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Abstract

It is shown that every integral varifold in an open subset of Euclidean
space whose first variation with respect to area is representable by inte-
gration can be covered by a countable collection of submanifolds of the
same dimension of class 2 and that their mean curvature agrees almost
everywhere with the variationally defined generalised mean curvature of
the varifold.

2000 Mathematics Subject Classification. Primary 49Q15; Secondary 35J60.

Introduction

Overview In the present paper the existence of an approximate second order
structure for integral varifolds in Euclidean space whose first variation with re-
spect to area is representable by integration is established. Such varifolds are
called “of locally bounded first variation” in [Sim83]. Moreover, it is proven that
the variationally defined generalised mean curvature of the varifold agrees al-
most everywhere with the mean curvature induced from the approximate second
order structure. This problem can be considered a geometric, nonlinear, higher
multiplicity version of the following linear one: Prove existence of approximate
second order differentials for weakly differentiable functions whose distributional
Laplacian is representable by integration (i.e., by a “vector-valued Radon mea-
sure”) and show that these differentials satisfy the equation Lebesgue almost
everywhere. Clearly, the linear case itself is not too hard to solve, and in fact
follows immediately from classical results if the distributional Laplacian is inte-
grable with respect to Lebesgue measure to a power larger than 1. Nevertheless,
the main objective of the present paper is to develop a method which is based
on the study of the nearly linear case and is sufficiently robust to be applied to
the present elliptic system of geometric partial differential equations involving
higher multiplicity.

Results of the type obtained in the present paper have proven useful for
example in the context of Brakke’s mean curvature flow or sharp and diffuse
interfaces or image reconstruction or the Willmore functional, see [Bra78, Sch01,
Rög04, RS06, MR09, AM03, Sch09] and the references therein.

∗The author acknowledges financial support via the DFG Forschergruppe 469. The major
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parts were done at the ETH Zürich and the work was put in its final form at the AEI Golm.
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Result of the present paper in the context of known results Fix posi-
tive integers m and n with m < n. The principal result is as follows, see Section
1 for the notation used.

Theorem 1 (see 3.6). Suppose U is an open subset of Rn, V ∈ IVm(U) and
‖δV ‖ is a Radon measure.

Then there exists a countable collection C of m dimensional submanifolds of
Rn of class 2 such that ‖V ‖(U ∼

⋃

C) = 0 and each member M of C satisfies

h(V ; z) = h(M ; z) for ‖V ‖ almost all z ∈ U ∩M.

In the terminology of Anzellotti and Serapioni [AS94, 3.1] the first part
of the conclusion can be expressed equivalently by the condition that U ∩
{z : 0 < Θm(‖V ‖, z) <∞} meets every compact subset of U in a set which is
(H m,m) rectifiable of class C 2. The second part of the assertion is sometimes
called “locality of the mean curvature”, see Schätzle [Sch09, §4].

Theorem 1 contains (and reproves) the fact that h(V ; z) ∈ Norm(‖V ‖, z) for
‖V ‖ almost all z previously obtained by Brakke [Bra78, 5.8], see 3.7. Moreover,
it is worth noting, see 3.8, that if V is a curvature varifold with boundary in U in
the sense of Mantegazza [Man96, Definition 3.1] then V satisfies the hypotheses
of Theorem 1 and, taking C as in its conclusion, the second fundamental form
of V agrees almost everywhere with the second fundamental form induced by
the members M of C.

Evidently, Theorem 1 implies that the function mapping ‖V ‖ almost ev-
ery z onto the orthogonal projection of Rn onto the approximate m dimen-
sional tangent plane of ‖V ‖ at z is (‖V ‖,m) approximately differentiable. If
the first variation of ‖V ‖ satisfies the integrability condition (Hp) below with
sufficiently large exponent p then this map is in fact differentiable in a stronger
L2(‖V ‖,Hom(Rn,Rn)) sense. Whenever U is an open subset of Rn, V ∈
IVm(U) and 1 ≤ p ≤ ∞, the varifold V is said to satisfy (Hp) if and only if
‖δV ‖ is a Radon measure and, if p > 1,

(δV )(g) = −
´

h(V ; z) • g(z) d‖V ‖z for g ∈ D(U,Rn),

h(V ; ·) ∈ Lp(‖V ‖ xK,Rn) whenever K is a compact subset of U.
(Hp)

Theorem 2 (see 4.2 and 4.5). Suppose U is an open subset of Rn, 1 ≤ p ≤ ∞,
and V ∈ IVm(U) satisfies (Hp).

If either m = 1 or m = 2 and p > 1 or m > 2 and p ≥ 2m/(m+ 2), then
for ‖V ‖ almost all a

ffl

B(a,r)
(|R(z)−R(a)− 〈R(a)(z − a), apDR(a)〉 |/|z − a|)2 d‖V ‖z → 0

as r → 0+ where R(z) = Tanm(‖V ‖, z)♮ ∈ Hom(Rn,Rn) and the approximate
differential is taken with respect to (‖V ‖,m).

With the possible exception of the case m = 2 this differentiability result
is optimal with respect to the assumptions on p, i.e. whenever m > 2 and
mp
m−p < 2 there exists an integral varifold satisfying (Hp) not having the property
in question, see 4.4.

In previous work Schätzle established the following result in codimension
one of the existence of submanifolds of class ∞ touching a given varifold, see
[Sch04, Proposition 4.1, Theorem 5.1] where it is phrased in terms of upper and
lower height functions.
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Theorem (Schätzle [Sch04]). Suppose U is an open subset of Rn, p > m =
n− 1, p ≥ 2, and V ∈ IVm(U) satisfies (Hp).

Then for ‖V ‖ almost all a there exists 0 < r <∞ such that

U(a+ v, r) ∩ spt ‖V ‖ = ∅

whenever v ∈ Norm(‖V ‖, a) with |v| = r.

This is the key to showing that such a varifold satisfies the conclusion of The-
orem 1, see Schätzle [Sch04, Theorem 6.1], and, in combination with previous
results of the author in [Men09a, 3.7, 3.9], also that it satisfies the conclusion of
Theorem 2. Evidently, see for example [Men09a, 1.2], Schätzle’s Theorem does
not extend to the case p < m. Also, the use of the theory of viscosity solutions
for fully nonlinear equations, more precisely the results of Caffarelli [Caf89] and
Trudinger [Tru89], leads to the restriction to codimension one, i.e. m = n− 1.

Therefore, in order to establish Theorem 1, a different method needs to be
developed which is able to deal both with the low integrability of the generalised
mean curvature and with higher codimension. The main independent result
in this process is the following Theorem stated here in the case of Laplace’s
operator.

Theorem 3 (see 2.10). Suppose U is an open subset of Rm, u : U → Rn−m is
weakly differentiable, j ∈ {0, 1}, 1 ≤ q <∞,

h(a, r) = inf
{
∑j

i=0r
i−m/q|Di(u − v)|q;a,r : v ∈ E (U(a, r),Rn−m), Lap v = 0

}

whenever a ∈ U , 0 < r < ∞ with U(a, r) ⊂ U and A denotes the set of all
a ∈ U such that

lim sup
r→0+

r−2h(a, r) <∞.

Then for L m almost all a ∈ A there exists a polynomial function Qa : Rm →
Rn−m of degree at most 2 such that

lim
r→0+

r−2∑j
i=0r

i−m/q|Di(u−Qa)|q;a,r = 0.

Here the seminorms | · |q;a,r correspond to Lq(L
m
xU(a, r)). The weaker

statement which results when the condition Lap v = 0 is replaced by D2v = 0 is
contained in Calderón and Zygmund [CZ61, Theorem 5] if q > 1. However, the
construction of affine comparison functions at a given point from information
on the distributional Laplacian of u may – for integral orders of differentiability
– fail at individual points, see [Men09b, 8.6]. This corresponds to the well
known fact of the nonexistence of Schauder estimates for the Hölder exponent
1. In this respect the value of the current theorem stems from the fact that
harmonic comparison functions are readily constructed independent of the order
of differentiability considered, cp. 2.12. In fact, if j = 1, q > 1 and denoting by
T ∈ D ′(U,Rn−m) the distributional Laplacian of u then

Γ−1h(a, r) ≤ r1−m/q|T |−1,q;a,r ≤ Γh(a, r)

whenever a ∈ U , 0 < r <∞, U(a, r) ⊂ U and u|U(a, r) ∈ W1,q(U(a, r),Rn−m)
where Γ is a positive, finite number depending only on n and q and |·|−1,q;a,r

3



denotes the seminorm corresponding to
(

W
1,q/(q−1)
0 (U(a, r),Rn−m)

)∗
. In par-

ticular, if T is representable by integration and q < m/(m − 1) if m > 1 then
one verifies L m(U ∼A) = 0. An extensive study of both integral and noninte-
gral orders of differentiability for solutions of linear elliptic partial differential
equations in nondivergence form can be found in Calderón and Zygmund [CZ61].

In passing to divergence form equations, one is naturally lead to consider
the related problem for distributions:

Theorem 4 (see 2.12 and A.3). Suppose U is an open subset of Rm, 1 ≤ q <∞,
T ∈ D ′(U,Rn−m) and A denotes the set of all a ∈ U such that

lim sup
r→0+

r−1−m/q|T |−1,q;a,r <∞.

Then for L m almost every a ∈ A there exists a unique constant distribution
Ta ∈ D ′(U,Rn−m) such that

lim
r→0+

r−1−m/q|T − Ta|−1,q;a,r = 0.

This may be seen as a Lebesgue point theorem for distributions. In case
q > 1, it is in fact a corollary to Theorem 3 obtainable by representing T locally
as distributional Laplacian of some function u. In contrast, the case q = 1 is
independent from the other results of the present paper.

Finally, it should be noted that the proof of Theorem 3 only relies on a
priori estimates in Lebesgue spaces, i.e. “Lp theory”, which are known to hold
for a much wider class of linear equations, see Agmon, Douglis and Nirenberg
[ADN59, ADN64].

Outline of the proofs To prove Theorem 3, one considers the subsets of Ak

of A of all a ∈ A such h(a, r) ≤ kr2 whenever 0 < r < 1/k. Denoting by va,r :
U(a, r) → Rn−m harmonic functions essentially realising the infimum in the
definition of h, one then uses the partition of unity with estimates from [Fed69,
3.1.13] together with well known a priori estimates for the Laplace operator to
construct functions vk : Rm → Rn−m with the following properties, see 2.8:

(1) There holds

∑j
i=0r

i−m/q|Di(vk − u)|q;a,r ≤ Γkr2

for a ∈ Ak and 0 < r < (36k)−1 and Γ a positive, finite number depending
only on n and q, in particular vk(x) = u(x) for L m almost all x ∈ Ak.

(2) The distributional Laplacian of vk is represented by a function locally in
L∞(L m,Rn−m).

Then clearly vk locally belongs to W2,q(Rm,Rn−m) for 1 ≤ q < ∞ and the
conclusion of Theorem 3 follows from by now classical differentiability results
for functions in Sobolev spaces which where also obtained by Calderón and Zyg-
mund in [CZ61]. An important feature of this proof is that it is readily adapted
to the case where the Laplace operator is replaced by the Euler Lagrange dif-
ferential operator LF corresponding to an integrand F : Hom(Rm,Rn−m) → R

of class 2 sufficiently close to the Dirichlet integrand, i.e. LipD2F <∞ and
∣

∣

〈

(τ1, τ2), D
2F (σ)

〉

− τ1 • τ2
∣

∣ ≤ ε for σ, τ1, τ2 ∈ Hom(Rm,Rn−m)

4



with suitable number ε.
Next, it will explained how this result on a rather restricted class of differ-

ential operators can be used to treat the general case. For this purpose let U
be an open subset of Rn and let V ∈ IVm(U) be such that ‖δV ‖ is a Radon
measure. Comparing the behaviour of V near certain “good” points to the be-
haviour of harmonic functions, a procedure developed by De Giorgi in [DG61]
and Almgren in [Alm68], one proves the tilt decay estimate

lim sup
r→0+

r−τ−m/2
(´

U(a,r)×G(n,m)|S♮ − T♮|
2 dV (z, S)

)1/2
<∞

for V almost all (a, T ) where 0 < τ < 1 if m ∈ {1, 2} and τ = m
2(m−1) < 1 if

m > 2. This has been done by the author in [Men09b, 8.6] extending results
of Brakke [Bra78, 5.7, 5] who proved the case τ = 1/2 with “<∞” replaced by
= 0 which is sufficient for the proof of all Theorems stated in the Introduction.
As the order of differentiability considered is nonintegral, i.e. 0 < τ < 1, the
argument applies, in contrast to those of the present paper, in a direct way to
all points satisfying a simple set of conditions, see [Men09b, 8.3].

