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Potsdam, Germany
4 Departamento de Fı́sica, Universidad Simón Bolı́var, Apartado 89000, Caracas 1080-A,
Venezuela
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Abstract
We construct an 11D supermembrane with topological central charges induced
through an irreducible winding on a G2 manifold realized from the T 7/Z3

2
orbifold construction. The Hamiltonian H of the theory on a T 7 target has a
discrete spectrum. Within the discrete symmetries of H associated with large
diffeomorphisms, the Z2×Z2×Z2 group of automorphisms of the quaternionic
subspaces preserving the octonionic structure is relevant. By performing the
corresponding identification on the target space, the supermembrane may be
formulated on a G2 manifold, preserving the discreteness of its supersymmetric
spectrum. The corresponding 4D low energy effective field theory has N = 1
supersymmetry.

PACS numbers: 11.25.Mj, 11.25.Yb

1. Introduction

Compactifications of the low energy limit of M-theory to four dimensions (4D) have
received much attention during the past few years. Special interest has been given to the
compactification over real manifolds of dimension 7, X7, with nontrivial holonomy. This
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interest is due to the fact that these manifolds provide a potential point of contact with low
energy semi-realistic physics from M-theory [1, 2].

The aim of this paper will be to show the quantization of the supersymmetric action of the
supermembrane, restricted by a topological condition, on a particular G2 manifold. This is
the only (known) quantum consistent way of doing it starting from the supermembrane; there
is no other way so far. We will show that this model represents a starting point of a new kind
of supersymmetric quantum consistent models with potentially interesting properties from a
phenomenological point of view.

Let us briefly review the main properties of the compactification of M-theory on G2
manifolds. In particular, one can obtain 4D N = 1 supersymmetry by compactifying M-
theory on X7 with the G2 holonomy group [3–5]. In this regard, the 4D N = 1 resulting
models generically depend on the geometric properties of X7. For instance, if X7 is smooth,
the low energy theory contains, in addition to N = 1 supergravity, only Abelian gauge groups
and neutral chiral multiplets. However, non-Abelian gauge symmetries with charged chiral
fermions can be obtained by considering limits where X7 develops singularities [6–10]. For
a review, see for example [11].

Besides the ordinary compactification on G2 manifolds, Calabi–Yau flux
compactifications and twisted toroidal compactifications have also been studied intensively;
see for example [12–21]. Indeed, their respectively phenomenological predictions with
different signatures on the LHC have also been considered; see [22, 23] for G2
compactifications and [24] for a large volume approach to Calabi–Yau compactifications.
They have also been considered as particular cases of non-geometric compactifications. Most
of these approaches follow a bottom-up pattern by studying the N = 1 gauged supergravity
potentials in 4D and trying to perform the uplift to M-theory. Other compactifications from
11D supergravity with fluxes have also been done in a top-down approach [20, 21].

Recently new types of compactifications have appeared involving twisted boundary
conditions or nontrivial fiber bundles over some compact manifolds (with or without
singularities), T-foldings [25]. In this way, the metric and the gauge field forms get generically
entangled. This kind of compactification is called non-geometric [26, 27]. Some of these non-
geometric compactifications are related to the ordinary ones by dualities. The nontriviality of
the fiber bundle guarantees the existence of a monodromy, but usually due to the lack of 1-cycles
inside a Calabi–Yau compactification, it becomes necessary to include singularities. A simple
example of these T-foldings is the twisted tori. It is a Scherk–Schwarz compactification of the
11D supergravity theory with twisted boundary conditions that allow us to have a nontrivial
monodromy; see for example [28] in connection with G2 compactifications. When the base
space is a torus, it is no longer necessary to include singularities in order to have a nontrivial
monodromy [26, 27]. These twisted compactifications can have a geometrical dual which
corresponds to an orbifold plus a shift, also known as an asymmetric orbifold [29].

The compactification with a duality twist is more general than the orbifold
compactification because it can be carried without restricting the moduli to special variations.
The moduli can have nontrivial variation along the circle in the spacetime. However, the
orbifold is possible for special values of the moduli where the lattice admits a symmetry and
the class of allowed rotations is finite. All of the lattices admit a Z2 symmetry as the discrete
subgroup of SL(2, Z) of the torus, and for these cases the geometrical dual exists [30].

The 11D supermembrane is one of the basic elements of M-theory [31, 32]. Classically,
it is unstable due to the existence of string-like spikes that leave the energy unchanged. At the
quantum level, its supersymmetric spectrum is continuous and the theory was interpreted as a
second quantized theory [33, 34]. Compactification on S1 has been explored in order to see if
the continuity of the spectrum is broken by the winding. It has been argued not to be the case

2



J. Phys. A: Math. Theor. 42 (2009) 325201 A Belhaj et al

[35] due to the presence of string-like spikes in the spectrum. In [36–40, 42], a minimally
immersed supermembrane compactified on a torus associated with the existence of irreducible
winding (MIM2) has been found. It is associated with nontrivial fiber bundles defined on
Riemann surfaces. This MIM2 is classically stable since there are no singular configurations
with zero energy. The quantum spectrum of the theory is purely discrete with finite multiplicity
[38–41, 43]. The theory of the supermembrane minimally immersed in a 7-torus has recently
been found in [45]. It has a N = 1 supersymmetry in 4D. A natural question is to look for a
connection with a compactification of the supermembrane in a nontrivial background with G2
holonomy. In this paper, we will be concerned with a full-fledged sector of M-theory which
is the quantum supermembrane theory that minimally immersed MIM2 on T 6 × S1. This
type of compactifications contains nontrivial discrete twists on the fibers as remnant discrete
symmetries of the Hamiltonian. By identifying these symmetries on the target, we show that
MIM2 can admit a compactification on a G2 manifold.

The paper is structured as follows. In section 2, we introduce the supermembrane with
central charges minimally immersed (M2MI) on T 6 × S1. We summarize its main spectral
properties and symmetries. In section 3, we recall the main properties of the compactification
on G2 manifolds. In section 4, we construct MIM2 on T 7

Z3
2

by studying the minimal immersions

of MIM2 on that target and finding the configuration space of states: the untwisted and twisted
sectors of the theory. We also study its connections with Calabi–Yau compactifications. In
section 5, we present our discussions and final conclusions.

