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Abstract. In this work it is shown that for every integral n varifold in an
open subset U of Rn+m, n,m ∈ N, of locally bounded first variation there

exists a countable collection C of n dimensional submanifolds of U of class C2
such that µ(U ∼

S
C) = 0 and for each member M of C

~Hµ(x) = ~HM (x) for µ almost all x ∈M.

Contents

Introduction 1
1. A criterion for second order differentiability in Lebesgue spaces 6
2. Approximation of integral varifolds of locally bounded first variation by

Q valued functions 14
3. Proof of the main theorem 25
Appendix A. Almgren’s notation for Q valued functions 29
Appendix B. Lebesgue points for distributions 31
References 33

Introduction

First, some definitions will be recalled. Suppose throughout the introduction
that n,m ∈ N and U is an open subset of Rn+m. Using [Sim83, Theorem 11.8] as
a definition, µ is an integral n varifold in U if and only if µ is a Radon measure
on U and for µ almost all x ∈ U there exists an approximate tangent plane Txµ ∈
G(n+m,n) with multiplicity θn(µ, x) ∈ N of µ at x, G(n+m,n) denoting the set
of n dimensional, unoriented planes in Rn+m. The distributional first variation of
mass of µ equals

(δµ)(η) =
�

divµ η dµ whenever η ∈ C1
c (U,Rn+m)

where divµ η(x) is the trace of Dη(x) with respect to Txµ. ‖δµ‖ denotes the total
variation measure associated to δµ and µ is said to be of locally bounded first
variation if and only if ‖δµ‖ is a Radon measure, in this case the generalised mean
curvature vector ~Hµ(x) ∈ Rn+m can be defined by the requirement

~Hµ(x) • v = − lim
%↓0

(δµ)(χB%(x)v)

µ(B%(x))
for v ∈ Rn+m

whenever this limit exists for x ∈ U ; here • denotes the usual inner product on
Rn+m. The mean curvature vector ~Hµ(x) is perpendicular to Txµ at µ almost all
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2 ULRICH MENNE

x ∈ U , as shown by Brakke in [Bra78, 5.8]. From the above definition of an integral
n varifold µ one obtains that µ almost all of U is covered by a countable collection
of n dimensional submanifolds of U of class C1. This concept is extended to higher
orders of differentiability by adapting a definition of Anzellotti and Serapioni in
[AS94] as follows: A rectifiable n varifold µ in U is called countably rectifiable of
class Ck,α [Ck], k ∈ N, 0 < α ≤ 1, if and only if there exists a countable collection
of n dimensional submanifolds of U of class Ck,α [Ck] covering µ almost all of U .
Throughout the introduction this will be abbreviated to Ck,α [Ck] rectifiability. Note
that Ck,1 rectifiability and Ck+1 rectifiability agree by [Fed69, 3.1.15]. An integral
n varifold µ in U of locally bounded first variation which is C2 rectifiable is said to
satisfy (L) if and only if

~Hµ(x) = ~HM (x) for µ almost all x ∈M(L)

whenever M is an n dimensional submanifold of U of class C2.
Suppose for the rest of the introduction that µ is an integral n varifold in U . The

following two questions will addressed in this work.

Question 1. Which assumptions on δµ imply C1,α rectifiability of µ, 0 < α ≤ 1?

Question 2. Suppose µ is of locally bounded first variation and µ is C2 rectifiable.
Which conditions on δµ imply (L)?

Among the possible conditions of δµ there are the following integrability condi-
tions. µ is said to satisfy (Hp), 1 ≤ p ≤ ∞, if and only if it is of locally bounded
first variation, ~Hµ ∈ Lploc(µ,Rn+m), and, in case p > 1, satisfies

(δµ)(η) = −
�
~Hµ • η dµ whenever η ∈ C1

c (U,Rn+m).(Hp)

In order to state the related results, the tilt-excess and the height-excess of µ
are defined by

tiltexµ(x, %, T ) = %−n
�
B%(x)

|Tξµ− T |2 dµ(ξ),

heightexµ(x, %, T ) = %−n−2
�
B%(x)

dist(ξ − x, T )2 dµ(ξ)

whenever x ∈ Rn+m, 0 < % < ∞, B%(x) ⊂ U , T ∈ G(n+m,n); here S ∈
G(n+m,n) is identified with the orthogonal projection of Rn+m onto S and | · |
denotes the norm induced by the usual inner product on Hom(Rn+m,Rn+m). Of
basic importance is the following theorem due to Brakke.
Theorem 5.7 in [Bra78]. If µ is satisfies (H1), then

tiltexµ(x, %, Txµ) = ox(%), heightexµ(x, %, Txµ) = ox(%) as % ↓ 0

for µ almost all x ∈ U .
If (H1) is replaced by (H2), then ox(%) can be replaced by Ox(%2−ε) for every

ε > 0. Using the following lemma which is an adaption of [Sch04b, Appendix A],
one infers that (H1) implies C1,1/2 rectifiability and (H2) implies C1,α rectifiability
for every 0 < α < 1.
Lemma. If 0 < α ≤ 1 and µ satisfies heightexµ(x, %, Txµ) = Ox(%2α) for µ almost
all x ∈ U , then µ is C1,α rectifiable.

In codimension 1 under the condition (Hp), p > n, p ≥ 2, the above questions
were completely answered by Schätzle extending earlier results in [Sch01]:
Theorems 4.1, 5.1, 6.1 in [Sch04a]. If m = 1 and µ satisfies (Hp) for some p
with p > n, p ≥ 2, then

tiltexµ(x, %, Txµ) = Ox(%2), heightexµ(x, %, Txµ) = Ox(%2) as % ↓ 0

for µ almost all x ∈ U , and µ is C2 rectifiable and satisfies (L).
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In fact, inspecting the proof, one notices that the decay rates imply (L) under
weaker conditions on δµ. Moreover, Schätzle showed in arbitrary codimension the
following equivalence:
Theorems 3.1, 4.1 in [Sch04b]. Suppose µ satisfies (H2).

Then the following two conditions are equivalent:
(1) µ is C2 rectifiable.
(2) For µ almost all x ∈ U

tiltexµ(x, %, Txµ) = Ox(%2), heightexµ(x, %, Txµ) = Ox(%2) as % ↓ 0.

In this case µ satisfies (L).
The two conditions are not equivalent if µ is merely required to satisfy (Hp) for

some p with 1 ≤ p < 2n
2+n . In fact, in [Men08b, 1.5] the existence of a C2 rectifiable

integral n varifold satisfying (Hp) not having quadratic decay of neither tilt-excess
nor height-excess was confirmed.

In case n = 1 an answer to the second question was obtained by Leonardi and
Masnou:
Theorem 2.1 in [LM08]. If n = 1, µ satisfies (H1) and is C2 rectifiable, then µ
satisfies (L).

Moreover, in the same paper a partial extension of this result to the case n ≥ 2
has been obtained by assuming additionally that forHn almost all x with θn(µ, x) ≥
1 there exists an n dimensional submanifold M of class C2 of U and Q ∈ N such
that x ∈M and θn(µ, y) = Q for Hn almost all y ∈M .

In the present work the condition (H1) is shown to be sufficient to obtain an
affirmative answer to both questions (with α = 1):
Theorem 3.7. If µ satisfies (H1), then µ is C2 rectifiable and satisfies (L).

Using the previous theorem of Schätzle, one directly obtains:
Corollary. If µ satisfies (H2), then for µ almost all x ∈ U

tiltexµ(x, %, Txµ) = Ox(%2), heightexµ(x, %, Txµ) = Ox(%2) as % ↓ 0.

Also, using the Sobolev Poincaré type inequality relating tilt and height quanti-
ties (cf. [Men08c, 2.9, 2.10]), one obtains:
Corollary. If µ satisfies (H2), q = ∞ if n = 1, 1 ≤ q < ∞ if n = 2, q = 2n

n−2 if
n > 2, then for µ almost all x ∈ U

lim sup
%↓0

%−2−n/q‖ dist(· − x, Txµ)‖Lq(µ xB%(x)) <∞.

In case n > 2, the exponent q cannot be replaced by any larger number as it is
shown by [Men08b, 1.5]. It is not known to the author if one can take q = ∞ in
case n = 2.

The next parts of the introduction will describe in an informal style the main
ideas of proof whereas the more technical issues will be explained in the body of
the text. The basic strategy is to cover µ by a countable set of suitably rotated
graphs of Lipschitzian functions satisfying a partial differential equation ensuring
C2 rectifiability.

The starting point to do so is the work of Brakke. The above mentioned decay
rates of tilt-excess and height-excess, i.e.

tiltexµ(x, %, Txµ) = ox(%), heightexµ(x, %, Txµ) = ox(%) as % ↓ 0

for µ almost all x ∈ U , will be crucial, despite the fact that they only correspond
to C1,1/2 rectifibility via the above mentioned lemma. One reason for this is that
they allow µ to be approximated near µ almost all x ∈ U for each 0 < % <∞ by a
Lipschitzian multivalued function f% in the ball B%(x) such that the scale invariant
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measure of the error sets, where the approximation fails, decays like ox(%) as % ↓ 0;
one order higher than a generic set with n density 0 at x would do. This implies
that these sets do not affect the limit % ↓ 0 obtained as long as the derivative of
the test functions to be rescaled is bounded in L∞, a fact that has been used by
Brakke in his proof of the perpendicularity of mean curvature. Taking into account
that the Lipschitz constant of the approximating function can be prescribed to
be arbitrarily small (cp. [Sch04a, (D.9)]), one is led, after some calculations, to
consider the following model case for the Laplace operator.

Suppose u : Rn → Rm is Lipschitzian, A is Ln measurable and to each a ∈ A,
0 < % <∞ there corresponds a harmonic function va,% : B%(a)→ Rm such that

lim sup
%↓0

%−2−n/p‖u− va,%‖Lp(B%(a),Rm) <∞

with 1 ≤ p < ∞, p < n/(n − 1) if n > 1; the approximating functions va,% being
constructable in a straightforward way using u|∂B%(a) as boundary values. If va,%
were affine functions, this would immediately yield second order differentiability in
Lp by [CZ61, Theorem 5] implying C2 rectifiability of u by [CZ61, Theorem 9] (see
also [Zie89, 3.6–8]); here a function v : B → Rm, B ⊂ Rn, is called C2 rectifiable
if and only if there exists a sequence of functions vi : Rn → Rm of class C2 such
that Ln (B∼{x : v(x) = vi(x) for some i}) = 0. Despite the fact that harmonic
functions are themselves smooth and satisfy well known a priori estimates, there
can exist points a ∈ A such that there do not exist affine functions Pa,% : Rn → Rm
with

lim sup
%↓0

%−2−n/p‖u− Pa,%‖Lp(B%(a),Rm) <∞

if n > 1.1 To circumvent this difficulty, one considers closed sets Ak, k ∈ N, such
that

%−n/p‖u− va,%‖Lp(B%(a),Rm) ≤ k%2 whenever 0 < % < 1/k

and constructs functions vk : Rn → Rm which agree with u on Ak and satisfy
∆vk ∈ Lr(Ln xVk,Rm) for some 1 < r < ∞ and some open neighbourhood Vk
of Ak, hence vk|Vk ∈ W 2,r

loc (Vk,Rm) and infers second order differentiability of vk
in Lr from [Reš68], hence C2 rectifiability of vk|Vk and u|A. The functions vk
are constructed by use of the partition of unity with estimates in [Fed69, 3.1.13]
from the functions va,% only using classical local Calderón-Zygmund type a priori
estimates, [GT01, 9.4–5].

In reducing the general case to a slight extension of the model case, the following
three aspects are important.

(1) The result in the model case is of Ln almost everywhere type.
(2) The approximating function is multivalued.
(3) The right hand side of the equation has to be estimated in terms of a norm

corresponding to a “divergence of a Radon measure”, more precisely in a
scale invariant norm on the dual of C1

c (B%(a),Rm), as will be explained in
2.14.

Concerning (1), the Lipschitzian approximation of Brakke has to be extended to
construct a single multivalued function in a ball Br(x0) together with estimates
an every ball B%(x) contained in Br(x0) such that x is an element of a “good”
set having full n density at x0. This greatly contributes to the complexity of the

1If n = 2, this may be seen by considering the behaviour of the continuous function u : C→ R
such that u(reiϕ) = r2(log r) cos(2ϕ) for 0 < r <∞, ϕ ∈ R at 0, noting ∆u(reiϕ) = 4 cos(2ϕ) for
0 < r <∞, ϕ ∈ R.
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estimates involved. Having to consider all points x in a set of positive measure si-
multanuously, it also rules out the possibility to assume Du(x) = 0 for the points x
examined which is often useful in order to approximate the minimal surface opera-
tor by the Laplace operator. Concerning (2), one can again use Brakke’s tilt-excess
estimates to control the error occuring when passing to the average of the multi-
valued function. Concerning (3), first note that for u, as its Lipschitz constant is
small, the Euler Lagrange differential operator LF corresponding to the nonpara-
metric area integrand F and the operator LG corresponding to a perturbation G
of the Dirichlet integrand yield the same distribution. It is now easy to construct
functions va,% with LG(va,%) = 0 and boundary values u|∂B%(a). Also, once an es-
timate of ‖u− va,%‖Lp(B%(a),Rm) is established, the arguments from the model case
carry over from ∆ to LG by rather straightforward perturbation arguments. The
difficulty lies in establishing the mentioned Lp estimate for u − va,%. Since in the
linear case, i.e. ∆w = div f , w : Rn → Rm and f : Rn → Hom(Rn,Rm) functions
of class C∞ with compact support, ‖Dw‖L1(Ln,Hom(Rn,Rm)) cannot be controlled by
‖f‖L1(Ln,Hom(Rn,Rm)), a perturbation argument to pass from ∆ to LG seems to be
impossible. Instead of this the construction of u is examined to conclude that u
inherites decays of a tilt quantity, i.e.

lim
%↓0

%−n−1
�
B%(a)

|Du(x)−Du(a)|2 dLnx = 0

for Ln almost all a in a relevant set A from the tilt-excess decay of the varifold µ.
These estimates are used to explicitely estimate the difference to suitably chosen
linear differential operators close to ∆ and thereby resolving the problem.