The principal idea to prove Theorem 1 is now to use the tilt decay estimate,
to construct a sequence functions gi : Rm → Rn−m, L m measurable sets
Ki ⊂ Rm and distributions Ti ∈ D ′(Rm,Rn−m) with the following properties:

(1) The varifold is covered by suitably rotated graphs of the gi|Ki.

(2) The distribution Ti corresponds to the Euler Lagrange differential operator
associated to the nonparametric area integrand Φ applied to gi.

(3) There holds

lim
r→0+

r−1−m
´

U(x,r)
|Dgi(ζ)−Dgi(x)|

2 dL
mζ = 0 whenever x ∈ Ki.

(4) The Lipschitz constant of the gi is small.

(5) The distributions Ti satisfy the conclusion of Theorem 4 with q = 1 and A
replaced by Ki with constant distribution given by the generalised mean
curvature of the varifold.

Condition (4) is the minimum condition needed to be able to replace Φ with some
integrand F of the type discussed before in the definition of Ti without changing
it, see 2.20. The basis for the construction of gi, Ki, and Ti is an approximation
by QQ(R

n−m) valued functions where the space QQ(R
n−m) is isometric to the

Q fold product of Rn−m divided by the action of group of permutations of
{1, . . . , Q}. Here the version of the author in [Men09b, 4.8] is employed which
contains some estimates designed for the current applications and was obtained
by combining and extending similar constructions of Almgren in [Alm00, §3] and
Brakke in [Bra78, 5.4]. This yields Lipschitzian functions fi : Ki → QQi

(Rn−m)
with small Lipschitz constant for suitable positive integers Qi. Denoting the
“centre” of S ∈ QQ(R

n−m) by ηQ(S) = Q−1
∑Q

j=1 yj whenever y1, . . . , yQ ∈

Rn−m correspond to S, the functions gi are then constructed in 3.3 as extensions
of ηQi

◦fi. In this process the conditions (3) and (5) are ultimately consequences
of the tilt decay estimate.
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The final step in the proof of Theorem 1 is now to construct for fixed i and
x ∈ Ki comparison functions vr ∈ W1,2(U(x, r),Rn−m) with LF (vr) = 0 for
0 < r <∞ and estimating gi − vr in U(x, r), see 2.13–2.17. The natural choice
is to take vr as solution of the Dirichlet problem with boundary values given
by gi. If q in (5) would satisfy q > 1 this would immediately yield an estimate
of gi − vr in W1,q(U(x, r),Rn−m). In case q = 1 the estimate needs to be
obtained differently, namely, linearising F and estimating the remaining terms
with the help of condition (3), one obtains an estimate in L1(U(x, r),Rn−m)
instead, see 2.15. Then the extended version of Theorem 3 with LF replacing
Lap, see 2.10, implies the first part of Theorem 1. Recalling condition (5), the
second part is derived similarly by using functions wr ∈ W1,2(U(x, r),Rn−m)
with LF (wr) = (Ti)x where (Ti)x is the constant distribution corresponding to
Ti at x as in Theorem 4.

Organisation of paper In Section 1 the Notation is fixed. Section 2 contains
all results which can be phrased solely in terms of elliptic partial differential
equations and distributions, in particular Theorem 3 and the case q > 1 of
Theorem 4. Section 3 is devoted to the proof of Theorem 1 whereas Section 4
contains Theorem 2. Finally, Appendix A gives the proof of the case q = 1 of
Theorem 4.

Acknowledgements The author offers his thanks to his PhD advisor Profes-
sor Dr. Reiner Schätzle who lead him towards the study of this problem. The
author also thanks Professor Dr. Tom Ilmanen for several related discussions.

1 Notation

The notation from Federer [Fed69] and Allard [All72] is used with some modifi-
cations and additions described in [Men09b, §1, §2]. Additionally, whenever M
is a submanifold of Rn of class 2 the mean curvature of M at z ∈M is denoted
by h(M ; z), cp. Allard [All72, 2.5 (2)]. And if U is an open subset of Rm and
Y is a Banach space then T is called a constant distribution in U of type Y if
and only if for some α ∈ Y ∗ there holds T (θ) =

´

U α ◦ θ dL m for θ ∈ D(U, Y ).
Moreover, a subset of a topological space is called universally measurable if and
only if it is measurable with respect to every Borel measure on that space.

The reader might want to recall the following maybe less commonly used
symbols either taken from [Fed69, 2.2.6, 2.8.1, 1.10.1] or introduced in [Men09b,
§1]: P denoting the positive integers, U(a, r) and B(a, r) denoting respectively

the open and closed ball with centre a and radius r,
⊙i

(V,W ) and
⊙i

V de-
noting the vector space of all i linear symmetric functions (forms) mapping V i

into W and R respectively and the seminorms

|f |p;a,r =
(´

U(a,r)|f |
p dL

m
)1/p

if p <∞,

|f |∞;a,r = inf{t :L m(U(a, r) ∩ {x : |f(x)| > t}) = 0},

|T |i,q;a,r = sup{T (θ) : θ ∈ D(U,Rn−m), spt θ ⊂ U(a, r), |D−iθ|p;a,r ≤ 1}

whenever m,n ∈ P, m < n, U is an open subset of Rm, a ∈ Rm, 0 < r < ∞
with U(a, r) ⊂ U , f is an L m

xU(a, r) measurable function with values in a

6



Hilbert space, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ with 1/p+1/q = 1, i is a negative integer,
and T ∈ D ′(U,Rm).

2 A criterion for second order differentiability

in Lebesgue spaces

The purpose of this section is to prove 2.10 which contains Theorem 3 of the
Introduction and to provide the preparations necessary for its application in
Section 3.

First, in 2.1 the situation studied is described. Then, for the convenience of
the reader, in 2.2–2.7 adaptions and applications of standard theory are carried
out. The main ingredient in the proof of 2.10 is contained in 2.8. The part
q > 1 of Theorem 4 is provided in 2.12. Finally, in 2.13–2.17 it is shown how a
certain nonintegral differentiability condition on the solution u allows to treat
the case where estimates for LF (u), see 2.1, are only available in |·|−1,1;a,r.

2.1. Suppose m,n ∈ P, m < n,

e1, . . . , em and X1, . . . , Xm

are dual orthonormal bases of Rm and
⊙1

Rm and

υ1, . . . , υn−m and Y1, . . . , Yn−m

are dual orthonormal bases of Rn−m and
⊙1

Rn−m. The norm ‖Ψ‖ denotes for

any Ψ ∈
⊙2

Hom(Rm,Rn−m) the smallest nonnegative number M such that

Ψ(σ, τ) ≤M |σ||τ | for σ, τ ∈ Hom(Rm,Rn−m).

The expression Ψ(σ, τ) for σ, τ ∈ Hom(Rm,Rn−m) will be denoted alternately
by 〈(σ, τ),Ψ〉 and, using ⊙ to denote multiplication in

⊙

∗ Hom(Rm,Rn−m),
see [Fed69, 1.9.1], also by 〈σ ⊙ τ,Ψ〉. It equals

m
∑

i=1

n−m
∑

j=1

m
∑

k=1

n−m
∑

l=1

Ψi,j;k,l 〈σ(ei), Yj〉 〈τ(ek), Yl〉

where Ψi,j;k,l = Ψ(Xi υj , Xkυl) and X υ maps x ∈ Rm onto X(x)υ ∈ Rn−m

whenever X ∈
⊙1

Rm and υ ∈ Rn−m.

Let Υ ∈
⊙2

Hom(Rm,Rn−m) be defined by

Υ(σ, τ) = σ • τ for σ, τ ∈ Hom(Rm,Rn−m),

and suppose F : Hom(Rm,Rn−m) → R is of class 2, 0 ≤ ε <∞, and

‖D2F (σ) −Υ‖ ≤ ε whenever σ ∈ Hom(Rm,Rn−m).

The quantity LipD2F will be computed with respect to | · | on Hom(Rm,Rn−m)

and ‖ · ‖ on
⊙2 Hom(Rm,Rn−m).

To each such F there corresponds the Euler Lagrange differential operator
LF which associates to every u ∈ W1,1(U,Rn−m) for some open subset U of
Rm a distribution LF (u) in D ′(U,Rn−m) defined by

LF (u)(θ) = −
´

U
〈Dθ(x), DF (Du(x))〉 dL

mx for θ ∈ D(U,Rn−m).

7



There also occurs the linear function CF (σ) :
⊙2(Rm,Rn−m) → Rn−m which

for σ ∈ Hom(Rm,Rn−m) is given by

〈φ,CF (σ)〉 =
m
∑

i=1

n−m
∑

j=1

m
∑

k=1

n−m
∑

l=1

〈

(Xiυj , Xkυl), D
2F (σ)

〉

〈φ(ei, ek), Yj〉 υl

whenever φ ∈
⊙2

(Rm,Rn−m). The function CF (σ) is uniquely determined
by D2F (σ), see [Fed69, 5.2.11]. One obtains by partial integration for u ∈
W2,1(U,Rn−m), θ ∈ D(U,Rn−m)

LF (u)(θ) =
´

Uθ(x) •
〈

D2u(x), CF (Du(x))
〉

dL
mx.

Sometimes also S :
⊙2

(Rm,Rn−m) → Rn−m corresponding to the Dirichlet
integrand, i.e. F (σ) = |σ|2/2 for σ ∈ Hom(Rm,Rm), (and therefore to Υ) will

be used. Note 〈φ, S〉 =
∑m

i=1 φ(ei, ei) whenever φ ∈
⊙2

(Rm,Rn−m). One may
check that with κ = 21/2m(n−m)

|CF (σ)| ≤ κ‖D2F (σ)‖, |CF (σ)− S| ≤ κε,

|CF (σ) − CF (τ)| ≤ κ‖D2F (σ)−D2F (τ)‖

for σ, τ ∈ Hom(Rm,Rn−m) where | · | denotes the norm associated to the inner

product on Hom
(
⊙2

(Rm,Rn−m),Rn−m
)

, see [Fed69, 1.7.9, 1.10.6].

2.2 Theorem. Suppose n ∈ P and 1 < p <∞.
Then there exist positive, finite numbers ε and Γ with the following property.
If n > m ∈ P, Υ is as in 2.1, a ∈ Rm, 0 < r <∞,

A : U(a, r) →
⊙2

Hom(Rm,Rn−m) is L
m
xU(a, r) measurable,

‖A(x)−Υ‖ ≤ ε whenever x ∈ U(a, r),

then for every T ∈ D ′(U(a, r),Rn−m) with |T |−1,p;a,r < ∞ there exists an

L m
xU(a, r) almost unique u ∈ W

1,p
0 (U(a, r),Rn−m) such that

−
´

U(a,r) 〈Dθ(x)⊙Du(x), A(x)〉 dL
mx = T (θ) for θ ∈ D(U(a, r),Rn−m).

Moreover, whenever u and T are related as above there holds

|Du|p;a,r ≤ Γ|T |−1,p;a,r.

Proof. By the Neumann series (cf. [Fed69, 3.1.11]) it is enough to consider the
case ε = 0. Note also that there exists g ∈ Lp(L

m
xU(a, r),Hom(Rm,Rn−m))

with T (θ) = −
´

U(a,r) g •Dθ dL m for θ ∈ D(U(a, r),Rn−m) and |T |−1,p;a,r =

|g|p;a,r by Hahn Banach’s theorem.
The conclusion then follows from [Giu03, Theorem 10.15] in case p ≥ 2 to

which the case p < 2 reduces by use of a duality argument.

