, since
they belong to the Sp(6, Z) associated to the sector.

Computation of mir We will now show that the other elements in Γ trans-
form the admissible maps (the ones satisfying the topological constraint) of
one sector into the admissible maps of another one. The integers mir become
determined in the procedure.

We start with the most general expression (21), (22) in sector i = 7,
by performing a change on the homology basis and in the corresponding
normalized basis of one-forms, it can always be reduced to,

dX̂1, dX̂2, dX̂3, dX̂4, dX̂5, dX̂6, m7rdX̂7 (24)

where from now on we denote in a file the harmonic part of dX i, for each
i ordered from 1 to 7. To symplify the notation we do not write explicitly
the 2πR factors. The exact part is not relevant in the determination of the
admissibility of a map, and may be added at any stage of the argument. If
we now apply transformation (2, 4, 6, 7) the new map

dX̂1,−dX̂2, dX̂3,−dX̂4, dX̂5,−dX̂6,−m7rdX̂7 (25)

is not admissible in sector 7 but it is in the other sectors. For example if
we take the sector 1, with symplectic structure given in Table 4 below, it is
admissible if

m7rdX̂r = dX̂1 + m72dX̂2 (26)
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for any integer m72.

If we now consider the transformation (2, 3, 5, 7) of Γ, (25) transforms
into

dX̂1,−dX̂2,−dX̂3, dX̂4,−dX̂5, dX̂6,−m7rdX̂7 (27)

which is admissible in sector 1 for any m72. Under (1, 4, 5, 7) (25) transforms
into

− dX̂1, dX̂2, dX̂3,−dX̂4,−dX̂5, dX̂6,−dx̂1 −m7rdX̂7 (28)

it is admissible only in sector 2 with m72 = 1. Finally under (1, 3, 6, 7) (25)
transforms into

− dX̂1, dX̂2,−dX̂3, dX̂4, dX̂5,−dX̂6,−dx̂1 − dX̂2m7r (29)

which is also admissible in sector 2. The general values of m7r in order to
have the full Γ as a symmetry on the admissible set of maps is

m7rdX̂r =






±(dX̂1 + dX̂2)

±(dX̂3 + dX̂4)

±(dX̂5 + dX̂6)

(30)

The general expression for mir is obtained from m7r by applying the elements
of Γ.

We conclude then that given a general admissible map on any sector there
always exists another admissible map which is the transformed under Γ of
the original one. The integers mr take some particular value in the proce-
dure. In other words, for that particular values of mr, the set of admissible
maps is preserved under the action of Γ. Moreover, the hamiltonian as a map
from the space of configurations to the reals is invariant under Γ. The same
properties are valid for the discrete group Λ = Z4

2
, with the same values of

mr. All other discrete symmetries of the hamiltonian whose bosonic part is
quartic but quadratic on each map, are not symmetries of the admissible set.

The symplectic structure on each sector we have used is given in Table 4.
We notice that there is no loss of generality by using it, since on any other
election of the symplectic matrices the above properties of the admissible set
are also valid. The only change is on the explicit realization of the maps,
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ω7 = dX1 ∧ dX2 + dX3 ∧ dX4 + dX5 ∧ dX6

ω6 = dX2 ∧ dX1 + dX4 ∧ dX3 + dX5 ∧ dX7

ω5 = dX2 ∧ dX1 + dX4 ∧ dX3 + dX7 ∧ dX6

ω4 = dX2 ∧ dX1 + dX3 ∧ dX7 + dX6 ∧ dX5

ω3 = dX2 ∧ dX1 + dX7 ∧ dX4 + dX6 ∧ dX5

ω2 = dX1 ∧ dX7 + dX4 ∧ dX3 + dX6 ∧ dX5

ω1 = dX7 ∧ dX2 + dX4 ∧ dX3 + dX6 ∧ dX5

Table 4.

Remark 1 We are considering the wrapping of the MIM2 on an oriented
T 7 hence the group Λ = (Z4

2
) reduces to Γ = (Z3

2
), since the transformations

on the first row of Table 1 do not preserve the orientation of T 7. We also
mentioned that the transformations which changes sign to only two coordi-
nates are not symmetries of the admissible set. We are then left with only
the group of discrete symmetries Γ = (Z3

2
). They are also symmetries of the

hamiltonian of the MIM2.

