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A SOBOLEV POINCARE TYPE INEQUALITY FOR INTEGRAL
VARIFOLDS

ULRICH MENNE

ABSTRACT. In this work a local inequality is provided which bounds the dis-
tance of an integral varifold from a multivalued plane (height) by its tilt and
mean curvature. The bounds obtained for the exponents of the Lebesgue
spaces involved are shown to be sharp.
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INTRODUCTION

Regularity of integral varifolds is often investigated by use of an approximation
by Lipschitzian single or multivalued functions. A basic property of such functions is
the Sobolev Poincaré inequality. In this paper a similar inequality is established for
the varifold itself. It turns out that this can be done only up to a limiting exponent
which is sharp. The initial motivation to examine the validity of a Poincaré type
inequality was given by a question arising from [Sch04b|, see below.

First, some definitions will be recalled. Suppose throughout the introduction
that m, n are as above and U is a nonempty, open subset of R"*™. Using [Sim83
Theorem 11.8] as a definition, p is a rectifiable [an integral] n varifold in U if and
only if x4 is a Radon measure on U and for p almost all x € U there exists an
approximate tangent plane T,u € G(n + m,n) with multiplicity 6™ (u,z) of u at
x [and 0™ (u,z) € N], G(n+ m,n) denoting the set of n dimensional, unoriented
planes in R®**™. The distributional first variation of mass of p equals

(6p)(n) = [div,ndu  whenever n € CL(U,R™™™)

where div, n(z) is the trace of Dn(z) with respect to T,u. ||dp|| denotes the total
variation measure associated to du and p is said to be of locally bounded first
variation if and only if ||du|| is a Radon measure. The tilt-excess and the height-
excess of u are defined by

tiltex, (z, 0, T) = Q_"fBg(z)|T§u — T du(€),
heightex , (z, 0, T) := 97"72IBQ(I) dist(¢& — 2, T)* du(€)
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whenever 2 € R"™™, 0 < o < oo, B,(z) C U, T € G(n+m,n); here S €
G(n + m,n) is identified with the orthogonal projection of R"*™ onto S and | - |
denotes the norm induced by the usual inner product on Hom(R™*™ R™*™). From
the above definition of a rectifiable n varifold p one obtains that pu almost all of
U is covered by a countable collection of n dimensional submanifolds of R**" of
class C'. This concept is extended to higher orders of differentiability by adapting
a definition of Anzellotti and Serapioni in [AS94] as follows: A rectifiable n varifold
p in U is called countably rectifiable of class C¥* [C¥], k € N, 0 < a < 1, if and
only if there exists a countable collection of n dimensional submanifolds of R**™
of class C*“ [C*] covering p almost all of U. Throughout the introduction this
will be abbreviated to C*< [C¥] rectifiability. Note that C*! rectifiability and C**+!
rectifiability agree by [Fed69, 3.1.15].

Decays of tilt-excess or height-excess have been successfully used in [All72, [Bra78s|,
Sch04al [Sch04b]. The link to C? rectifiability is provided in [Sch04b], see below. In
order to explain some of these results, a mean curvature condition is introduced.
An integral n varifold in U is said to satisfy , 1 < p < o0, if and only if either
p > 1 and for some ﬁﬂ € LY (u,R™™™) called the generalised mean curvature of

loc
s

(Hp) (Op)(n) = — [H, endy  whenever 5 € CH(U,R"™™)
or p=1and
(Hq) w is of locally bounded first variation;

here e denotes the usual inner product on R**™. Brakke has shown in [Bra78, 5.7
that

tﬂtexu(xa 0, Tp1) = 0:(0), heightexu(z, 0, Tep) = 0.(0) asol0

for 41 almost every x € U provided p satisfies (H;) and

2—5)

tiltex, (x, 0, Tppt) = 0.(0*7°), heightex , (z, 0, T%) = 0.(e0 asp |0

for every e > 0 for p almost every x € U provided p satisfies (Hs). In case of
codimension 1 and p > n Schitzle has proved the following result yielding optimal
decay rates.
Theorem 5.1 in [Sch04a]. Ifm =1,p >n, p > 2, and p is an integral n varifold
in U satisfying (Hp), then

tiltex,, (z, 0, Tept) = Ox(0?), heightex,, (2, 0, Top) = O2(0*) as o]0
for p almost all x € U.

The importance of the improvement from 2 — ¢ to 2 stems mainly from the fact
that the quadratic decay of tilt-excess can be used to compute the mean curvature
vector H,, in terms of the local geometry of p which had already been noted in
[Sch01l, Lemma 6.3]. In [Sch04b] Schétzle provides the above mentioned link to C?
rectifiability as follows:

Theorem 3.1 in [Sch04b]. If u is an integral n varifold in U satisfying (Hz) then
the following two statements are equivalent:

(1) w is C? rectifiable.

(2) For p almost every x € U there holds

tiltex,, (z, 0, Ty ) = 0.(0%), heightex,, (z, 0, Ti:pt) = 0.(0%) asol0.

The quadratic decay of heightex,, implies C? rectifiability without the condition
(Hs) as may be seen from the proof in [Sch04b]. However, would not imply

(2) if p were merely required to satisfy (H,) for some p with 1 < p < 7%2, an



A SOBOLEV POINCARE TYPE INEQUALITY FOR INTEGRAL VARIFOLDS 3

example was be provided in [Men08bl 1.5]. On the other hand, it is evident from
the Caccioppoli type inequality relating tiltex, to heightex, and mean curvature,
see e.g. [Bra78, 5.5], that quadratic decay of heightex,, implies quadratic decay for
tiltex,, under the condition (Hs). This leads to the following question:

Problem. Does quadratic decay of tiltex, imply quadratic decay of heightex,,
under the condition (Hg)?

More generally, suppose that p is an integral n varifold in U satisfying ,
1<p<ox,and 0<a<1,1<q< 0. Does

lim sup rr—@~"/4 (f5 (T)|T§M — Tou|? du(g))l/q < 00
r10 (N
for p almost all x € U imply
limsupr—'=*="/9( [, () diSt(§ — 2, T )" d,u(f))l/q < o0
10 T

for p almost all x € U?

The answer to the second question will be shown in to be in the
affirmative if and only if either p > n or p < n and ag < n”—_’;, yielding in particular
a positive answer to the first question. The main task is to prove the following
theorem which in fact provides a quantitative estimate together with the usual
embedding in L? spaces.

Theorem Suppose Q@ € N, 0 < a < 1,1 <p<mn, and p is an integral n
varifold in U satisfying (Hop)).

Then the following two statements hold:

(1) Ifp<n, 1<q <n, 1 <q <min{22 L. "% 4hen for u almost all

n—qi’a n—p

a € U with 0™ (u,a) = Q there holds

limlsup pra—1-n/q2 | dist(- — a, Tapt)||o2 (1 B, (a))
rl0

<I'm 1ilﬂfllsoup7“_‘1_"/‘11 1Ty — Taptll L1 (ue B, (a))

where F is a positive, finite number depending only on m, n, Q, ¢, and

qz-
(2) If p=n, n < q < oo, then for p almost all a € U with 0™ (u,a) = Q there
holds

limlsoup r_o‘_1|| dist(- — a, Ta,LL)HLoo(#‘_BT(a))

<TI'pg limlsoup rm Ty — Toptll Lo B, ()

where L@ s a positive, finite number depending only on m, n, Q, and q.

Here T}, denotes the function mapping  to T, 1 whenever the latter exists. The
connection to higher order rectifiability is provided by the following simple adaption
of [Sch04b, Appendix A] by use of [Ste70, VI.2.2.2, VI.2.3.1-3].

Lemma. Suppose 0 < o < 1, p is a rectifiable n varifold in U, and A denotes the
set of all x € U such that T exists and

. —n—1l—« 3
hrr;lsoup 0 fBg(x) dist(§ — x, Tpp) dp(§) < oo.

Then L A is CH* rectifiable.

The analog of Theorem [2.10] in the case of weakly differentiable functions can
be proved simplify by using the Sobolev Poincaré inequality in conjunction with an
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iteration procedure. In the present case, however, the curvature condition is needed
to exclude a behaviour like the one shown by the function f: R — R defined by
o0

f(z) = Z(27i)X[2—7‘,—172—i[(x) whenever z € R
i=0

at 0; in fact an example of this behaviour occurring on a set of positive £! measure
is provided by f1/2 o g where ¢ is the distance function from a compact set C' such
that £1(C) > 0 and for some 0 < X\ < 1

limlionfr_gmﬁl([x + Ar,z+r[~C) >0 whenever z € C.