2.3 Theorem. Suppose n ∈ P, 1 < q <∞, and 1 < p <∞.
Then there exists a positive, finite number ε with the following property.
If n > m ∈ P, Υ is as in 2.1, a ∈ Rm, 0 < r <∞,

A : U(a, r) →
⊙2

Hom(Rm,Rn−m) is L
m
xU(a, r) measurable,

‖A(x)−Υ‖ ≤ ε whenever x ∈ U(a, r),

8



and u ∈ W1,q(U(a, r),Rn−m), T ∈ D ′(U(a, r),Rn−m) satisfy

−
´

U(a,r) 〈Dθ(x) ⊙Du(x), A(x)〉 dL
mx = T (θ) for θ ∈ D(U(a, r),Rn−m),

then

|Du|p;a,r/2 ≤ Γ
(

r−m−1+m/p|u|1;a,r + |T |−1,p;a,r

)

where Γ is a positive, finite number depending only on n and p.

Proof. Let 0 < δ ≤ 1, suppose n, q, p, m, Υ, a, r, A, u, and T satisfy the
hypotheses in the body of the theorem with ε replaced by δ and assume q ≤ p.
It will be shown that u satisfies the estimate in the conclusion of the theorem
provided δ is suitably small.

The problem will be reduced.
First, to the case p = q by constructing as solutions of approximating Dirich-

let problems by use of 2.2 a sequence of functions ui ∈ W1,p(U(a, r),Rn−m)
such that ui → u in W1,q(U(a, r),Rn−m) as i→ ∞ and for i ∈ P

−
´

U(a,r)
〈Dθ(x)⊙Dui(x), A(x)〉 dL

mx = T (θ) for θ ∈ D(U(a, r),Rn−m)

provided δ ≤ inf{ε2.2(n, p), ε2.2(n, q)}.
Secondly, to the case p = q and δ = 0 by considering Simon’s absorption

lemma in [Sim97, p. 398].
Thirdly, to the case p = q, δ = 0 and T = 0 by use of 2.2 and Poincaré’s

inequality.
Finally, the remaining case follows by convolution from [GT01, Theorems

2.8, 2.10].

2.4 Theorem. Suppose n ∈ P and 1 < p <∞.
Then there exists a positive, finite number ε with the following property.
If n > m ∈ P, S is as in 2.1, a ∈ Rm, 0 < r <∞,

B : U(a, r) → Hom
(
⊙2

(Rm,Rn−m),Rn−m
)

is L
m
xU(a, r) measurable,

|B(x) − S| ≤ ε whenever x ∈ U(a, r),

and u ∈ W2,p(U(a, r),Rn−m), f ∈ Lp(L
m
xU(a, r),Rn−m) satisfy

〈

D2u(x), B(x)
〉

= f(x) for L
m almost all x ∈ U(a, r),

then

|D2u|p;a,r/2 ≤ Γ
(

r−2−m+m/p|u|1;a,r + |f |p;a,r
)

where Γ is a positive, finite number depending only on n and p.

Proof. From [GT01, Theorem 7.22] and Ehring’s lemma, see e.g. [Wlo87, The-
orem I.7.3], it follows that for every 0 < κ < ∞ there exists a positive, finite
number ∆ depending only on n, p, and κ such that

r−2−m/p|v|p;a,r ≤ κr−m/p|D2v|p;a,r +∆r−2−m|v|1;a,r

for v ∈ W2,p(U(a, r),Rn−m).
Now, one may readily use [GT01, Theorem 9.11] in conjunction with the

absorption lemma in Simon [Sim97, p. 398] to obtain the conclusion.
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2.5 Lemma. Suppose n ∈ P, 1 < q <∞, and 1 < p <∞.
Then there exists a positive, finite number ε with the following property.
If F is related to ε as in 2.1, a ∈ Rm, 0 < r <∞, u ∈ W1,q(U(a, r),Rn−m),

and f ∈ Lp(L
m
xU(a, r),Rn−m) satisfy

LF (u)(θ) =
´

U(a,r)
θ(x) • f(x) dL

mx whenever θ ∈ D(U(a, r),Rn−m),

then u is twice weakly differentiable and for every affine function P : Rm →
Rn−m there holds

|D2u|p;a,r/2 ≤ Γ
(

r−2−m+m/p|u− P |1;a,r + |f |p;a,r
)

where Γ is a positive, finite number depending only on n and p.

Proof. Let ε = ε2.3(n, q, p) and suppose F , a, r, u, f , and P satisfy the hy-
potheses in body of the lemma.

Let v = u− P , i ∈ {1, . . . ,m} and define for 0 < h < r, x ∈ U(a, r − h)

uh(x) = h−1(u(x+ hei)− u(x)), vh(x) = h−1(v(x + hei)− v(x)),

Ah(x) =
´ 1

0
D2F (tDu(x+ hei) + (1 − t)Du(x)) dL

1t,

and let Sh ∈ D ′(U(a, r − h),Rn−m) be characterised by

Sh(θ|U(a, r − h)) = h−1
´

U(a,r)
(θ(x − hei)− θ(x)) • f(x) dL

mx

whenever θ ∈ D(Rm,Rn−m) with spt θ ⊂ U(a, r − h). One readily verifies,
noting Duh = Dvh,

−
´

U(a,r−h) 〈Dθ(x) ⊙Dvh(x), Ah(x)〉 dL
mx = Sh(θ)

for θ ∈ D(U(a, r − h),Rn−m). Hence, by 2.3,

|Dvh|p;a,(r−h)/2 ≤ ∆
(

(r − h)−1−m+m/p|vh|1;a,r−h + |Sh|−1,p;a,r−h

)

where ∆ = Γ2.3(n, p). Since |vh|1;a,r−h ≤ |Dv|1;a,r and |Sh|−1,p;a,r−h ≤
|f |p;a,r, taking the limit h→ 0+ one infers that v, hence u, is twice weakly dif-
ferentiable and satisfies the desired estimate, using Simon’s absorption lemma
[Sim97, p. 398] as before.

2.6 Remark. In general, even if Lipu ≤ L < ∞ and P = 0 the condition
involving ε cannot be replaced by some uniform strong ellipticity condition on
D2F (σ) for σ ∈ Hom(Rm,Rn−m) with ‖σ‖ ≤ L as may be seen from the
example of Lawson and Osserman in [LO77, Theorem 7.1].

2.7 Lemma. Suppose n ∈ P, and 1 < q ≤ p <∞.
Then there exists a positive, finite number ε with the following property.
If n > m ∈ P, F is related to ε as in 2.1, LipD2F <∞, a ∈ Rm, 0 < r <

∞, and ui ∈ W1,q(U(a, r),Rn−m) with i ∈ {1, 2} satisfy LF (ui) = 0, then ui
are twice weakly differentiable and for every affine function P : Rm → Rn−m

there holds

r−m/p+1|D2(u2 − u1)|p;a,r/2 ≤ Γ
(

r−m−1|u2 − u1|1;a,r

+ (r−m−1|u1 − P |1;a,r) Lip(D
2F )(r−m−1|u2 − u1|1;a,r)

)

where Γ is a positive, finite number depending only on n and p.
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Proof. Using an elementary covering argument, it is enough to prove the asser-
tion with |D2(u2−u1)|p;a,r/2 replaced by |D2(u2−u1)|p;a,r/4. For this purpose

let κ = 21/2n2

ε = inf{ε2.5(n, q, 2p), ε2.4(n, p)/κ, ε2.3(n, q, 2p)}, ∆1 = Γ2.5(n, 2p),

∆2 = Γ2.4(n, p), ∆3 = Γ2.3(n, 2p), Γ = ∆2 sup{21+n, κ∆1∆3}.

Suppose F , a, r, and ui satisfy the hypotheses with ε and that P : Rm → Rn−m

is an affine function. In order to show that they satisfy the modified conclusions
with Γ, it will be assumed a = 0 and r = 1. Abbreviate Λ = LipD2F .

By 2.5 the functions ui are twice weakly differentiable with

|D2ui|2p;0,1/2 ≤ ∆1|ui − P |1;0,1 for i ∈ {1, 2}

and one obtains from 2.1 for L m almost all x ∈ U(0, 1)
〈

D2ui(x), CF (Dui(x))
〉

= 0 for i ∈ {1, 2},
〈

D2(u2 − u1)(x), CF (Du2(x))
〉

=
〈

D2u1(x), CF (Du1(x)) − CF (Du2(x))
〉

.

Therefore by 2.4, 2.1 and Hölder’s inequality

|D2(u2 − u1)|a,1/4;p ≤ ∆2

(

22+m−m/p|u2 − u1|0,1/2;1

+ κΛ|D2u1|2p;0,1/2|D(u2 − u1)|2p;0,1/2
)

.

To estimate |D(u2 − u1)|2p;0,1/2, one computes for θ ∈ D(U(0, 1),Rn−m)

−
´

U(0,1) 〈Dθ(x) ⊙D(u2 − u1)(x), A(x)〉 dL
mx = 0,

where A(x) =
´ 1

0 D
2F (tDu2(x) + (1− t)Du1(x)) dL

1t,

and obtains from 2.3

|D(u2 − u1)|2p;0,1/2 ≤ ∆3|u2 − u1|1;0,1

and the conclusion follows.

2.8 Lemma. Suppose m,n ∈ P, m < n, 1 ≤ p ≤ r <∞, and 1 < q <∞.
Then there exist a positive, finite number ε, a positive, finite number Γ1

depending only on m and p, and a positive, finite number Γ2 depending only on
m, n, p, and r with the following property.

If F is related to ε as in 2.1, LipD2F <∞, j ∈ {0, 1}, A is a closed subset of
Rm, u : Rm ∩{x : dist(x,A) < 1} → Rn−m is j times weakly differentiable, 0 ≤
γ <∞, and if for each a ∈ A, 0 < ̺ ≤ 1 there are va,̺ ∈ W1,q(U(a, ̺),Rn−m)
and an affine function Pa,̺ : Rm → Rn−m such that

LF (va,̺) = 0,
∑j

i=0̺
−m/p+i|Di(u− va,̺)|p;a,̺ ≤ γ̺2, ̺−m/p|u− Pa,̺|p;a,̺ ≤ γ̺

then there exists a twice weakly differentiable function v : Rm ∩{x : dist(x,A) <
1
36} → Rn−m with

∑j
i=0̺

−m/p+i|Di(u− v)|p;a,̺ ≤ Γ1γ̺
2,

̺−m/r|D2v|r;a,̺ ≤ Γ2

(

γ(1 + Lip(D2F )γ)2 + ̺−m−2|u− Pa,2̺|1;a,2̺
)

whenever a ∈ A, 0 < ̺ ≤ 1
36 .

11



Proof. Assume r ≥ q and define

ε = inf{1, ε2.5(n, q, 2r), ε2.7(n, q, 2r), ε2.5(n, q, r)}.

Suppose F , j, A, u, γ, va,̺, and Pa,̺ are as in the hypotheses in the body of
the lemma with ε and abbreviate Λ = LipD2F .

By 2.5 and Hölder’s inequality

∑j
i=0|D

iva,̺|2r;a,1/2 <∞,
∑j

i=0|D
iu|p;a,1/2 <∞

whenever a ∈ A. Therefore taking limits (for example by use of an interpolation
inequality similar to [Mor66, Lemma 6.2.2] and weak compactness properties of
Sobolev spaces [Mor66, Theorem 3.2.4(e)]) the conclusion can be deduced from
the following assertion: There exist a positive, finite number Γ1 depending only
on m and p, and a positive, finite number Γ2 depending only on m, n, p and r
such that for every 0 < δ ≤ 1

18 there exists a function v : Rm → Rn−m whose
restriction to Rm ∩ {x : dist(x,A) < 1

18} is twice weakly differentiable satisfying

∑j
i=0̺

−m/p+i|Di(u− v)|p;a,̺ ≤ Γ1γ̺
2,

(̺/2)−m/r|D2v|r;a,̺/2 ≤ Γ2

(

γ(1 + Λγ)2 + (̺/2)−m−2|u− Pa,̺|1;a,̺
)

whenever a ∈ A, δ ≤ ̺ ≤ 1
18 .