2. M2 with central charges associated with an irreducible winding

We start this section by recalling that the Hamiltonian of the D = 11 supermembrane [31] in
the light cone gauge (LCG) reads as∫

�

√
W

(
1

2

(
PM√
W

)2

+
1

4
{XM,XN }2 + Fermionic terms

)
. (2.1)

M runs for M = 1, . . . , 9 corresponding to the transverse coordinates of the base manifold
R ×�. � is a Riemann surface of genus g. The term PM√

W
is the canonical momentum density

and {XM,XN } is given by

{XM,XN } = εab

√
W(σ)

∂aX
M∂bX

N, (2.2)

where a, b = 1, 2 and σa are local coordinates over �. W(σ) is a scalar density introduced in
the LCG fixing procedure. The former Hamiltonian is subject to the two following constraints:

φ1 := d

(
PM√
W

dXM

)
= 0 (2.3)

φ2 :=
∮

Cs

PM√
W

dXM = 0, (2.4)

where Cs, s = 1, . . . , 2g, is a basis of one-dimensional cycles on �. φ1 and φ2 are generators
of area preserving diffeomorphisms (APDs). When the target manifold is simply connected,
the 1-forms dXM are exact.

The SU(N) regularized model obtained from (2.1) was shown to have a continuous
spectrum from [0,∞) [32–34]. This property of the theory relies on two basic facts:
supersymmetry and the presence of classical singular configurations. The latter is related
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to string-like spikes which appear with zero cost energy. These spikes do not preserve either
the topology of the world-volume or the number of particles. These properties do not disappear
when the theory is compactified and the spectrum remains continuous [35].

To get a four-dimensional model, we need a target space as M4 × T 6 × S1. In this way,
the configuration maps satisfy the following condition on T 6:∮

cs

dXr = 2πSr
s R

r, r, s = 1, . . . , 6. (2.5)

On the circle, we have the constraint∮
cs

dX7 = 2πLsR7 (2.6)

while for non-compact directions, we have∮
cs

dXm = 0, m = 8, 9. (2.7)

Sr
s , Ls ∈ Z and Rr,R7 represent respectively the radii of the 6-torus T 6 and the radius of the

circle. We shall now impose a topological irreducible wrapping condition to be satisfied by
all configurations in the above model. This generates a nontrivial central charge in the 11D
supersymmetric algebra. The topological condition is

I rs ≡
∫

�

dXr ∧ dXs = n(2πRrRs)ωrs, (2.8)

where ωrs is a symplectic matrix on T 6 which can be taken as

ωrs =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1
−1 0

0 1
−1 0

0 1
−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.9)

Each block M = ( 0
−1

1
0

)
defines a symplectic geometry on T 2. It also describes the intersection

matrix of the homology basis. If we denote by a and b the two elements of the basis of T 2, then
Mab is defined by the following intersection numbers: a ·b = −b ·a = 1 and a ·a = b ·b = 0.
For simplicity, we will take n = 1; the general case only involves some technical additional
details.

The above topological condition leads to a D = 11 supermembrane with nontrivial central
charges generated by its wrapping on the compact part of the target space. Since the topological
constraint commutes with the rest of the constraints, it represents a sector of the full theory
characterized by an integer n = det ωrs ; see [38] for a more general discussion. Under such
correspondence, there exists a minimal holomorphic immersion from the base to the target
manifold. The image of � under this map is a calibrated submanifold of T 6. The spectrum of
the theory changes dramatically since it has a pure discrete spectrum at the classical and the
quantum levels [38–41, 43]; see also [42, 45]7.

The model that we study here involves additional symmetries beyond the original ones
[41] which will be crucial in our coming discussion. In the following, the minimally immersed
M2 associated with this sector of the theory will be denoted by MIM2 to distinguish it from
the usual one.
7 The geometrical interpretation of this condition has been discussed in previous work [36, 37].
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We note that the condition in (2.8) only restricts the values of Sr
s . From equation (2.5),

we can see that these values should be integral numbers. The condition in (2.8) can be solved
by

dXr = Mr
s dX̂s + dAr, (2.10)

where we have decomposed the closed 1-forms dXr into their harmonic plus exact parts. Note
that dX̂s, s = 1, . . . , 2g, is a basis for harmonic 1-forms over �. They may be normalized
with respect to the associated canonical basis of homology:∮

cs

dX̂r = δr
s . (2.11)

We have now considered a Riemann surface with a class of an equivalent canonical basis. The
condition in (2.5) leads to

Mr
s = 2πRrSr

s . (2.12)

Imposing the condition in (2.8), we get

Sr
t ω

tuSs
u = ωrs, (2.13)

which says that S ∈ Sp(2g,Z). This is the most general map satisfying (2.8).
A sufficient condition in order to have a consistent global construction of the theory,

subject to the topological constraint, is to have a surface � of genus g such that the space of
holomorphic 1-forms has the same complex dimension as the flat torus in the target space.
This condition ensures the existence of a holomorphic immersion, and thus minimal, from
� to T 2g [42]. In [45], we analyzed the theory for genus 3 and the breaking of the SUSY
by the ground state (the holomorphic immersion) for genus 1, 2, 3. It was also emphasized
there that in order to consider MIM2 from � to a given target space one should consider
all possible immersions, in particular all holomorphic immersions. This consideration will
become important in the following sections when we analyze a T 7

Z3
2

target space.

The theory is invariant not only under the diffeomorphisms generated by φ1 and φ2 but
also under the diffeomorphisms, which are biholomorphic maps, changing the canonical basis
of homology by a modular transformation.