Therefore the strategy to prove Theorem is to provide a special Sobolev
Poincaré type inequality for integral varifolds involving curvature, see In the
construction weakly differentiable functions are replaced by Lipschitzian @ valued
functions, a @ valued function being a function with values in Qg (R™) = (R™)%/~
where ~ is induced by the action of the group of permutations of {1,...,Q} on
(R™)2,

Roughly speaking, the construction performed in a ball B,.(a) C U proceeds as
follows. Firstly, a graphical part G of u in B, (a) is singled out. The complement
of G can be controlled in mass by the curvature, whereas its geometry cannot be
controlled in a suitable way as may be seen from the example in [Men08bl 1.2] used
to demonstrate the sharpness of the curvature condition. On the graphical part G
the varifold p might not quite correspond to the graph of a @) valued function but
still have “holes” or “missing layers”. Nevertheless, it will be shown that p behaves
just enough like a @ valued function to make it possible to reduce the problem to
this case. Finally, for @@ valued functions Almgren’s bi Lipschitzian equivalence of
Qo(R™) to a subset of R™F for some P € N which is a Lipschitz retract of the
whole space directly yields a Poincaré inequality. More details about the technical
difficulties occurring in the construction and how they are solved will be given at
the beginning of Section

The work is organised as follows. In Section [I] the approximation of u by a @
valued function is constructed. In Section [2| the approximation is used to prove the
Sobolev Poincaré type inequality 2.8 and Theorem [2.10]

The notation follows [Sim83] and, concerning @) valued functions, [AIm00, 1.1 (1),
(9)—(11)]. Additionally to the symbols already defined, im f and dmn f denote the
image and the domain of a function f respectively, T is the orthogonal comple-
ment of T for T € G(n 4+ m,n), v, denotes the best constant in the Isoperimetric
Inequality as defined in and f(¢) denotes the ordinary push forward of a mea-
sure ¢ by a function f, ie. f(¢)(A) := ¢(f~1(A)) whenever A C Y, if ¢ is a
measure on X and f : X — Y. Definitions are denoted by ‘=’ or, if clarity makes it
desirable, by “:=’. To simplify verification, in case a statement asserts the existence
of a constant, small (¢) or large (I'), depending on certain parameters this number
will be referred to by using the number of the statement as index and what is sup-
posed to replace the parameters in the order of their appearance given in brackets,
for example & [xrenogs, 2.6) (M 1, 1 — 03/2).

The results have been previously published in the author’s PhD thesis, see
[Men08a).

Acknowledgements. The author offers his thanks to Professor Reiner Schétz-
le for guiding him during the preparation of the underlying dissertation as well as
interesting discussions about various mathematical topics. The author would also
like to thank Professor Tom Ilmanen for his invitation to the ETH in Ziirich in
2006, and for several interesting discussions concerning considerable parts of this
work.
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1. APPROXIMATION OF INTEGRAL VARIFOLDS

In this section an approximation procedure for integral n varifolds p in R**™ by
@ valued functions is carried out. Similar constructions occur in [Alm00, Chapter
3] and [Brar8, Chapter 5]. Basically, a part of p which is suitably close to a @
valued plane is approximated “above” a subset Y of R™ by a Lipschitzian @) valued
function. The sets where this approximation fails are estimated in terms of p and
L™ measure.

In order to obtain an approximation useful for proving the main lemma [2.6] for
the Sobolev Poincaré type inequalities 2.8 and [2.10]in the next section, the following
three problems had to be solved.

Firstly, in the above mentioned estimate one can only allow for tilt and mean
curvature terms and not for a height term as it is present in [Bra78, 5.4]. This
is done using a new version of Brakke’s multilayer monotonicity which allows for
variable offsets, see (1.6

Secondly, the seemingly most natural way to estimate the height of y above the
complement of Y, namely measure times maximal height A, would not produce
sharp enough an estimate. In order to circumvent this difficulty, a “graphical
part” G of p defined mainly in terms of curvature is used which is larger than
the part where p equals the “graph” of the @ valued function. Points in G still
satisfy a one sided Lipschitz condition with respect to points above Y, see[1.10| and
. Using this fact in conjunction with a covering argument the actual error in
estimating the ¢ height in a ball B,(¢) where L™(B,({)NY) and L™(B,(¢) ~Y) are
comparable, can be estimated by £™(B,(¢) ~ Y)Yt instead of L™(B,(¢) ~ Y)Y/ h;
the replacement of h by t being the decisive improvement which allows to estimate
the ¢* height (¢* = n”—f’q, 1 < g < n) instead of the ¢ height in

Thirdly, to obtain a sharp result with respect to the assumptions on the mean
curvature, all curvature conditions are phrased in terms of isoperimetric ratios in
order to allow for the application of the estimates in [MenO8b]. In this situation
it seems to be impossible to derive monotonicity results from the monotonicity
formula, see e.g. [Sim83) (17.3)]. Instead, it is shown that nonintegral bounds for
density ratios are preserved provided the varifold is additionally close to a @ valued
plane, see The latter result appears to be generally useful in deriving sharp
estimates involving mean curvature.

1.1. f mn €N, a € R"™ 0 <r < oo, T € G(n+m,n), and p is a stationary,
integral n varifold in B,.(a) with T,ju = T for p almost all # € B,.(a), then T (spt 1)
is discrete and closed in T (B,.(a)) and for every x € spt

y€ B.(a), y—xz €T implies 0"(p,y) =0"(p,x) € N;
hence with S, ={y € B,(a):y—z €T}
pr Sy =0"(u,x)H" LS, whenever z € B, (a).
A similar assertion may be found in [AIm00l 3.6] and is used in [Bra78| 5.3 (16)].

1.2. Lemma. Suppose 0 < M < oo, M ¢ N, 0 < A\ < Ay < 1, m,n € N,
T € G(n+m,n), F is the family of all stationary, integral n varifolds in BY™™(0)
such that

Topp=T for p almost all x € BY™™(0), u(By™(0)) < Mw,,
and N is the supremum of all numbers
(war™) " (B (0))
corresponding to all p € F and Ay <1 < Ag.
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Then for some u € F and some A1 < r < Ay
N = (@or™) " u(BI(0)) < M.

Proof (c¢f. [Men08d, 1.2]). Noting compactness by [AII72, 6.4], the proof reduces
to elementary geometry. U

1.3. Lemma (Quasi monotonicity). Suppose 0 < M < oo, M ¢ N, 0 < A < 1, and
m,n € N.

Then there exists a positive, finite number € with the following property.

Ifa € R"™ 0 < r < oo, p is an integral n varifold in B,.(a) with locally bounded
first variation,

n(B,(a)) < Mw,r™,
and whenever 0 < o <r
u(By(a)) =,

16pll(B,(a)) < e
<e (a)) for some T € G(n+ m,n),

)
fBQ(a) |T:cﬂ - T| dﬂ(x) = N(

(here 00 := 1), then
w(B,(a)) < Mw, o™ whenever 0 < o < Ar.

<
BQ

Proof. Using induction, one verifies that it is enough to prove the statement with
A2r < o < Arreplacing 0 < ¢ < Ar in the last line which is readily accomplished by
a contradiction argument using [[.2] and Allard’s compactness theorem for integral
varifolds [AIl72] 6.4]. O

1.4. Remark. Clearly,

(wng")flu(BQ(a)) < MM whenever 0 < p <.
1.5. Lemma (Multilayer monotonicity). Suppose m,n,Q € N, 0 < § < 1, and
0<s<1.

Then there exists a positive, finite number € with the following property.
IFXCRY"™™ TeGn+m,n),0<r<oo,

|T(y — )| < sly—z| whenever z,y € X,
w is an integral n varifold in \J,c x B, (x) with locally bounded first variation,
Pwexti(pr) 2 Q-1+,
and whenever 0 < p <r, x € X Nsptp
I6801(B,(2)) < e (B )", [ o Ten =TI Au(€) < = u(B, (),
then
1(Upex Bo(®)) > (Q — §)wno™  whenever 0 < o <r.

Proof (cf. [Men08dl, 1.7]). Noting that lower bounds on 07 (u,z) for x € X are
available, see [Men08bl 2.6] or [Men08al A.10], the proof is variant of Brakke’s (cf.
[Bra7sgl 5.3]). O

1.6. Lemma (Multilayer monotonicity with variable offset). Suppose m,n,Q € N,
0<M<o0,6>0,and0<s<1.

Then there exists a positive, finite number € with the following property.

IFX cR"™ T € Gn+m,n), 0 <d < oo, 0 <r <oo, 0 <t < oo,
f:X — Rvm,

T(y — )| < sly—=l, |T(f(y) - f(@)] <slfly) = flo)l,
f(x)—zeBy"™O0)NT, d<Mt, d+t<r
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for x,y € X, p is an integral n varifold in \J, x B, (x) with locally bounded first
variation,

Ppexti(p ) 2Q—-140, wu(B.(v)) < Mw,r™ forz € X Nspty,
and whenever 0 < o <r,z € X Nsptp
I60ll(By()) < € u(By(2)' ™", [ (I Ten =TI dp(€) < € p(By(x)),
then
(Usex{y € Bi(f(2)):|T(y — @) > sly — z[}) > (Q — d)wnt™.

Proof. If the lemma were false for some m,n,Q € N, 0 < M < 00, 0<§ <1, and
0 < s < 1, there would exist a sequence ¢; with ¢; | 0 as ¢ — oo and sequences
X;, T;, d;, v, t;, fi, and p; showing that e; does not satisfy the conclusion of the
lemma.