Assume A 6= ∅, let Φ = {Rm∼A} ∪ {U(a, δ) : a ∈ A}, note
⋃

Φ = Rm,
define h : Rm → R by

h(x) = 1
20 sup{inf{1, dist(x,R

m ∼U)} :U ∈ Φ} for x ∈ Rm,

and apply [Fed69, 3.1.13] to obtain a countable subset S of Rm and functions
ϕs : Rm → {t : 0 ≤ t ≤ 1} of class ∞ corresponding to s ∈ S such that with
Sx = S ∩ {s :B(x, 10h(x)) ∩B(s, 10h(s)) 6= ∅} for x ∈ Rm and a sequence Vi of
positive, finite numbers depending only on m there holds

cardSx ≤ (129)m, sptϕs ⊂ B(s, 10h(s)) for s ∈ S,

1/3 ≤ h(x)/h(s) ≤ 3 for s ∈ Sx, |Diϕs(x)| ≤ Vi(h(x))
−i for s ∈ S, i ∈ P,

∑

s∈S

ϕs(y) =
∑

s∈Sx

ϕs(y) = 1,
∑

s∈S

Diϕs(y) =
∑

s∈Sx

Diϕs(y) = 0 for i ∈ P

whenever x ∈ Rm, y ∈ B(x, 10h(x)). Note for x ∈ Rm, y ∈ B(x, 10h(x)), s ∈ S,
i ∈ P

|Diϕs(y)| ≤ Vi(h(y))
−i ≤ (20)iVi(10h(x))

−i,

because h(x)− h(y) ≤ 1
20 |x− y| ≤ 1

2h(x). Choose ξ : S → A such that

|ξ(s)− s| = dist(s, A) whenever s ∈ S.

Note 20h(x) ≤ sup{dist(x,A), δ} for x ∈ Rm and observe

B(x, 20h(x)) ⊂ B(ξ(s), 120h(s)), 120h(s) ≤ 1

12



whenever x ∈ Rm, dist(x,A) ≤ 1
18 , s ∈ Sx, because

|x− s| ≤ 10h(x) + 10h(s) ≤ 40h(x) ≤ 2 sup{dist(x,A), δ} ≤ 1/9,

|s− ξ(s)| = dist(s, A) ≤ |x− s|+ dist(x,A) ≤ 1/6,

|x− ξ(s)| ≤ |x− s|+ |s− ξ(s)| ≤ 40h(s) + 20h(s) = 60h(s),

|x− ξ(s)|+ 20h(x) ≤ 120h(s) ≤ 360h(x) ≤ 1.

Define R =
⋃

{Sx :x ∈ Rm and dist(x,A) ≤ 1
18},

vs = vξ(s),120h(s) and Ps = Pξ(s),120h(s) for s ∈ R

and, denoting by v′s the extension of vs to Rm by 0, v : Rm → Rn−m by

v(x) =
∑

s∈R

ϕs(x)v
′
s(x) whenever x ∈ Rm.

Suppose for the rest of the proof x ∈ Rm with dist(x,A) ≤ 1
18 and observe

v(y) =
∑

s∈Sx

ϕs(y)vs(y) whenever y ∈ B(x, 10h(x)).

The asserted weak differentiability is a consequence of 2.5.
One estimates

|Di(u − vs)|p;x,20h(x) ≤ |Di(u − vs)|p;s,120h(s)

≤ γ(120h(s))m/p+2−i ≤ (18)m/p+2γ(20h(x))m/p+2−i

for i ∈ {0, j}, s ∈ Sx, hence by Hölder’s inequality

(20h(x))−m|u− vs|1;x,20h(x)

≤ α(m)1−1/p∑j
i=0(20h(x))

−m/p+i|Di(u− vs)|p;x,20h(x) ≤ 2∆1γ(20h(x))
2
(I)

for s ∈ Sx where ∆1 = α(m)1−1/p(18)m/p+2. Also

(20h(x))−m|u− Ps|1;x,20h(x) ≤ α(m)1−1/p(20h(x))−m/p|u− Ps|p;ξ(s),120h(s)

≤ ∆1γ(20h(x)),

(20h(x))−m|vs − Ps|1;x,20h(x) ≤ 3∆1γ(20h(x)) (II)

for s ∈ Sx. Using

v(y)− u(y) =
∑

s∈Sx

ϕs(y)(vs(y)− u(y)) whenever y ∈ B(x, 10h(x))

and the Leibnitz formula, one obtains from (I)

∑j
i=0(10h(x))

−m/p+i|Di(u− v)|p;x,10h(x) ≤ ∆2γ(10h(x))
2

where ∆2 = α(m)1/p−18∆12
m/p(1 + 20V1)(129)

m.
In case x ∈ B(a, ̺) for some a ∈ A, δ ≤ ̺ ≤ 1

18 ,

20h(x) ≤ sup{dist(x,A), δ} ≤ ̺, B(x, 20h(x)) ⊂ B(a, 2̺)
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and Vitali’s covering theorem yields a countable subset T of B(a, ̺) such that

{B(t, 2h(t)) : t ∈ T } is disjointed, B(a, ̺) ⊂
⋃

{B(t, 10h(t)) : t ∈ T }

and one estimates for i ∈ {0, j}

|Di(u − v)|pp;a,̺

≤
∑

t∈T |D
i(u− v)|pp;t,10h(t)

≤ (∆2γ)
p∑

t∈T (10h(t))
m+(2−i)p

= (5m/p+2−i∆2γ)
p
α(m)−1−(2−i)p/m∑

t∈TL
m(B(t, 2h(t)))1+(2−i)p/m

≤ (5m/p+2−i∆2γ)
p
α(m)−1−(2−i)p/m

L
m(B(a, 2̺))1+(2−i)p/m

=
(

(10)m/p+2−i∆2γ
)p
̺m+(2−i)p.

Therefore one obtains for a ∈ A, δ ≤ ̺ ≤ 1
18 , i ∈ {0, j}

̺−m/p+i|Di(u− v)|p;a,̺ ≤ (10)m/p+2∆2γ̺
2 (III)

and one may take Γ1 = 2(10)m/p+2∆2 in the first estimate of the assertion.
According to 2.5 the functions vs are twice weakly differentiable and satisfy

for s ∈ Sx

(20h(x))−m/(2r)+2|D2vs|2r;x,10h(x) ≤ ∆3(20h(x))
−m|vs − Ps|1;x,20h(x)

where ∆3 = Γ2.5(n, 2r). Combining this with (II) yields

(10h(x))−m/(2r)+2|D2vs|2r;x,10h(x) ≤ 2m/(2r)3∆1∆3γ(10h(x)) (IV)

for s ∈ Sx.
Using 2.7, one obtains for s, t ∈ Sx

(20h(x))−m/(2r)+1|D2(vs−vt)|2r;x,10h(x) ≤ ∆4

(

(20h(x))−m−1|vs−vt|1;x,20h(x)

+ Λ((20h(x))−m−1|vs − Ps|1;x,20h(x))((20h(x))
−m−1|vs − vt|1;x,20h(x))

)

where ∆4 = Γ2.7(n, 2r). Since

(20h(x))−m|vs − vt|1;x,20h(x) ≤ 4∆1γ(20h(x))
2

by (I), one estimates using (II)

(10h(x))−m/(2r)|D2(vs − vt)|2r;x,10h(x) ≤ ∆5γ(1 + Λγ)

where ∆5 = 2m+2∆1∆4 sup{3∆1, 1}. Using an interpolation inequality (which
may be proven similarly to [Mor66, Lemma 6.2.2]), one infers with a positive,
finite number ∆6 depending only n and r

∑2
i=0(10h(x))

−m/(2r)+i|Di(vs − vt)|2r;x,10h(x)

≤ ∆6

(

(10h(x))−m/(2r)+2|D2(vs − vt)|2r;x,10h(x)

+ (10h(x))−m|vs − vt|1;x,10h(x)
)

≤ ∆6

(

∆5(1 + Λγ) + 2m+4∆1

)

γ(10h(x))2.
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This implies for s, t ∈ Sx

∑2
i=0(10h(x))

−m/(2r)+i|Di(vs − vt)|2r;x,10h(x) ≤ ∆7γ(1 + Λγ)(10h(x))2

where ∆7 = ∆6(∆5 + 2m+4∆1). Noting (v − vs)(y) =
∑

t∈Sx
ϕt(y)(vt − vs)(y)

for s ∈ Sx, y ∈ U(x, 10h(x)), one infers using the Leibnitz formula

(10h(x))−m/(2r)+i|Di(v − vs)|2r;x,10h(x) ≤ ∆8γ(1 + Λγ)(10h(x))2 (V)

for s ∈ Sx, i ∈ {0, 1, 2} where ∆8 = 2(1 + 20V1 + 400V2)∆7(129)
m.

Using 2.1, one defines

f(y) =
〈

D2v(y), CF (Dv(y))
〉

whenever y ∈ U(z, 10h(z)) for some z ∈ Rm with dist(z, A) ≤ 1
18 and computes

for s ∈ Sx

f(y) =
〈

D2vs(y), CF (Dv(y)) − CF (Dvs(y))
〉

+
〈

D2(v − vs)(y), CF (Dv(y))
〉

for L m almost all y ∈ U(x, 10h(x)). Hölder’s inequality implies

|f |r;x,10h(x) ≤ κΛ|D(v − vs)|2r;x,10h(x)|D
2vs|2r;x,10h(x)

+ 2κα(m)1/(2r)(10h(x))m/(2r)|D2(v − vs)|2r;x,10h(x),

hence by (IV) and (V)

(10h(x))−m/r|f |r;x,10h(x) ≤ ∆9γ(1 + Λγ)2

where ∆9 = κ∆8 sup
{

2m/(2r)3∆1∆3, 2α(m)1/(2r)
}

. Similarly but simpler as in
the deduction of (III), one obtains for δ ≤ ̺ ≤ 1

18 , a ∈ A

|f |r;a,̺ ≤ ∆9(10)
m/rγ(1 + Λγ)2̺m/r

and thus, using 2.5 with ∆10 = Γ2.5(n, r) and (III),

̺−m/r|D2v|r;a,̺/2 ≤ ∆10

(

̺−m−2(|u− v|1;a,̺ + |u− Pa,̺|1;a,̺) + ̺−m/r|f |r;a,̺
)

≤ ∆11

(

γ(1 + Λγ)2 + ̺−m−2|u− Pa,̺|1;a,̺
)

where ∆11 = ∆10(α(m)1−1/p(10)m/p+2∆2 + ∆9(10)
m/r + 1). Therefore one

may take Γ2 = 2m/r∆11 in the second estimate of the assertion and the proof
is completed.

2.9 Remark. In fact, by Calderón and Zygmund [CZ61, Theorem 10 (ii)] (see
also [Zie89, Lemma 3.7.2]) or by [Men09a, 3.1]

lim
̺→0+

̺−2∑j
i=0̺

−m/p+i|Di(u− v)|p;a,̺ = 0

for L m almost all a ∈ A. Now, Rešetnyak’s result in [Reš68] applied to v yields
that for L m almost all a ∈ A there exists a polynomial function Qa : Rm →
Rn−m of degree at most 2 such that

lim sup
̺→0+

̺−2∑j
i=0̺

−m/p+i|Di(u−Qa)|p;a,̺ = 0.

Alternately, this latter fact could have also been deduced by use of Calderón
and Zygmund [CZ61, Theorem 12] (see also [Zie89, Theorem 3.4.2]).
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2.10 Theorem. Suppose m,n ∈ P, m < n, 1 ≤ p <∞, and 1 < q <∞.
Then there exists a positive, finite number ε with the following property.
If F is related to ε as in 2.1, LipD2F < ∞, U is an open subset of Rm,

j ∈ {0, 1}, u : U → Rn−m is weakly differentiable,

h(a, r) =

inf
{

∑j
i=0r

−m/p+i|Di(u − v)|p;a,r : v ∈ W1,q(U(a, r),Rn−m) and LF (v) = 0
}

whenever U(a, r) ⊂ U for some a ∈ Rm, 0 < r < ∞, and if A denotes the set
of all a ∈ U such that

lim sup
r→0+

r−2h(a, r) <∞,

then A is a Borel set and for L m almost all a ∈ A there exists a polynomial
function Qa : Rm → Rn−m with degree at most 2 such that

lim
r→0+

r−2∑j
i=0r

−m/p+i|Di(u−Qa)|p;a,r = 0.