Concerning the ideas of proof, it should be finally remarked that the second
order differentiability in Lp in fact obtained for u does not imply directly that
these differentials satisfy the equation in differentiated form. However, using once
more the tilt estimates, one obtains estimates for comparison functions wa,% with
LG(wa,%) given by suitable constants and boundary values given by u|∂B%(a) as
before to establish the desired relation via a blow up argument. This relation then
yields the condition (L) for µ.

The notation is taken from [Sim83, GT01, Fed69, Alm00]. With the exception
of standard notation like N denoting the positive integers, R denoting the real
numbers, B%(x) and B̄%(x) denoting respectively the open and closed balls centered
at x with radius %, as well as Lebesgue and Sobolev spaces, which have already been
used without warning, all notation is introduced or recalled before first occurance.
Definitions will be denoted by ‘=’. To simplify verification, in case a statement
asserts the existence of a constant, small (ε) or large (Γ), depending on certain
parameters this number will be referred to by using the number of the statement
as index and what is supposed to replace the parameters in the order of their
appearance given in brackets, for example ε1.6(n,m, q, 2p).

The work is organised as follows. Section 1 provides a criterion for second order
differentiability in Lebesgue spaces. In Section 2 the approximation by multivalued
functions is constructed The results of these two sections are combined in Section
3 to prove the main theorem. In Appendix A Almgren’s notation for Q valued, i.e.
multivalued, functions is summarised for the convenience of the reader. Finally,
in Appendix B a result about Lebesgue points for distributions is included which
clarifies some arguments in the main body of the text.

Acknowledgements. The author offers his thanks to Professor Reiner Schätz-
le for introducing him to elliptic partial differential equations and the questions
of geometric measure theory this paper deals with. The author also would like
to thank Professor Tom Ilmanen for inviting him to the ETH Zürich in 2006 and
several extensive discussions.
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1. A criterion for second order differentiability in Lebesgue spaces

In 1.1–1.8 the situation considered is introduced and modifications and simple
applications of standard results are given in the precise form needed to prove the
main lemma in 1.9. The criterion is then proved in 1.11.

1.1. In this section and partly also in Section 3 the concept of weakly differentiable
functions, in particular Sobolev spaces, as introduced e.g. in [GT01] and the concept
of distributions as introduced e.g. in [Fed69] will be used. In doing so, the following
conventions and abbreviations will be employed.

Suppose n,m ∈ N. Since some of the results are pointwise, no identification of
functions agreeing almost everywhere will be used; instead the conventions will be
employed that for any i times weakly differentiable function u : U → Rm, U an
open subset of Rn, i ∈ N0, the weak i-th derivative will be denoted by Diu,

a ∈ dmnDiu if and only if lim
r↓0

(ωnrn)−1
�
Br(a)

DiudLn exists

and in this case Diu(a) equals the limit in question.2

Moreover, the following abbreviations will be convenient. For i ∈ N, and vector
spaces V and W denote by �i(V,W ) for i ∈ N the set of all symmetric multilinear
maps from the i fold product of V into W , �0(V,W ) = W and let �iV = �i(V,R)
for i ∈ N0. Suppose a ∈ Rn, 0 < r < ∞, H is a finite dimensional Hilbert space,
and f : Br(a)→ H is Ln xBr(a) measurable. Then

|f |p;a,r = ‖f‖Lp(Ln xBr(a),H) for 1 ≤ p ≤ ∞.

Note, concerning the case f = Diu for some u : Br(a) → Rm, i ∈ N, the Hilbert
space norm is given by i! |φ|2 =

∑
s∈S(n,i) |φ(es(1), . . . , es(i))|2 for φ ∈ �i(Rn,Rm)

where e1, . . . , en denotes an orthonormal base of Rn and S(n, i) is the set of all
maps from {1, . . . , i} into {1, . . . , n}, see [Fed69, 1.10.5]. Suppose U is an open
subset of Rn, a ∈ Rn, 0 < r <∞, Br(a) ⊂ U , and T ∈ D′(U,Rm). Then

|T |−1,p;a,r = sup{T (θ) : θ ∈ D(U,Rm), spt θ ⊂ Br(a), |Dθ|p′;a,r ≤ 1}

where p′ denotes the conjugate exponent to p. If |T |−1,p;a,r < ∞, then, in case
p > 1, T induces an element of(

W 1,p′

0 (Br(a),Rm)
)∗

by unique continuous extension of T |W 1,p′

0 (Br(a),Rm). In case p = 1, a similar
assertions holds with W 1,∞

0 (Br(a),Rm) replaced by its subspace of functions u :
Br(a)→ Rm whose extension to Rn by 0 is of class C1.

1.2. Suppose n,m ∈ N, the bilinear form Υ ∈ �2 Hom(Rn,Rm) is defined by

Υ(σ, τ) = σ • τ for σ, τ ∈ Hom(Rn,Rm),

• denoting the inner product on Hom(Rn,Rm), F : Hom(Rn,Rm) → R is of class
C2, 0 ≤ ε <∞, and

‖D2F (σ)−Υ‖ ≤ ε whenever σ ∈ Hom(Rn,Rm);

here ‖Ψ‖ denotes for a bilinear form Ψ on Hom(Rn,Rm) the smallest nonnegative
number M such that Ψ(σ, τ) ≤M |σ||τ | for σ, τ ∈ Hom(Rn,Rm). LipD2F will also
be computed with respect to ‖ · ‖ on �2 Hom(Rn,Rm) and | · | on Hom(Rn,Rm).

2dmn f denotes the domain of the function f and ωn = Ln(Bn1 (0)).
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To each such F there corresponds the Euler Lagrange differential operator LF
which associates to every u ∈ W 1,1(U,Rm) for some open subset U of Rn a distri-
bution LF (u) in D′(U,Rm) defined by

LF (u)(θ) = −
�
U
〈Dθ(x), DF (Du(x))〉 dLnx for θ ∈ D(U,Rm);

here 〈v, ψ〉 := ψ(v) for a linear map ψ : V → R and v ∈ V . There also occurs the
linear function CF (σ) : �2(Rn,Rm)→ Rm which for σ ∈ Hom(Rn,Rm) is given by

〈φ,CF (σ)〉 =
n∑
i=1

m∑
j=1

n∑
k=1

m∑
l=1

〈
(Xiυj , Xkυl), D2F (σ)

〉
(φ(ei, ek) • υj)υl

for φ ∈ �2(Rn,Rm) where e1, . . . , en and X1, . . . , Xn are dual orthonormal bases
of Rn and �1Rn, Xυ maps w ∈ Rn onto X(w)υ ∈ Rm for X ∈ �1Rn, υ ∈ Rm,
and υ1, . . . , υm form an orthonormal base of Rm. Hence one obtains by partial
integration for u ∈W 2,1(U,Rm), θ ∈ D(U,Rm)

LF (u)(θ) =
�
U
θ(x) •

〈
D2u(x), CF (Du(x))

〉
dLnx.

Similarly, one defines S : �2(Rn,Rm) → Rm corresponding to the Dirichlet inte-
grand (and therefore to Υ) and obtains 〈φ, S〉 =

∑n
i=1

∑n
k=1 φ(ei, ek) with e1, . . . , en,

and φ as in the definition of CF (σ). One may check that with κ = 21/2nm

|CF (σ)| ≤ κ‖D2F (σ)‖, |CF (σ)− S| ≤ κε,
|CF (σ)− CF (τ)| ≤ κ‖D2F (σ)−D2F (τ)‖

for σ, τ ∈ Hom(Rn,Rm) where | · | denotes the norm associated to the inner product
on Hom(�2(Rn,Rm),Rm).

1.3. Theorem. Suppose n,m ∈ N, and 1 < q <∞, 1 < p <∞.
Then there exists a positive, finite number ε with the following property.
If Υ is as in 1.2, a ∈ Rn, 0 < r <∞,

A : Br(a)→ �2 Hom(Rn,Rm) is Ln xBr(a) measurable,

‖A(x)−Υ‖ ≤ ε whenever x ∈ Br(a),

and u ∈W 1,q(Br(a),Rm), T ∈ D′(Br(a),Rm) satisfy

−
�
Br(a)

〈(Dθ(x), Du(x)), A(x)〉 dLnx = T (θ) for θ ∈ D(Br(a),Rm),

then

|Du|p;a,r/2 ≤ Γ
(
r−n−1+n/p|u|1;a,r + |T |−1,p;a,r

)
where Γ is a positive, finite number depending only on n, m, and p.

1.4. Theorem. Suppose n,m ∈ N, and 1 < p <∞.
Then there exists a positive, finite number ε with the following property.
If S is as in 1.2, a ∈ Rn, 0 < r <∞,

B : Br(a)→ Hom(�2(Rn,Rm),Rm) is Ln xBr(a) measurable,

|B(x)− S| ≤ ε whenever x ∈ Br(a),

and u ∈W 2,p(Br(a),Rm), f ∈ Lp(Ln xBr(a),Rm) satisfy〈
D2u(x), B(x)

〉
= f(x) for Ln almost all x ∈ Br(a),

then

|D2u|p;a,r/2 ≤ Γ
(
r−2−n+n/p|u|1;a,r + |f |p;a,r

)
where Γ is a positive, finite number depending only on n, m, and p.

Proof of 1.3 and 1.4. Using some standard modifications, the techniques described
in [GT01, 9.4–5] apply. �
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1.5. Remark. Using the elementary solution constructed in [Fed69, 5.2.13], one
verifies with essentially the same proof that 1.3 and 1.4 remain valid if Υ is only
required to be strongly elliptic as defined in [Fed69, 5.2.11] provided the constants
ε, Γ are allowed to depend additionally on an ellipticity bound of Υ and a bound
for ‖Υ‖. In fact, this remark holds for all results of the present section.

1.6. Lemma. Suppose n,m ∈ N, and 1 < q <∞, 1 < p <∞.
Then there exists a positive, finite number ε with the following property.
If F is related to ε as in 1.2, a ∈ Rn, 0 < r < ∞, u ∈ W 1,q(Br(a),Rm), and

f ∈ Lp(Ln xBr(a),Rm) satisfy

LF (u)(θ) =
�
Br(a)

θ(x) • f(x) dLnx whenever θ ∈ D(Br(a),Rm),

then u is twice weakly differentiable and for every affine function P : Rn → Rm
there holds

|D2u|p;a,r/2 ≤ Γ
(
r−2−n+n/p|u− P |1;a,r + |f |p;a,r

)
where Γ is a positive, finite number depending only on n, m, and p.

Proof. The assertion may be obtained from 1.3 using difference quotients. �

1.7. Lemma. Suppose n,m ∈ N, and 1 < q ≤ p <∞.
Then there exists a positive, finite number ε with the following property.
If F is related to ε as in 1.2, LipD2F < ∞, a ∈ Rn, 0 < r < ∞, and

ui ∈ W 1,q(Br(a),Rm) with i ∈ {1, 2} satisfy LF (ui) = 0, then ui are twice weakly
differentiable and for every affine function P : Rn → Rm there holds

r−n/p+1|D2(u2 − u1)|p;a,r/2 ≤ Γ
(
r−n−1|u2 − u1|1;a,r

+ (r−n−1|u1 − P |1;a,r) Lip(D2F )(r−n−1|u2 − u1|1;a,r)
)

where Γ is a positive, finite number depending only on n, m, and p.

Proof. Using an elementary covering argument, it is enough to prove the assertion
with |D2(u2 − u1)|p;a,r/2 replaced by |D2(u2 − u1)|p;a,r/4. For this purpose let
κ = 21/2nm,

ε = inf{ε1.6(n,m, q, 2p), ε1.4(n,m, p)/κ, ε1.3(n,m, q, 2p)},
Γ1 = Γ1.6(n,m, 2p), Γ2 = Γ1.4(n,m, p),

Γ3 = Γ1.3(n,m, 2p), Γ = Γ2 sup{22+n−n/p, κΓ1Γ3}.

Suppose F , a, r, and ui satisfy the hypotheses with ε and that P : Rn → Rm is an
affine function. In order to show that they satisfy the modified conclusions with Γ,
it will be assumed a = 0 and r = 1. Abbreviate Λ = Lip(D2F ).

By 1.6 the functions ui are twice weakly differentiable with

|D2ui|2p;0,1/2 ≤ Γ1|ui − P |1;0,1 for i ∈ {1, 2}

and one obtains from 1.2 for Ln almost all x ∈ Bn1 (0)〈
D2ui(x), CF (Dui(x))

〉
= 0 for i ∈ {1, 2},〈

D2(u2 − u1)(x), CF (Du2(x))
〉

=
〈
D2u1(x), CF (Du1(x))− CF (Du2(x))

〉
.

Therefore by 1.4, 1.2 and Hölder’s inequality

|D2(u2 − u1)|a,1/4;p ≤ Γ2

(
22+m−m/p|u2 − u1|0,1/2;1

+ κΛ|D2u1|2p;0,1/2|D(u2 − u1)|2p;0,1/2
)
.
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To estimate |D(u2 − u1)|2p;0,1/2, one computes

−
�
Bn

1 (0)
〈(Dθ(x), D(u2 − u1)(x)), A(x)〉 dLnx = 0 for θ ∈ D(Bn1 (0),Rm),

where A(x) =
� 1

0
D2F (tDu2(x) + (1− t)Du1(x)) dL1t,

and obtains from 1.3

|D(u2 − u1)|2p;0,1/2 ≤ Γ3|u2 − u1|1;0,1. �

1.8. Lemma. Suppose H is a Hilbert space with dimH = N <∞, k, l ∈ N0, l ≥ k,
F : H → R is of class l, a ∈ H, 0 < δ <∞, and

s = sup{‖DkF (x)−DkF (a)‖ :x ∈ B̄r(a)}.

Then there exists G : H → R of class l such that

DiG(x) = DiF (x) for x ∈ B̄δ/2(a), i = 0, . . . , k,

‖DkG(x)−DkF (a)‖ ≤ Γs for x ∈ H,
G|H ∼ B̄δ(a) is the restriction of a polynomial function of degree at most k

where Γ is a positive, finite number depending only on N and k.