In view of[I.3] [[-4] one could assume d; +t; = r; for i € N by replacing M by 2M.
Using isometries and homotheties one could also assume for some T' € G(n + m, n)

T,=T, r=1
for + € N. Finally, one could assume, possibly replacing M by a larger number,
X, Csptu;, #X;<Q, X;C By™(0)

for i € N.

Therefore passing to a subsequence (cf. [Fed69, 2.10.21]), there would exist a
nonempty, closed subset X of B} (0), 0 < d < o0, 0 < t < oo, and a nonempty,
closed subset f of R x R*™ guch that #X < Q,

di - dand t; —t as i — oo,
X; — X and f; — f in Hausdorff distance as i — oo.
There would hold
sUT(y—2)| <|ly—=| forx,yeX, d<Mt, d+t=1, t>0.
Moreover, since
(1= )" 2lys — 2| < |TH(ys — 22)| = |TH(filws) = falwa)| < [ filys) = filw)]

for z;,y; € X;, and i € N, f were a function and one could readily verify dmn f = X,
and

f(x)—z e By"™0)NT forz e X,
sTUT(f(y) = f()] < [f(y) = f(2)] forz,ye X.

Possibly passing to another subsequence, one could construct (cf. [All72] 6.4]) a
stationary, integral n varifold p in U := |J, o x B; () with

T.p=T for p almost all x € U
such that
[Jedu; — [pdu asi— oo for ¢ € CO(R™™) with sptp C U.

According to[1.5| one would estimate for large i

1i (Upex, B,(2)) = (Q — 0)wne™  whenever 0 < ¢ <1,
hence

1(UpexB,(@)) > (Q — 6)wno™  whenever 0 < o < 1.
Therefore, passing to the limit ¢ | 0, one would infer the lower bound (noting [1.1)

EzeXen(:uvx) Z Q — 0.
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For y,z € R"™™ 0 < p < oo define V (y, 2, ) to be the set of all z € B,(z) such
that
sTHT(y — )| > |y — =],
vexV(x, f(z),t) would satisfy
K C UweXiV(as,fi(x),ti) for large 1;

and note that every compact subset K of J

hence
#(Uex V(@ (2),0)) < liminf gy (U, Vi, fil2), 1) < (@ — Bant™
On the other hand would imply in conjunction with the fact
{zeR"™ iz —yeTIN{zeR""™™ 22T} =10
for y,z € X with y # z and the lower bound previously derived
P(Uaex V(@ f(@),1) > (Laex 0" (1 2))wnt™ > (Q = S)wnt",
hence ) .y 0™ (i, ) = Q — ¢ which is incompatible with @ — ¢ ¢ N. O

1.7. Definition. Whenever n € N the symbol ~,, will denote the smallest number
with the following property:

If m € Ng, pu is a rectifiable n varifold in R*™*™ with u(R"*™) < oo and
[|p][(R™™) < oo, then

n({z € R ™07 (1, 2) > 1}) <y p(RPF™) V7 5| (R7H™).

1.8. Remark. v, < oo by the Isoperimetric Inequality of Micheal and Simon. Fur-
ther properties of this number are given in [Men0O8b, Section 2].

1.9. Lemma. Suppose myn € N;0<d<1,0<s<1,and0< M < .
Then there exists a positive, finite number € with the following property.
IfaeR"™™ 0<r<oo, Te€GMn+myn),0<d<oo,0<t<oo, (€R"™T™

max{d,r} < Mt, (e By ™(0)NT, d+t<r,
W is an integral n varifold in B, (a) with locally bounded first variation, a € spt p,
16pl[(B(a)) < e p(B(a))' ", p(B,(a)) < Mw,r™,
fBT(a)|T£M = T|du(§) < ep(B,(a))
and for0 < o <r
1612l[(By(a)) < (27) "  (B,y(a)) ' =H/"

(see[1.7]), then

p{z € Bi(a+ Q) :|T(x —a)| > s|lz —al}) > (1 — §)wnt™.

Proof. A contradiction argument using [Men08b| 2.5], and [AII72, 6.4] yields
the result. (]

1.10. Lemma. Suppose m,n,Q € N, 0 < §; < 1,0 < § < 1,0 < s < 1,
0<s50<1,0< M <00, and 0 < A <1 is uniquely defined by the requirement

nj2 _ (50)> \"? .,
(1—A2)/2_(1—52)+(1+W) A",

Then there exists a positive, finite number € with the following property.
IFXCR"™™, TeGn+m,n),0<d<oo, 0<r<oo, 0<t<oo,€R"™™,

#T(X)=1, ¢eB/*™0)NT, d<Mt, d+t<r,
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p is an integral n warifold in \J,c B, (z) with locally bounded first variation,
0" (u,z) €N forx € X,

Ywex?"(n,x) =Q, p(B,(v)) < Mw,r"™  forz € X,
and whenever 0 < p <r,z € X
16p2][(By()) < & u(By(x)) /", S, ()| Ten = T dp(€) < e (B, (2))

satisfying

WUsex{y € Bz + O):T(y — 2)| > soly — 2l}) < (Q + 1 = d2)wnt",
then the following two statements hold:
(1) If 0 < 7 < A, then
M(UCEGXBT<J;)) < (Q +61)wn7n~

(2) Ify € spt p with dist(y, X) < At/2 and

181l (By(y) < (290) (B, (y))' /™ for 0 < o < 81 dist(y, X),

then for some x € X

T(y — )| = sly — .

Proof of (). One may first assume max{é,d2} < 1/2 and then A? < 7/t < X by
iteration of the result observing that the remaining assertion implies inductively

'u(UwEXB)\*iT(x)) < (Q + 51)wn(>\7i7')n

whenever i € N, A~7 < A\t. Moreover, in view of [1.3] only the case r = d+ ¢
needs to be considered.

The remaining assertion will be proved by contradiction. If it were false for some
m,n,QeEN 0<d <1/2,0<02<1/2,0<s9<1,and 0 < M < oo, there would
exist a sequence ¢; with ¢; | 0 as i« — oo and sequences X;, T3, d;, 74, t; (;, pi, and
7; with ¢ € N showing that ¢; does not satisfy the assertion.

The argument follows the pattern of First, one could assume for some
T € Gn+m,n)

T,=T, r=1
for i € N and then noting #X; < @ that X; C B}/ (0) and hence, possibly
passing to a subsequence, the existence of real numbers d, ¢, 7, of a nonempty,

closed subset X of B]’\ij(O), of ¢, € R™"" and of a stationary, integral n varifold
pin U = ,cx By (x) such that #X < @, and, as i — oo,

di—d, ti—t, 17—-1 (=
X; — X in Hausdorff distance,
[edu; — [edu  for ¢ € COR™™) with spt C U,
and additionally
T,p=1T for p almost all x € U.
Clearly,
d<Mt, d+t=1, t>0, N <71/t<)\
#T(X)=1, ¢€B;™0)NT,
and one would readily verify
(Upex{y € Bu(z + Q) |T(y — 2)| > soly — 2[}) < (Q +1 = &2)wnt",
1(Upex Br () > (Q + 61)w, ™.
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Moreover, Would imply with S, := {z € R"*™ . T+ (z—1x) = 0} for z € R**™
,u(UIExBQ(x)) >(Q —d)wpo™ for0< p<1,
ZzeXan(M’x) Z Q?
> ex 0" (@) (H" L Sy)(A) < p(A) for ACU.

Therefore if z € X, y € sptu, T+(y) ¢ TH(X), 0 < |T+(y — )| = h < t, then one
would find

{z€8,:|T(z—x)| < solz —z|} =S, ﬂB a1y 1/Zh(oc—l—TL(y—gc)),
((1 - (h/t) >"/2 (552 = 1)"/2(h/t)" )wnt“
= (M S,) By + ) — (H"L8,)({z € R™™: [Tz — )| < sol= — a})
(0 5,)(: € Bula+ T )] > sol — al)
(1 = d2)wnt™,
hence h > At, in particular, since A\t > 7 and #7T(X) =1,
5901 1 Uy B () = U 2 B, (o).
M(UxGX (@ )) QunT"

<
<

contradicting the previously derived lower bound because 7 > 0. O
Proof of (cf. [Men08d, 1.10(2)]). Having part at one’s disposal, the proof
can be carried out using an argument similar to and part . O

1.11 (cf. [Men0O8al D.11]). The following proposition links approximate affine ap-
proximability of @) valued functions to approximate differentiability of Lipschitzian
functions.

If n,m,Q € N, A is L measurable, f : A — Qq(R™) is Lipschitzian, I is
countable, and to each i € I there corresponds a function f; C graphg f with L™
measurable domain and Lip f; < Lip f such that

#i:(0,y) € £i} = 00 f@)ll,y)  whenever (z,y) € A x R™,
then f is approximately strongly affinely approximable with
ap Af(a)(v) = X icr(o)lfi(z) + (v,ap Dfi(x))]  whenever v € R™

at L™ almost all a € A where I(a) = {i € I:a € dmn f;}. Moreover, for any n, m,
Q, A, and [ as above such functions f; do exist.