We may always consider a canonical basis such that

dXr = 2πRr dX̂r + dAr. (2.14)

In this manner, the corresponding degrees of freedom are described exactly by the single-
valued fields Ar . By using the condition in (2.6), we perform a similar decomposition with
the remaining 1-form associated with the compactification on S1:

dX7 = 2πRLs dX̂s + dφ̂, (2.15)

where dφ̂ is a new exact 1-form and dX̂s are the bases of harmonic forms as before. The final
expression of the Hamiltonian of MIM2 wrapped in an irreducible way on T 6 × S1 [45] is

H =
∫

�

√
w dσ 1 ∧ dσ 2

[
1

2

(
Pm√
W

)2

+
1

2

(

r

√
W

)2

+
1

4
{Xm,Xn}2 +

1

2
(DrX

m)2

+
1

4
(Frs)

2 +
1

2

(
Fab

εab

√
W

)2

+
1

8

(

c

√
W

∂cX
m

)2

+
1

8
[
c∂c(X̂r + Ar)]

2

]
+ �

({
Pm√
W

,Xm

}
− Dr

(

r

√
W

)
− 
c

2
√

W
∂c

(
Fab

εab

√
W

))
+ λ∂c


c

]
+

∫
�

√
W [−�−�rDr + �−�m{Xm,} + 1/2�7


b∂b] + �{�−, }, (2.16)
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whereDrX
m = DrX

m+{Ar,X
m},Frs = DrAs−DsAr+{Ar,As} and Dr = 2πRr εab√

W
∂aX̂

r∂b.
Pm and 
r are the conjugate momenta to Xm and Ar respectively. Dr and Frs are the covariant
derivative and curvature of a symplectic noncommutative theory [37, 39], constructed from
the symplectic structure εab√

W
introduced by the central charge. The physical degrees of the

theory are then described by Xm,Ar and the corresponding spinorial ones α . They are
single-valued fields on �.

At this level, one might naturally ask the following question. Does there exist MIM2
compactified on a seven-dimensional manifold with the G2 holonomy group? In what
follows, we address this question using a recent result from the algebraic geometry of toroidal
compactification in the presence of discrete symmetries.

3. G2 compactification in M-theory

As we mentioned in section 1, a possible way to get four-dimensional models with four
supercharges is to consider the compactification of M-theory on seven-dimensional manifolds
with the G2 holonomy group8 [6, 47–49]. We will refer to them as G2 manifolds. In this
manner, different N = 1 models in four dimensions depend on the geometric realization of
the G2 manifold. As for the Calabi–Yau case, there are many geometric realizations. In what
follows, we quote some of them [50].

3.1. G2 manifolds

Let us consider R7 parametrized by (x1, x2, . . . , x7). On this space, one can define the metric
as g = dx2

1 + · · · + dx2
7 . Reducing the group SO(7) to G2, there is a special real 3-form:

 = dx127 + dx135 − dx146 − dx236 − dx245 + dx347 + dx567, (3.1)

where dxijk denotes the exterior form dxi ∧ dxj ∧ dxk . This expression for  arises from the
fact that G2 is the group of automorphisms for the octonionic algebra structure (see figure 1)
given by

ti tj = −δij + fkij tk, (3.2)

which yields the correspondence

fkij → dxkij . (3.3)

In general if a seven Riemannian metric admits a covariant constant spinor, the holonomy
group is G2 and there is exactly one such group. In such manifolds there exists an orthogonal
frame, êi , in which the octonionic 3-form φ = fij k̂e

i ∧ êj ∧ êk and its dual are closed.
The form φ is invariant under the G2 group. It turns out that the simplest example of G2
manifolds, which we are interested in here, is the orbifold realization. Let us consider a 7-torus
T 7 = R7/Z7, where now x parameterizes R/Z. A G2 manifold can be constructed from an
orbifold action T 7/�, where � is a discrete subgroup of G2, hence leaving the above 3-form
 invariant. A possible choice is given by

� = Z2 × Z2 × Z2 (3.4)

to be defined in the following section.

8 G2 is a group of dimension 14 and rank 2.
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Figure 1. Fano plane representing the multiplication table for the octonions used throughout this
paper.

Figure 2. Quaternionic diagram.

Table 1. Transformations that preserve the octonionic structure.

 → − 1, 2, 7 1, 3, 5 1, 4, 6 2, 3, 6 2, 4, 5 3, 4, 7 5, 6, 7

 →  3, 4, 5, 6 2, 4, 6, 7 2, 3, 5, 7 1, 4, 5, 7 1, 3, 6, 7 1, 2, 5, 6 1, 2, 3, 4

3.2. Z2 × Z2 × Z2 symmetries of the G2 structure

The Z2 symmetries leaving invariant the 3-form (3.1), which we will consider, change signs on
certain elements of the basis for the octonions. A change of sign for one element of the basis
condemns the same for other elements. These combinations are given by the multiplication
table. For convenience in further identifications we have chosen the multiplication table
represented in figure 1, where ei are the elements from the basis of the octonions. The result
of the multiplication of two elements in the basis is the only other element that shares the line
passing through the first two, and the sign is given by the arrows. For example, e6e7 = e5

while e5e2 = −e4.
A very quick way to determine such subsets of elements is by considering the canonical

quaternionic subspaces of the octonions.
Changing signs for the elements in these subsets or their complements each preserve

the octonionic structure. The former maps  → − while the latter leaves  completely
unchanged. According to the multiplication table we have chosen, the indices of the elements
from the basis corresponding to these sets are given as follows. These seven transformations
obtained by changing signs for the elements on the second file, together with the identity, form
a commutative group with eight elements of order 2. This group is Z2 ×Z2 ×Z2 ∼= Z3

2. There
is a nice geometric interpretation for the operation in this group. Given two transformations,
they correspond to two quaternionic subspaces (see figure 2) of the multiplication table for
the octonions and share only one element—see the first row in table 1. The composition of
these transformations is that related to the only other quaternionic subspace that shares this
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Table 2. Z3
2 transformations preserving the G2 structure.

Elements that The element
change sign in Z3

2

x3, x4, x5, x6 ←→ (0, 1, 1)
x2, x4, x6, x7 ←→ (1, 1, 1)
x2, x3, x5, x7 ←→ (1, 0, 0)
x1, x4, x5, x7 ←→ (0, 1, 0)
x1, x3, x6, x7 ←→ (0, 0, 1)
x1, x2, x5, x6 ←→ (1, 0, 1)
x1, x2, x3, x4 ←→ (1, 1, 0)

Table 3. Z3
2 transformations in terms of complex coordinates.