Proof. Choosing ϕ ∈ E(R,R) with 0 ≤ ϕ ≤ 1,

{t :−∞ < t ≤ 1/2} ⊂ Int{t :ϕ(t) = 1}, {t : 1 ≤ t <∞} ⊂ Int{t :ϕ(t) = 0}

one defines P : H → R, G : H → R by

P (x) =
∑k
i=0

〈
(x− a)i/i!, DiF (a)

〉
,

G(x) = P (x) + ϕ(|x− a|/δ)(F (x)− P (x))

for x ∈ H and readily estimates ‖DkG(x)−DkF (a)‖ be means of Taylor’s formula
(cf. [Fed69, 3.1.11]).3 �

1.9. Lemma. Suppose n,m ∈ N, 1 ≤ p ≤ r <∞, and 1 < q <∞.
Then there exist a positive, finite number ε, a positive, finite number Γ1 depend-

ing only on n and p, and a positive, finite number Γ2 depending only on n, m, p,
and r with the following property.

If F is related to ε as in 1.2, LipD2F < ∞, j ∈ {0, 1}, A is a closed subset of
Rn, u : Rn ∩ {x : dist(x,A) < 1} → Rm is j times weakly differentiable, 0 ≤ γ <∞,
and if for each a ∈ A, 0 < % ≤ 1 there are va,% ∈ W 1,q(B%(a),Rm) and an affine
function Pa,% : Rn → Rm such that

LF (va,%) = 0,∑j
i=0%

−n/p+i|Di(u− va,%)|p;a,% ≤ γ%
2, %−n/p|u− Pa,%|p;a,% ≤ γ%

then there exists a twice weakly differentiable function v : Rn ∩ {x : dist(x,A) <
1
36} → Rm with ∑j

i=0%
−n/p+i|Di(u− v)|p;a,% ≤ Γ1γ%

2,

%−n/r|D2v|r;a,% ≤ Γ2

(
γ(1 + Lip(D2F )γ)2 + %−n−2|u− Pa,2%|1;a,2%

)
whenever a ∈ A, 0 < % ≤ 1

36 .

3IntA denotes the interior of A.
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Proof. Assume r ≥ q and define

ε = min{1, ε1.6(n,m, q, 2r), ε1.7(n,m, q, 2r), ε1.6(n,m, q, r)}.

Suppose F , j, A, u, and γ satisfy the hypotheses with ε and abbreviate Λ =
Lip(D2F ).

By 1.6 and Hölder’s inequality∑j
i=0|D

iva,%|2r;a,1/2 <∞,
∑j
i=0|D

iu|p;a,1/2 <∞

whenever a ∈ A. Therefore taking limits (for example by use of an interpolation
inequality similar to [Mor66, Lemma 6.2.2] and weak compactness properties of
Sobolev spaces [Mor66, Theorem 3.2.4(e)]) the conclusion can be deduced from the
following assertion: There exist a positive, finite number Γ1 depending only on n
and p, and a positive, finite number Γ2 depending only on n, m, p and r such that
for every 0 < δ ≤ 1

18 there exists a function v : Rn → Rm whose restriction to{
x ∈ Rn : dist(x,A) < 1

18

}
is twice weakly differentiable satisfying∑j

i=0%
−n/p+i|Di(u− v)|p;a,% ≤ Γ1γ%

2,

(%/2)−n/r|D2v|r;a,%/2 ≤ Γ2

(
γ(1 + Λγ)2 + (%/2)−n−2|u− Pa,%|1;a,%

)
whenever a ∈ A, δ ≤ % ≤ 1

18 .
Assume A 6= ∅, let Φ = {Rn∼A} ∪ {Bδ(a) : a ∈ A}, note

⋃
Φ = Rn, define

h(x) = 1
20 sup{min{1,dist(x,Rn∼U)} :U ∈ Φ} for x ∈ Rn,

and apply [Fed69, 3.1.13] to obtain a countable subset S of Rn and functions ϕs :
Rn → {t : 0 ≤ t ≤ 1} of class C∞ corresponding to s ∈ S such that with Sx ={
s ∈ S : B̄10h(x)(x) ∩ B̄10h(s)(s) 6= ∅

}
for x ∈ Rn and a sequence Vi of positive,

finite numbers depending only on n there holds

#Sx ≤ (129)n, sptϕs ⊂ B̄10h(s)(s) for s ∈ S,

1/3 ≤ h(x)/h(s) ≤ 3 for s ∈ Sx, |Diϕs(x)| ≤ Vi(h(x))−i for s ∈ S, i ∈ N,∑
s∈S

ϕs(y) =
∑
s∈Sx

ϕs(y) = 1,
∑
s∈S

Diϕs(y) =
∑
s∈Sx

Diϕs(y) = 0 for i ∈ N

whenever x ∈ Rn, y ∈ B̄10h(x)(x). Note for x ∈ Rn, y ∈ B̄10h(x)(x), s ∈ S, i ∈ N

|Diϕs(y)| ≤ Vi(h(y))−i ≤ (20)iVi(10h(x))−i,

because h(x)− h(y) ≤ 1
20 |x− y| ≤

1
2h(x). Choose ξ : S → A such that

|ξ(s)− s| = dist(s,A) whenever s ∈ S.

Note 20h(x) ≤ max{dist(x,A), δ} for x ∈ Rn and observe

B̄20h(x)(x) ⊂ B̄120h(s)(ξ(s)), 120h(s) ≤ 1

whenever x ∈ Rn, dist(x,A) ≤ 1
18 , s ∈ Sx, because

|x− s| ≤ 10h(x) + 10h(s) ≤ 40h(x) ≤ 2 max{dist(x,A), δ} ≤ 1/9,

|s− ξ(s)| = dist(s,A) ≤ |x− s|+ dist(x,A) ≤ 1/6,

|x− ξ(s)| ≤ |x− s|+ |s− ξ(s)| ≤ 40h(s) + 20h(s) = 60h(s),

|x− ξ(s)|+ 20h(x) ≤ 120h(s) ≤ 360h(x) ≤ 1.

Define R =
⋃
{Sx :x ∈ Rn and dist(x,A) ≤ 1

18},

vs = vξ(s),120h(s) and Ps = Pξ(s),120h(s) for s ∈ R
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and, denoting by v′s the extension of vs to Rn by 0, v : Rn → Rm by

v(x) =
∑
s∈R

ϕs(x)v′s(x) whenever x ∈ Rn.

Suppose for the rest of the proof x ∈ Rn with dist(x,A) ≤ 1
18 and observe

v(y) =
∑
s∈Sx

ϕs(y)vs(y) whenever y ∈ B̄10h(x)(x).

The asserted weak differentiability is a consequence of 1.6.
One estimates

|Di(u− vs)|p;x,20h(x) ≤ |Di(u− vs)|p;s,120h(s)

≤ γ(120h(s))n/p+2−i ≤ (18)n/p+2γ(20h(x))n/p+2−i

for i ∈ {0, j}, s ∈ Sx, hence by Hölder’s inequality

(20h(x))−n|u− vs|1;x,20h(x)

≤ ω1−1/p
n

∑j
i=0(20h(x))−n/p+i|Di(u− vs)|p;x,20h(x) ≤ 2c1γ(20h(x))2

(I)

for s ∈ Sx where c1 = ω
1−1/p
n (18)n/p+2. Also

(20h(x))−n|u− Ps|1;x,20h(x) ≤ ω
1−1/p
n (20h(x))−n/p|u− Ps|p;ξ(s),120h(s)

≤ c1γ(20h(x)),

(20h(x))−n|vs − Ps|1;x,20h(x) ≤ 3c1γ(20h(x))(II)

for x ∈ Sx. Using

v(y)− u(y) =
∑
s∈Sx

ϕs(y)(vs(y)− u(y)) whenever y ∈ B̄10h(x)(x)

and the Leibnitz formula, one obtains from (I)∑j
i=0(10h(x))−n/p+i|Di(u− v)|p;x,10h(x) ≤ c2γ(10h(x))2

where c2 = ω
1/p−1
n 8c12n/p(1 + 20V1)(129)n.

In case x ∈ B̄%(a) for some a ∈ A, δ ≤ % ≤ 1
18 ,

20h(x) ≤ max{dist(x,A), δ} ≤ %, B̄20h(x)(x) ⊂ B̄2%(a)

and Vitali’s covering theorem yields a countable subset T of B̄%(a) such that

{B̄2h(t)(t) : t ∈ T} is disjointed, B̄%(a) ⊂
⋃
{B̄10h(t)(t) : t ∈ T}

and one estimates for i ∈ {0, j}

|Di(u− v)|pp;a,%
≤
∑
t∈T |Di(u− v)|pp;t,10h(t)

≤ (c2γ)p
∑
t∈T (10h(t))n+(2−i)p

= (5n/p+2−ic2γ)pω−1−(2−i)p/n
n

∑
t∈TL

n(B̄2h(t)(t))
1+(2−i)p/n

≤ (5n/p+2−ic2γ)pω−1−(2−i)p/n
n Ln(B̄2%(a))1+(2−i)p/n

=
(
(10)n/p+2−ic2γ

)p
%n+(2−i)p.

Therefore one obtains for a ∈ A, δ ≤ % ≤ 1
18 , i ∈ {0, j}

%−n/p+i|Di(u− v)|p;a,% ≤ (10)n/p+2c2γ%
2(III)

and one may take Γ1 = 2(10)n/p+2c2 in the first estimate of the assertion.
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According to 1.6 the functions vs are twice weakly differentiable and satisfy for
s ∈ Sx

(20h(x))−n/(2r)+2|D2vs|2r;x,10h(x) ≤ Γ3(20h(x))−n|vs − Ps|1;x,20h(x)

where Γ3 = Γ1.6(n,m, 2r). Combining this with (II) yields

(10h(x))−n/(2r)+2|D2vs|2r;x,10h(x) ≤ 2n/(2r)3c1γ(10h(x))(IV)

for s ∈ Sx.
Using 1.7, one obtains for s, t ∈ Sx

(20h(x))−n/(2r)+1|D2(vs − vt)|2r;x,10h(x) ≤ Γ4

(
(20h(x))−n−1|vs − vt|1;x,20h(x)

+ Λ((20h(x))−n−1|vs − Ps|1;x,20h(x))((20h(x))−n−1|vs − vt|1;x,20h(x))
)

where Γ4 = Γ1.7(n,m, 2r). Since

(20h(x))−n|vs − vt|1;x,20h(x) ≤ 4c1γ(20h(x))2

by (I), one estimates using (II)

(10h(x))−n/(2r)|D2(vs − vt)|2r;x,10h(x) ≤ c3γ(1 + Λγ)

where c3 = Γ4(4c1 + 3c1 max{4c1, 1}). Using an interpolation inequality (which
may be proved similarly to [Mor66, Lemma 6.2.2]), one infers with a positive, finite
number Γ5 depending only n, m, and r∑2

i=0(10h(x))−n/(2r)+i|Di(vs − vt)|2r;x,10h(x)

≤ Γ5

(
(10h(x))−n/(2r)+2|D2(vs − vt)|2r;x,10h(x) + (10h(x))−n|vs − vt|1;x,10h(x)

)
≤ Γ5

(
c3(1 + Λγ) + 2n+4c1

)
γ(10h(x))2.

Together this implies for s, t ∈ Sx∑2
i=0(10h(x))−n/(2r)+i|Di(vs − vt)|2r;x,10h(x) ≤ c4γ(1 + Λγ)(10h(x))2

where c4 = Γ5(c3 + 2n+4c1). Noting (v − vs)(y) =
∑
t∈Sx

ϕt(y)(vt − vs)(y) for
s ∈ Sx, y ∈ B10h(x)(x), one infers using the Leibnitz formula

(10h(x))−n/(2r)+i|Di(v − vs)|2r;x,10h(x) ≤ c5γ(1 + Λγ)(10h(x))2(V)

for s ∈ Sx, i ∈ {0, 1, 2} where c5 = 2(1 + 20V1 + 400V2)c4(129)n.
Using 1.2, one defines

f(y) =
〈
D2v(y), CF (Dv(y))

〉
whenever y ∈ B10h(z)(z) for some z ∈ Rn with dist(z,A) ≤ 1

18 and computes for
s ∈ Sx

f(y) =
〈
D2vs(y), CF (Dv(y))− CF (Dvs(y))

〉
+
〈
D2(v − vs)(y), CF (Dv(y))

〉
for Ln almost all y ∈ B10h(x)(x). Hölder’s inequality implies

|f |r;x,10h(x) ≤ κΛ(|D(v − vs)|2r;x,10h(x)|D
2vs|2r;x,10h(x)

+ κ(M + 1)ω1/(2r)
n (10h(x))n/(2r)|D2(v − vs)|2r;x,10h(x),

hence by (IV) and (V)

(10h(x))−n/r|f |r;x,10h(x) ≤ c6γ(1 + Λγ)2

where c6 = κω
1/(2r)
n (max{c5ω−1/(2r)

n , 1}2n/(2r)3c1 + (M + 1)c5). Similarly but sim-
pler as in the deduction of (III), one obtains for δ ≤ % ≤ 1

18 , a ∈ A

|f |r;a,% ≤ c6(10)n/rγ(1 + Λγ)2%n/r
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and thus, using 1.6 with Γ6 = Γ1.6(n,m, r) and (III),

%−n/r|D2v|r;a,%/2 ≤ Γ6

(
%−n−2(|u− v|1;a,% + |u− Pa,%|1;a,%) + %−n/r|f |r;a,%

)
≤ c7

(
γ(1 + Λγ)2 + %−n−2|u− Pa,%|1;a,%

)
where c7 = Γ6(ω1−1/p

n (10)n/p+2c2 + c6(10)n/r + 1). Therefore one may take Γ2 =
2n/rc7 in the second estimate of the assertion and the proof is completed. �

1.10. Remark. In fact, by [CZ61, Theorem 10 (ii)] (see also [Zie89, Lemma 3.7.2]),
or by [Men08b, 3.1]

lim
%↓0

%−2∑j
i=0%

−n/p+i|Di(u− v)|p;a,% = 0

for Ln almost all a ∈ A. Now, Rešetnyak’s result in [Reš68] applied to v yields that
for Ln almost all a ∈ A there exists a polynomial function Qa : Rn → Rm of degree
at most 2 such that

lim sup
%↓0

%−2∑j
i=0%

−n/p+i|Di(u−Qa)|p;a,% = 0.