Proof. In view of 2.5 one may assume q ≥ p. Let ε = ε2.8(m,n, p, p, q). Suppose
F , U , j, and u satisfy the hypotheses with ε. Define the open set V by

V = U ∩
{

x :
∑j

i=0|D
iu|p;x,r <∞ for some 0 < r < dist(x,Rm ∼U)

}

and note A ⊂ V . Denote by D the set of all v ∈ W1,q(U(0, 1),Rn−m) such
that LF (v) = 0 and define

W = (V ×R) ∩ {(a, r) : 0 < r < dist(a,Rm∼V )}

and the continuous map T : W → W1,p(U(0, 1),Rn−m) by

T (a, r)(x) = r−1u(a+ rx) whenever (a, r) ∈ W , x ∈ U(0, 1).

Since D 6= ∅ and

h(a, r) = r inf
{
∑j

i=0|D
i(T (a, r)− v)|p;0,1 : v ∈ D

}

for (a, r) ∈W,

h is continuous. Therefore A is a Borel set. Similarly, denoting by D′ the set
of all affine functions mapping Rm into Rn−m one defines a continuous map
h′ :W → R by

h′(a, r) = r inf{|T (a, r)− w|1;0,1 :w ∈ D′} for (a, r) ∈ W.

By Rešetnyak [Reš68] or [Fed69, 4.5.9 (26) (II) (III)] one notes

lim sup
̺→0+

̺−1h′(a, ̺) <∞ for L
m almost all a ∈ U.

Define

Ck = V ∩ {x : dist(x,Rm ∼V ) ≥ 1/k},

Ak = Ck ∩ {a :h(a, r) ≤ kr2 and h′(a, r) ≤ kr for 0 < r < 1/k}

for k ∈ P and observe that the sets Ak are closed and

L
m(A∼

⋃

{Ak : k ∈ P}) = 0.

Finally, the conclusion is obtained by applying (for each k ∈ P) 2.8 in conjunc-
tion with 2.9 to rescaled versions of u, Ak and a suitable number γ.
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2.11 Remark. Instead of using Rešetnyak [Reš68] or [Fed69, 4.5.9 (26) (II) (III)],
one can also use the functions v occurring in the definition of h(a, r) in a way
reminiscent of the familiar harmonic approximation procedure to deduce

lim sup
̺→0+

̺−1h′(a, ̺) <∞ whenever a ∈ A.

Therefore u could have been required to be merely j times weakly differentiable.

2.12 Corollary. Suppose m,n ∈ P, m < n, 1 < p < ∞, U is an open subset
of Rm, T ∈ D(U,Rn−m) and A denotes the set of all a ∈ U such that

lim sup
r→0+

r−1−m/p|T |−1,p;a,r <∞.

Then A is a Borel set and for L m almost all a ∈ A there exists a unique
constant distribution Ta ∈ D ′(U,Rn−m) such that

lim
r→0+

r−1−m/p|T − Ta|−1,p;a,r = 0.

Proof. The conclusion is local and for each a ∈ A there exists 0 < r < ∞ with
|T |−1,p;a,r < ∞, hence one may assume sptT to be compact, U = Rm and
|T |−1,p;0,R <∞, sptT ⊂ U(0, R) for some 0 < R <∞.

For example using 2.2, one obtains functions u ∈ W
1,p
0 (U(0, R),Rn−m) and

va,r ∈ E (U(a, r),Rn−m) whenever a ∈ Rm, 0 < r < ∞ and U(a, r) ⊂ U(0, R)
such that

−
´

U(0,R)
Du •Dθ dL

m = T (θ) for θ ∈ D(U(0, R),Rn−m),

u− va,r ∈ W
1,p
0 (U(a, r),Rn−m), Lap va,r = 0.

By 2.2 and Poincaré’s inequality

∑1
i=0r

i−1|Di(u − va,r)|p;a,r ≤ ∆|T |−1,p;a,r

for some positive, finite number ∆ depending only on n and p, hence the set A
agrees with the set “A” defined in 2.10 with q = p, F the Dirichlet integrand
and j = 1. Therefore, applying 2.10, one may take Ta ∈ D ′(U(0, R),Rn−m)
defined by Ta(θ) =

´

θ(x) • LapQa(a) dL mx for θ ∈ D(Rm,Rn−m).
The uniqueness follows, since every Ta admissible in the conclusion satisfies

r−mTa(θ ◦ µ1/r ◦ τ−a) = Ta(θ), r−mT (θ ◦ µ1/r ◦ τ−a) → Ta(θ) as r → 0+.

whenever θ ∈ D(Rm,Rn−m).

2.13 Lemma. Suppose m,n ∈ P, m < n, Φ ∈
⊙2 Hom(Rm,Rn−m), 0 <

c ≤ M < ∞, ‖Φ‖ ≤ M , Φ is strongly elliptic with ellipticity bound c, a ∈ Rm,
0 < r <∞, u ∈ W

1,1
0 (U(a, r),Rn−m), T ∈ D ′(U(a, r),Rn−m), and

−
´

U(a,r)
〈Dθ(x) ⊙Du(x),Φ〉 dL

mx = T (θ) for θ ∈ D(U(a, r),Rn−m).

Then

|u|1;a,r ≤ Γr|T |−1,1;a,r

where Γ is a positive, finite number depending only on n, c, and M .
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Proof. See [Men09b, 6.8].

2.14 Lemma. Suppose m,n ∈ P, m < n, 0 < c ≤M <∞,

F : Hom(Rm,Rn−m) → R is of class 2,

‖D2F (σ)‖ ≤M,
〈

(τ, τ), D2F (σ)
〉

≥ c|τ |2 for σ, τ ∈ Hom(Rm,Rn−m),

a ∈ Rm, 0 < r <∞, and u, v ∈ W1,2(U(a, r),Rn−m) with

u− v ∈ W
1,2
0 (U(a, r),Rn−m).

Then for every affine function P : Rm → Rn−m

|D(v − u)|2;a,r ≤ c−1
(

M |D(u− P )|2;a,r + |LF (v)|−1,2;a,r

)

where LF is defined as in 2.1.

Proof. Compute for θ ∈ D(U(a, r),Rn−m)

LF (v)(θ) = −
´

U(a,r)
〈Dθ(x), DF (Dv(x)) −DF (DP (x))〉 dL

mx

= −
´

U(a,r)
〈Dθ(x) ⊙D(v − P )(x), A(x)〉 dL

mx

where A(x) =
´ 1

0
D2F (tDv(x) + (1 − t)DP (x)) dL

1t.

This implies for θ ∈ D(U(a, r),Rn−m)

´

U(a,r) 〈Dθ(x) ⊙D(v − u)(x), A(x)〉 dL
mx

= −
´

U(a,r) 〈Dθ(x) ⊙D(u − P )(x), A(x)〉 dL
mx− LF (v)(θ).

Letting θ approximate v − u in W1,2(U(a, r),Rn−m), one obtains

c(|D(v − u)|2;a,r)
2 ≤

(

M |D(u− P )|2;a,r + |LF (v)|−1,2;a,r

)

|D(v − u)|2;a,r.

2.15 Lemma. Suppose m,n ∈ P, m < n, ε = 1/2 is related to F as in 2.1,
LipD2F < ∞, a ∈ Rm, 0 < r < ∞, and u, v ∈ W1,2(U(a, r),Rn−m) with
u− v ∈ W

1,2
0 (U(a, r),Rn−m).

Then for every affine function P : Rm → Rn−m

r−1−m|v − u|1;a,r ≤ Γr−m
(

|LF (v)− LF (u)|−1,1;a,r

+ Lip(D2F )(|D(u− P )|2;a,r + |D(v − P )|2;a,r)
2
)

where Γ = Γ2.13(n, 1/2/, 3/2).

Proof. Let Λ = LipD2F , choose σ ∈ Hom(Rm,Rn−m) such that DP (x) = σ
for x ∈ Rm, and define T = LF (v) − LF (u), the L m

xU(a, r) measurable

function A : U(a, r) →
⊙2 Hom(Rm,Rn−m) by

A(x) =
´ 1

0
D2F (tDv(x) + (1− t)Du(x)) −D2F (σ) dL

1t

whenever x ∈ U(a, r), and S ∈ D ′(U(a, r),Rn−m) by

S(θ) =
´

U(a,r)
〈Dθ(x) ⊙D(v − u)(x), A(x)〉 dL

mx+ T (θ)
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whenever θ ∈ D(U(a, r),Rn−m). One computes

DF (Dv(x)) −DF (Du(x))

=
〈

D(v − u)(x),
´ 1

0DDF (tDv(x) + (1− t)Du(x)) dL
1t
〉

for L n almost all x ∈ U(a, r) and infers

S(θ) = −
´

U(a,r)

〈

Dθ(x) ⊙D(v − u)(x), D2F (σ)
〉

dL
mx

whenever θ ∈ D(U(a, r),Rn−m), hence by 2.13 with Φ replaced by D2F (σ)

r−1−m|v − u|1;a,r ≤ Γr−m|S|−1,1;a,r

It remains to estimate |S|−1,1;a,r. By use of the definition of S one estimates

‖A(x)‖ ≤
´ 1

0 ‖D
2F (tDv(x) + (1− t)Du(x)) −D2F (tσ + (1 − t)σ)‖ dL

1t

≤ Λ
´ 1

0
t|D(v − P )(x)|+ (1− t)|D(u − P )(x)| dL

1t

= Λ(|D(v − P )(x)|+ |D(u − P )(x)|)/2

for L m almost all x ∈ U(a, r). Finally,

|S|−1,1;a,r ≤ |T |−1,1;a,r + Λ/2
´

U(a,r)
(|D(u − P )(x)| + |D(v − P )(x)|)2 dL

mx.

2.16. Whenever m,n ∈ P, m < n, U is an open subset of Rm, a ∈ U , and T ∈
D ′(U,Rn−m) there exists at most one constant distribution Ta ∈ D ′(U,Rn−m)
such that

lim
r→0+

r−m−1|T − Ta|−1,1;a,r = 0,

see the last paragraph of the proof of 2.12.

2.17 Lemma. Suppose m,n ∈ P, m < n.
Then there exists a positive, finite number ε with the following property.
If F is related to ε as in 2.1, LipD2F < ∞, U is an open subset of Rm,

u : U → Rn−m is weakly differentiable, A1 denotes the set of all a ∈ U such
that

lim sup
r→0+

r−m−1|LF (u)|−1,1;a,r <∞,

A2 denotes the set of all a ∈ U such that there exists a (unique, see 2.16)
constant distribution Ta ∈ D ′(U,Rn−m) such that

lim
r→0+

r−m−1|LF (u)− Ta|−1,1;a,r = 0,

B1 denotes the set of all b ∈ dmnDu such that

lim sup
r→0+

r−m−1
´

U(b,r)
|Du(x) −Du(b)|2 dL

mx <∞,

and B2 denotes the set of all b ∈ dmnDu such that

lim
r→0+

r−m−1
´

U(b,r)|Du(x) −Du(b)|2 dL
mx = 0,

then the following two statements hold:
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(1) For L m almost all a ∈ A1 ∩ B1 there exists a polynomial function Qa :
Rm → Rn−m of degree at most 2 such that

lim
r→0+

r−2−m|u−Qa|1;a,r = 0.

(2) If a ∈ A2 ∩B2 satisfies the conclusion of (1) with Qa then

Ta(θ) =
´

U
θ(x) •

〈

D2Qa(a), CF (DQa(a))
〉

dL
mx

for θ ∈ D(U,Rn−m) where CF is defined as in 2.1.

Proof. Let

ε = inf{1/2, ε2.10(m,n, 1, 2), ε2.5(n, 2, 2)}.