The element
Symmetry transformation in Z3

2

(z1, z2, z3, x7) → (z1, −z2, −z3, x7) (0, 1, 1)
(z1, z2, z3, x7) → (z̄1, z̄2, z̄3,−x7) (1, 1, 1)
(z1, z2, z3, x7) → (z̄1, −z̄2, −z̄3, −x7) (1, 0, 0)
(z1, z2, z3, x7) → (−z̄1, z̄2, −z̄3, −x7) (0, 1, 0)
(z1, z2, z3, x7) → (−z̄1, −z̄2, z̄3, −x7) (0, 0, 1)
(z1, z2, z3, x7) → (−z1, z2, −z3, x7) (1, 0, 1)
(z1, z2, z3, x7) → (−z1, −z2, z3, x7) (1, 1, 0)

common element. Using the same labeling for the multiplication table of the octonions as the
one that determines (3.1) we can list all the Z2 symmetries that leave invariant the 3-form 

as follows and, naturally, the identity transformation is in correspondence with (0, 0, 0), see
table 2. Aiming toward a T 2 ×T 2 ×T 2 ×S1 compact space, we shall identify the coordinates
(x1, x2, x3, x4, x5, x6, x7) with (z1, z2, z3, x7) ∈ C × C × C × R writing zk = x2k−1 + ix2k for
k = 1, 2, 3. The transformations given in table 2 are then expressed as in table 3. All these
symmetries can be obtained as composition of the three canonical generators, (1, 0, 0), (0, 1, 0)

and (0, 0, 1), for Z3
2. Nevertheless, there are 28 different subsets of generators for Z3

2 but all
geometrically equivalent.

4. MIM2 on a G2 manifold

In this section, we consider the construction of MIM2 on a G2 manifold. We start from MIM2
on a 7-torus T 7 and we will perform the identification of the Z2 × Z2 × Z2 group, described
in section 3, on the target space.

The MIM2 theory on T 7 is invariant under the area preserving diffeomorphisms. The
ones homotopic to the identity are generated by the area preserving constraints (2.3) and (2.4).
The theory is also invariant under the large area preserving diffeomorphisms, non-homotopic
to the identity, associated with Sp(6, Z) acting on a Teichmüler space of the moduli space of
g = 3 Riemann surfaces as explained in section 2. We will now show that the Z2 × Z2 × Z2

automorphisms of quaternionic subspaces of the octonionic algebra described in section 3.2
are also symmetries of the Hamiltonian of MIM2 on T 7. Moreover, these are the maximal
identifications we can perform on the target space preserving N = 1 SUSY. We will see that

8
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the remaining symmetries of the fiber become spurious whenever the orbifold action on the
states is considered.

4.1. Minimal immersions on the target space

Maps (2.14) and (2.15) from the base � (g = 3) to the compact sector of the target space T 7

decompose into a harmonic part plus an exact one. The harmonic part is a minimal immersion
from � to the compact sector T 7 of the target space. The requirement introduced in [45] was
to consider all possible immersions from the base manifold to the target space. It has a natural
interpretation in terms of the existence of fluxes on the compact sector of the target space. In
fact, the existence of fluxes is equivalent to the existence of a bundle gerbe or higher order
bundle on the target space [54–60]. Given a closed p-form Wp satisfying the quantization
condition ∫

�p

Wp = 2πn (4.1)

and for any �p submanifold, there always exists a bundle gerbe or higher order bundle with its
corresponding transition functions on p−1, . . . , 1 forms such that Wp is the field strength of a
generalized connection. The consistency condition on the transition functions is now satisfied
on the overlapping of p + 1 open sets of an atlas. For the case p = 2, it is a U(1) principle
bundle and the quantization condition ensures the existence of a connection on it such that W2

is its curvature. Condition (4.1) must be satisfied for all �p submanifolds; the integer n may
change with �p. If we interpret the central charge condition as a flux condition on the target,
we must then impose it for all admissible minimal immersions from � to T 7. In the case of
MIM2 on a T 7 target, we should then consider all possible immersions and impose for each of
them the topological or central charge condition. This is a geometrical argument emphasizing
that we should consider the summation of all possible immersions from � to the target; see
also [61].

We now proceed to consider all possible immersions from �, a genus 3 Riemann surface,
to T 7 = S1 × · · · × S1. The reason to consider a genus 3 surface was explained in section 2.
They are the relevant ones when considering the wrapping of a supermembrane on a T 6 target.
Consider all decompositions of T 7 into T 6 × S1, and changing S1, we obtain the complete set
of seven sectors. The supermembrane wraps in an irreducible way onto T 6. We ensure it by
imposing the topological condition on all configurations of the supermembrane on that sector.
We distinguish each sector by an integer i = 1, . . . , 7 and denote the corresponding maps to
T 6 by Xr

i , r = 1, . . . , 6,

dXr = 2πRSr
is dX̂s + dAr (4.2)

while the remaining one to S1 by X,

dX = 2πRmir dX̂r + dA, (4.3)

where Sr
is ∈ Sp(6, Z) for each i = 1, . . . , 7 and dAr and dA are exact 1-forms. These are

completely general without restrictions as well as the spinor fields on the target which are also
scalars on the world-volume. They carry the local degrees of freedom of the supermembrane.
For each T 6, we provide a symplectic structure in order to define the topological condition in
section 2; they are given in table 4.

We will denote by � ≡ Z3
2 the discrete group whose elements change the sign of the

maps from � to T 7 according to the second row in table 1. The discrete group � ≡ Z4
2

defines elements which change the sign of the maps from � to T 7 according to table 1. � is
a discrete subgroup of G2 and �. For each sector i, we may associate a subgroup Z2 × Z2 of

9
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Table 4. Table of the admissible immersion maps of the MIM2 from the base manifold on the
target space.

ω7 = dX1 ∧ dX2 + dX3 ∧ dX4 + dX5 ∧ dX6

ω6 = dX2 ∧ dX1 + dX4 ∧ dX3 + dX5 ∧ dX7

ω5 = dX2 ∧ dX1 + dX4 ∧ dX3 + dX7 ∧ dX6

ω4 = dX2 ∧ dX1 + dX3 ∧ dX7 + dX6 ∧ dX5

ω3 = dX2 ∧ dX1 + dX7 ∧ dX4 + dX6 ∧ dX5

ω2 = dX1 ∧ dX7 + dX4 ∧ dX3 + dX6 ∧ dX5

ω1 = dX7 ∧ dX2 + dX4 ∧ dX3 + dX6 ∧ dX5

� in the following way. One must take the triplets containing an integer i from the first row
of table 1, for example if i = 7: (1, 2, 7), (4, 3, 7), (5, 6, 7). The corresponding elements on
the second row of table 1, (3, 4, 5, 6), (1, 2, 5, 6), (1, 2, 3, 4), determine a subgroup Z2 × Z2

of �. These transformations map the sector i into itself. They belong to Sp(6, Z) associated
with the sector. We will now show that the other elements of � transform admissible maps
(the ones satisfying the topological constraint) of one sector into admissible maps of another
one. The integers mir get determined in the procedure.