1.11. Theorem. Suppose n,m ∈ N, 1 ≤ p <∞, and 1 < q <∞.
Then there exists a positive, finite number ε with the following property.
If F is related to ε as in 1.2, LipD2F <∞, U is an open subset of Rn, j ∈ {0, 1},

u : U → Rm is weakly differentiable,

h(a, r) =

inf
{∑j

i=0r
−n/p+i|Di(u− v)|p;a,r : v ∈W 1,q(Br(a),Rm) and LF (v) = 0

}
whenever Br(a) ⊂ U for some a ∈ Rn, 0 < r < ∞, and if A denotes the set of all
a ∈ U such that

lim sup
r↓0

r−2h(a, r) <∞,

then A is a Borel set and for Ln almost all a ∈ A there exists a polynomial function
Qa : Rn → Rm with degree at most 2 such that

lim
r↓0

r−2∑j
i=0r

−n/p+i|Di(u−Qa)|p;a,r = 0.

Proof. In view of 1.6 one may assume q ≥ p. Let ε = ε1.9(n,m, p, p, q). Suppose F ,
U , j, and u satisfy the hypotheses with ε. Define the open set V by

V =
{
x ∈ U :

∑j
i=0|D

iu|p;x,r <∞ for some 0 < r < dist(x,Rn∼U)
}

and note A ⊂ V . Denote by D the set of all v ∈ W 1,q(Bn1 (0),Rm) such that
LF (v) = 0 and define

W = {(a, r) ∈ V × R : 0 < r < dist(a,Rn∼V )}

and the continuous map T : W →W 1,1(Bn1 (0),Rm) by

T (a, r)(x) = r−1u(a+ rx) whenever (a, r) ∈W , x ∈ Bn1 (0).

Since D 6= ∅ and

h(a, r) = r inf
{∑j

i=0|D
i(T (a, r)− v)|p;0,1 : v ∈ D

}
for (a, r) ∈W,

h is continuous. Therefore A is a Borel set. Similarly, denoting by D′ the set of all
affine functions mapping Rn into Rm one defines a continuous map h′ : W → R by

h′(a, r) = r inf{|T (a, r)− w|1;0,1 :w ∈ D′} for (a, r) ∈W.
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By [Reš68]

lim sup
%↓0

%−1h′(a, %) <∞ for Ln almost all a ∈ U.

Define

Ck = {x ∈ V : dist(x,Rn∼V ) ≥ 1/k} ,
Ak =

{
a ∈ Ck :h(a, r) ≤ kr2 and h′(a, r) ≤ kr for 0 < r < 1/k

}
for k ∈ N and observe that the sets Ak are closed and

Ln(A∼
⋃
{Ak : k ∈ N}) = 0.

Finally, the conclusion is obtained by applying (for each k ∈ N) 1.9 in conjunction
with 1.10 to rescaled versions of u, Ak and a suitable number γ. �

1.12. Remark. Instead of using [Reš68], one can also use the functions v occuring in
the definition of h(a, r) in a way reminiscent of the familiar harmonic approximation
procedure to deduce

lim sup
%↓0

%−1h′(a, %) <∞ whenever a ∈ A.

Therefore u could have been required to be merely j times weakly differentiable.

1.13. Remark. This theorem generalises even in the case of the Laplace operator
similar criterions (see [CZ61, Theorem 5], [Zie89, 3.8.1]) where the functions in the
definition of h(a, r) are required to be affine. Also note that in case n > 1

lim sup
%↓0

%−2h(a, %) <∞

does not imply the existence of a function v ∈W 1,q(Br(a),Rm) for some 0 < r <∞
with LF (v) = 0 such that

lim sup
%↓0

%−2

j∑
i=0

ri−n/p|u− v|p;a,% <∞;

in fact this is a consequence of the example given in the Introduction, because
harmonic functions are of class C2.

2. Approximation of integral varifolds of locally bounded first
variation by Q valued functions

In this section Brakke’s Lipschitz approximation [Bra78, 5.4] is reexamined along
the lines of [Men08c, 1.14] to construct the covering of the varifold by suitably
rotated graphs of Lipschitzian functions satisfying certain additional properties in
2.12. Before doing so, some facts about universally measurable sets and a multilayer
monotonicity are recalled in 2.1–2.6.

2.1. Definition. A subset of a topological space is called universally measurable if
and only if it is measurable with respect to every Borel measure on that space.

A function between topological spaces is universally measurable if and only if
every preimage of an open set is universally measurable.

2.2. Remark. The corresponding definition for measures defined on Borel families
(σ algebras) can found for example in [CV77, III.21].

2.3. Remark. If f : X → Y is a Borel function and A is a universally measurable
subset of Y , then f−1(A) is universally measurable as may be verified with the help
of [Fed69, 2.1.2].

2.4. Remark. The universally measurable sets form a Borel family (σ algebra).
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2.5. Lemma. Suppose X is a complete, separable metric space, Y is a Hausdorff
topological space, f : X → Y is continuous, B is a Borel subset of X, and g : B →
{t : 0 ≤ t ≤ ∞} is a Borel function.

Then h : Y → {t : 0 ≤ t ≤ ∞} defined by

h(y) =
∑

f−1({y})

g whenever y ∈ Y

is universally measurable.

Proof. [Fed69, 2.10.10, 2.3.1 (6)] may be adapted by use of [Fed69, 2.2.13, 2.3.3] to
obtain the conclusion. �

2.6. Lemma (Multilayer monotonicity with variable offset, cf. [Men08c, 1.6]).
Suppose n,m,Q ∈ N, 0 ≤M <∞, δ > 0, and 0 ≤ s < 1.

Then there exists a positive, finite number ε with the following property.
If X ⊂ Rn+m, T ∈ G(n+m,n), 0 ≤ d < ∞, 0 < r < ∞, 0 < t < ∞,

f : X → Rn+m,

|T (y − x)| ≤ s|y − x|, |T (f(y)− f(x))| ≤ s|f(y)− f(x)|,
f(x)− x ∈ B̄n+m

d (0) ∩ T, d ≤Mt, d+ t ≤ r

for x, y ∈ X, µ is an integral n varifold in
⋃
{Br(x) :x ∈ X} with locally bounded

first variation,∑
x∈Xθ

n
∗ (µ, x) ≥ Q− 1 + δ, µ(Br(x)) ≤Mωnr

n for x ∈ X ∩ sptµ,

and whenever 0 < % < r, x ∈ X ∩ sptµ

‖δµ‖(B̄%(x)) ≤ ε µ(B̄%(x))1−1/n,
�
B̄%(x)

|Tξµ− T |dµ(ξ) ≤ ε µ(B̄%(x)),

then

µ
(⋃{

Bt(f(x)) ∩ {y : |T (y − x)| > s|y − x|} :x ∈ X
})
≥ (Q− δ)ωntn.

2.7. Lemma. Suppose X, Y are normed, finite dimensional vector spaces, f : X →
Y is of class C1, a ∈ X, 0 < r < ∞, Q ∈ N, xi ∈ B̄r(a) for i = 1, . . . , Q, and
λ = Lip(Df |B̄r(a)).

Then ∣∣∣∣∣ 1
Q

Q∑
i=1

f(xi)− f

(
1
Q

Q∑
i=1

xi

)∣∣∣∣∣ ≤ λr2.

Proof. Let P : X → Y by defined by P (x) = f(a) + 〈x− a,Df(a)〉 for x ∈ X.
Then for x ∈ B̄r(a)

|f(x)− P (x)| =
∣∣〈x− a, � 1

0
Df(a+ t(x− a))−Df(a) dL1t

〉∣∣ ≤ (λ/2)r2.

Since 1
Q

∑Q
i=1 P (xi) = P (Q−1

∑Q
i=1 xi), this implies the conclusion. �

2.8. Definition. Whenever k, l ∈ N, k ≥ l the set of orthogonal projections π :
Rk → Rl will be denoted by O∗(k, l).

2.9. Whenever n,m ∈ N, and T ∈ G(n+m,n) there exist π ∈ O∗(n+m,n),
σ ∈ O∗(n+m,m) such that T = imπ∗ and π ◦ σ∗ = 0,4 hence

T = π∗ ◦ π, T⊥ = σ∗ ◦ σ, 1Rn+m = π∗ ◦ π + σ∗ ◦ σ.

4im f denotes the image of a map f .
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Whenever a ∈ Rn+m, 0 < r < ∞, 0 < h ≤ ∞ the closed cuboid C(T, a, r, h) is
defined by

C(T, a, r, h) =
{
x ∈ Rn+m : |T (x− a)| ≤ r and |T⊥(x− a)| ≤ h

}
=
{
x ∈ Rn+m : |π(x− a)| ≤ r and |σ(x− a)| ≤ h

}
.

This definition extends Allard’s definition in [All72, 8.10] where h =∞.

2.10. Lemma (Approximation by Q valued functions). Suppose n,m,Q ∈ N, 0 <
L <∞, 1 ≤M <∞, and 0 < δi ≤ 1 for i ∈ {1, 2, 3, 4}.

Then there exists a positive, finite number ε with the following property.
If a, r, h, T , π, and σ are as in 2.9, h > 2δ4r,

U =
{
x ∈ Rn+m : dist(x,C(T, a, r, h)) < 2r

}
,

µ is an integral n varifold in U with locally bounded first variation,

(Q− 1 + δ1)ωnrn ≤ µ(C(T, a, r, h)) ≤ (Q+ 1− δ2)ωnrn,

µ(C(T, a, r, h+ δ4r)∼C(T, a, r, h− 2δ4r)) ≤ (1− δ3)ωnrn,

µ(U) ≤Mωnr
n,

0 < ε1 ≤ ε, B denotes the set of all x ∈ C(T, a, r, h) with θ∗n(µ, x) > 0 such that

either ‖δµ‖(B̄%(x)) > ε1 µ(B̄%(x))1−1/n for some 0 < % < 2r,

or
�
B̄%(x)

|Tξµ− T |dµ(ξ) > ε1 µ(B̄%(x)) for some 0 < % < 2r,

A = C(T, a, r, h)∼B, A(y) = {x ∈ A :π(x) = y} for y ∈ Rn, Y is the set of all
y ∈ B̄r(π(a)) such that∑

x∈A(y)θ
n(µ, x) = Q and θn(µ, x) ∈ N0 for x ∈ A(y),

Z is the set of all z ∈ B̄r(π(a)) such that∑
x∈A(z)θ

n(µ, x) ≤ Q− 1 and θn(µ, x) ∈ N0 for x ∈ A(z),

and N = B̄r(π(a))∼(Y ∪ Z), then the following eight statements hold:
(1) Y and Z are universally measurable, and Ln(N) = 0.
(2) A and B are Borel sets and

σ(A ∩ sptµ) ⊂ B̄h−δ4r(σ(a)).

(3) π({x ∈ A : θn(µ, x) = Q}) ⊂ Y .
(4) A function f : Y → QQ(Rm) is uniquely characerised by the requirement

θn(µ, x) = θ0(‖f(y)‖, σ(x)) whenever y ∈ Y and x ∈ A(y).

(5) The function f defined in (4) is Lipschitzian with Lip f ≤ L.
(6) Defining f as in (4) and G = {x ∈ Rn+m :σ(x) ∈ spt f(π(x))}, for Ln

almost all y ∈ Y the following is true:
(a) f is approximately strongly affinely approximable at y.
(b) Txµ is mapped onto Tan

(
graphQ apAf(y), (y, σ(x))

)
by the isometry

π on σ : Rn+m → Rn × Rm whenever x ∈ G with π(x) = y (see A.3).5

(7) If b ∈ A, θn(µ, b) = Q, 0 < % ≤ r − |T (b− a)|,

Bb,% = C(T, b, %, δ4%) ∩B,
Cb,% = B̄%(π(b))∼(Y ∼π(Bb,%)),

Db,% = C(T, b, %, δ4%) ∩ π−1(Cb,%),

5Here Tan(S, a) denotes the closed tangent cone of S at a in the sense of [Fed69, 3.1.21].



SECOND ORDER RECTIFIABILITY OF INTEGRAL VARIFOLDS 17

then Bb,% is a Borel set, Cb,%, Db,% are universally measurable and there
holds

Ln(Cb,%) + µ(Db,%) ≤ Γ(7) µ(Bb,%)

with Γ(7) = 3 + 2Q+ (12Q+ 6)5n.
(8) If b, %, Cb,%, Db,% are as in (7), g : Rn → Rm is a Lipschitzian extension

of ηQ ◦ f , τ ∈ Hom(Rn,Rm), θ ∈ D(Rn,Rm), ψ ∈ D(Rm,R),

spt θ ⊂ B%(π(b)), sptψ ⊂ Bδ4%(σ(b)),

B̄(δ4/2)%(σ(b)) ⊂ Int{z :ψ(z) = 1},

and F : Hom(Rn,Rm)→ R denotes the nonparametric area integrand, then∣∣Q�
B%(π(b))

〈Dθ(x), DF (Dg(x))〉 dLnx− (δµ)((ψ ◦ σ) · (σ∗ ◦ θ ◦ π))
∣∣

≤ γ1Qn
1/2 Lip g

�
Cb,%
|Dθ|dLn + γ2Q

�
Eb,%∼Cb,%

|Dθ(x)|t(x, τ)2 dLnx

+n1/2
�
Db,%
|D((ψ ◦ σ) · (σ∗ ◦ θ ◦ π))|dµ

where

γ1 = sup ‖D2F‖(B̄n1/2 Lip g(0)),

γ2 = Lip
(
D2F |B̄n1/2(L+2‖τ‖)(0)

)
,

Eb,% = B̄%(π(b)) ∩
{
y ∈ Y : θ0(‖f(y)‖, g(y)) 6= Q

}
and t(x, τ) is the supremum of all numbers

|τi − τ |

corresponding to all z1, . . . , zQ ∈ Rm, τ1, . . . , τQ ∈ Hom(Rn,Rm) such that

apAf(x)(v) =
Q∑
i=1

[[zi + 〈v, τi〉]] whenever v ∈ Rn.