In fact, the existence is proved using [Fed69 3.3.5] and the relation to the Q
valued function is established adapting [Fed69l 3.1.5, 3.1.9] and using [Fed69} 2.9.11,
3.1.2, 3.1.7).

1.12. Definition. Suppose m,n,Q € N, and T € G(n + m,n).
Then P is called a @ valued plane parallel to T if and only if for some S € Q¢ (T+)
(see [Alm00] 1.1 (1)])

P=(6°(|S].) o T

S is uniquely determined by P. For any two @ valued planes P; and P, parallel to
T associated to S1,S2 € Qg(T+) one defines (see [AIm00, 1.1 (1)])

G(Pr1, P2) == G(S1,52).

In case S = ZZQ:1[[ZZ]] for some z1,...,2g € T+, then

Q Q
”SH :Zézm PZZH”L{%ERnJ’_m:TL(x):zi}
i=1 i=1
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where §, denotes the Dirac measure at the point x.

1.13. In studying approximations of integral varifolds the following notation will be
convenient. Suppose m,n € N, and T' € G(n + m,n). Then there exist orthogonal
projections 7 : R"™ — R", ¢ : R®*™ — R™ such that 7' = im7* and 7o o* = 0,
hence

T=n*omr, T'=0"00, lgusm =7"0om+0*00.

Whenever ¢ € R*"™ 0 < r < oo, 0 < h < oo the closed cylinder C(T,a,r,h) is
defined by

C(T,a,7,h) = {z € R"™":|T(z —a)| < r and |TL(x —a)| < h}
={z e R"":|1(z — a)| <r and |o(z — a)| < h}.
This definition extends Allard’s definition in [AlI72] 8.10] where h = cc.

1.14. Lemma (Approximation by @ valued functions). Suppose m,n,Q € N, 0 <
L<oo,1<M<oo, and0<6; <1 forie{l,2,3,4}.
Then there exists a positive, finite number € with the following property.
Ifa,r, h, T, m, and o are as in[1.13, h > 2847,

U= {z e R""™ dist(z,C(T,a,r,h)) < 2r},

w is an integral n varifold in U with locally bounded first variation,

(Q =14 61)wpr™ < p(C(T,a,m,h)) < (Q+1—d2)wpr™,
w(C(Tya,r h+ 041m) ~C(T,a,r,h — 2847)) < (1 = b3)wpr™,
w(U) < Mw,r™,

0 < ey <e, B denotes the set of all x € C(T,a,r, h) with 6*"(u,x) > 0 such that
either  |[6pl|(B,(x)) > e1 p(B,(x))' "/ for some 0 < o < 2r,
or fE’Q(z)|T5/”L —T|dpu(€) > e1 u(B,(x)) for some 0 < o < 2r,

and G denotes the set of all x € C(T,a,r, h) Nspt p such that

161l|(Ba, () < & p(Boy () 1",
s, (| Ter — T du(§) < & p(By,(x)),
161ll(By () < (27a) " i(By(a)' " for 0 < o < 2r,

then there exist an L™ measurable subset Y of R™ and a function f:Y — Qqo(R™)
with the following seven properties:

(1) Y C B,(n(a)) and f is Lipschitzian with Lip f < L.
(2) Defining A = C(T,a,r,h)~B and A(y) = {z € A:7n(x) = y} fory € R",
the sets A and B are Borel sets and there holds (see [Alm00, 1.1(1)])
o(ANsptu) C By, 5,,.(0(a)), sptf(y) Co(Aly)),
1F @)l = o (0" (1, ) H" L Aly))

whenever y € Y.
(3) Defining the sets

C = B,(n(a)) ~(Y ~n(B)), D =C(T,a,r,h)na""(C),
there holds
L(C) + u(D) < T u(B).
with I'@) = max{3 + 2Q + (12Q + 6)5", 4(Q + 2) /01 }.
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(4) If 1 € G, then
lo(z1 —a)| < h — 047

and fory € Y N B, _ (m(x1)) there exists x2 € A(y) with 0™ (u,r2) € N and

|TJ'(£C2 — itl)’ é L |T(£L'2 — 1’1)|,
where 0 < A@ <1 depends only on n, 02, and 84. Moreover, G D ANsptpu
an

(mxo)(GNa 1 (Y)) = graphg, f.

(5) Y ~Y has measure 0 with respect to L and 7(pr G).

(6) If L"(B,.(m(a))~Y) < %wn(/\r/6)", 1<g<oo, SeQolRm), P=
(0°(||S|], <)oo )H™ is the Q valued plane associated to S viao, andg:Y — R
is defined by g(y) = G(f(y),S) fory € Y, then

|| diSt(', Spt P)”Lq(HLG)
< (12" Q(llg]l pacen . vy + Fﬁn(BT(ﬂ'(a)) Ny)l/q+1/n)7

where F@ is a positive, finite number depending only on q, and n, and
sup{dist(x,spt P):x € G}

< Ngllpoe(en vy +2(L"(B(n(a)) ~Y) /wn)

(7) For L™ almost all y € Y the following is true:
(a) f is approzimately strongly affinely approxzimable at y.
(b) Whenever v € G with m(x) =y

(m x 0)(Tp) = Tan (graphg ap Af(y), (y, o0(z)))

where Tan(S,a) denotes the classical tangent cone of S at a in the
sense of [Fed69, 3.1.21].

(©) [Tos — TI| < llap Af(y)]| for @ € G with w(x) = y.

(d) [lap Af()]I* < Q1 + (Lip f)*) max{||Top — T|* 12 € 7~ ({y}) N G}

Choice of constants. One can assume 3L < d4.
Choose 0 < s9 < 1 close to 1 such that 2(sy? — 1)1/2 < §,, define \ =
ArTa(n, 92, o) /4, choose so < s < 1 close to 1 satisfying

(572 - 1)1/2 < >\/4a Q1/2(572 - 1)1/2 < L7

1/n

and define € > 0 so small that
e< (2w Q-1+46/2<(1-n)(Q—1+01),
Q-1/2<(1-ne?)(Q—1/4), 1-ne*>1/2,
and not larger than the minimum of the following seven numbers
€ [Menosbl 2.6](Mm,n, 1 —063/2), arm(im,n, 1, M,d3/2,s),
ara(m,n, Q@ + 1, M,02/2,5), qrm(m,n,Q,M,1/4,s),
ara(m, n, min{d2/3, d5/2}, s, max{M,2}), eam(m,n,Q,M,d2/3,s),
arma(m,n, Q, 1,2, s, 80, M).
Clearly, € satisfies the same inequalities as £ and one can assume a = 0, and

r=1. O

IRecall from [AIm00, T.1(23)] that (7 X 0)(z) = (7(x),o(z)) for € R™.
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Proof of and . Since 60*™(p, -) is a Borel function, one may verify that A and
B are Borel sets (cp. [Fed69, 2.9.14]).
First, the following basic properties of A are proved: For x € ANsptpu

0% (. x) > 03/2,
€€ (BI(0)):[T(€ — )| > sl€ — al} € 0 (Bringaasy (0(2):
o(Ansptu) C By s, (0).

The first is implied by [Men08b, 2.6]. The second is a consequence of the fact that
for ¢ € m~1(B7(0)) with |T(¢ — )| > s|¢ — x|

|0(6) —o()] < (s72 = )2 [n(&) — m(2)] < 2(s7% = 1)'/* < min{A/2,64}.
To prove the third, note that applied with
Q, 6, X,d, r,t, and f replaced by
1, 03/2, {z}, 1, 2, 1, and T+ |{x}
yields
p(r =1 (BY(0) N (By, (0(x)))) = (1= d3/2)wn,
so that h — 84 < |o(2)| < h would be incompatible with
w(C(T,0,1,h+64) ~C(T,0,1,h — 244)) < (1 — I5)wh.
Next, it will be shown if X C ANsptpu, 6" (u,z) € Ny forz € X,
sTHT(zg — 21)| < |2 — 21|  whenever x1, x5 € X,
then Y7 o 0" (1, ) < Q. Using the basic properties of A to verify
{€ € By(T*(2)):|T(€ = 2)| > sl¢ — x|} €7~ H(BP(0)) N o~ (By, (o()))
c C(T,0,1,h)
there holds
#(Upex{é € Bi(TH(2)):|T(€ — 2)| > s|¢ —a}) < u(C(T,0,1,h))
<(Q+1—d2)w,
and [1.6] applied with
Q, 6,d, r,t, and f replaced by
Q+1,065/2,1,2, 1, and TH|X
yields
Dowex 0" () <Q+02/2 < Q+1,

hence » .« 0"(u,7) < Q. In particular, Za;éA(y) 0™(u, ) < @ whenever y €
B7(0) and 6" (p, x) € Ng for each x € A(y).
Let Y be the set of all y € B'(0) such that

Yveawt"(z)=Q and 0"(u,x) € No for x € A(y),
Z be the set of all z € B}(0) such that
ZmeA(z)en(Ma )< Q-1 and 6"(u,z) € Ny for z € A(z),

and N = B(0)~(Y U Z). Clearly, Y N Z = (. Note by the concluding remark
of the preceding paragraph £™(N) = 0 because 0" (u,z) € Ny for H™ almost all
x € U. Since 6"(u,-) is a Borel function whose domain is a Borel set and A is a
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Borel set, Y and Z are L™ measurable by [Fed69, 3.2.22 (3)]. Let f : Y — Q¢o(R™)
be defined by

fly) = o4 (ZweA(y)en(u, z)[z]) whenever y €Y.