Computation of mir . We start with the most general expressions (4.2) and (4.3) in sector
i = 7, by performing a change on the homology basis. In the corresponding normalized basis
of 1-forms, it can always be reduced to,

dX̂1, dX̂2, dX̂3, dX̂4, dX̂5, dX̂6,m7r dX̂7, (4.4)

where from now on we denote in a file the harmonic part of dXi , for each i ordered from 1
to 7. To simplify the notation, we do not write explicitly the 2πR factors. The exact part is
not relevant in the determination of the admissibility of a map and may be added at any stage
of the argument. If we now apply the transformation (2, 4, 6, 7), the new map

dX̂1,−dX̂2, dX̂3,−dX̂4, dX̂5,−dX̂6,−m7r dX̂7 (4.5)

is not admissible in sector 7 but it is in the other sectors. For example if we take sector 1, with
the symplectic structure given in table 4, it is admissible if

m7r dX̂r = dX̂1 + m72 dX̂2 (4.6)

for any integer m72.
If we now consider the transformation (2, 3, 5, 7) of �, (4.5) transforms into

dX̂1,−dX̂2,−dX̂3, dX̂4,−dX̂5, dX̂6,−m7r dX̂7, (4.7)

which is admissible in sector 1 for any m72. Under (1, 4, 5, 7), (4.5) transforms into

−dX̂1, dX̂2, dX̂3,−dX̂4,−dX̂5, dX̂6,−d̂x1 − m7r dX̂7; (4.8)

it is admissible only in sector 2 with m72 = 1. Finally under (1, 3, 6, 7), (4.5) transforms into

−dX̂1, dX̂2,−dX̂3, dX̂4, dX̂5,−dX̂6,−d̂x1 − dX̂2m7r , (4.9)

which is also admissible in sector 2. The general values of m7r in order to have the full � as a
symmetry on the admissible set of maps are

m7r dX̂r =
⎧⎨⎩

±(dX̂1 + dX̂2)

±(dX̂3 + dX̂4)

±(dX̂5 + dX̂6).

(4.10)

The general expression for mir is obtained from m7r by applying the elements of �.
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We then conclude that given a general admissible map on any sector, there always exists
another admissible map which is transformed under � of the original one. The integers mr

take some particular value in the procedure. In other words, for these particular values of
mr , the set of admissible maps is preserved under the action of �. Moreover, the bosonic
Hamiltonian as a map from the space of configurations to the reals is invariant under �. The
same properties are valid for the discrete group � = Z4

2, with the same values of mr . However,
we consider the wrapping of MIM2 on an oriented T 7, and the transformations on the first
row of table 1 do not preserve the orientation of T 7. We are then left only with the group
of discrete symmetries � = (

Z3
2

)
. The supersymmetric Hamiltonian is invariant under these

symmetries. All other discrete symmetries of the Hamiltonian whose bosonic part is quartic
but quadratic on each map are not symmetries of the admissible set.

The symplectic structure we have used on each sector is given in table 4. We note that
there is no loss of generality by using it, since on any other election of the symplectic matrices
the above properties of the admissible set are also valid. The only change is on the explicit
realization of the maps.

Remark. It is important to emphasize the relation between � and the Sp(6, Z) group of
large area preserving diffeomorphisms. The space of admissible maps is invariant under the
full group Sp(6, Z). It transforms admissible maps of one sector into admissible maps of
the same sector. Its action on the harmonic sector of the maps shares in common with � a
subgroup Z2 × Z2 provided the maps are restricted to that sector. When Z2 × Z2 is lifted
to the whole admissible set, it is no longer a transformation generated by an area preserving
diffeomorphism. However it is a symmetry, as we have shown, of the admissible set. � is then
the unique discrete symmetry relating the different sectors of the admissible set; Sp(6, Z) acts
only on each sector. We note that these sectors arise from the different possible wrappings of
MIM2 on T 7 and their origin is not related to the twisted or untwisted sectors of MIM2 when
the identification on an orbifold is performed.

4.2. Configuration space

We will now define MIM2 on the G2 orbifold T 7/� constructed by Joyce [50]. The group
of the transformations � = Z3

2 introduced by Joyce has additional shifts with respect to
the transformations in section 3.2. These shifts are irrelevant concerning the action of the
group in the MIM2 theory since the maps only enter in terms of 1-forms and hence the
shifts disappear. However, they are important in the construction of the orbifold. These
shifts can be generated in the MIM2 theory by constraint (2.4). It generates area preserving
diffeomorphisms homotopic to the identity with infinitesimal parameters which are harmonic
1-forms on �. The transformation for the maps is

δXs = {Xs, ξ} (4.11)

with ξ = ξrX̂
r , r = 1, . . . , 6. The harmonic part is then shifted by (4.11)

1

Area�

∫
�

δXr
√

W dσ 1 ∧ dσ 2 = ωrsξs . (4.12)

We may then fix six shifts, corresponding to the mean value of the map over �. In the notation
of section 3.2, the generators of the Joyce Z3

2 are α = (3, 4, 5, 6), β = (1, 2, 5, 6), γ =
(2, 4, 6, 7) with the same shifts of value 1/2. They are given by

α : (x1, . . . , x7) → (x1, x2,−x3,−x4,−x5,−x6, x7)

β : (x1, . . . , x7) → (−x1,−x2, x3, x4, 1/2 − x5,−x6, x7)

γ : (x1, . . . , x7) → (x1, x2,−x3, 1/2 − x4,−x5, 1/2 − x6, x7).
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The elements of the group � are isometries of T 7, preserving its flat G2 structure. The fixed
points of α, β, γ are each 16 copies of T 3. The singular set S of T 7

�
is a disjoint union of 12

copies of T 3. The singularity on each component of S is of the form T 3 × C

±1 . The singularities
of T 7/� can be resolved and a metric with holonomy G2 on a compact 7 manifold may be
obtained [50].