Suppose F and u satisfy the hypotheses with ε. Abbreviate Λ = LipD2F and
T = LF (u). Fix a ∈ A1 ∩ B1 and 0 < R < ∞ such that B(a,R) ⊂ U and
u|U(a,R) ∈ W1,2(U(a,R),Rn−m).

To prove part (1), the criterion 2.10 will be verified with q = 2, j = 0. Using
the direct method of the calculus of variation, see e.g. [Giu03, Theorems 4.5, 6,
Remark 4.1], one constructs for 0 < r < R functions vr ∈ W1,2(U(a, r),Rn−m)
such that

vr − u ∈ W
1,2
0 (U(a, r),Rn−m), LF (vr) = 0.

By 2.15 one estimates

r−1−m|vr − u|1;a,r

≤ ∆1r
−m
(

|T |−1,1;a,r + Λ(|D(u−Du(a))|2;a,r + |D(vr −Du(a))|2;a,r)
2
)

.

with ∆1 = Γ2.15(n). By 2.14 with c = 1/2, M = 2 one infers

|D(vr − u)|2;a,r ≤ 4|D(u−Du(a))|2;a,r,

hence

r−1−m|vr − u|1;a,r ≤ ∆1r
−m
(

|T |−1,1;a,r + Λ(6|D(u−Du(a))|2;a,r)
2
)

.

Since a ∈ A1 ∩B1, this implies

lim sup
r→0+

r−2−m|vr − u|1;a,r <∞.

Therefore part (1) follows from 2.10.
To prove part (2), assume now additionally that the assumptions of (2) are

valid for a, i.e. a ∈ A2 ∩ B2 and Qa satisfies the conclusion of (1). Choose
y ∈ Rn−m such that

Ta(θ) =
´

U
θ(x) • y dL

mx for θ ∈ D(U,Rn−m).

Using the direct method of the calculus of variation as before, one constructs
for 0 < r < R functions wr ∈ W1,2(U(a, r),Rn−m) such that

wr − u ∈ W
1,2
0 (U(a, r),Rn−m),

LF (wr)(θ) =
´

U(a,r)
θ(x) • y dL

mx whenever θ ∈ D(U(a, r),Rn−m).
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By 2.15 one estimates

r−1−m|wr − u|1;a,r ≤ ∆1r
−m
(

|T − Ta|−1,1;a,r

+ Λ(|D(u−Du(a))|2;a,r + |D(wr −Du(a))|2;a,r)
2
)

.

Since, by Poincaré’s inequality,

∣

∣

´

U(a,r)
θ(x) • y dL

mx
∣

∣ ≤ |y|∆2r
1+m/2|Dθ|2;a,r

where ∆2 is a positive, finite number depending only on n, one infers from 2.14

|D(wr − u)|2;a,r ≤ 4|D(u−Du(a))|2;a,r + 2∆2|y|r
1+m/2,

hence

r−1−m|wr − u|1;a,r

≤ ∆1r
−m
(

|T − Ta|−1,1;a,r + Λ(6|D(u−Du(a))|2;a,r + 2∆2|y|r
1+m/2)2

)

.

Since a ∈ A2 ∩B2, this implies

lim
r→0+

r−2−m|wr − u|1;a,r = 0.

Therefore by the assumption on Qa

lim
r→0+

r−2−m|wr −Qa|1;a,r = 0.

In order to estimate derivatives of wr − Qa, define P : Rm → Rn−m by
P (x) = Qa(a) + 〈x− a,DQa(a)〉 for x ∈ Rm, R = Qa − P , S : Rm → Rn−m

by S(x) = 1
2

〈

(x, x), D2Qa(a)
〉

for x ∈ Rm and note r−2R ◦ τ a ◦ µr = S and

r−2(wr − P ) ◦ τ a ◦ µr|U(0, 1) → S|U(0, 1) in L1(U(0, 1),Rn−m)

as r → 0+. By 2.5

r−m/2|D2(wr − P )|2;a,r/2 ≤ ∆3(r
−2−m|wr − P |1;a,r + |y|)

where ∆3 = sup{1,α(m)1/2}Γ2.5(n, 2), hence

lim sup
r→0+

r−m/2|D2(wr − P )|2;a,r/2 <∞.

By Rellich’s embedding theorem

r−2(wr − P ) ◦ τ a ◦ µr|U(0, 1/2) → S|U(0, 1/2) in W1,2(U(0, 1/2),Rn−m),

r−2(wr −Qa) ◦ τ a ◦ µr|U(0, 1/2) → 0 in W1,2(U(0, 1/2),Rn−m)

as r → 0+. This convergence implies

∣

∣r−m−1
´

U(a,r/2)

〈

(Dθ) ◦ µ1/r ◦ τ−a(x), DF (Dwr(x)) −DF (DQa(x))
〉

dL
mx
∣

∣

≤ r−m/2−1(LipDF )|Dθ|2;0,1|D(wr −Qa)|2;a,r → 0 as r → 0+
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for θ ∈ D(U(0, 1/2),Rn−m). Therefore, noting
´

U(0,1/2)
θ(x) • y dL

mx = r−m
´

U(a,r/2)
(θ ◦ µ1/r ◦ τ−a)(x) • y dL

mx

= −r−m−1
´

U(a,r/2)

〈

(Dθ) ◦ µ1/r ◦ τ−a(x), DF (Dwr(x))
〉

dL
mx

for θ ∈ D(U(0, 1/2),Rn−m) and

− r−m−1
´

U(a,r/2)

〈

(Dθ) ◦ µ1/r ◦ τ−a(x), DF (DQa(x))
〉

dL
mx

= r−m
´

U(a,r/2)(θ ◦ µ1/r ◦ τ−a)(x) •
〈

D2Qa(x), CF (DQa(x))
〉

dL
mx

→
´

U(0,1/2)θ(x) •
〈

D2Qa(a), CF (DQa(a))
〉

dL
mx as r → 0+,

for θ ∈ D(U(0, 1/2),Rn−m), one infers

y =
〈

D2Qa(a), CF (DQa(a))
〉

,

as asserted.

2.18 Remark. Clearly, by Rešetnyak [Reš68] or [Fed69, 4.5.9 (26) (II) (III)] for
L m almost all a ∈ A1 ∩B1

Qa(a) = u(a), DQa(a) = Du(a).

Also by Calderón and Zygmund [CZ61, Theorem 9] (see also [Zie89, 3.6–8]),
there exists a sequence of functions ui : R

m → Rn−m of class 2 such that

L
m

(

A1 ∩B1 ∼
∞
⋃

i=1

{

a :Dkui(a) = DkQa(a) for k ∈ {0, 1, 2}
}

)

= 0.

2.19 Remark. In A.3 it will be shown L m(A1 ∼A2) = 0.

2.20 Lemma. Suppose H is a Hilbert space with dimH = N < ∞, k, l ∈
P ∪ {0}, l ≥ k, Φ : H → R is of class l, a ∈ H, 0 < δ <∞, and

s = sup{‖DkΦ(x) −DkΦ(a)‖ :x ∈ B(a, δ)}.

Then there exists F : H → R of class l such that

DiF (x) = DiΦ(x) for x ∈ B(a, δ/2), i = 0, . . . , k,

‖DkF (x) −DkΦ(a)‖ ≤ Γs for x ∈ H,

F |H ∼B(a, δ) is the restriction of a polynomial function of degree at most k

where Γ is a positive, finite number depending only on N and k.

Proof. Choosing ϕ ∈ E 0(R) with 0 ≤ ϕ(t) ≤ 1 for t ∈ R and

{t :−∞ < t ≤ 1/2} ⊂ Int{t :ϕ(t) = 1}, {t : 1 ≤ t <∞} ⊂ Int{t :ϕ(t) = 0}

one defines P : H → R, F : H → R by

P (x) =
∑k

i=0

〈

(x− a)i/i!, DiΦ(a)
〉

,

F (x) = P (x) + ϕ(|x− a|/δ)(Φ(x) − P (x))

for x ∈ H and readily estimates ‖DkF (x) − DkΦ(a)‖ be means of Taylor’s
formula (cf. [Fed69, 3.1.11]).
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3 An approximate second order structure for

certain integral varifolds

In this Section 3.6 which is Theorem 1 of the Introduction is proven. In order to
do this a general lemma is established which states that the part of the varifold
exhibiting a certain decay of its tilt-excess can be covered with some accuracy by
suitable rotated graphs of Lipschitzian function having similar decay properties
of their “tilt-excess”. This is done by carefully combining the approximation by
QQ(R

n−m) valued functions of [Men09b, 4.8] with more basic differentiability
results in [Men09a]. The “tilt-excess” decay of the Lipschitzian functions is the
nonintegral differentiability condition used in Section 2 to compensate for the
use of the weak norm |·|−1,1;a,s in the estimates which seems to be inavoidable,
see 3.4.

3.1 Lemma. Suppose n,Q ∈ P, 0 < L < ∞, 1 ≤ M < ∞, 0 < δi ≤ 1 for
i ∈ {1, 2, 3}, and 0 < δ4 ≤ 1/4.

Then there exists a positive, finite number ε with the following property.
If m ∈ P, m < n, 0 < s <∞, S = imp∗,

U = (Rm ×Rn−m) ∩ {(x, y) : dist((x, y),C(S, 0, s, s)) < 2s},

V ∈ IVm(U), ‖δV ‖ is a Radon measure,

(Q − 1 + δ1)α(m)sm ≤ ‖V ‖(C(S, 0, s, s)) ≤ (Q + 1− δ2)α(m)sm,

‖V ‖(C(S, 0, s, s+ δ4s)∼C(S, 0, s, s− 2δ4s)) ≤ (1− δ3)α(m)sm,

‖V ‖(U) ≤Mα(m)sm,

0 < δ ≤ ε, B denotes the set of all z ∈ C(S, 0, s, s) with Θ∗m(‖V ‖, z) > 0 such
that

either ‖δV ‖B(z, t) > δ ‖V ‖(B(z, t))1−1/m for some 0 < t < 2s,

or
´

B(z,t)×G(n,m)
|R♮ − S♮| dV (ξ, R) > δ ‖V ‖B(z, t) for some 0 < t < 2s,

A = C(S, 0, s, s)∼B, A(x) = A ∩ {z :p(z) = x} for x ∈ Rm, X1 is the set of
all x ∈ Rm ∩B(0, s) such that

∑

z∈A(x)Θ
m(‖V ‖, z) = Q and Θm(‖V ‖, z) ∈ P ∪ {0} for z ∈ A(x),

X2 is the set of all x ∈ Rm ∩B(0, s) such that
∑

z∈A(x)Θ
m(‖V ‖, z) ≤ Q− 1 and Θm(‖V ‖, z) ∈ P ∪ {0} for z ∈ A(x),

N = Rm ∩ B(0, s)∼(X1 ∪ X2), and f : X1 → QQ(R
n−m) is characterised by

the requirement

Θm(‖V ‖, z) = Θ0(‖f(x)‖,q(z)) whenever x ∈ X1 and z ∈ A(x),

then the following seven statements hold:

(1) X1 and X2 are universally measurable, and L m(N) = 0.

(2) A and B are Borel sets and

q[A ∩ spt ‖V ‖] ⊂ B(0, s− δ4s).
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(3) p[A ∩ {z :Θm(‖V ‖, z) = Q}] ⊂ X1.

(4) The function f is Lipschitzian with Lip f ≤ L.

(5) For L m almost all x ∈ X1 the following is true:

(a) The function f is approximately strongly affinely approximable at x.

(b) If (x, y) ∈ graphQ f then

Tanm(‖V ‖, (x, y)) = Tan
(

graphQ apAf(x), (x, y)
)

∈ G(n,m).

(6) If a ∈ A, Θm(‖V ‖, a) = Q, 0 < t ≤ s− |p(a)|, |q(a)|+ δ4t ≤ s, and

Ba,t = C(S, a, t, δ4t) ∩B,

Ca,t = B(p(a), t)∼(X1 ∼p[Ba,t]),

Da,t = C(S, a, t, δ4t) ∩ p−1[Ca,t],

then Ba,t is a Borel set, Ca,t and Da,t are universally measurable and

L
m(Ca,t) + ‖V ‖(Da,t) ≤ Γ(6) ‖V ‖(Ba,t)

with Γ(6) = 3 + 2Q+ (12Q+ 6)5m.