One infers from the assertion of the preceding paragraph and [LP86, Theorem 1.1.3]
(cp. e.g. [Men08al, D.12])

G(f(y2), fn)) < QY2(s72 = 1)Y2|ys —yn| for y1,y2 €Y.

and are now evident. O

Proof of . For the estimate some preparations are needed. Let v denote the
Radon measure defined by the requirement

v(X) = [(J'Tdp for every Borel subset X of U
where J# denotes the Jacobian with respect p. Note
|Tpp —T| <e for palmost all x € A,

hence 1 — JHT(x) <1 — (JAT)(x)? < ne?. Therefore

(1-ne*)puL A<vLA.
This implies the coarea estimate

(1 —ne®) u(C(T,0,1,h) N7 (W))
<uBna N W)+ QLYY NW) +(Q - 1LY (ZNW)

for every subset W of R™; in fact the estimate holds for every Borel set by [Fed69,

)

3.2.22(3)] and w(uL B) is a Radon measure by [Fed69, 2.2.17]. Also note that in
view of the choice of I'(g) one can assume

1(B) < (81/4)wn,

which implies £*(Y) > 0 because it follows from the coarea estimate applied with
W = B} (0)

(Q—1461/2)wn < (1 = ne2)u(C(T,0,1, 1))

< u(B)+QL(Y) +(Q-1)L"(2)

< (61/Hwn +(Q = 1+ 61 /4)wn + L*(Y) — (6:1/4)L"™(Z),
hence £™(Z) < (4/61)L™(Y).

In order to derive an upper bound for the £™ measure of Z, the following assertion
will be proved. If z € Z with 0" (L™ L R"~ Z a) = 0, then there exist ( € R™ and
0 <t < oo with

2 € B,(¢) € BY(0), L"(Bs(¢)) <6-5" u(BNx~(B(0)))-
Since £*(Y) > 0, some element B,(¢) of the family of balls
{By(1-0)2):0< 0 <1}
will satisfy

2 € B,(¢) C BY(0), 0<L'(Y NB,(Q)) < 5L"(ZNBy(Q)).
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Hence there exists y € Y N B,(¢). Noting for £ € A(y) with 0™(u, &) > 0, and
ne Rn+m with ‘77777*({711),1(&) - 77| < tﬂ
t<1, 7=y,
() — ¢l =m(€+7(C —y) = )| < [N—rr(c—)1(§) =l < ¢,
By(N—r+(c=y),1(§)) C Wﬁl(Bt(O)»
and, recalling the basic properties of A,
{k € By(n_n=(c—9)1(&) : [T(k = )| > s|& = €[} € C(T,0,1,h) N 1 (By(()),
one can apply [L.6] with
6, X, d, r, and f replaced by
1/4, {¢ € A(y): 6™ (1, &) > 0}, ¢, 2, and
n—w*(qu),ng € A(y) : en(u7£) > 0}
to obtain
(Q — 1/4)wnt™ < p(C(T,0,1,h) Nw ' (B,(Q))).

The coarea estimate with W = B,(¢) now implies

(Q —1/2)w,t"

<u(BNa N B(()+QL (Y NB,(C) + (Q — 1)L™(Z N B,(Q))
=p(Bnr 1 (B,(()) + (Q = 1/2)wnt”

+5LM(Y N B,(Q) — 3£"(Z N By(()),

hence
2L7(B,(Q) < £2(Z N By(Q) < Ap(B N7 (B,(0)))

and the assertion follows.
L™ almost all z € Z satisfy the assumptions of the last assertion (cf. [Fed69l
2.9.11]) and Vitali’s covering theorem (cf. [Fed69, 2.8.5]) implies

LM(Z) <6-5"u(B).
Clearly,
L"(w(B)) < H"(B) < u(B).
Since C~ N C Z U r(B), it follows
LM(C) < (146-5")u(B).
Finally, applying the coarea estimate with W = C yields
(1= ne?) u(D) < pu(B) + QL™(C) < (1+Q +6Q - 5") u(B). O

Proof of . Assuming now that z; and y satisfy the conditions of , it will be
shown that one can take Ag) = A. Verifying

{€en 1 (BT(0):|T(€ — 21)] > sl€ — 21|} € 0™ (Binga,e,y (0(21))),
defining d5 = min{d2/3, d5/2} and applying [1.9| with
6, M, a, r, d,t, and ¢ replaced by
d5, max{M, 2}, x1, 2, 1, 1, and —T'(z1)
yields

p(m = (BT (0)) N0 (Buingayz,s, (0(21)))) = (1= 85)wn

2Recall from [Sim83] that the functions g, : R**™ — R"+™ are given by g, (x) = r~!(z—a)
for a,z € R"*™ 0 < r < oo.
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so that h — 4 < |o(x1)| < h would be incompatible with
1(C(T,0,1,h 4 84) ~C(T,0,1,h — 204)) < (1 — b3)wy,

and the first part of follows.
To prove the second part, one defines X = {£ € A(y):0™(u, &) € N} and first
observes that [I.6] applied with

d,d, r, t, and f replaced by,
82/3,1,2, 1, and ey 1| X
yields
1(Usex (6 € By (z — 7)) IT(€ — )| > sl — 2]}) > (Q — ),
On the other hand
w(C(T,0,1,h)) < (Q+1—ba)wn.
Therefore, using the basic properties of A, for some z € X
C(T,0,1,h) N o™ (B, ja(0(21))) N0~ (B jp(0())) # 0,
hence |o(z1 — x)] < X and
dist(z1, X) < |n(z1 — z)| + |o(x1 — )| < 2X = Arg(n, 02, s0)/2 < 1.
Finally, the point 2, € X may be constructed by applying with
01, A, d, r, t, ¢, and y replaced by
1, Xrmm(n, 62, 80), 1, 2, 1, —7*(y), and x4
noting
{¢eBi(z —7"(y): T (€ — )| > sol¢ — [} € C(T,0,1,h)

for x € X.
The postscript follows readily from the second part and e; < e < (2v,)"t. O

Proof of (). Recalling (uA)/2 <viAand L"(N) =0, it is enough to prove
YCNUY, 7 }Y)NGcC Ansptu

in view of the coarea formula [Fed69, 3.2.22 (3)].
Suppose for this purpose y € Y. Since f is Lipschitzian, there exists a unique
S € Qg(R™) such that

(y,S) € graph f.
Let R=7"1({y}) No~1(sptS). Since AN sptu is closed (cp. [Fed69l 2.9.14]),
RC ANnsptu

and () implies G N7~ !({y}) C R, the second inclusion follows.
Choose a sequence y; € Y with y; — y as ¢ — oo and abbreviate X; = {£ €

Aly;):0™(u,€) € N} for s € N. applied with
6, X, d, r, and f replaced by
1/4, X;, 0, 2, and 1x,
yields for : € N
“(UzexiBt(x)) > (Q — 1/4)w,t™ whenever 0 < t < 2.
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Since f(y;) — S in Hausdorff distance as ¢ — oo the same estimate holds with X;
replaced by R and

Q —1/4 <limsup —H(UxeRB (:r)) < Z 0" (u, )
t10 wnt™ vy
implies y ¢ Z, hence the first inclusion. (|
Proof of (6). Let ¢ :=p.G. Using (7(¢)) LY <2(n(v.G))LY <2QL"LY,
{re GNnr YY) dist(z,spt P) >y} c Gnat*{y € Y:g(y) >~}

for 0 < v < o0, one infers

| dist (-, spt P)||La(u arr-1(v)) < 2QlgllLa(en cvy-
Hence only || dist(-,spt P)||a(u. G ~x—1(v)) Needs to be estimated in the first part

of @

Whenever z € BJ(0) ~Y there exist ( € R" and 0 < t < A/6 such that
€ B(Q) C BI0), LY(B(Q)NY) = LB ~Y)
as may be verified by consideration of the family of closed balls
{By((1-0)2):0< 0 <AL

Therefore [Fed69, 2.8.5] yields a countable set I and ¢; € R", 0 < ¢; < A/6 and
yi € Y N B, (¢;) for each i € I such that

B, (G) € BY(0), L™(B,,(¢G)NY) = LBy, (¢)~Y),
B, (&G)Nn Btj (¢;) =0 whenever i,j € I with i # j,
By (0)~Y C Ui, Ei C BY(0)

where E; = By, ((;) N B(0) for i € I. Let

hi = G(f(y:),95), Xi={{e€ Ay:):0"(n,§) € N}
foriel, J:={ie€l:h; >18t;},and K :=I~J.