Untwisted sector. We may now consider the construction of the untwisted sector of MIM2
on the G2 orbifold T 7/�. We start from the general space of configurations satisfying the
topological constraint. This constraint ensures the irreducible wrapping of all configurations
of the supermembrane. We then consider the subspace of configurations invariant under �.
This was constructed in section 4.1. The maps are of forms (4.2) and (4.3) with the restrictions
on the values of mir (4.10) (on that particular basis of harmonic 1-forms). On the space of
configurations, we construct classes. Two elements of a class are related by a transformation
of �. The Hamiltonian, as mentioned before, has the same value on each element of the class.
The untwisted sector of the theory is now defined on the space of classes. Each class now
represents the map from � to the orbifold. This construction may be implemented directly in
the functional integral of the supermembrane, which in the case of MIM2 has a well-defined
Gaussian measure. The untwisted sector we have constructed breaks SUSY to N = 1 and it
is directly related to the analysis in [45].

Twisted sector. We will denote by a Z2 spin structure on an n-dimensional vector bundle E a
principle spin bundle PSpin(E) together with a two-sheeted covering:

ξ : PSpin(E) → PSO(E) (4.13)

such that ξ(pg) = ξ(p)ξ0(g) for all p ∈ PSpin(E) and all g ∈ Spin. ξ0 is the universal covering
homomorphism ξ0 : Spin(n) → SO(n) with kernel {1,−1} ∼ Z2. An element of PSO(E) can
be lifted to PSpin(E) if and only if W2(p) = 0, where W2 is the second Stiefel–Whitney class.
When n = 1, PSO(E) = X is the base manifold and a spin structure is defined to be a two-fold
covering of X. The Z2 spin structures when they exist are in one-to-one correspondence to a
+ or a − sign, assigned to the elements of a basis of homology on X.

We now consider the construction of the twisted sector of M2 9 with central charges on a
G2 manifold. The group of identifications on the target torus is � = Z3

2. The twisted sectors
correspond to maps which change sign when going around a cycle on � according to some
element of �. To construct all the global objects satisfying such conditions, we proceed as
follows. We assign to each element of the basis of homology Cr , r = 1, . . . , 2g, an element �r

of Z3
2. Each assignment defines a Z3

2 spin structure on the Riemann surface. For such a spin
structure, we construct the following global object. The map Xi, i = 1, . . . , 7, is a section of
PSpin(X), which is a two-fold covering of X, with a Z2 spin structure determined by the + or
− sign assigned to the homology basis according to the ith sign ± associated with the maps
�r . For example let us consider the Z3

2 spin structure obtained by assigning �1 = (2, 3, 5, 7)

to C1, �2 = (1, 4, 5, 7) to C2 and the identity I to the rest Ct , t = 3, 4, 5, 6. We then have the
corresponding transformations.

We now construct the global object Xi, i = 1, . . . , 7, by considering a section of PSpin,
a 2-covering of the Riemann surface, with the Z2 spin structure obtained by the columns in
table 5. The corresponding sections may be explicitly constructed in terms of the harmonic

9 A former study of the twisted states of an extended membrane in the case of M-theory on an orbifold S1

Z2
was

considered in [62].
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Table 5. The columns of the table define the sections with which the maps of the twisted sector
are constructed.

X1 X2 X3 X4 X5 X6 X7

C1 → �1 + − − + − + −
C2 → �2 − + + − − + −
C3 → I + + + + + + +
...

...
...

...
...

...
...

...

C6 → I + + + + + + +

1-forms dX̂1, . . . , dX̂6 of the g = 3 Riemann surface:

X1 = e
i
2 X̂2

ϕ1, X2 = e
i
2 X̂1

ϕ2, X3 = e
i
2 X̂1

ϕ1, X4 = e
i
2 X̂2

ϕ2,

X5 = e
i
2 X̂1

e
i
2 X̂2

ϕ5, X6 = ϕ6, X7 = e
i
2 X̂1

e
i
2 X̂2

ϕ7,

where ϕr, r = 1, . . . , 6 are scalar fields wrapping T 7 as described in section 4. These maps
are scalar fields on the two-fold coverings of the base Riemann surface �. The space of these
maps, for all possible assignment of elements of Z3

2 to the homology basis, defines the twisted
sector of the MIM2 theory. They remain scalar fields, as required by the supermembrane
Lagrangian, and are defined on two-fold coverings of �.

Remark. The Sp(6, Z) symmetry on the admissible set is broken after identifying the points
on T 7 by �. On each sector of the admissible set, one is left with a Z2 × Z2 symmetry.

4.3. Connection with Calabi–Yau compactifications

It is very well known that the G2 manifold can be also built using a partial complex structure
coordinate [48]. The above 3-form can be re-expressed as

 = Re(�) + w ∧ dx7. (4.14)

In this equation, � = dz1 ∧ dz2 ∧ dz3 is the complex holomorphic form of C3 and
w = i

2 (dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3) is the Kahler form. Since SU(3) is a subgroup
of G2, one can identify the C3 factor with a local Calabi–Yau threefold (CY3) used in a
two-dimensional N = 2 sigma model [51–53]. In this realization, the above 2-form (4.14) is
invariant under the symmetry

zi → zi x7 → −x7, (4.15)

which is needed to ensure N = 1 in 4D. We will try to show that this transformation can be
related to the above Z2 × Z2 × Z2 symmetry used in the orbifold construction. This can be
done by imposing certain constraints depending on the precise Z2 action. Indeed, CY3 could
be taken as T 2 × T 2 × T 2 quotiented by Z2 × Z2. Since the CY condition requires the use
of only two Z2’s

(
Z1

2 × Z2
2

)
, we need to single out the third Z3

2 factor. Z1
2 × Z2

2 acts on the
6-torus structure, producing as a result a CY3, and trivially on the circle S1. The third Z3

2 acts
on both, the CY3 and the circle leading to the G2 structure manifold. In this way, one can
identify the last action with the transformation given in (4.15).