Proof of (1)–(6). The existence of a number ε with 1 − nε2 ≥ 1/2 such that (1)–
(6) are true is essentially proved in [Men08c, 1.14 (1) (2) (7)]; the sets Y and Z are
defined as in the proof cited, their universal measurability follows from 2.4 and 2.5,
Ln(N) = 0 occurs in the last paragraph of the proof of [(1) and (2), loc. cit.], and
(3) is a consequence of a slight modification of the third paragraph of the proof of
[(1) and (2), loc. cit.].6 �

Choice of constants. One can assume 2L ≤ δ4. Let ε0 be a positive, finite number
such that ε0 in place of ε has the property asserted when the last two statements
are omitted.

Choose 0 < s < 1 close to 1 satisfying

(s−2 − 1)1/2 ≤ min{δ4, L}

and define ε > 0 so small that

ε ≤ min{ε0, ε2.6(n,m,Q,M, 1/4, s)}, (1− nε2)(Q− 1/4) ≥ Q− 1/2.

Clearly, ε1 satisfies the same inequalities as ε and one can assume a = 0, and
r = 1. �

6For x ∈ A with θn(µ, x) = Q one defines δ = inf{δ2/2, (2nγn)−n/ωn}, X = A(π(x)) and

applies 2.6 (noting [Men08b, 2.5]) with Q, d, r, t, and f replaced by Q + 1, 1, 2, 1, and T |X to

obtain
P
ξ∈A(π(x)) θ

n
∗ (µ, ξ) < Q+δ provided ε ≤ ε2.6(n,m,Q+1,M, δ, s) and (s−2−1)1/2 ≤ δ4/2,

hence [Men08b, 2.5] implies (3).
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Proof of (7). π(Bb,%) is a universally measurable set by [Fed69, 2.2.13], hence Cb,%,
Db,% are universally measurable sets by 2.3, 2.4. (2) shows

δ4%+ |T⊥(b)| ≤ h, C(T, b, %, δ4%) ⊂ C(T, 0, 1, h).

Let ν denote the Radon measure characterised by

ν(X) =
�
X
JµT (ξ) dµ(ξ)

whenever X is a Borel subset of U ,7 and note

|Txµ− T | ≤ ε for µ almost all x ∈ A,

hence 1− JµT (x) ≤ 1− (JµT (x))2 ≤ nε2 for those x. Therefore

(1− nε2)µ xA ≤ ν xA.

This implies the coarea estimate

(1− nε2)µ
(
C(T, b, %, δ4%) ∩ π−1(W )

)
≤ µ

(
Bb,% ∩ π−1(W )

)
+QLn(Y ∩W ) + (Q− 1)Ln(Z ∩W )

for every subset W of Rn; in fact the estimate holds for every Borel set by [Fed69,
3.2.22 (3)] and π#(µ xB) is a Radon measure by [Fed69, 2.2.17]. In particular,
taking W = B̄%(π(b)) yields

(1− nε2)µ(C(T, b, %, δ4%)) ≤ µ(Bb,%) +Qωn%
n,

thus one can assume, since 8Q+ 6 ≤ Γ(7), that

µ(Bb,%) ≤ 1
4ωn%

n.

Next, it will be shown that this assumption implies

Ln(Y ∩ B̄%(π(b))) > 0.

Verifying, since (s−2 − 1)1/2 ≤ δ4, that{
ξ ∈ B%(b) : |T (ξ − b)| > s|ξ − b|

}
⊂ C(T, b, %, δ4%),

2.6 may be applied with

δ, X, d, r, t, and f replaced by,

1/4, {b}, 0, 2, %, and 1{b}

to obtain

µ(C(T, b, %, δ4%)) ≥ (Q− 1/4)ωn%n.

Hence by the coarea estimate with W = B̄%(π(b)) it follows

(Q− 1/2)ωn%n

≤ µ(Bb,%) +QLn(Y ∩ B̄%(π(b))) + (Q− 1)Ln(Z ∩ B̄%(π(b)))

≤ (Q− 1/2)ωn%n + Ln(Y ∩ B̄%(π(b)))− 1
4L

n(Z ∩ B̄%(π(b))),

Ln(Z ∩ B̄%(π(b))) ≤ 4Ln(Y ∩ B̄%(π(b))), Ln(Y ∩ B̄%(π(b))) > 0.

Next, in order to estimate Ln(Z ∩ B̄%(π(b))), the following assertion will be proved.
If z ∈ Z ∩ B̄%(π(b)) and θn(Ln xRn∼Z, z) = 0, then there exist ζ ∈ Rn and
0 < t <∞ with

z ∈ B̄t(ζ) ⊂ B̄%(π(b)), Ln(B̄5t(ζ)) ≤ 6 · 5n µ
(
Bb,% ∩ π−1(B̄t(ζ))

)
.

7Here JµT (ξ) denotes the Jacobian of T with respect to µ at ξ which can be expressed as
‖Λn(T |Tξµ)‖, cf. [Fed69, 3.2.22].



SECOND ORDER RECTIFIABILITY OF INTEGRAL VARIFOLDS 19

Since Ln(Y ∩ B̄%(π(b))) > 0, some element B̄t(ζ) of the family of balls

{B̄θ%((1− θ)z + θπ(b)) : 0 < θ ≤ 1}

will satisfy

z ∈ B̄t(ζ) ⊂ B̄%(π(b)), 0 < Ln(Y ∩ B̄t(ζ)) ≤ 1
2L

n(Z ∩ B̄t(ζ)).

Hence there exists y ∈ Y ∩Bt(ζ). Noting8 for ξ ∈ A(y) with θn(µ, ξ) > 0

Bt(ηπ∗(y−ζ),1(ξ)) ⊂ π−1(B̄t(ζ)),

|T⊥(ξ − b)| ≤ L|T (ξ − b)| ≤ L% by (5),

(s−2 − 1)1/2|T (κ− ξ)| ≤ L2t ≤ 2L% ≤ δ4% for κ ∈ π−1(B̄t(ζ)),

the inclusion{
κ ∈ Bt(ηπ∗(y−ζ),1(ξ)) : |T (κ− ξ)| > s|κ− ξ|

}
⊂ C(T, b, %, δ4%) ∩ π−1(B̄t(ζ))

is valid and 2.6 can be applied with

δ, X, d, r, and f replaced by

1/4, {ξ ∈ A(y) : θn(µ, ξ) > 0}, t, 2, and ηπ∗(y−ζ),1| {ξ ∈ A(y) : θn(µ, ξ) > 0}

to obtain

(Q− 1/4)ωntn ≤ µ
(
C(T, b, %, δ4%) ∩ π−1(B̄t(ζ))

)
.

The coarea estimate with W = B̄t(ζ) now implies

(Q− 1/2)ωntn

≤ µ
(
Bb,% ∩ π−1(B̄t(ζ))

)
+QLn(Y ∩ B̄t(ζ)) + (Q− 1)Ln(Z ∩ B̄t(ζ))

= µ
(
Bb,% ∩ π−1[B̄t(ζ)]

)
+ (Q− 1/2)ωntn

+ 1
2L

n(Y ∩ B̄t(ζ))− 1
2L

n(Z ∩ B̄t(ζ)),

hence

2
3L

n(B̄t(ζ)) ≤ Ln(Z ∩ B̄t(ζ)) ≤ 4µ
(
Bb,% ∩ π−1(B̄t(ζ))

)
and the assertion follows.
Ln almost all z ∈ Z ∩ B̄%(π(b)) satisfy the assumption of the last assertion (cf.

[Fed69, 2.9.11]) and Vitali’s covering theorem (cf. [Fed69, 2.8.5]) implies

Ln(Z ∩ B̄%(π(b))) ≤ 6 · 5nµ(Bb,%).

Clearly,

Ln(π(Bb,%)) ≤ Hn(Bb,%) ≤ µ(Bb,%).

Since Cb,%∼N ⊂ (Z ∩ B̄%(π(b))) ∪ π(Bb,%), it follows

Ln(Cb,%) ≤ (1 + 6 · 5n)µ(Bb,%).

Finally, applying the coarea estimate with W = Cb,% yields

(1− nε2)µ(Db,%) ≤ µ(Bb,%) +QLn(Cb,%) ≤ (1 +Q+ 6Q · 5n)µ(Bb,%). �

8Recall from [Sim83] that the functions ηa,r : Rn+m → Rn+m are given by ηa,r(x) = r−1(x−a)

for a, x ∈ Rn+m, 0 < r <∞.
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Proof of (8). Let I, fi be associated to f as in A.6, and define Bi = dmn fi for
i ∈ I and G as in (6). Note by (3) (5) (4), since L ≤ δ4/2,

G ∩ π−1(B̄%(π(b))∼Cb,% = G ∩ C(T, b, %, (δ4/2)%)∼π−1(Cb,%),

π(Bb,%) ⊂ Cb,%, µ
(
C(T, b, %, δ4%)∼(G ∪ π−1(Cb,%))

)
= 0.

Therefore one computes using A.6 and recalling that Cb,%, Db,%, and, by 2.3, also
π−1(Cb,%) are universally measurable∑

i∈I

�
Bi∩B̄%(π(b))∼Cb,%

〈Dθ(x), DF (apDfi(x))〉 dLnx

= δ
(
µ xG ∩ π−1(B̄%(π(b))∼Cb,%

)
(σ∗ ◦ θ ◦ π)

= δ
(
µ xG ∩ C(T, b, %, (δ4/2)%)∼π−1(Cb,%)

)
((ψ ◦ σ) · (σ∗ ◦ θ ◦ π))

= δ
(
µ xC(T, b, %, δ4%)∼π−1(Cb,%)

)
((ψ ◦ σ) · (σ∗ ◦ θ ◦ π))

= (δµ)((ψ ◦ σ) · (σ∗ ◦ θ ◦ π))− δ(µ xDb,%)((ψ ◦ σ) · (σ∗ ◦ θ ◦ π)),

hence

Q
�
B%(π(b))

〈Dθ(x), DF (Dg(x))〉 dLnx− (δµ)((ψ ◦ σ) · (σ∗ ◦ θ ◦ π))

= Q
�
Cb,%
〈Dθ(x), DF (Dg(x))〉 dLnx

+Q
(�

B̄%(π(b))∼Cb,%
〈Dθ(x), DF (Dg(x))〉 dLnx

− 1
Q

∑
i∈I

�
Bi∩B̄%(π(b))∼Cb,%

〈Dθ(x), DF (apDfi(x))〉 dLnx
)

− δ(µ xDb,%)((ψ ◦ σ) · (σ∗ ◦ θ ◦ π)).

The first summand may be estimated using

DF (0) = 0, ‖DF (α)‖ ≤ γ1|α| ≤ γ1n
1/2 Lip g

for α ∈ Hom(Rn,Rm) with ‖α‖ ≤ Lip g. The second summand can be treated
noting

Dg(x) =
1
Q

∑
i∈I(x)

apDfi(x) where I(x) = {i ∈ I :x ∈ dmn apDfi}

for Ln almost all x ∈ B̄%(π(b))∼Cb,% and applying 2.7 with

X, Y , f , a, r, and {x1, . . . , xQ}
replaced by Hom(Rn,Rm), Hom(Hom(Rn,Rm),R), DF , τ , t(x, τ),

and {apDfi(x) : i ∈ I(x)}

for Ln almost all x ∈ Eb,%∼Cb,%. Finally, the third summand is estimated by use
of

|S • β| ≤ n1/2|β| for S ∈ G(n+m,n), β ∈ Hom(Rn+m,Rn+m). �

2.11. Remark. Concerning measurability, note that Ln measurability of W does
not imply µ measurability of π−1(W ) but only ν measurability. An example is
provided by taking m = 1, n > 1, W to be a Hn−1 nonmeasurable subset of
S = {x ∈ Rn : |x| = 1} and µ = Hn xπ−1(S) as may be verified by use of [Fed69,
2.2.4, 2.6.2, 3.2.23]. In the case W = Cb,% this difficulty could also have been
resolved by making use of π−1(Y ∼π(Bb,%)) ∩Bb,% = ∅.
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2.12. Lemma. Suppose n,m ∈ N, U is an open subset of Rn+m, µ is an integral n
varifold of locally bounded first variation in U , and 0 < L <∞.

Then there exists a countable, disjointed family H of µ measurable sets covering
µ almost all of U such that for each member Z of H there exist

g : Rn → Rm, G : Rn → Rm, A ⊂ Rn, Q ∈ N,
π ∈ O∗(n,m), σ ∈ O∗(n, n−m), T ∈ D′(Rn,Rm)

with the following five properties:
(1) σ ◦ π∗ = 0, G = π∗ + σ∗ ◦ g, and G(A) = Z.
(2) Lip g ≤ L.
(3) A is an Ln measurable subset of dmnDg.9

(4) −
�
〈Dθ(x), DF (Dg(x))〉 dLnx = T (θ) whenever θ ∈ D(Rn,Rm) where F :

Hom(Rn,Rm)→ R denotes the nonparametric area integrand.
(5) Whenever y ∈ A there holds

θn(µ,G(y)) = Q, imDG(y) = TG(y)µ,

lim
%↓0

%−n−1
�
B%(y)

|Dg(x)−Dg(y)|2 dLnx = 0,

lim
%↓0

%−n−1|T − Ty|−1,1;y,% = 0

where Ty ∈ D′(Rn,Rm) is defined by

Ty(θ) =
�
F (Dg(y))σ(~Hµ(G(y))) • θ(x) dLnx

whenever θ ∈ D(Rn,Rm).

Proof. Observe that if some µ measurable set Z has the properties listed in the
conclusion so does every µ measurable subset of Z. Therefore, in order to prove
the assertion, it is enough to show that for µ almost all a ∈ U there exists a µ
measurable set Z having the above mentioned properties and additionally satisfies
θ∗n(µ xZ, a) > 0; in fact one can then take a maximal, disjointed family H of such
Z (hence µ(Z) > 0) and note H is countable and θn(µ x

⋃
H, a) = 0 for Hn almost

all a ∈ U ∼
⋃
H by [Fed69, 2.10.19 (4)] so that µ(U ∼

⋃
H) > 0 would contradict

the maximality of H.
Assume L ≤ 1/8. Fix Q ∈ N. Define

δ1 = δ2 = δ3 = 1/2, δ4 = 1/4, α = 1/2, q = 2, M = 6mQ,

ε = ε2.10(n,m,Q,L,M, δ1, δ2, δ3, δ4), ε1 = ε,

and S : dmnTµ → Hom(Rn+m,Rn+m) by

S(x) = Txµ whenever x ∈ dmnTµ.