In view of there holds
ldllzauea~arory S ldllaon-1U,e, £) T Ao or—1(U;c B)

for every 1) measurable function d : R"*™ — [0, co[. In order to estimate the terms
on the right hand side for d = dist(-,spt P), two observations will be useful. If
i€l, 1 € GNr Y(E;), then

dist(z1,spt P) < 6t; + hy;
in fact |m(x1) — y;| < 6t; < A and yields a point x5 € X; and
|TJ‘(z2 - z1)| < L|T(xg —x1)| = L|m(x1) — y;| < 64,
implying
dist(z1,spt P) < |TJ‘(:v2 — x1)| + dist(z2, spt P) < 6t; + h;.
Moreover,
|xe — 21| < |T (22 — 1) + ‘TL(ZEQ —x1)| <126, @1 € By, (72),
hence
GNa Y (E;) C Uyex, Bros, (@)
and applied with
01, s, A\, X, d, r, t, (, and 7 replaced by
1, 0, AXrTm(n, 62, S0), Xi, 1, 2, 1, —7*(y;), and 12¢;



18 ULRICH MENNE

yields
V(N E)) < (Q + 1w, (12t;)"  whenever i € 1.

Now, the first term will be estimated. Note, if j € J, then
dist(z,spt P) < 3h; whenever z € GN 7 ' (E;),
3h; <2G(f(y),S) whenever y € Y N Btj (G5),
because
G(f(),5) > G(f(yy),S) — Lly — y;| > h; — 2Lt; > %h;.

Using this fact and the preceding observations, one estimates with J(vy) := {j €
J:3hj >~} for 0 <y < oo

(m HUjes By) N {x € R cdist (2, spt P) > }) < 35 ¢ (7 H(E)))

<3 ey (@ + D (126)" < (@ + D(12)" £ (U sy B, (G5))
<2(Q+1)(12)" L™ (Ujey By, (G) NY)
<2Q+1)(12)" L"({y € Y:G(f(y), S) > 1/2}),

hence
5 < (2(Q+ D122 glo(en v).

To estimate the second term, one notes, if i € K, x € G N7~ 1(E;), then

dist(z, spt P) < 24¢;.
Therefore one estimates with K(vy) := {i € K:24¢t;, > v} for 0 < v < oo and
u: R"™ — R defined by u =}, _; 2t; XB,,(¢)
P Uiex Bi) N {z € RM™ i dist(z,spt P) > 7}) < 3oy (nH(Ei))
< i (@ + Dwa(12t:)" < (Q +1)(12)" L™ (Use x4y Br, (G1))
< (Q+1)(12)"L"({y € R™:uly) > v/(12)}),

|| dist (-, spt P)||pa(y . »—1(U

JjEJ

hence
[ dist(, 50t Pl La(y cn-1(Uye e £ < (@ +1)(12)" | ageny.
Combining these two estimates and
£"(Uier By, (G) < 2L"(BY(0) ~Y),
Jlul?dL™ = 0 (28:) 1w (t:)" < 29079 (X,0, L7(B,, () ™
< guHlHa/ngaln (£n (B (0) ~ Y)) T,

one obtains the first part of the conclusion of @
To prove the second part, suppose z; € G. Since

By((1 = O)n(1)) € BI0),  L(Byl(1 - 8)m(z1)) 1Y) >0
for (L™(B?(0)~Y)/w,)/™ < 6 < 1, there exists for any 6 > 0 a y € Y with
G(f ), S) < llglleer vy,
|m(21) =yl < 2(L"(BY(0) ~Y) /wn)

in particular |7(z1) —y| < A for small §. Therefore may be applied to construct
a point 2o € A(y) with 0" (u, z2) € N and

|TL(332 —a1)| < L|T(x2 — 21)| < |m(21) — yl.

Y,
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Finally,
dist(x1, spt P) < dist(zo,spt P) + ‘TL(Z'Q — 1)
n(nn 1/n
< G(I(9),8) +2(L" (B (0) ~ Y ) fwa) /" 4
and ¢ can be chosen arbitrarily small. O
Proof of (7). Combine (I), (), [AIm00, 1.1(9)—(11)], and estimates for or-
thogonal projections, see e.g. [All72 8.9 (5)]. O

1.15. Remark. The idea to prove was taken from [Alm00, 3.8 (4)].

2. A SOBOLEV POINCARE TYPE INEQUALITY FOR INTEGRAL VARIFOLDS

In this section the two main theorems, 2.8 and [2.10] are proved, the first being
a Sobolev Poincaré type inequality at some fixed scale r but involving of necessity
mean curvature, the second considering the limit r tends to 0. For this purpose the
distance of an integral n varifold from a @ valued plane is introduced. One cannot
use ordinary planes in (without additional assumptions) as may be seen from
the fact that any @ valued plane is stationary with vanishing tilt. In 2.I0H2.12] an
answer to the Problem posed in the introduction is provided.

2.1. Definition. Suppose m,n,Q € N, 1 < ¢ < 00, @ € R*™ 0 < r < o0,
0<h<oo, TeGn+m,n), Pisa @ valued plane parallel to T (see|1.12)), u is
an integral n varifold in an open superset of C(T,a,r, h), A is the H™ measurable
set of all z € TN B,(T(a)) such that for some R(x),S(z) € Qq(R™™™)

”R(‘T)H = an(P\_C(T,CL,T, h)")HO‘—Til({x}%
1S(@)|| = 0" (o C(T, a7, h), YHO L T~ ({a})

and g : A — R is the H™ measurable function defined by g(x) = G(R(x), S(x)) for
T € AEl
Then the g height of p with respect to P in C(T,a,r, h), denoted by

H,(u,a,r, h, P),
is defined to be the sum of
r= 19| dist (-, 5pt P)|| Lo o(T a0 h))
and the infimum of the numbers
r 4 gl pagren vy + 7T T IHMT O B (T(a) ~ YA

corresponding to all H™ measurable subsets Y of A. The q tilt of u with respect to
T in C(T,a,r, h) is defined by

Ty(py a7, b, T) = =Ty — Tl Lagur o (Toaimn)-
Moreover,
Hy(n,a,m,h,Q,T)
is defined to be the infimum of all numbers H,(u, a,r, h, P) corresponding to all Q
valued planes P parallel to T

3The asserted measurabilities may be shown by use of the coarea formula (cf. [Fed69l
3.2.22(3)]).
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2.2. Remark. Ty(p,a,r,h,T) generalises tiltex, in an obvious way.

H,(u,a,r, h, P) measures the distance of y in C(T,a,r, h) from the @ valued
plane P. To obtain a reasonable definition of distance, neither the first nor the
second summand would be sufficient. The first summand is 0 if y = P B for some
‘H™ measurable set B. The second summand is 0 if 4 = P + H" . B for some H"
measurable subset B of C'(T,a,r, h) with H"(B) < oo and H"*(T'(B)) = 0. From
a more technical point of view, the second summand is added because it is useful
in the iteration procedure occurring in [2.10] where the distance of @ valued planes
corresponding to different radii » has to be estimated.

2.3. Remark. One readily checks that H,(p,a,r, h, P) = 0 implies
e C(Tya,r,h) = PLC(T,a,rh)

and Hy(p,a,7m,h,Q,T) =0, h < oo implies Hy(, a,7, h, P) = 0 for some Q valued
plane P parallel to T.

More generally, the infima occurring in the definition of H,(u,a,r, b, P) and
H,(u,a,7m,h,Q,T) are attained. However, this latter fact will neither be used nor
proved in this work.

2.4. Definition. Suppose m,n,Q € N, S € Qo(R™), 1 < ¢ < 00, A is L™ measur-
able, and f: A — Qo(R™) is an L™ L A measurable function.

Then the g height of f with respect to S is defined to be the LI(L™ L A) (semi)
norm of the function mapping x € A to G(f(x), S), denoted by hq(f,S), and, if f is
additionally Lipschitzian, then the q tilt of f is defined to be the LZ(L" L A) (semi)
norm of the function mapping x € A to |ap Af(z)|, denoted by t,(f). Moreover,
the g height of f is defined to be the infimum of the numbers h,(f, S) corresponding
to all S € Qo(R™) and denoted by hq(f).

2.5. Theorem. Suppose m,n,Q €N, f: B}(0) — Qo(R™), and Lip f < oo.
Then the following two statements hold:

(1) If 1 < ¢ < n, ¢* = I, then there exists a positive, finite number F

n—q

depending only on m, n, Q, and q such that

he-(f) < F tq(f)-

(2) If ¢ < n < o0, then there exists a positive, finite number I‘ depending
only on m, n, Q, and q such that

Proof. Using Almgren’s functions & and p [AImO00, 1.2 (3), 1.3 (1), 1.4(3) (5)], the

assertion is readily deduced from classical embedding results. O

2.6. Lemma. Suppose m,n,Q € N, 1 < M < oo, and 0 <6 < 1.

Then there exists a positive, finite number € with the following property.