The singularities of this orbifold can be identified with its fixed points. In the three-
dimensional complex factor, the fixed locus of this G2 manifold is a Lagrangian submanifold.
Its volume form is defined by the real part of . Since the circle has two points, the total
singular geometry consists of two copies of the Langranian submanifold. The total singular
geometry then consists of two copies of such a Lagrangian submanifold. The singularities can
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have an interpretation in the MIM2 picture as critical points. However, this does not mean
that there is a degenerate locus of extremal points. In contrast, the quantum analysis reveals
that there is an absolute minimum for the Hamiltonian of the supermembrane. There are no
flat directions in the potential. This fact can be understood from the fact that the dual of the
gauge symmetries corresponds to different backgrounds and not a unique one.

Locally each singular point should be resolved like R3 × X, where X is an ALE Calabi–
Yau twofold asymptotic to C2/Z2, which is known as ALE space with A1 singularity. The
ALE space with A1 singularity is described by

z2
1 + z2

2 + z2
3 = 0. (4.16)

Using a simple change of variables, this is equivalent to

xy = z2, (4.17)

where x, y and z are complex coordinates. As usual, this singularity can be removed either by
deforming the complex structure or by a blow-up procedure. Geometrically, this corresponds
to replacing the singular point (x = y = z = 0) by CP 1 ∼ S2. As previously explained, the
APD connected with the identity deforms the shape of each T 2 and it produces translation on
the orbifold side. They serve to blow up the corresponding orbifold singularities leading to a
compactification on a true G2 manifold.

5. Quantum properties of the supersymmetric theory

In this section, we discuss the quantum consistency of our previous construction of the
supersymmetric action of the supermembrane (minimally immersed) on a G2 manifold. In
particular, its spectrum is discrete. Both results are unique and highly nontrivial from the
supermembrane point of view.

We denote the regularized Hamiltonian of the supermembrane with the topological
restriction by H, its bosonic part by Hb and its fermionic potential by Vf :

H = Hb + Vf . (5.1)

We can define rigorously the domain of Hb by means of Friederichs extension techniques. In
this domain, Hb is self-adjoint and it has a complete set of eigenfunctions with eigenvalues
accumulating at infinity. The operator multiplication by Vf is relatively bounded with respect
to Hb. Consequently using Kato perturbation theory [63], it can be shown that H is self-adjoint
if we choose

Dom H = Dom Hb. (5.2)

In [40] it was shown that H possesses a complete set of eigenfunctions and its spectrum
is discrete, with finite multiplicity and with only an accumulation point at infinity. An
independent proof was obtained in [43] using the spectral theorem and theorem 2 of that
paper. In section 5 of [43], a rigorous proof of the Feynman formula for the Hamiltonian of the
supermembrane was obtained. In contrast, the fermionic potential of the Hamiltonian of the
supermembrane, without the topological restriction, although positive, is not bounded from
below. It is not a relative perturbation of the bosonic Hamiltonian. The use of the Lie product
theorem in order to obtain the Feynman path integral is then not justified. It is not known and
completely unclear whether a Feynman path integral formula exists for this case.

In the previous sections, we have provided a construction of the supermembrane with
the topological restriction on an orbifold with a G2 structure that can be ultimately deformed

14



J. Phys. A: Math. Theor. 42 (2009) 325201 A Belhaj et al

to lead to a true G2 manifold. All the discussion of the symmetries on the Hamiltonian is
performed directly in the Feynman path integral, at the quantum level and is completely valid
by virtue of our previous proofs. All other constructions in terms of supermembranes not
restricted by our topological restriction are not justified in any sense, and from a quantum
mechanical point of view they are probably wrong.

In [31] the fermionic fields under the Lorentz transformations on the target space are
scalars under diffeomorphisms on the world-volume. They are scalars under area preserving
diffeomorphisms, both connected and not connected to the identity, in the light cone gauge
and there is no harmonic sector related to it. Consequently, it is invariant under all symmetries
introduced in our construction and the supersymmetric theory and not only the bosonic part
is compactified on the G2 manifold. Moreover, in [41], it was proved that the theory of
the supermembrane with central charges corresponds to a nonperturbative quantization of a
symplectic super Yang–Mills in a confined phase and the theory possesses a mass gap.

In contrast with other analyses, the discrete symmetries required to perform the orbifold
with G2 structure identification are already realized at the level of the Hamiltonian leading to
a top-down compactification. This fact restricts the compactification manifold to a particular
one where we can guarantee that all of the above spectral properties of the supersymmetric
Hamiltonian compactified on a torus found before are preserved on the compactification
process on the G2 manifold, for its bosonic and supersymmetric extension, which is, a priori,
a highly nontrivial fact. Indeed, the untwisted sector of the theory is exactly the same as
the one corresponding to the compactification of MIM2 on a 7-torus with the integers of
the minimal immersion in the orbifold case particularized to some specific values that do
not alter in any sense the spectral properties. The twisted sector of the theory only adds a
finite number of states compatible with the orbifold projection, and it does neither change the
spectral properties. On this G2 orbifold, we can guarantee the discreteness of the quantum
supersymmetric spectrum of MIM2.

We argue concerning the backreaction on heuristic grounds. We have chosen as a departing
point a flat target space T 7 where MIM2 has been compactified and discrete isometries have
been identified to end with an orbifold T 7

/
Z3

2 with a G2 structure. The central charge condition
we use (8) implies the existence of a bundle gerbe on the target, so a flux condition on it. It
also imposes restrictions on the allowed minimal immersions. The non-vanishing components
of the G4 flux source the MIM2. This effect has already been taken into account through the
minimal mappings. They impose restrictions on the target space (analogous to a generalized
calibration). It produces a backreaction on the target space. The orbifold singularities are
smoothed by the induced effect of the central charge condition and are responsible for achieving
a G2 holonomy manifold. The backreaction generates an effect equivalent to the blow-up of
the singularity, preserving the G2 structure of the model and hence leading to a manifold
with G2 holonomy. An explicit computation of the metric would be desirable but it lies
outside the scope of this paper. Also, under heuristic grounds, we think that the contribution
to the Hamiltonian of this backreaction created by the central charge condition is a relatively
bounded perturbation, in the sense of Kato [63], of the Hamiltonian of our present model. The
quantum properties would then be qualitatively the same as those of the MIM2 theory on the G2
orbifold.