For i ∈ N let Ci denote the set of all x ∈ sptµ such that either B̄1/i(x) 6⊂ U or

‖δµ‖(B̄%(x)) > εµ(B̄%(x))1−1/n for some 0 < % < 1/i,

let Di(b) for b ∈ dmnTµ denote the set of all x ∈ U such that either B̄1/i(x) 6⊂ U
or

�
B̄%(x)

|S(ξ)− S(b)|2 dµ(ξ) > (ε2/4)µ(B̄%(x)) for some 0 < % < 1/i

and define Xi for i ∈ N by

Xi =
{
x ∈ U : θn

2/(n−1)(µ xCi, x) = 0
}

if n > 1,

Xi = U ∼Ci if n = 1,

9In contrast to 1.1, Dg here denotes the classical derivative.
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as well as Yi for i ∈ N by

Yi = U ∩
{
b : θn+αq(µ xDi(b), b) = 0

}
.

Note Xi ⊂ Xi+1, Yi ⊂ Yi+1 for i ∈ N. Xi are Borel sets by [Men08b, 2.9]. Yi are µ
measurable sets by [Men08b, 3.7 (2)]. Moreover,

µ
(
U ∼

⋃
{Xi : i ∈ N}

)
= 0

by [Men08b, 2.5], [Men08b, 2.9, 2.10] and

µ
(
U ∼

⋃
{Yi : i ∈ N}

)
= 0

by [Men08b, 3.7 (2)] and Brakke’s estimate of tiltexµ in [Bra78, 5.5, 5.7].
The conclusion will be shown at a point a such that for some i ∈ N

θn(µ, a) = Q, a ∈ dmnTµ, B̄2/i(a) ⊂ U,
a ∈ Xi ∩ Yi, θn(µ xU ∼Xi, a) = 0, θn(µ xU ∼Yi, a) = 0,

θn(µ, ·) and S are approximately continuous at a with respect to µ.

µ almost all a ∈ U with θn(µ, a) = Q satisfy this conditions by the preceding
remarks and [Fed69, 2.9.11, 2.9.13]. Fix such a, i, abbreviate T = Taµ, and choose
σ ∈ O∗(n, n −m), π ∈ O∗(n,m) such that σ ◦ π∗ = 0 and imπ∗ = T . Moreover,
choose 0 < 6r < 1/i such that

(Q− 1/2)ωnrn ≤ µ(C(T, a, r, r)) ≤ (Q+ 1/2)ωnrn,

µ(C(T, a, r, 5r/4)∼C(T, a, r, r/2)) ≤ (1/2)ωnrn,

µ({x ∈ Rn : dist(x,C(T, a, r, r)) < 2r}) ≤ µ(B̄21/2(3r)(a)) ≤Mωnr
n.

Now apply 2.10 with h = r to obtain B, A, Y , f , G, Bb,%, Cb,%, Db,%, and Eb,%
with the properties listed there and use Kirszbraun’s theorem (cf. [Fed69, 2.10.43])
to extend ηQ ◦ f to a function g : Rn → Rm such that

Lip g = Lip(ηQ ◦ f) ≤ Lip f ≤ L.

Define

W0 = Br(a) ∩Xi ∩ Yi ∩ {b : |S(b)− S(a)| ≤ ε/2},
W = A ∩ {b : θn(µ, b) = Q} ∩W0.

Next, it will be shown

B ⊂ Ci ∪Di(b) whenever b ∈W0.

If x ∈ B, then x ∈ C(T, a, r, r), θ∗n(µ, x) > 0 and

either ‖δµ‖(B̄s(x)) > εµ(B̄s(x))1−1/n for some 0 < s < 2r,

or
�
B̄s(x)

|S(ξ)− S(a)|dµ(ξ) > εµ(B̄s(x)) for some 0 < s < 2r.

In the first case, this implies x ∈ Ci, in the second case,

ε µ(B̄s(x)) <
�
B̄s(x)

|S(ξ)− S(a)|dµ(ξ)

≤
�
B̄s(x)

|S(ξ)− S(b)|dµ(ξ) + |S(b)− S(a)|µ(B̄s(x)),

(ε/2)µ(B̄s(x)) <
�
B̄s(x)

|S(ξ)− S(b)|dµ(ξ)

≤ µ(B̄s(x))1/2
(�
B̄s(x)

|S(ξ)− S(b)|2 dµ(ξ)
)1/2

,

hence x ∈ Di(b), and the claim is proved. It implies the estimate

lim
%↓0

%−n−1µ(Bb,%) = 0 for b ∈W0
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which will be central to the remaining arguments (here the definition Bb,% =
C(T, b, %, %/4) ∩B is extended to b ∈ Rn+m, 0 < % <∞). A simple consequence is,
since a ∈W0, that θn(µ xB, a) = 0, hence

θn(µ xU ∼W,a) = 0, θn(µ xW,a) = Q.

The proof will be concluded by showing the existence of a set N with µ(N) = 0
such that Z = W ∼N has the desired properties. Define T ∈ D′(Rn,Rm) by

T (θ) = −
�
〈Dθ(x), DF (Dg(x)〉 dLnx for θ ∈ D(Rn,Rm)

where F : Hom(Rn,Rm) → R denotes the nonparametric area integrand. Note
W ⊂ G and π(W ) ⊂ Y by 2.10 (3) (4) (6). Consider b ∈ W such that π(b) ∈
dmnDg, imDG(π(b)) = Tbµ and

lim
%↓0

%−n−1
�
C(T,b,%,δ4%)

|S(ξ)− S(b)|2 dµ(ξ) = 0.

These conditions are satisfied by µ almost all b ∈W by 2.10 (3) (5) (6a) (6b), [Fed69,
3.1.5, 3.2.17], and Brakke’s estimate of tiltexµ in [Bra78, 5.5, 5.7]. Therefore it
remains to verify the last two statements of (5) for µ almost all such b, i.e.

lim
%↓0

%−n−1
�
B%(y)

|Dg(x)−Dg(y)|2 dLnx = 0,

lim
%↓0

%−n−1|T − Ty|−1,1;y,% = 0

where Ty is defined as in (5).
For this purpose choose fi, I as in A.4. First, observe that for every 0 < γ <∞

for Ln almost all y ∈ Y with

sup{| apDfi(y)−Dg(b)|2 : y ∈ dmn apDfi, i ∈ I} > γ

there exists ξ ∈ G such that

π(ξ) = y, |S(ξ)− S(b)|2 > cγ

with c = (1+L2)(1− (2L)2)−1m by A.4, 2.10 (6) and estimates on tilted planes, see
e.g. [All72, 8.9 (5)]. Since L ≤ 1/8 this implies by 2.10 (5) that ξ ∈ C(T, b, %, δ4%),
hence

B%(π(b)) ∩
{
y ∈ Y : t(y,Dg(b))2 > γ

}
is Hn almost contained in

π
( {
ξ ∈ C(T, b, %, δ4%) : |S(ξ)− S(b)|2 > cγ

} )
for 0 < % < r − |b− a|, hence one obtains the tilt estimate

�
Y ∩B%(π(b))

t(y,Dg(b))2 dLny ≤ c−1
�
C(T,b,%,δ4%)

|S(ξ)− S(b)|2 dµ(ξ).

Since, by B%(π(b))∼Y ⊂ Cb,%,
�
B%(π(b))

|Dg(x)−Dg(b)|2 dLnx

≤
�
Y ∩B%(π(b))

t(x,Dg(b))2 dLnx+ 4mL2µ(Cb,%),

the first of the two remaining statements follows from 2.10 (7).
To prove the last remaining statement, suppose that θ ∈ D(Rn,Rm) and ψ ∈

D(Rm,R) satisfy

spt θ ⊂ Bn1 (0), |Dθ|∞;0,1 ≤ 1,

sptψ ⊂ Bm1/4(0), B̄m1/8(0) ⊂ Int{z :ψ(z) = 1}, 0 ≤ ψ ≤ 1.

Moreover, let

θb,% = %−nθ ◦ ηπ(b),%, ψb,% = ψ ◦ ησ(b),%
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for 0 < % < r − |b− a| and such θ, ψ, and define

γ1 = sup ‖D2F‖(B̄n1/2L(0)), γ2 = Lip
(
D2F |B̄3n1/2L(0)

)
.

Apply 2.10 (8) with τ = Dg(π(b))∣∣Q�
B%(π(b))

〈Dθb,%(x), DF (Dg(x))〉 dLnx− (δµ)((ψb,% ◦ σ) · (σ∗ ◦ θb,% ◦ π))
∣∣

≤ γ1Qn
1/2L

�
Cb,%
|Dθb,%|dLn + γ2Q

�
Eb,%∼Cb,%

|Dθb,%(x)|t(x,Dg(b))2 dLnx

+n1/2
�
Db,%
|D((ψb,% ◦ σ) · (σ∗ ◦ θb,% ◦ π))|dµ.

The first and the third summand on the right hand side may be estimated by use
of 2.10 (7) as follows

�
Cb,%
|Dθb,%|dLn ≤ %−n−1Ln(Cb,%) ≤ Γ%−n−1µ(Bb,%),

�
Db,%
|D((ψb,% ◦ σ) · (σ∗ ◦ θb,% ◦ π))|dµ ≤ %−n−1(1 + |Dψ|∞;0,1)µ(Db,%)

≤ Γ%−n−1(1 + |Dψ|∞;0,1)µ(Bb,%)

where Γ = Γ2.10 (7)(Q,n). To estimate the remaining summand, one computes
�
Eb,%∼Cb,%

|Dθb,%(x)|t(x,Dg(b))2 dLnx ≤ %−1−n�
Y ∩B%(π(b))

t(x,Dg(b))2 dLnx

and uses the tilt estimate. Therefore one infers that the supremum of all numbers∣∣Q�
B%(π(b))

〈Dθb,%(x), DF (Dg(x))〉 dLnx− (δµ)((ψb,% ◦ σ) · (σ∗ ◦ θb,% ◦ π))
∣∣

corresponding to θ ∈ D(Rn,Rm) such that spt θ ⊂ Bn1 (0), |Dθ|∞;0,1 ≤ 1 tends to 0
as % ↓ 0. Moreover, for every such θ

|(δµ)((ψb,% ◦ σ) · (σ∗ ◦ θb,% ◦ π))| ≤ ‖δµ‖(C(T, b, %, %/4))%−n|θ|∞;0,1

≤ ‖δµ‖(C(T, b, %, %/4))%−n,

hence

lim sup
%↓0

%−n−1|T |−1,1;π(b),% <∞

for µ almost all b ∈W by [Fed69, 2.9.5]. Since also, noting

(ψb,% ◦ σ) · (σ∗ ◦ θb,% ◦ π) = %−n
(
(ψ ◦ σ) · (σ∗ ◦ θ ◦ π)

)
◦ ηb,%,

C(T, 0, 1,∞) ∩ Tbµ ⊂ C(T, 0, 1, 1/8)

by the restriction imposed on L,

lim
%↓0

(δµ)((ψb,% ◦ σ) · (σ∗ ◦ θb,% ◦ π))

= −Q
�
~Hµ(b) • (ψ ◦ σ)(x)(σ∗ ◦ θ ◦ π)(x) d(Hn xTbµ)(x)

= −Q
�
F (Dg(π(b)))σ

(
~Hµ(b)

)
• θ(x) dLnx

for µ almost all b ∈W as may be verified by use of [Fed69, 2.9.9, 2.9.10], one infers
the conclusion from B.2. �

2.13. Remark. From Brakke’s perpendicularity of mean curvature, see [Bra78, 5.8],
one infers by an elementary calculation that

~Hµ(G(y)) = (σ∗ − π∗ ◦ (Dg(y))∗)(σ(~Hµ(G(y))))

for Ln almost all y ∈ A.

2.14. Remark. Since JµT needs not be bounded from below on Db,% by a positive
function, the use of |Dθ|∞;0,1 instead of |Dθ|p;0,1 for some 1 ≤ p < ∞ in the
estimation of

�
Db,%
|D((ψb,% ◦ σ) · (σ∗ ◦ θb,% ◦ π))|dµ seems to be inevitable. The

resulting complications will be resolved in 3.1–3.5.
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3. Proof of the main theorem

The crucial estimate which allows to combine the preceding two sections in order
to prove 3.5 and hence the main theorem 3.7 is given in 3.4. For this purpose the
precise form of some standard estimates needed is given in 3.1 and 3.3.

3.1. Lemma. Suppose n,m ∈ N, 1 ≤ p <∞, and p < n/(n− 1) if n > 1.
Then there exists a positive, finite number ε with the following property.
If Υ is as in 1.2, Ψ ∈ �2 Hom(Rn,Rm) with ‖Ψ − Υ‖ ≤ ε, a ∈ Rn, 0 < r < ∞,

and u ∈W 1,2
0 (Br(a),Rm), T ∈ D′(Br(a),Rm) satisfy

−
�
Br(a)

〈(Dθ(x), Du(x)),Ψ〉 dLnx = T (θ) whenever θ ∈ D(Br(a),Rm),

then

r−1−n/p|u|p;a,r ≤ Γr−n|T |−1,1;a,r

where Γ is a positive, finite number depending only on n, m, and p.

Proof. The estimate is considered to be classical and can be shown, for example,
as follows.

Assuming p > 1, one deduces from [GT01, Lemma 9.17] in conjunction with a
perturbation argument that, for a suitable number ε, Lp theory is available for the
differential operator associated to Ψ, the asserted estimate then being provable by
a duality argument. �

3.2. Remark. Lp theory is availabe for a much wider class of elliptic differential
operators, see [ADN59, ADN64]. However, the smallness condition on ‖Ψ − Υ‖
makes it possible to refer to more elementary methods.

3.3. Lemma. Suppose n,m ∈ N, 0 < c ≤M <∞,

F : Hom(Rn,Rm)→ R is of class C2,

‖D2F (σ)‖ ≤M,
〈
(τ, τ), D2F (σ)

〉
≥ c|τ |2 for σ, τ ∈ Hom(Rn,Rm),

a ∈ Rn, 0 < r <∞, and u, v ∈W 1,2(Br(a),Rm) with

u− v ∈W 1,2
0 (Br(a),Rm).