Ifa e R"™ 0 <r <oo,0<h<oo, Te€EGn+m,n), dr <h, pisan
integral n varifold in an open superset of C(T,a,3r,h+ 2r) with locally bounded
first variation satisfying

(Q =1+ 8wnr™ < p(C(T,a,m,h)) < (Q+1— 8)w,r™,
w(C(T,a,r,h+0r)~C(T,a,r,h —dr)) < (1 —0)w,r",
w(C(T,a,3r,h+2r)) < Mw,r™,
6ul[(C(T,a,3r,h+2r)) <er™ ', Ti(w,a,3r,h+2r,T) <e,
G is the set of all x € C(T,a,r,h) Nspt u such that
[6ull(B,(2)) < (2v,) 7" M(Bg(a:))l_l/” whenever 0 < o < 2r,
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and A is the set defined as G with € replacing (2v,)~ ', then the following two
statements hold:

(1) If1<qg<mn, q*:n"—fq, then
Hy(ueG,a,mh,Q,T)
< Ty (To(ps a,3r, b+ 20, T) + (" u(C(T, a, 7, h) ~ A)) )
where F 18 a positive, finite number depending only on m, n, Q, M, 6,
and q.
(2) If n < q < o0, then
HOO(,LL L Ga a,r, ha Qa T)
<I'g (Ty(pya,3r,h+2r,T) + (r"u(C(T,a,r, k) ~ A))l/q).
where I'g) is a positive, finite number depending only on m, n, Q, M, J,
and q.

Proof. Let Ty := Lip(¢ ") Lip(@) Lip(€) with &, @ as in [AImQ0, 1.3 (2)], hence Ty
is a positive, finite number depending only on m and @, and let
Iy ::(Qana§/2)a L:= 1, eo:= M(maana13M36/236/236/236/2)3
€1 ‘= €o, A= (n,5/2,5/2)
and choose 0 < € < g( such that
e <eo(nya)' ™", 3" <eo(nym) ",
I1N(n+m)3" < w1 (A/6) ifn=1,
TiN(n+m) (3% +e™"=D) < 1u,(\/6)" ifn > 1;

recall that N(n +m) denotes the best constant in Besicovitch’s covering theorem
in R"™™ | see [Sim83 Lemma 4.6].

Assume a = 0 and 7 = 1. Choose orthogonal projections 7 : R*"*™ — R",
o :R"™ — R™ with moo* = 0 and im7* = T. Applying one obtains sets Y,
B and a Lipschitzian function f : Y — Qg(R™) with the properties listed there.
Using and [Alm00, 1.3 (2)] and noting the existence of a retraction of
R™ to Bj'(0) with Lipschitz constant 1 (cf. [Fed69, 4.1.16]), one constructs an
extension g : BY'(0) — Q@(R™) of f with Lipg < I'g and sptg(z) C B}*(0) for
x € B1(0).

Next, it will be verified that the set G agrees with the set G defined in [[.14} in
fact for x € G using [Men08b., 2.5] yields

162l|(Ba()) < 1|8l (C(T',0,3,h +2)) < & < g0 u(By(x))' /",
Jo, ) Ter = T1Ap(€) < Jor0.. 40 Ter = T1dp(S) < 3" < g0 pu(By(2))-
In order to be able to apply @, it will be shown
L(BY(0)~Y) < 5wa(A/6)".
Let B; be the set of all x € B such that
[10pll(B,(z)) > eo M(Bg(x))l_l/" for some 0 < ¢ < 2,
and let By be the set of all x € B such that
fBQ(m)lTSM — T dp(§) > eo u(B,(x)) for some 0 < ¢ < 2.

Clearly, Besicovitch’s covering theorem implies

((B2) < N(n+m)3"Ty(1,0,3,h +2,T) < N(n+m)3"e.
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Moreover, By = () if n = 1, and Besicovitch’s covering theorem implies in case n > 1
w(B1) < N(n+m) ||6ul|(C(T,0,3,h+2)" "1 < N(n 4 m)e™/ =D,
Therefore the desired estimate is implied by - and the choice of ¢.
To prove part (1), let 1 < g <n, ¢* = , define
Ty =14 (12)" "' Qmax{1, Tt (¢"n)}, T = 2T (m: n, Q, q),
Ty = N(n+m)/2%e713V1 Ty =2Y2Qm'/? T =Tem!'/2Q"?,
choose S € Qo(R™) such that (see
he-(9,58) < Tste(g), sptS C Bi(0)
with the help of noting again [Fed69l 4.1.16] and denote by
P = (0°(|ISl,) o o)H"

the @ valued plane associated to S via o. The estimate for Hy»(ur G,0,1,h, P) is
obtained by combining the following six inequalities:

(1) Hy (11 G,0,1,h, P) < T (hg-(g,8) + L™(Bf (0) ~Y)'/9),
(1) he<(g,8) < T3ty(g),

(IIT) LBy (0) ~Y)V1 < ()Y u(B)M,

(IV) u(BN AT <TyT,(1,0,3,h+2,T),

(V) ta(glY) < TsTy(1,0,1,h,T),

(VD) tq(g IB? (0)~Y) < T L™(By(0) ~Y)"/1.

is implied by [1.14]2) () (6) and spt.S C B(0), ([I) is implied by the choice
of S, () is implied by [L 4 ), is elementary (cf. [AIm00, 1.1 (9)-(11)]). To
prove (IV]), note that for every T € B N A there exists 0 < ¢ < 2 such that

o i(By()) < [, i\ Tert = T1 dpu(6),
hence by Holder’s inequality
(20) 1(By(@) < [ ) [Tem — TI7 (&)
and Besicovitch’s covering theorem implies . Observing that
{yeY:lapAg(y)| > v} ~7({€ € G (Y): |Ten — T| > v/T5})
has £ measure 0 by and [AIm00, 1.1 (9)—(11)], inequality is a conse-

quence of

L"({y €Y :|ap Ag(y)| > ~})
<SH'({EeGNa (V) :|Tep —T| > v/T5})
<p({éeGNna N (Y): |Tep — T| > v/Ts}).

The proof of part (2 exactly parallels the proof of part . 1)) with oo, ¢, and[2.5| -.
replacing ¢*, ¢, and -

2.7. Remark. Part can be sharpened using Lorentz spaces to
so(prGra,m,h,Q,T)
< T(Toalp, a,3r k420, T) + (7" u(C(T, a1, h) ~ A)) V™)

with a positive, finite number I' depending only on m, n, Q, M, and . Here T}, ;
is the obvious generalisation of T, to Lorenz spaces.
A similar improvement is possible for part using Peetre’s theorem.
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2.8. Theorem. Suppose m,n,Q € N, 1 < M < 00, 0 < § < 1, a € R*™,
0<r<oo, Te€Gn+mn),1<p<mn,uisan integral n varifold in an open
superset of C(T, a,3r,3r) satisfying (H,|) and

Y=lopll ifp=1, v=[H.u ifp>1,

(Q -1+ 5)wnrn S M(C(Ta a,r, T)) S (Q +1- 5)wnrn7
w(C(Tya,r,(L+6)r)~C(T,a,r,(1 —0)r)) < (1 —=0)w,r",
w(C(T,a,3r,3r)) < Mw,r™.

Then the following two statements hold:
(1) If p<n, 1 <qg<mn, then

H na (p,a,7m,7,Q,T)

< T (L0, 30,30, T) (77" 6(C(T,a,3r,3r))) T

where F is a positive, finite number depending only on m, n, Q, M, 0,
p, and q.

(2) If p=n and Y(C(T,a,3r,3r)) < @) where @) is a positive, finite number
depending only on m, n, Q, M, and 9, then
(a) H% (ya,r,r,Q,T) < I'@a) T,(p,a,3r,3r,T) whenever 1 < g <mn,
(b) Hoo(p,a,m,m,Q,T) < T'gr) Ty(n, a,3r,3r,T) whenever n < ¢ < oo
where I‘, I‘ are positive, finite numbers depending only on m, n, Q,
M, 4, and q.