(7) If a, t, Ca,t, Da,t are as in (6), g : Rm → Rn−m, Lip g < ∞, g|X1 =
ηQ ◦ f , τ ∈ Hom(Rm,Rn−m), θ ∈ D(Rm,Rn−m), η ∈ D0(Rn−m),

spt θ ⊂ U(p(a), t), 0 ≤ η(y) ≤ 1 for y ∈ Rn−m,

spt η ⊂ U(q(a), δ4t), B(q(a), δ4t/2) ⊂ Int(Rn−m ∩ {y : η(y) = 1}),

and Ψ§ denotes the nonparametric integrand associated to the area inte-
grand Ψ, then

∣

∣Q
´ 〈

Dθ(x), DΨ§
0(Dg(x))

〉

dL
mx− (δV )((η ◦ q) · (q∗ ◦ θ ◦ p))

∣

∣

≤ γ1Qm
1/2 Lip g

´

Ca,t
|Dθ| dL

m

+ γ2
´

Ea,t ∼Ca,t
|Dθ(x)|| apAf(x) (+)(−τ)|2 dL

mx

+m1/2
´

Da,t
|D((η ◦ q) · (q∗ ◦ θ ◦ p))| d‖V ‖

where

γ1 = sup ‖D2Ψ§
0‖[B(0,m1/2 Lip g)],

γ2 = Lip
(

D2Ψ§
0|B(0,m1/2(L+ 2‖τ‖))

)

,

Ea,t = B(p(a), t) ∩X1 ∩ {x :Θ0(‖f(x)‖, g(x)) 6= Q}.

Proof. This follows from [Men09b, 4.8, 10]; in fact the statements (1)–(5) are
those in [Men09b, 4.8] with r, h, T replaced by s, s, S and [Men09b, 4.10] shows
that the additional conditions a ∈ A and Θm(‖V, ‖, a) = Q in (6) (7) can be
arranged to imply

graphQ f |B(p(a), t) ⊂ C(S, a, t, δ4t/2),

‖V ‖(C(S, a, t, δ4t)) ≥ (Q− 1/4)α(m)tm,

hence (6) (7) are consequences of [Men09b, 4.8 (6) (7) (9)].
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3.2. The following situation will be studied: m,n ∈ P, m < n, 1 ≤ p ≤ ∞, U
is an open subset of Rn, V ∈ Vm(U), ‖δV ‖ is a Radon measure and, if p > 1,

(δV )(g) = −
´

g(z) • h(V ; z) d‖V ‖(z) whenever g ∈ D(U,Rn),

h(V ; ·) ∈ Lp(‖V ‖ xK,Rn) whenever K is a compact subset of U.

If p <∞ then the measure ψ is defined by

ψ = ‖δV ‖ if p = 1, ψ = |h(V ; ·)|p‖V ‖ if p > 1.

3.3 Lemma. Suppose m,n ∈ P, m < n, 1 ≤ p ≤ m, 1 ≤ q < ∞, 0 < α ≤ 1,
αq(m − p) ≤ mp, 0 < L < ∞, V ∈ IVm(U), ψ is related to p and V as in 3.2,
and P is the set of all a ∈ U such that Tanm(‖V ‖, a) ∈ G(n,m) and

lim sup
s→0+

s−α−m/q
(´

B(a,s)×G(n,m)
|S♮ − Tanm(‖V ‖, a)♮|

q dV (z, S)
)1/q

<∞.

Then there exists a countable, disjointed family H of ‖V ‖ measurable subsets
of P such that ‖V ‖(P ∼

⋃

H) = 0 and for each Z ∈ H there exists a nonempty
open subset O of O∗(n,m) such that for each π1 ∈ O there exist

g : Rm → Rn−m, G : Rm → Rn, K ⊂ Rm, Q ∈ P,

π2 ∈ O∗(n, n−m), T ∈ D
′(Rm,Rn−m)

with the following six properties:

(1) π2 ◦ π
∗
1 = 0, G = π∗

1 + π∗
2 ◦ g, and G[K] = Z.

(2) Lip g ≤ L.

(3) K is an L m measurable subset of dmnDg.

(4)
´ 〈

Dθ(x), DΨ§
0(Dg(x))

〉

dL mx = T (θ) for θ ∈ D(Rm,Rn−m) where Ψ
denotes the area integrand.

(5) Whenever x ∈ K there holds with z = G(x) and R = Tanm(‖V ‖, z)

Θm(‖V ‖, z) = Q, imDG(x) = R,

lim sup
s→0+

s−β−m/r
(´

B(x,s)|Dg(ζ)−Dg(x)|r dL
mζ
)1/r

≤ 2m1/2 lim sup
s→0+

s−β−m/r
(´

B(z,s)×G(n,m)
|S♮ −R♮|

r dV (ξ, S)
)1/r

whenever 0 < β ≤ 1, 1 ≤ r <∞ and βr ≤ αq.

(6) Whenever x ∈ K there holds

lim
s→0+

s−m−1|T − Tx|−1,1;x,s = 0

where Tx ∈ D ′(Rm,Rn−m) is defined by

Tx(θ) = −
´

Ψ§
0(Dg(x))h(V ;G(x)) • (π∗

2 ◦ θ)(ζ) dL
mζ

whenever θ ∈ D(Rm,Rn−m).
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Proof. First, observe that if some ‖V ‖ measurable set Z has the properties
listed in the conclusion so does every ‖V ‖ measurable subset of Z. Therefore,
in order to prove the assertion, it is enough to show that for ‖V ‖ almost all
a ∈ P there exists a ‖V ‖ measurable set Z having the stated properties and
additionally satisfies Θ∗m(‖V ‖ xZ, a) > 0; in fact one can then take a maximal,
disjointed family H of such Z (hence ‖V ‖(Z) > 0) and note H is countable and
Θm(‖V ‖ x

⋃

H, a) = 0 for H m almost all a ∈ U ∼
⋃

H by [Fed69, 2.10.19 (4)]
so that ‖V ‖(P ∼

⋃

H) > 0 would contradict the maximality of H .
Define P ′ to be the set of all z ∈ U such that Tanm(‖V ‖, z) ∈ G(n,m) and

lim
t→0+

t−1/2−m/2
(´

B(z,t)×G(n,m)
|S♮ − Tanm(‖V ‖, z)♮|

2 dV (ξ, S)
)1/2

= 0.

By Brakke [Bra78, 5.7, 5] or [Men09b, 8.6] there holds ‖V ‖(U ∼P ′) = 0. There-
fore one may assume αq ≥ 1 possibly replacing α, q by 1/2, 2 if αq < 1. Assume
further L ≤ 1/8 and suppose Q ∈ P. The remaining assertion will be shown to
hold for ‖V ‖ almost all a ∈ P with Θm(‖V ‖, a) = Q. For this purpose define

δ1 = δ2 = δ3 = 1/2, δ4 = 1/4, M = 5mQ,

ε = inf
{

ε3.1(n,Q,L,M, δ1, δ2, δ3, δ4), (2γ(m))−1
}

,

and R : U ∩ {z : Tanm(‖V ‖, z) ∈ G(n,m)} → Hom(Rn,Rn) by

R(z) = Tanm(‖V ‖, z)♮ whenever z ∈ U with Tanm(‖V ‖, z) ∈ G(n,m).

For i ∈ P let Ci denote the set of all z ∈ spt ‖V ‖ such that either B(z, 1/i) 6⊂ U
or

‖δV ‖B(z, t) > (2ε/3) ‖V ‖(B(z, t))1−1/m for some 0 < t < 1/i,

let Di(w) for w ∈ dmnR denote the set of all z ∈ U such that either B(z, 1/i) 6⊂
U or

´

B(z,t)
|R(ξ)−R(w)|q d‖V ‖ξ > (ε/3)q ‖V ‖B(z, t) for some 0 < t < 1/i

and define Xi for i ∈ P by

Xi = U ∩
{

z :Θm2/(m−p)(‖V ‖ xCi, z) = 0
}

if p < m,

Xi = U ∼ClosCi if p = m,

as well as Yi for i ∈ P by

Yi = (dmnR) ∩
{

w :Θm+αq(‖V ‖ xDi(w), w) = 0
}

.

Since Ci+1 ⊂ Ci and Di+1(w) ⊂ Di(w) for w ∈ dmnR, one notes Xi ⊂ Xi+1

and Yi ⊂ Yi+1 for i ∈ P. Xi are Borel sets. Yi are ‖V ‖ measurable sets by
[Men09a, 3.7 (ii)]. P is ‖V ‖ measurable by [Men09a, 3.7]. Moreover,

‖V ‖
(

U ∼
⋃

{Xi : i ∈ P}
)

= 0, ‖V ‖
(

P ∼
⋃

{Yi : i ∈ P}
)

= 0

by [Men09a, 2.5, 9, 10, 3.7 (ii)].
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Define a measure µ on U such that µ + |h(V ; ·)|‖V ‖ = ‖δV ‖ and J =
P ∩ {z :Θm(‖V ‖, z) = Q}. The remaining assertion will be shown at a point a
such that for some i ∈ P

a ∈ Xi ∩ Yi ∩ (dmnR), B(a, 4/i) ⊂ U,

Θm(‖V ‖, a) = Q, Θm(‖V ‖ xU ∼(J ∩Xi ∩ Yi), a) = 0,

R is approximately continuous at a with respect to ‖V ‖.

These conditions are satisfied by ‖V ‖ almost all a ∈ J by the preceding remarks
and [Fed69, 2.9.11, 13]. Fix such a and i, choose 0 < κ ≤ 1/2 such that (1 +
κ)mQ < Q + 1/2, and define λ = (1 + κ2)−1/2 and δ = (1 − λ)/2. Noting for
S ∈ G(n,m) with |S♮ −R(a)| < δ and 0 < s <∞

Rn ∩ {z : |S♮(z − a)| ≤ λ|z − a|} ⊂ Rn ∩ {z : |R(a)(z − a)| ≤ (λ+ δ)|z − a|},

C(S, a, s) ∩ {z : |S♮(z − a)| > λ|z − a|} ⊂ C(S, a, s, κs) ⊂ B(a, (1 + κ)s),

0 < λ+ δ < 1, Θm(‖V ‖ x{z : |R(a)(z − a)| ≤ (λ + δ)|z − a|}, a) = 0

by [Fed69, 3.2.16], one infers the existence of 0 < s < (2i)−1 such that

(Q− 1/2)α(m)sm ≤ ‖V ‖(C(S, a, s, s)) ≤ (Q+ 1/2)α(m)sm,

‖V ‖(C(S, a, s, 5s/4)∼C(S, a, s, s/2)) ≤ (1/2)α(m)sm,

‖V ‖(Rn ∩ {z : dist(z,C(S, a, s, s)) < 2s}) ≤ ‖V ‖B(a, 4s) ≤Mα(m)sm,

whenever S ∈ G(n,m) with |S♮ −R(a)| < δ.
Define A to be the set of all z ∈ U(a, s) ∩ spt ‖V ‖ such that

‖δV ‖B(z, t) ≤ (2ε/3)‖V ‖(B(z, t))1−1/m,
´

B(z,t)|R(ξ)−R(a)| d‖V ‖ξ ≤ (2ε/3)‖V ‖B(z, t)

whenever 0 < t < 2s,

O = O∗(n,m) ∩ {π : |π∗ ◦ π −R(a)| < inf{δ, ε/3}},

W = U(a, s) ∩Xi ∩ Yi ∩ {w : |R(w) −R(a)| ≤ ε/3}, Z =W ∩A ∩ J ∼N

where N is the set of all w ∈W such that one of the following three conditions
is violated

w ∈ P ′, Θm(µ,w) = 0, lim
t→0+

t−m
´

B(w,t)|h(V ; ξ)− h(V ;w)| d‖V ‖ξ = 0.

Note ‖V ‖(N) = 0 by [Fed69, 2.9.10, 11].
Now, fix π1 ∈ O, S = imπ∗

1 and choose π2 ∈ O∗(n, n−m) with π2 ◦ π∗
1 = 0.