Then for every affine function P : Rn → Rm

|D(v − u)|2;a,r ≤ c
−1
(
M |D(u− P )|2;a,r + |LF (v)|−1,2;a,r

)
where LF is defined as in 1.2.

Proof. Compute for θ ∈ D(Br(a),Rm)

LF (v)(θ) = −
�
Br(a)

〈Dθ(x), DF (Dv(x))−DF (DP (x))〉 dLnx

= −
�
Br(a)

〈(Dθ(x), D(v − P )(x)), A(x)〉 dLnx

where A(x) =
� 1

0
D2F (tDv(x) + (1− t)DP (x)) dL1t.

This implies for θ ∈ D(Br(a),Rm)
�
Br(a)

〈(Dθ(x), D(v − u)(x)), A(x)〉 dLnx

= −
�
Br(a)

〈(Dθ(x), D(u− P )(x)), A(x)〉 dLnx− LF (v)(θ).

Letting θ approximate v − u in W 1,2(Br(a),Rm), one obtains

c(|D(v − u)|2;a,r)
2 ≤

(
M |D(u− P )|2;a,r + |LF (v)|−1,2;a,r

)
|D(v − u)|2;a,r. �
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3.4. Lemma. Suppose n,m ∈ N, 1 ≤ p < ∞, p < n/(n − 1) if n > 1, F is
related to ε = ε3.1(n,m, p) as in 1.2, LipD2F < ∞, a ∈ Rn, 0 < r < ∞, and
u, v ∈W 1,2(Br(a),Rm) with u− v ∈W 1,2

0 (Br(a),Rm).
Then for every affine function P : Rn → Rm

r−1−n/p|v − u|p;a,r ≤ Γr−n
(
|LF (v)− LF (u)|−1,1;a,r

+ Lip(D2F )(|D(u− P )|2;a,r + |D(v − P )|2;a,r)
2
)

where Γ is a positive, finite number depending only on n, m, and p.

Proof. Let Λ = LipD2F , choose σ ∈ Hom(Rn,Rm) such that DP (x) = σ for
x ∈ Rn, and define Ψ = D2F (σ), T = LF (v) − LF (u), the Ln xBr(a) measurable
function A : Br(a)→ �2 Hom(Rn,Rm) by

A(x) =
� 1

0
D2F (tDv(x) + (1− t)Du(x))−D2F (σ) dL1t

whenever x ∈ Br(a), and S ∈ D′(Br(a),Rm) by

S(θ) =
�
Br(a)

〈(Dθ(x), D(v − u)(x)), A(x)〉 dLnx+ T (θ)

whenever θ ∈ D(Br(a),Rm). One computes

DF (Dv(x))−DF (Du(x))

=
〈
D(v − u)(x),

� 1

0
DDF (tDv(x) + (1− t)Du(x)) dL1t

〉
for Ln almost all x ∈ Br(a) and infers

S(θ) = −
�
Br(a)

〈(Dθ(x), D(v − u)(x)),Ψ〉 dLnx

whenever θ ∈ D(Br(a),Rm), hence by 3.1

r−1−n/p|v − u|p;a,r ≤ Γ1r
−n|S|−1,1;a,r

where Γ1 = Γ3.1(n,m, p). It remains to estimate |S|−1,1;a,r by use of the definition
of S. One estimates

‖A(x)‖ ≤
� 1

0
‖D2F (tDv(x) + (1− t)Du(x))−D2F (tσ + (1− t)σ)‖ dL1t

≤ Λ
� 1

0
t|D(v − P )(x)|+ (1− t)|D(u− P )(x)|dL1t

= Λ(|D(v − P )(x)|+ |D(u− P )(x)|)/2

for Ln almost all x ∈ Br(a). Finally,

|S|−1,1;a,r ≤ |T |−1,1;a,r + Λ/2
�
Br(a)

(|D(u− P )(x)|+ |D(v − P )(x)|)2 dLnx. �

3.5. Lemma. Suppose n,m ∈ N, 1 ≤ p <∞, and p < n/(n− 1) if n > 1.
Then there exists a positive, finite number ε with the following property.
If F is related to ε as in 1.2, LipD2F < ∞, U is an open subset of Rn+m,

u : U → Rm is weakly differentiable, A denotes the set of all a ∈ dmnDu such that

lim sup
r↓0

r−n−1
�
Br(a)

|Du(x)−Du(a)|2 dLnx <∞,

B denotes the set of all a ∈ dmnDu such that

lim
r↓0

r−n−1
�
Br(a)

|Du(x)−Du(a)|2 dLnx = 0,

and C denotes the set of all a ∈ U such that

lim sup
r↓0

r−n−1|LF (u)|−1,1;a,r <∞,

then A, B, and C are Borel sets and the following two statements hold:
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(1) For Ln almost all a ∈ A ∩ C there exists a polynomial function Qa : Rn →
Rm of degree at most 2 such that

lim
r↓0

r−2−n/p|u−Qa|p;a,r = 0.

(2) For Ln almost all a ∈ B ∩ C the polynomial function Qa of part (1) and
the (constant) distribution Ta of B.2 are related by

Ta(θ) =
�
U
θ(x) •

〈
D2Qa(a), CF (DQa(a))

〉
dLnx

for θ ∈ D(U,Rm) where CF is defined as in 1.2.

Proof. Let ε = min{ε3.1(n,m, p), 1/2, ε1.11(n,m, p, 2), ε1.6(n,m, 2, 2)}. Suppose F
and u satisfy the hypotheses with ε. Clearly A and B are Borels sets. C is a Borel
set by B.2. Abbreviate Λ = LipD2F and T = LF (u).

To prove part (1), the criterion 1.11 will be verified with q = 2, j = 0. For this
purpose let a ∈ A ∩ C, 0 < r < ∞ such that B̄r(a) ⊂ U and ua,r = u|Br(a) ∈
W 1,2(Br(a),Rm). Using the direct method of the calculus of variation, one con-
structs va,r ∈W 1,2(Br(a),Rm) such that

va,r − ua,r ∈W 1,2
0 (Br(a),Rm),

LF (va,r) = 0.

Define Pa : Rn → Rm by Pa(x) = 〈x,Du(a)〉 for x ∈ Rn. By 3.4 one estimates

r−1−n/p|va,r − ua,r|p;a,r
≤ Γ1r

−n(|T |−1,1;a,r + Λ(|D(ua,r − Pa)|2;a,r + |D(va,r − Pa)|2;a,r)
2
)
.

with Γ1 = Γ3.4(n,m, p). By 3.3 with c = 1/2, M = 2 one infers

|D(va,r − ua,r)|2;a,r ≤ 4|D(ua,r − Pa)|2;a,r,

hence

r−1−n/p|va,r − ua,r|p;a,r ≤ Γ1r
−n(|T |−1,1;a,r + Λ(6|D(ua,r − Pa)|2;a,r)

2
)
.

Since a ∈ A ∩ C, this implies

lim sup
r↓0

r−2−n/p|va,r − ua,r|p;a,r <∞.

Therefore part (1) follows from 1.11.
To prove part (2), assume now additionally that the assumptions of (2) are valid

for a, i.e. a ∈ B ∩ C, and Qa, Ta satisfy the conclusions of part (1) and B.2
respectively. Choose y ∈ Rm such that

Ta(θ) =
�
U
θ(x) • y dLnx for θ ∈ D(U,Rm).

Using the direct method of the calculus of variation, one constructs functions wa,r ∈
W 1,2(Br(a),Rm) such that

wa,r − ua,r ∈W 1,2
0 (Br(a),Rm),

LF (wa,r)(θ) =
�
Br(a)

θ(x) • y dLnx whenever θ ∈ D(Br(a),Rm).

By 3.4 one estimates

r−1−n/p|wa,r − ua,r|p;a,r
≤ Γ1r

−n(|T − Ta|−1,1;a,r + Λ(|D(ua,r − Pa)|2;a,r + |D(wa,r − Pa)|2;a,r)
2
)
.

Since, by Poincaré’s inequality,∣∣�
Br(a)

θ(x) • y dLnx
∣∣ ≤ |y|Γ2r

1+n/2|Dθ|2;a,r
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where Γ2 is a positive, finite number depending only on m and n, one infers from
3.3

|D(wa,r − ua,r)|2;a,r ≤ 4|D(ua,r − Pa)|2;a,r + 2Γ2|y|r1+n/2,

hence

r−1−n/p|wa,r − ua,r|p;a,r
≤ Γ1r

−n(|T − Ta|−1,1;a,r + Λ(6|D(ua,r − Pa)|2;a,r + 2Γ2|y|r1+n/2)2
)
.

Since a ∈ B ∩ C, this implies

lim
r↓0

r−2−n/p|wa,r − ua,r|p;a,r = 0.

Therefore by the assumption on Qa

lim
r↓0

r−2−n/p|wa,r −Qa|p;a,r = 0.

Define P : Rn → Rm by P (x) = Qa(a) + 〈x− a,DQa(a)〉 for x ∈ Rn, R = Qa − P ,
S : Rn → Rm by S(x) = 1

2

〈
(x, x), D2Qa(a)

〉
for x ∈ Rn and note r−2R ◦ η−1

a,r = S

r−2(wa,r − P ) ◦ η−1
a,r|Bn1 (0)→ S|Bn1 (0) in Lp(Bn1 (0),Rm)

as r ↓ 0. By 1.6

r−n/2|D2(wa,r − P )|2;a,r/2 ≤ Γ3(r−2−n/p|wa,r − P |p;a,r + |y|)

where Γ3 = max{ω1/p
n , ω

1/2
n }Γ1.6(n,m, 2), hence

lim sup
r↓0

r−n/2|D2(wa,r − P )|2;a,r/2 <∞.

This implies by use of an interpolation inequality and weak compactness properties
of Sobolev spaces

r−2(wa,r − P ) ◦ η−1
a,r|Bn1/2(0)→ S|Bn1/2(0)

weakly in W 2,2(Bn1/2(0),Rm) as r ↓ 0. By Rellich’s embedding theorem

r−2(wa,r −Qa) ◦ η−1
a,r|Bn1/2(0)→ 0 in W 1,2(Bn1/2(0),Rm)

as r ↓ 0. Using this convergence, one computes for θ ∈ D(Bn1/2(0),Rm)
�
Bn

1/2(0)
θ(x) • y dLnx = r−n

�
B

r/2(a)
(θ ◦ ηa,r)(x) • y dLnx

= −r−n−1
�
B

r/2(a)

〈
(Dθ) ◦ ηa,r, DF (Dwa,r(x))

〉
dLnx,∣∣r−n−1

�
B

r/2(a)

〈
(Dθ) ◦ ηa,r, DF (Dwa,r(x))−DF (DQa(x))

〉
dLnx

∣∣
≤ r−n−1(LipDF )rn/2|Dθ|2;0,1|D(wa,r −Qa)|2;a,r → 0 as r ↓ 0,

−r−n−1
�
B

r/2(a)

〈
(Dθ) ◦ ηa,r, DF (DQa(x))

〉
dLnx

= r−n
�
B

r/2(a)
(θ ◦ ηa,r)(x) •

〈
D2Qa(x), CF (DQa(x))

〉
dLnx

→
�
Bn

1/2(0)
θ(x) •

〈
D2Qa(a), CF (DQa(a))

〉
dLnx as r ↓ 0,

hence

y =
〈
D2Qa(a), CF (DQa(a))

〉
,

as claimed. �
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3.6. Remark. Clearly, by [Reš68] for Ln almost all a ∈ A ∩ C
Qa(a) = u(a), DQa(a) = Du(a).

Also by [CZ61, Theorem 9] (see also [Zie89, 3.6–8]), there exists a sequence of
functions ui : Rn → Rm of class C2 such that

Ln
(
A ∩ C ∼

∞⋃
i=1

{
a :Dkui(a) = DkQa(a) for k ∈ {0, 1, 2}

})
= 0.

3.7. Theorem. Suppose n,m ∈ N, U is an open subset of Rn+m, and µ is an
integral n varifold in U of locally bounded first variation.

Then µ is countably rectifiable of class C2 and for every n dimensional subman-
ifold M of U of class C2 there holds

~Hµ(x) = ~HM (x) for µ almost all x ∈M

where −~Hµ corresponds to the absolutely continuous part of δµ with respect to µ

and ~HM denotes the mean curvature of M .

Proof. It is enough to prove the existence of a countable collection of n dimensional
submanifolds of U of class C2 such that for each member M

~Hµ(x) = ~HM (x) for µ almost all x ∈M.

For this purpose define p = 1, ε = ε3.5(m,n, p), Γ = Γ1.8(m · n, 2), s = ε/Γ.
Denote by F : Hom(Rn,Rm) → R the nonparametric area integrand, and choose
0 < δ <∞ such that

‖D2F (σ)−D2F (0)‖ ≤ s whenever σ ∈ B̄δ(0) ∩Hom(Rn,Rm).

Using 1.8, there exists G : Hom(Rn,Rm)→ R of class C3 such that

DiG(σ) = DiF (σ) for i = {0, 1, 2}, σ ∈ B̄δ/2(0) ∩Hom(Rn,Rm),

‖D2G(σ)−D2F (0)‖ ≤ Γs = ε whenever σ ∈ Hom(Rn,Rm),

D3G has compact support,

hence LipD2G <∞. Now, the conclusion is obtained by combining 2.12, 2.13 with
L = m−1/2δ/2 and 3.5, 3.6 with F replaced by G. �

Appendix A. Almgren’s notation for Q valued functions

In this appendix the part of Almgren’s notation for Q valued functions used in
the body of the text is summarised for the convenience of the reader.

A.1 (cf. [Alm00, 1.1 (1) (3)]). Suppose Q ∈ N and V is a finite dimensional Euclid-
ian vector space.
QQ(V ) is defined to be the set of all 0 dimensional integral currents R such that

R =
∑Q
i=1[[xi]] for some x1, . . . , xQ ∈ V . A metric G on QQ(V ) is defined such that

G
(∑Q

i=1[[xi]],
∑Q
i=1[[yi]]

)
= min

{(∑Q
i=1|xi − yπ(i)|2

)1/2 :π ∈ S(Q)
}

whenever x1, . . . , xQ, y1, . . . , yQ ∈ V where S(Q) denotes the set of permutations
of {1, . . . , Q}. The function ηQ : QQ(V )→ V is defined by

ηQ(R) = Q−1
�
xd‖R‖(x) whenever R ∈ QQ(V ).