Proof. To prove part , assume a = 0, r = 1, define ¢* = n”—_qq, and suppose that
e, A, and G are as in Observing
Hy (11,0,1,1,Q,T) — Hye (uLG,0,1,1,Q,T) < 2u(C(T,0,1,1) ~ G)M/ T
+H(T({€ € C(T,0,1,1):60"" (1, €) > 0} ~G))*/1
< (24 w)/"u(C(T,0,1,1) ~ G/,
p(C(T,0,1,1) ~G) < N(n+m)(2y,) " 7(C(T,0,3,3)) 77,
w(C(T,0,1,1) ~ A) < N(n+m)e" 7-54(C(T,0,3,3)) 77,
|8l[(C(T',0,3,3)) < p(C(T,0,3,3))' " /P¢(C(T,0,3,3))"/?
< (Mw,)' VP (C(T,0,3,3)) 77,
Ti(p,0,3,3,T) < 379 Mw, ) ~YIT,(1,0,3,3,T),
Hy (1,0,1,1,Q,T) < u(C(T,0,1,1)V7 4 wl/a < MY l/a 4 y1/a)

a suitable number I'qy is readily constructed using .
Part is proved similarly using . O

2.9. Remark. In case u additionally satisfies
ul{z € C(T,a,7,7) 0" (1,) = Q) = dwr™,
there exists z € T+ such that for P := QH™ .{zx € R*"*™ . T+ (z) = 2}

Hss_(j,a,7,7, P) < T(Ty(1, a,3r,3r,T) + (r"~"9p(C(T’ a, 37, 3r))) a0 )

provided p < n, 1 < ¢ < n where I' is a positive, finite number depending only on
m7 n? Q’ M? 57 p? a’nd q'

In fact from and the coarea formula [Fed69, 3.2.22 (3)] one obtains
for the set Yy of all y € T'N B,.(T(a)) such that for some xy € C(T,a,r,r) with
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T(xo) =y
0" (u, zo) = Q, 0" (p,x) =0 forx € T *{y}) NC(T,a,r,r)~{xo}
the estimate
LY(Yy) > (26/3)w,r"
provided the right hand side of the inequality in question is suitably small (depend-

ing only on m, n, Q, M, §, p, and q), hence for any @Q valued plane P’ parallel to
T such that

(QH% (u,a,r,m, P')) < (§/3)wn
there holds

diam T+ (spt P')
1/q—1/n
(331w BT (5 T)

and suitable z and I' are readily constructed.
A similar remark holds for the second part.

< 2H na (p,a,r,7, P')

2.10. Theorem. Suppose m,n,Q € N, 0 <a<1,1<p<n, U is an open subset
of R™™ and p is an integral n varifold in U satisfying (H,).

Then the following two statements hold:

(1) Ifp<n, 1<q <n, 1 <q <min{22 L. 2% 4hen for u almost all

n—q’a n—p

a € U with 6™ (p,a) = Q there holds

limsupr @'~/ | dist(- — a, Tap)||e2 (1 B, (a))
rl0

<T'm limisaup rm T, = Top]| g (uL B, (a))

where F is a positive, finite number depending only on m, n, Q, ¢, and

qz-
(2) If p=n, n < q < oo, then for p almost all a € U with 0™ (u,a) = Q there
holds

limlsup 7’70‘71” dist(- — a, Ta,LL)”Loo(u‘_Br(a))
rl0

<I'pg hmlSO‘lPT_a_"/qHTu — TapillLagu B, (a))

where L@ is a positive, finite number depending only on m, n, Q, and q.
Proof. For a € R"*™, 0 < < oo such that By,(a) C U denote by G, (a) the set of
all z € B;,.(a) Nspt p satisfying
1611(B,(2)) < (27) " i(By(2))' /" whenever 0 < o < 2r.
To prove (1), one may assume first that g > "5 possibly replacing g» by a
larger number since min{-2%- 1 . a5} = g, and thus also that ¢p = -

n—qi’ « n—1’ n—qi
possibly replacing ¢; by a smaller number. Define M = 6"Q, § = 1/2, ¢ = ¢,
q" = gz,
8 = min{m(m’ n? Q7 M7 5)’ (27'”/)71}7 F = (m7 n’ Q7 M’ 67 Q)'

Denote by C; for i € N the set of all # € spt y such that B, ,(z) C U and
16pl(B,(z)) < €u(Bg(a:))171/” whenever 0 < ¢ < 1/i.
The conclusion will be shown for a € dmn 7}, such that
0" (n,a) = Q, 0" (||oull,a) =0,

1i{18 r_”z/("_p)u(Br(x) ~C;) =0 for someie N.



A SOBOLEV POINCARE TYPE INEQUALITY FOR INTEGRAL VARIFOLDS 25

Note that according to [Fed69, 2.9.5] and [Men08bl 2.9, 2.10] with s replaced by n
this is true for p almost all @ € U with 6"(u,a) = @, fix such a, i, and abbreviate
T :=Tyu.
For a there holds
w(C(T,a,r,r))

lim ~——

rl?(} W™ @
i MC(T,a,7,30/2) ~ O(T 0 r/2))
710 W™

and one can assume for some 0 < v < 00

limsupr~*Ty(p, a,r,r,T) < 7.
rl0

Choose 0 < s < min{(2i) 7!, dist(a, R"™™ ~ U)/7} so small that for 0 < o < s
(Q@ = 1/2)wno™ < u(C(T)a,0,0)) < (Q+1/2)wno”,
uw(C (T, a,0,30/2) ~C(T,a,0,0/2)) < (1/2)wno",
1(C(T, a,30,30)) < p(Bs,(a)) < wn6"Qo",
1611(C(T' a,30,30)) < 0", Ti(u,a,30,30,T) <,
Ty (1 a,30,30,T) + (0" p(C(T, a, 0, 0) ~ C:)) "/ < dv0%;

in particular can be applied to any such g with (r, h) replaced by (g, ¢). For
each 0 < ¢ < s use[2.3] to choose @ valued planes P, parallel to T' such that

Hy-(nGola),a, 0,0, Pp) < 2Hg (1 Gola), a, 0,0,Q,T),
denote by A, the H™ measurable sets of all z € T N B,(T'(a)) such that for some
Ry(x), S,(x) € Qq(R™™)
|R,(z)|| = 0™(P,.C(T,a,0,0), ) H LT ({z}),
1So(@)]l = 0" (1 Gya) N C(T,a, 0,0), ) HO LT~ ({a}),
and by g, : A, — R the H"™ measurable functions defined by
9o(x) = G(Ry(x), So(x)) for x € A,.
By [2.3| there exist H™ measurable subset Y, of A, such that
2H,- (1 Gyla), a, 0,0, Py) > 0~ ™| dist(-,5pt Pp) |l o (o &, (a)nC(T s000)
07" ggll Lo (30 v, + IR (T N By(T(a) ~ Y)Y
Possibly replacing s by a smaller number, one may assume for 0 < g < s that
(2Hg (1 Go(a),a, 0,0, P,))" < 27" %0y,
by and also that
1(C(T,a,0,0) ~Ci) < 27" 2wyo™.

Noting C; N C(T, a,0/2,0) C G,(a) N G,/2(a), one obtains directly from the addi-
tional assumptions on s that

HO(T 0 By(T(a) ~ Y,) < 27" 2",
HMT'N Byp(T(a) ~Yy)} <27 2wno",
H"({x € Y2 NY,:S,(x) # Sy/2(w)})
<H"(T({z € C(T,a,0/2,0): 0" (n,x) > 1} ~C;))
< u(C(T,a,0,0)~C;) < 27" Pwno",
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hence for B, := Y, NY, s N{x:S5,(x) = S,/2(x)}
H™(B,) > tw,(0/2)™ for0<o<s,
in particular
dmnR, = A, DY, D B, #0, G(P,,QH".T) < Q"?p.
By integration over the set B, one obtains
(Gwn(0/2)")171"G(Py, Pyy2)
< 9ellar 1en cvp) + 1902l o (1 Ly, )
< 0"I4(Hy (e Gyla),a,0,0,Q,T) + Hy- (e Gypa(a), 0/2,0/2,Q, T))
for 0 < o < s. Therefore implies
G(Py, Pyz) < Tiyo't
where I'; = 23+”/‘1+2/q’2/”w,1/n_1/q1“, hence
G(QH" LT, P,) < 3720G(Po-iy, Py-i-1,) < 20170+
because G(P,, QH"LT) — 0 as ¢ | 0. From the definition of the ¢* height of 1 in
C(T,a, o, 0) one obtains
Ho (11 (), 0, 0,0, Q" L T) — Hy (e Gy(a),a,0, 0, P,)
< oMI(C(T, a,0,0)"" +H(Y,) /7 )G(QH" LT, P,) < Tovy0”

for 0 < p < s where I'y = w}/q*Z(Q + 1)Y/4°2T';, hence

limsup o~ “Hy- (ur Gyla),a, 0,0, QH" L T)
0l0
< (8T +T'g) limsup o~ “Ty (1, a, 0, 0,T)
ol0

by . Combining this with the fact that
13{{)1 o 9 dist (- — a, Tap) || o (0 B,(a)~Gy(a)) = 05

the conclusion follows.
(2) may be proved by a similar argument using and [Men08bl, 2.5] instead
of and [MenO8bl, 2.9, 2.10]. O

2.11. Remark. As in in the L7 norm can be replaced by L™!, in particular
n = ¢ = 1 is admissible. The latter fact can be derived without the use of Lorentz
spaces, of course.

2.12. Remark. If 1 <p<n,1<q < ¢y <oo, L. n"—f; < ¢2, then the conclusion of
fails for some p; in fact one can assume ¢; = g2 possibly enlarging ¢; and then
take g = « and «; slightly larger than as in [Men08bl 1.2]. Clearly, also in

the assumption p = n cannot be weakened.
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