Remark 2 It is important to emphasize the relation between Γ and the
Sp(6, Z) group of large area preserving diffeomorphisms. The space of admis-
sible maps is invariant under the full group Sp(6, Z). It transforms admissible
maps of one sector into admissible maps of the same sector. Its action on the
harmonic sector of the maps shares in common with Γ a subgroup Z2 × Z2

provided the maps are restricted to that sector. When the Z2 × Z2 is lifted
to the whole admissible set it is not anymore a transformation generated by
an area preserving diffeomorphism. However it is a symmetry, as we have
shown, of the admissible set. Γ is then the unique discrete symmetry relating
the different sectors of the admissible set; the Sp(6, Z) acts only on each sec-
tor. We notice that these sectors arise from the different possible wrappings
of the MIM2 on T 7 and their origin is not related to the twisted or untwisted
sectors of the MIM2 when the identification on an orbifold is performed.

4.2 Configuration space

We will now define a MIM2 on the G2 orbifold T 7/Γ constructed by Joyce [50].
The group of transformations Γ = Z3

2
introduced by Joyce has additional

shifts with respect to the transformations in Section 3.2. Those shifts are
irrelevant concerning the action of the group in the MIM2 theory since the
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maps only enter in terms of one-forms and hence the shifts disappear. How-
ever they are important in the construction of the orbifold. These shifts can
be generated in the MIM2 theory by the constraint (4). It generates area
preserving diffeomorphisms homotopic to the identity with infinitesimal pa-
rameters which enter as harmonic one-forms on Σ. The transformation for
the maps are

δX i = {xi, ξ} (31)

with ξ = ξrdX̂r, ξr r = 1, . . . , 6 constants. dX i may be decomposed into
its harmonic parts. The harmonic part is invariant under diffeomorphisms
homotopic to the identity. We then have

∫

Σ

δAr
√

wdσ1 ∧ dσ2 = ωrsξsnAreaΣ. (32)

We may fix six shifts, corresponding to the mean value of the map over
Σ. In the notation of Section 3.2 the generators of the Joyce Z3

2
are: α =

(3, 4, 5, 6), β = (1, 2, 5, 6), γ = (2, 4, 6, 7) with the same shifts of value 1/2.
That is,

α : (x1, . . . , x7) → (x1, x2,−x3,−x4,−x5,−x6, x7) (33)

β : (x1, . . . , x7) → (−x1,−x2, x3, x4, 1/2− x5,−x6, x7)

γ : (x1, . . . , x7) → (x1, x2,−x3, 1/2− x4,−x5, 1/2− x6, x7).

The elements of the group Γ are isometries of T 7, preserving its flat G2-
structure. The fixed points of α, β, γ are each 16 copies of T 3. The singular
set S of T 7

Γ
is a disjoint union of 12 copies of T 3. The singularity on each

component of S is of the form T 3 × C

±1
. The singularities of T 7/Γ can be

resolved and a metric with holonomy G2 on a compact 7 manifold may be
obtained [50].

We may now consider the construction of the untwisted sector of the
MIM2 on the G2 orbifold T 7/Γ. We start from the general space of configu-
rations satisfying the topological constraint ensuring the irreducible wrapping
of all configurations of the membrane. We then consider the subspace of con-
figurations invariant under Γ. This was constructed in the previous section.
The maps are of the form (21) (22) with the restrictions on the values of
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mir (30) (on that particular basis of harmonic one-forms). The part of the
map associated to the wrapping of the MIM2 has no additional restrictions
beyond the topological constraint defining the wrapping. On the space of
configurations we construct classes, two elements of a class are related by
a transformation of Γ. The hamiltonian, as mentioned before has the same
value on each element of the class. The untwisted sector of the theory is
now defined on the space of classes. Each class represents now the map from
Σ to the orbifold. This construction may be implemented directly in the
functional integral of the supermembrane, which in the case of the MIM2
has a well defined gaussian measure. We now proceed to define the twisted
sectors of the theory3. We have to consider those configurations defined on
the Riemann surface Σ satisfying