6. Phenomenological analysis of MIM2 on this G2 manifold

We will show in this section that the model we have exposed above represents a new kind of
models with potential interesting properties at the phenomenological level.
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In [11], the phenomenological interest of G2 compactifications admitting an expression
in terms of CY compactifications has been pointed out since for these manifolds an explicit
metric can be obtained [66] and ALE resolutions of the singularities may lead to interesting
phenomenological properties as chirality and non-Abelian gauge groups. It is very appealing
to have been able to express our transformations in terms of this. It has been, however,
argued that orbifold singularities are not enough to guarantee chirality [65], and so an isolated
conical singularity is needed. Interesting models in which D6 branes wrap slag cycles of
a CY manifold that have an uplift to M-theory as Taub-nut geometry with fractional M2
wrapping collapsed 3-cycles in a G2 compactification can be found in [67–69] with interesting
phenomenological properties; models of M2 on G2 compactifications that are able to produce
nonperturbative effects can also be found [70]. Our approach, at first sight, may not seem
to share such a nice feature; however, the study of its phenomenological properties is far to
be closed. We would like to stress that although we have constructed a G2 manifold with
orbifold singularities, we have a regular supermembrane minimally immersed on G2 and not a
fractional one. As it happens in string compactifications, there are different ways of obtaining
interesting phenomenology: let us say Calabi–Yau’s compactifications with Dp-branes placed
at the singularities. The enhancement of the symmetry is due to the geometry of the singularity
that has its correspondence with the first type of models in G2 compactifications [67–69]. In
these, it is fundamental to have a conical singularity on the G2 compactification side. There is
another way of obtaining interesting phenomenology that corresponds to having intersecting
Dp branes (IIA) or magnetized Dp branes (IIB) on, for example, an orientifold orbifolded
action, where the gauge and chiral properties are mainly due to the particularities of the Dp-
brane construction. Our M-theory model would be in correspondence with this second type.
Here the chirality properties and gauge enhancement would be due to the MIM2 world-volume
properties and not associated with the former orbifolded singularities (that are smoothed). In
that sense, it would be interesting to compute explicitly the corresponding metric and study
its phenomenological properties. Other aspects of interest such as confinement from G2
manifolds [64] (considered mainly in G2 manifolds with ALE singularities) emerge naturally
in our case since the spectral properties of MIM2 have not changed when we have performed
the identification in the target space and the theory shows confinement. In [41], it is argued how
the MIM2 theory could reproduce the strong coupling regime of SUSY QCD since glueballs
are present and it possesses a discrete spectrum with a mass gap. Indeed, it corresponds
exactly to a symplectic super Yang–Mills in 4D coupled to several scalar fields. The proposal
is that the confined phase of the theory corresponds to MIM2 on a 7-torus and the quark–
gluon plasma phase to the ordinary M2 compactified in a 7-torus. Both phases are connected
through a topological phase transition of quantum origin that breaks the center of the group.
Since the theory of MIM2 on a G2 manifold does not change its quantum spectral properties,
those previous properties would apply and it could also describe the confined phase of the
theory. Regarding moduli stabilization aspects and assuming that the target torus is fixed to be
isotropic, the moduli parametrizing the position of MIM2 on a 7-torus as well as the overall
moduli parametrizing the size of the manifold are fixed [45]. When MIM2 is compactified on
the G2 orbifold the singularities are resolved through a backreaction effect due to the wrapping
and the moduli associated with these singularities are also fixed. We then obtained the 11D
supermembrane minimally immersed on a particular G2 manifold.

7. Discussion and conclusions

In this paper we have shown, to our knowledge, for the first time a top-down compactification
of the supermembrane on a particular G2 manifold. The 11D supermembrane theory restricted
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by a topological condition due to an irreducible wrapping is stable at classical and quantum
levels, has a discrete spectrum and a mass gap. It can be compactified on a T 7

Z3
2

orbifold

preserving its quantum stability properties. The resulting theory can be interpreted as a
compactification on a G2 manifold. Indeed, the symmetries of the theory produce a holonomy
bundle that corresponds exactly to those associated with the Riemannian holonomy of a G2
manifold. By performing the identification on the target space of the discrete symmetries
preserving the topological condition, only those symmetries associated with the G2 orbifold
space are possible; neither the configuration states nor the minimal immersions are invariant
under the spurious symmetries that would break the supersymmetry to N = 0. One can see
that the holonomy bundle associated with the compactification to 5D is related to the Klein
subgroup. When this is further compactified to the remaining S1, there exist seven possible
immersions of the M2-brane on the target space of T 7 that allow us to make exactly the
identifications with the G2 holonomy group. The singularities of this G2 orbifold may be
resolved, as shown by Joyce, leading to a true G2 manifold. The shifts have their origin in
the diffeomorphisms homotopic to the identity of MIM2. The untwisted and twisted sectors
are completely characterized. Moreover, this result can also be seen in terms of CY3×S1

Z2
.

We can finally conclude that for the first time, a consistent quantization procedure for the
supermembrane on a G2 manifold has been presented. It is in terms of the supersymmetric
action of the supermembrane, subject to a topological condition—which is equivalent to having
central charges due to an irreducible winding—on a particular G2 manifold.

From a phenomenological point of view, the supermembrane with central charges on the
G2 manifold represents a new kind of model of compactification in which the supermembrane
is minimally immersed in the whole G2 manifold and not just at the singularities. Typically,
in the literature, the wrapping of M2s around the singularities of a G2 manifold has been
studied, in analogy with the constructions of Dp-brane models at singular Calabi–Yau’s
in string theories. These constructions require particular conditions in order to obtain
interesting properties, i.e. chirality is associated with the existence of conical singularities
on the G2 manifold and the gauge properties need to have orbifold singularities such as ADE
singularities, etc. In the supermembrane with central charges, the gauge field content is already
defined on its world-volume and is not associated with the singularities of the compactification
manifold. Since there is also a flux condition on the world-volume, chirality in our model
cannot be automatically ruled out—in resemblance to the magnetized D-brane models on
type II constructions—and deserves further study. We think that the supermembrane with
central charges compactified on this G2 manifold is then an interesting starting point on the
construction of a new kind of models with potentially rich phenomenology.
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