If R =
∑Q
i=1[[xi]] for some x1, . . . , xQ ∈ V , then ηQ(R) = 1

Q

∑Q
i=1 xi. Lip ηQ =

Q−1/2.
Whenever f : X → QQ(V ) the Q valued graph of f is defined by

graphQ f = {(x, v) ∈ X × V : v ∈ spt f(x)} .
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A.2 (cf. [Alm00, 1.1 (9) (10)]). Suppose n,m,Q ∈ N.
A function f : Rn → QQ(Rm) is called affine if and only if there exist affine

functions fi : Rn → Rm, i = 1, . . . , Q such that

f(x) =
∑Q
i=1[[fi(x)]] whenever x ∈ Rn.

f1, . . . , fQ are uniquely determined up to order.
Let a ∈ A ⊂ Rn, f : A → QQ(Rm). f is called approximately affinely approx-

imable at a if and only if there exists an affine function g : Rn → QQ(Rm) such
that (see [Fed69, 3.1.2])

ap lim
x→a

G(f(x), g(x))/|x− a| = 0.

The function g is unique and denoted by apAf(a). f is called approximately strongly
affinely approximable at a if and only if apAf(a) has the following property: If
apAf(a)(x) =

∑Q
i=1[[gi(x)]] for some affine functions gi : Rn → Rm and gi(a) =

gj(a) for some i and j, then Dgi(a) = Dgj(a).

A.3. Definition (cf. [Alm00, T.1 (23)]). Whenever f : X → Y , g : X → Z the join
f on g of f and g is defined by

(f on g)(x) = (f(x), g(x)) whenever x ∈ X.

A.4. The following proposition in [Men08c, 1.11] or [Men08a, D.11] will be used for
calculations involving Lipschitzian Q valued functions.

If n,m,Q ∈ N, A is Ln measurable, f : A → QQ(Rm) is Lipschitzian, I is
countable, and to each i ∈ I there corresponds a function fi ⊂ graphQ f with Ln
measurable domain and Lip fi ≤ Lip f such that

#{i : fi(x) = y} = θ0(‖f(x)‖, y) whenever (x, y) ∈ A× Rm,

then f is approximately strongly affinely approximable with

apAf(a)(v) =
∑
i∈I(a)[[fi(x) + 〈v, apDfi(x)〉]] whenever v ∈ Rn

at Ln almost all a ∈ A where I(a) = {i ∈ I : a ∈ dmn apDfi}. Moreover, such
functions fi do exist whenever n, m, Q, A, and f are as above.

A.5. Suppose U is an open subset of Rn, Y is a Banach space and T ∈ D′(U, Y ).
Then T has a unique extension S to

{θ ∈ E(U, Y ) : spt θ ∩ sptT is compact}

characterised by the requirement

S(θ) = S(η) whenever sptT ⊂ Int{x : θ(x) = η(x)}.

The extension will usually be denoted by the same symbol T .

A.6. Suppose n,m,Q ∈ N, U is an open subset of Rn, A is an Ln measurable subset
of U , Ln(A) <∞, f : A→ QQ(Rm) is Lipschitzian, fi for i ∈ I are as in A.4, and
π ∈ O∗(n+m,n), σ ∈ O∗(n+m,m) such that σ ◦ π∗ = 0 (see 2.8).

Defining an integral n varifold µ in π−1(U) by the requirement

µ(X) =
�
X∩π−1(A)

θ0(‖f(π(x))‖, σ(x)) dHnx

for every Borel subset X of π−1(U), a simple calculation shows

(δµ)(σ∗ ◦ θ ◦ π) =
∑
i∈I

�
dmn fi

〈Dθ(x), DF (apDfi(x))〉 dLnx

whenever θ ∈ D(U,Rm); here F denotes the nonparametric area integrand and the
convention A.5 is used.
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Appendix B. Lebesgue points for distributions

In general, for a distribution T ∈ D′(Rn,Rm) one cannot determine a value
y ∈ Rm at a given point a ∈ Rn. However, in case the rescaled distributions
r−n(ηa,r)#T whose values at θ ∈ D(Rn,Rm) equal r−nT (θ ◦ ηa,r) converge in
D′(Rn,Rm) to a constant distribution Ta, this distribution Ta can be called the
value of T at a. The main theorem of this appendix, B.2, asserts that if the distri-
butions r−n(ηa,r)#T are locally bounded with respect to the norm | ·|−1,1;·,· defined
in 1.1 as r ↓ 0 for all a in a set A then they actually converge for Ln almost all
a ∈ A to a constant distribution Ta with respect to this norm. As the author could
not find this result in the literature, it is included here. Its proof uses techniques
from [Fed69, 2.9.18] or [Men08b, 3.1].

B.1. Lemma. Suppose n,m ∈ N, A is a closed subset of Rn, R ∈ D′(Rn,Rm),
dist(sptR,A) > 0, 0 ≤ γ <∞, and 0 < r <∞ such that

|R|−1,1;x,% ≤ γ %
n+1 whenever 0 < % < 5r, x ∈ A.

Then

|R|−1,1;a,r ≤ Γ γ rLn(B̄4r(a)∼A) for a ∈ A

where Γ is a positive, finite number depending only on n.

Proof. Assume r ≤ 2
9 , let a ∈ A, θ ∈ D(Rn,Rm) with spt θ ⊂ Br(a), choose

0 < ε ≤ min{r, dist(sptR,A)}, define

B = {x ∈ Rn : dist(x, spt(R x θ)) ≤ ε/2}

where R x θ ∈ E ′(Rn,R) is defined by (R x θ)(v) = R(vθ) for v ∈ E(Rn,R), and apply
[Fed69, 3.1.13] to obtain S, vs, and h with Φ = {Rn∼A,Rn∼B}; in particular S
is a countable subset of

⋃
Φ,

h(x) = 1
20 max{min{1,dist(x,A)},min{1,dist(x,B)}} for x ∈

⋃
Φ

and vs for s ∈ S form a partition of unity on
⋃

Φ with spt vs ⊂ B̄10h(s)(s) for s ∈ S.
Noting

⋃
Φ = Rn one defines T = {s ∈ S :B ∩ spt vs 6= ∅} and infers∑

s∈S∼T vs(x) = 0 for x ∈ Rn with dist(x, spt(R x θ)) < ε/2,

hence (R x θ)(
∑
s∈S∼T vs) = 0 and

R(θ) = R
(
(
∑
s∈T vs)θ

)
=
∑
s∈TR(vsθ).

Choose ξ(s) ∈ A for each s ∈ T such that |s − ξ(s)| = dist(s,A). If s ∈ T then
there exists y ∈ B ∩ spt vs ⊂ B̄r+ε/2(a) and one observes

dist(y,A) ≤ |y − a| ≤ r + ε/2 ≤ (3/2)r ≤ 1
3 < 1, h(y) = 1

20 dist(y,A),

|s− y| ≤ 10h(s) ≤ 10h(y) + 1
2 |s− y|, |s− y| ≤ 20h(y) = dist(y,A) ≤ |y − a|,

dist(s,A) ≤ |s− y|+ dist(y,A) ≤ 2 dist(y,A) ≤ 3r ≤ 2
3 < 1,

B ∩ B̄10h(s)(s) 6= ∅, 1
20 dist(s,B) ≤ 1

2h(s), 0 < h(s) = 1
20 dist(s,A),

|s− ξ(s)| ≤ |s− a| ≤ |s− y|+ |y − a| ≤ 2r + ε ≤ 3r ≤ 2
3 ,

B̄h(s)(s) ⊂ B̄4r(a)∼A.
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Moreover, for any x ∈ B̄10h(s)(s), s ∈ T

|x− ξ(s)| ≤ |x− s|+ |s− ξ(s)| ≤ (3/2)|s− ξ(s)| < 5r,

spt vs ⊂ B̄(3/2)|s−ξ(s)|(ξ(s)),

dist(s,A) ≤ dist(x,A) + |x− s| ≤ dist(x,A) + 1
2 dist(s,A),

|s− ξ(s)| = dist(s,A) ≤ 2 dist(x,A),

dist(x,A) ≤ dist(s,A) + |x− s| ≤ 3
2 dist(s,A) ≤ 1,

h(x) ≥ 1
20 dist(x,A) ≥ 1

40 |s− ξ(s)|.

Using the estimates of the preceding paragraph and the estimates of |Dvs| given
in [Fed69, 3.1.13], one infers for s ∈ T , since θ has compact support in Br(a),

|(Dvs)θ|∞;a,r ≤ V140|s− ξ(s)|−1r|Dθ|∞;a,r,

|D(vsθ)|∞;a,r ≤ V140(|s− ξ(s)|−1r + 1)|Dθ|∞;a,r

where V1 is a positive, finite number depending only on n with V140 ≥ 1, hence

|R(vsθ)| ≤ γ(3/2)n+1|s− ξ(s)|n+1V140(|s− ξ(s)|−1r + 1)|Dθ|∞;a,r

= γ(3/2)n+1V140|s− ξ(s)|n(r + |s− ξ(s)|)|Dθ|∞;a,r

≤ γV1160(3/2)n+1ω−1
n (20)nrLn(B̄h(s)(s)) |Dθ|∞;a,r.

Recalling from [Fed69, 3.1.13] that the family {B̄h(s)(s) : s ∈ S} is disjointed, one
concludes

|R(θ)| ≤ Γ γ rLn(B̄4r(a)∼A)|Dθ|∞;a,r

where Γ = 8(30)n+1V1ω
−1
n . �

B.2. Theorem. Suppose n,m ∈ N, U is an open subset of Rn, T ∈ D′(U,Rm), and
A denotes the set of all a ∈ U such that

lim sup
r↓0

r−1−n|T |−1,1;a,r <∞.

Then A is a Borel set and for Ln almost all a ∈ A there exists a unique Ta ∈
D′(U,Rm) with DiTa = 0 for i ∈ {1, . . . , n} such that

lim
r↓0

r−1−n|T − Ta|−1,1;a,r = 0.

Moreover, Ta depends Ln xA measurably on a.

Proof. The conclusion is local, hence one may assume sptT to be compact and
U = Rn. Since |T |−1,1;a,r depends lower semicontinuously on (a, r), the sets

Ai =
{
a ∈ Rn : |T |−1,1;a,r ≤ i r

n+1 for 0 < r < (10)/i
}

defined for i ∈ N are closed. Observing A =
⋃
{Ai : i ∈ N}, the conclusion will be

shown to hold for Ln almost all a ∈ Ai.
Let 0 < ε < 5/i, choose Φ ∈ D(Rn,R) with

�
Φ dLn = 1, spt Φ ⊂ Bn1 (0) and

define Φε(x) = ε−nΦ(ε−1x) for x ∈ Rn,

Tε(θ) = T (Φε ∗ θ) =
�
fε • θ dLn for θ ∈ D(Rn,Rm)

with fε ∈ E(Rn,Rm) given by

z • fε(x) = Ty(Φε(y − x)z) whenever x ∈ Rn and z ∈ Rm,

see [Fed69, 4.1.2]. Clearly Tε → T as ε ↓ 0 and

|fε(x)| ≤ i2n+1|DΦ|∞;0,1 for x ∈ Rn, a ∈ Ai with |x− a| ≤ ε.
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One defines aε to be the characteristic function of {x ∈ Rn : dist(x,Ai) ≤ ε} and
Sε, Rε ∈ D′(Rn,Rm) by

Sε(θ) =
�
aεfε • θ dLn for θ ∈ D(Rn,Rm), Rε = Tε − Sε.

Estimating for a ∈ Ai, 0 < % < 5r < 5/i, θ ∈ D(Rn,Rm) with spt θ ⊂ B%(a) and
|Dθ|∞;a,% ≤ 1

spt(Φε ∗ θ) ⊂ Bε+%(a), |Tε(θ)| ≤ i(ε+ %)n+1 ≤ i2n+1%n+1 if ε ≤ %,
{x ∈ sptRε : dist(x,Ai) < ε} = ∅, Rε(θ) = 0 if ε > %,

|Sε(θ)| ≤ |aεfε|∞;a,% |θ|1;a,% ≤ i2
n+1|DΦ|∞;0,1ωn%

n+1

|Rε|−1,1;a,% ≤ γ %
n+1 with γ = 2n+1i

(
1 + |DΦ|∞;0,1 ωn

)
,

B.1 may be applied with to obtain

|Rε|−1,1;a,r ≤ Γ γ rLn(B̄4r(a)∼Ai) for 0 < r < 1/i.

Since L1(Ln,Rm) is separable, one can use [DS88, V.4.2, V.5.1, IV.8.3] to infer
the existence of S ∈ D′(Rn,Rm), f ∈ L∞(Ln,Rm) and a sequence εj ↓ 0 as j →∞
such that

S(θ) =
�
f • θ dLn for θ ∈ D(Rn,Rm), Sεj

→ S as j →∞.

Defining R = T − S and noting Rεj → R as j →∞,

|R|−1,1;a,r ≤ Γ γ rLn(B̄4r(a)∼Ai) for 0 < r < 1/i

and [Fed69, 2.9.11] implies

lim
r↓0

r−1−n|R|−1,1;a,r = 0 for Ln almost all a ∈ Ai.

Moreover,∣∣� (f(x)− f(a)) • θ(x) dLnx
∣∣ ≤ (�

Br(a)
|f(x)− f(a)|dLnx

)
r |Dθ|∞;a,r

whenever a ∈ A, 0 < r < ∞, θ ∈ D(Rn,Rm) with spt θ ⊂ Br(a) and [Fed69,
2.9.9] implies that one can take Ta defined by Ta(θ) =

�
θ(x) • f(a) dLnx for

θ ∈ D(Rn,Rm) for Ln almost all a ∈ Ai in the existence part of the conclusion.
The uniqueness follows, since every Ta admissible in the conclusion satisfies

r−n(ηa,r)#Ta = Ta, r−n(ηa,r)#T → Ta as r ↓ 0. �
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