X(2π) = ΓX(0) + 2πn (34)

when we go around one element of the basis of homology on Σ. If we take for
example α ∈ Γ as defined before the configurations correspond to sections of
the spin bundle Spin(4) = Sp(1)×Sp(1) obtained by lifting a vector bundle
of rank 4. If this were the only element of Γ we then have to sum over all
spin structures for that vector bundle. However we have to consider all ele-
ments of Γ. For each of them we have the corresponding sections of Spin(4).
The extended spin structure is now constructed with the assignement to each
element of the basis of homology a + or − and looking for the Γ element
which is associated to the − contribution. We then have to sum over all spin
structures defined with the above data. Each twisted sector correspond to
each spin structure.
It is important to observe that the twisted sectors are only defined in terms
of spinor fields, it is a 2 + 1 theory, on the worldvolume. It is the only way
to have a global construction with the required periodicity or antiperiodicity
conditions. However the maps X and the spinors Ψ of the supermembrane
action are scalars over the worldvolume. That means that the construction
of the twisted sectors in the light cone gauge require the lifting of the super-
membrane action to include square root bundles among its configurations.
the untwisted sector is constructed directly in terms of these scalar fields.
there is then a geometrical distinction between the sectors, since the theory
is still invariant under diffeomorphisms homotopic to the identity generated

3A former study of the twisted states of an extended membrane in the case of M theory

on an orbifold S
1

Z2

was considered in [62].
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by constraints (3), (4). The untiwsted sector we have constructed breaks
SUSY to N = 1 and it is directly related to the analysis in [45]. The precise
global cosntruction of the twisted sectors will be discussed elsewhere.

Remark The Sp(6, Z) symmetry on the admissible set is broken after iden-
tifying the points on T 7 by Γ. On each sector of the admissible set one is left
with a Z2 × Z2 symmetry.

4.3 Connection with Calabi-Yau compactifications

It is very well known that the G2 manifold can be also built using a partial
complex structure coordinate [48]. The above 3-form can be re-expressed as

Ψ = Re(Ω) + w ∧ dx7. (35)

In this equation Ω = dz1 ∧ dz2 ∧ dz3 is the complex holomorphic form of C3

and w = i
2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3) is the Kahler form. Since SU(3)

is a subgroup of G2, one can identify the C3 factor with a local Calabi-Yau
threefold (CY3) used in two dimensional N = 2 sigma model [51, 52, 53]. In
this realization, the above three-form (35) is invariant under the symmetry

zi → zi x7 → −x7. (36)

which is needed to ensure N = 1 in 4D. We will try to show that this transfor-
mation can be related to the above Z2×Z2×Z2 symmetry used in the orbifold
construction. This can be done by imposing certain constraints depending
on the precise Z2 action. Indeed, the CY3 could be taken as T 2 × T 2 × T 2

quotiented by Z2 × Z2. Since the CY condition requires the use of only two
Z2’s ( Z1

2
× Z2

2
), we need to single out the third Z3

2
factor. Z1

2
× Z2

2
acts

on the six-torus structure, producing as a result a CY3, and trivially on the
circle S1. The third Z3

2
acts on both, the CY3 and the circle leading to the

G2 structure manifold. In this way, one can identify the last action with the
transformation given in (36).

The singularities of this orbifold can be identified with its fixed points.
In the three dimensional complex factor, the fixed locus of this G2 manifold
is a Lagrangian submanifold. Its volume form is defined by the real part of
Ψ. Since the circle has two fixed points, the total singular geometry then
consists of two copies of such a lagrangian submanifold. The singularities can
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have an interpretation in the MIM2 picture as critical points. However this
does not mean that there is a degenerate locus of extremal points. On the
contrary, the quantum analysis reveals that there is an absolute minimum
for the hamiltonian of the supermembrane. There are no flat directions in
the potential. This fact can be understood from the fact that the dual of the
gauge symmetries correspond to different backgrounds and not a unique one.

Locally each singular point should be resolved like R3 × X, where X is
an ALE CalabiYau 2-fold asymptotic to C2/Z2, is known as ALE space with
A1 singularity. The ALE space with A1 singularity is described by

z2

1
+ z2

2
+ z2

3
= 0. (37)

Using a simple change of variables, this is equivalent to

xy = z2 (38)

where x, y and z are complex coordinates. As usual, this singularity can
be removed either by deforming the complex structure or by a blow-up
procedure. Geometrically, this corresponds to replacing the singular point
(x = y = z = 0) by a CP 1 ∼ S2. As previously explained the (APD)
connected with the identity deform the shape of each T 2 and they produce
translation on the orbifold side. They serve to blow up the corresponding
orbifold singularities leading to a compactification on a true G2 manifold.

5 Discussion and conclusions

In this paper we have shown, in a top-down approach, that the 11D super-
membrane theory restricted by a topological condition can be compactified
on a T 7

Z3

2

orbifold preserving its quantum stability properties. The resulting

theory can be interpreted as a compactification on a G2 manifold. Indeed,
the symmetries of the theory produce a holonomy bundle that corresponds
exactly to those associated to the Riemanian holonomy of a G2 manifold.
By performing the identification on the target space of the SO(7) discrete
symmetries preserving the topological condition, only those symmetries asso-
ciated to the G2 orbifold space are possible, neither the configuration states
nor the minimal immersions are invariant under the spureous symmetries
that would break the supersymmetry to N = 0. One can see that the holon-
omy bundle associated to the compactification to 5D is related with the Klein
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subgroup. When this is further compactified to the remaining S1 there exist
seven possible immersions of the M2-brane on the target space of the T 7 that
allow to make exactly the identifications with the G2 holonomy group. The
singularities of this G2 orbifold may be resolved as shown by Joyce leading
to a true G2 manifold. The shifts have their origin in the diffeomorphisms
homotopic to the identity of the MIM2. Moreover, this result can also be
seen in terms of a CY3×S1

Z2

. It has been pointed out in [11] the phenomenologi-
cal interest of G2 compactifications that admit an expression in terms of CY
compactification since for those manifolds explicit metric can be obtained
and ALE resolutions of the singularities may lead to interesting phenomeno-
logical properties as chirality and nonabelian gauge groups. In that sense
it would be interesting to compute explicitly the corresponding metric and
study its phenomenological properties. Other aspects of interest like confine-
ment from G2-manifolds [63] ( considered mainly in G2 manifolds with ALE
singularities) emerge naturally in our case since the spectral properties of the
MIM2 have not changed when we have performed the identification in the
target space. In [41], it was argued how the MIM2 theory could reproduce
the strong coupling regime of susy QCD since there are present glueballs
and it posseses a discrete spectrum with a mass gap. Indeed it corresponds
exactly to a symplectic Super Yang-Mills in 4d coupled to several scalar
fields. In [41], an interpretation of the M2 theory in terms of SUSY QCD
was proposed: the confined phase of the theory corresponds to the MIM2
and the quark-gluon plasma phase to the ordinary M2 compactified in a 7-
torus. Both phases are connected through a topological phase transition that
breaks the center of the group. Since the theory of MIM2 on a G2 mani-
fold do not change its quantum spectral properties, those previous properties
would apply and it could also described the confined phase of the theory. Re-
garding moduli stabilization aspects, assuming the target torus is fixed to be
isotropic, the moduli parametrizing the position of the MIM2 on a 7-torus
as well as the overall moduli parametrizing the size of the manifold is fixed
[45]. When the MIM2 is compactified on the G2 orbifold the singularities are
resolved through a backreaction effect due to the wrapping, then the moduli
associated to those singularities are also fixed. We have then obtained the
11D supermembrane minimally immersed on a particular G2 manifold. An
interesting question is the comparison between the MIM2 compactified on a
T 7 and the MIM2 compactified on a G2 manifold. Since the theory posseses
all of the symmetries that can be identified in the target space, there is no
breaking of any symmetry or lack of consistency. The untwisted sector of the
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G2 orbifold is the Hilbert space of invariant states under the corresponding
discrete symmetries of the hamiltonian. The twisted sector are states invari-
ant under the action of the discrete symmetries around the singularities, as
usual. In our case the identification in the target space a priori (since there
is not so far an explicit computation) enlarges the configuration space with
respect to the one of MIM2 compactified on T 7 and fixes the integers m7r

to a particular value. However, the number of supersymmetries in 4D is the
same in both cases. The reason for that lies in the minimal immersion maps
inducing flux charges on the target space. In the case of the T 7, it breaks
supersymetries not only in the gauge sector but also in the gravitational sec-
tor. This is an important difference with respect to string theory. In MIM2
case, the gauge and gravity sectors are in no way decoupled.
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