The proof will be concluded by showing Θm(‖V ‖ xZ, a) = Q and constructing
g, G, K and T with the asserted properties. For this purpose assume a = 0 and
π1 = p and π2 = q using isometries and identifying Rn ≃ Rm ×Rn−m. Define

u(w) = (s− |w − a|)/2 for w ∈W

and note u(w) > 0. Moreover, define B, f as in 3.1 with δ replaced by ε
and whenever w ∈ W and 0 < t ≤ u(w) define Bw,t, Cw,t and Dw,t as in
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3.1 (6) (7) with additionally a, s replaced by w, t. Since |S♮ −R(a)| ≤ ε/3 and
Z ⊂ A ∩ {z :Θm(‖V ‖, z) = Q}, one infers from 3.1 (3) that Z ⊂ graphQ f and

Θ0(‖f(p(z))‖,q(z)) = Q, (p∗ + q∗ ◦ ηQ ◦ f)(p(z)) = z

whenever z ∈ Z. Using Kirszbraun’s theorem (cf. [Fed69, 2.10.43]) one extends
ηQ ◦ f to a function g : Rm → Rn−m such that

Lip g = Lip(ηQ ◦ f)

and defining G = p∗ + q∗ ◦ g, K = p[Z] and T ∈ D ′(Rm,Rn−m) by

T (θ) =
´ 〈

Dθ(x), DΨ§
0(Dg(x))

〉

dL
mx for θ ∈ D(Rm,Rn−m),

the properties (1), (2) and (4) are evident noting 3.1 (4).
Next, it will be shown

Bw,t ⊂ U(a, s) ∩ (spt ‖V ‖)∼A ⊂ Ci ∪Di(w)

whenever w ∈ W , 0 < t ≤ u(w). The first inclusion is readily verified noting
|S♮ −R(a)| ≤ ε/3. If z ∈ U(a, s) ∩ (spt ‖V ‖)∼A, then

either ‖δV ‖B(z, t) > (2ε/3) ‖V ‖(B(z, t))1−1/m for some 0 < t < 2s,

or
´

B(z,t)
|R(ξ)−R(a)| d‖V ‖ξ > (2ε/3) ‖V ‖B(z, t) for some 0 < t < 2s.

In the first case, this implies z ∈ Ci, in the second case,

(2ε/3) ‖V ‖B(z, t) <
´

B(z,t)
|R(ξ)−R(a)| d‖V ‖ξ

≤
´

B(z,t)
|R(ξ)−R(w)| d‖V ‖ξ + |R(a)−R(w)| ‖V ‖B(z, t),

(ε/3) ‖V ‖B(z, t) <
´

B(z,t)
|R(ξ)−R(w)| d‖V ‖ξ

≤ ‖V ‖(B(z, t))1−1/q
(´

B(z,t)|R(ξ)−R(w)|q d‖V ‖ξ
)1/q

,

hence z ∈ Di(w), and the second inclusion and hence the claim are proven. The
inclusions imply the density estimate

Θm+αq(‖V ‖ xB,w) = Θm+αq(‖V ‖ x(U ∼A), w) = 0 whenever w ∈ W.

Noting a ∈ W and Θm(‖V ‖ xU ∼(W ∩ J), a) = 0, one infers in particular

Θm(‖V ‖ xU ∼Z, a) = 0, Θm(‖V ‖ xZ, a) = Q

and it remains to verify that g, G, K, and T satisfy (3), (5) and (6).
In preparation to this, the following tilt estimate will be shown with ∆1 =

(1 + L2)1/2(1− L2)−1/2m1/2

Q−1/2
(´

B(p(z),t)∩dmnf | apAf(x) (+)(−τ)|r dL
mx
)1/r

≤ ∆1

(´

C(S,z,t,δ4t)
|R(ξ)− τ♮|

r d‖V ‖ξ
)1/r

whenever 1 ≤ r <∞, z ∈ Z, 0 < t ≤ u(z), τ ∈ Hom(Rm,Rn−m) with ‖τ‖ ≤ L
(here the identification τ ⊂ Rm×Rn−m ≃ Rn is used); in fact, recalling L ≤ 1/8
and z ∈ graphQ f , one notes

graphQ f |B(p(z), t) ⊂ C(S, z, t, δ4t) ⊂ C(S, a, s, s),
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hence for 0 < γ <∞

B(p(z), t)) ∩
{

x :Q−1/2| apAf(x) (+)(−τ)| > γ
}

is H m almost contained in

p
[

C(S, z, t, δ4t) ∩ {ξ :∆1|R(ξ)− τ♮| > γ}
]

by 3.1 (4) (5) and Allard [All72, 8.9 (5)]. For x ∈ K, taking z = G(x) and τ
associated to imR(z), one infers, noting Θm+αq(L m

xRm∼ dmn f, x) = 0 by
the density estimate for B and 3.1 (6) and ∆1 ≤ 2m1/2,

lim sup
t→0+

t−β−m/r
(´

B(x,t)
|Dg(ζ)− τ |r dL

mζ
)1/r

≤ 2m1/2 lim sup
t→0+

t−β−m/r
(´

B(z,t)|R(ξ)−R(z)|r d‖V ‖ξ
)1/r

whenever x ∈ K, 0 < β ≤ 1, 1 ≤ r < ∞, and βr ≤ αq, hence in particular,
taking β = α inf{1, q/r} and noting that the right hand side in this case is finite
by [Fed69, 2.4.17] as z ∈ P ,

lim
t→0+

(ffl

B(x,t)|Dg(ζ)− τ |r dL
mζ
)1/r

= 0 for 1 ≤ r <∞

and g is differentiable at x with Dg(x) = τ by the argument in [EG92, Theorem
6.2.1]. Since Z ⊂ imG, K is L m measurable, hence (3) and (5) are now proven
and it remains to prove (6).

Choose η ∈ D0(Rn−m) such that

0 ≤ η(y) ≤ 1 for y ∈ Rn−m,

spt η ⊂ U(0, 1/4), B(0, 1/8) ⊂ Int(Rn−m ∩ {y : η(y) = 1})

and define Tx for x ∈ K as in (6). Fix x ∈ K, let z = G(x), note p(z) = x and
abbreviate

θt = t−mθ ◦ µ1/t ◦ τ−p(z), ηt = η ◦ µ1/t ◦ τ−q(z)

whenever 0 < t ≤ u(z) and θ ∈ D(Rm,Rn−m). The remaining estimate will
carried out by showing that

QTx(θt)− (δV )((ηt ◦ q) · (q
∗ ◦ θt ◦ p)),

(δV )((ηt ◦ q) · (q
∗ ◦ θt ◦ p))−Q

´ 〈

Dθt(ζ), DΨ§
0(Dg(ζ))

〉

dL
mζ

both tend to 0 as t → 0+ uniformly with respect to θ ∈ D(Rm,Rn−m) such
that spt θ ⊂ U(0, 1) and |Dθ|∞;0,1 ≤ 1.

To prove the first estimate, one notes that the conditions Θm−1(‖δV ‖, z) =
0, Θm(‖V ‖, z) = Q and z ∈ P imply, for example using Allard [All72, 6.4, 5]
and [Men10, 3.1],

t−m
´

φ(t−1(ξ − z), imR(ξ)) d‖V ‖ξ → Q
´

imR(z)
φ(ξ, imR(z)) dH

mξ

as t→ 0+ whenever φ ∈ K (Rn ×G(n,m)). Since also, noting

(ηt ◦ q) · (q
∗ ◦ θt ◦ p) = t−m

(

(η ◦ q) · (q∗ ◦ θ ◦ p)
)

◦µ1/t ◦ τ−z ,

C(T, 0, 1) ∩ Tanm(‖V ‖, z) ⊂ C(T, 0, 1, 1/8)
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as L ≤ 1/8 and z ∈ graphQ f , one readily uses the conditions on δV and h(V ; ·)
imposed by the fact z /∈ N to infer

lim
t→0+

(δV )((ηt ◦ q) · (q
∗ ◦ θt ◦ p))

= −Q
´

imR(z)h(V ; z) • (η ◦ q)(ξ)(q∗ ◦ θ ◦ p)(ξ) dH
mξ

= −Q
´

Ψ§
0(Dg(x))h(V ; z) • (q∗ ◦ θ)(ζ) dL

mζ = QTx(θt)

and the convergence is uniform with respect to θ ∈ D(Rm,Rn−m) such that
spt θ ⊂ U(0, 1) and |Dθ|∞;0,1 ≤ 1 as this family of functions is compact with

respect to | · |∞;0,1 by [Fed69, 2.10.21] and Θ∗m(‖δV ‖, z) <∞.
To prove the second estimate, define

γ1 = sup ‖D2Ψ§
0‖[B(0,m1/2L)], γ2 = Lip

(

D2Ψ§
0|B(0, 3m1/2L)

)

.

Apply 3.1 (7) with τ = Dg(x) and 0 < t ≤ u(z) to obtain

∣

∣Q
´ 〈

Dθt(x), DΨ§
0(Dg(x))

〉

dL
mx− (δV )((ηt ◦ q) · (q

∗ ◦ θt ◦ p))
∣

∣

≤ γ1Qm
1/2L
´

Cz,t
|Dθt| dL

m

+ γ2
´

Ez,t ∼Cz,t
|Dθt(ζ)|| apAf(ζ) (+)(−Dg(x))|2 dL

mζ

+m1/2
´

Dz,t
|D((ηt ◦ q) · (q

∗ ◦ θt ◦ p))| d‖V ‖.

The first and the third summand on the right hand side may be estimated by
use of 3.1 (6) as follows

´

Cz,t
|Dθt| dL

m ≤ t−m−1
L

m(Cz,t) ≤ ∆2t
−m−1‖V ‖(Bz,t),

´

Dz,t
|D((ηt ◦ q) · (q

∗ ◦ θt ◦ p))| d‖V ‖

≤ t−m−1(1 + |Dη|∞;0,1)‖V ‖(Dz,t) ≤ ∆2t
−m−1(1 + |Dη|∞;0,1)‖V ‖(Bz,t)

where ∆2 = Γ3.1(6)(Q,m), hence the density estimate for B applies recalling
αq ≥ 1. To estimate the remaining summand, one computes

´

Ez,t ∼Cz,t
|Dθt(ζ)|| apAf(ζ) (+)(−Dg(x))|2 dL

mζ

≤ t−1−m
´

B(x,t)∩dmn f | apAf(ζ) (+)(−Dg(x))|2 dL
mζ,

uses the tilt estimate and recalls z ∈ P ′.

3.4 Remark. It would significantly simplify the treatment in 2.13–2.17 if one
could obtain an estimate in |·|−1,r;a,s in (6) for some r > 1. However, in this
case it seems to be unclear how to control the integral over Dz,t in the last
paragraph as this set may contain arbitrarily steep parts of the varifold, see
Brakke’s example in [Bra78, 6.1].

3.5. If f : Rm → Rn−m is a linear map, v ∈ Rn is orthogonal to im(p∗+q∗ ◦f)
then v ∈ ker(p∗ + q∗ ◦ f)∗, p(v) = −(f∗ ◦ q)(v) and

(q∗ − p∗ ◦ f∗)(q(v)) = v.
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3.6 Theorem. Suppose m,n ∈ P, m < n, U is an open subset of Rn, V ∈
IVm(U) and ‖δV ‖ is a Radon measure.

Then there exists a countable collection C of m dimensional submanifolds of
Rn of class 2 such that ‖V ‖(U ∼

⋃

C) = 0 and each member M of C satisfies

h(V ; z) = h(M ; z) for ‖V ‖ almost all z ∈ U ∩M.

Proof. First, note that for ‖V ‖ almost all z ∈ U there holds Tanm(‖V ‖, z) ∈
G(n,m) and

lim
r→0+

r−1/2−m/2
(´

B(z,r)×G(n,m)|S♮ − Tanm(‖V ‖, z)♮|
2 dV (ξ, S)

)1/2
= 0

by Brakke [Bra78, 5.7, 5] or [Men09b, 8.6]. Let Ψ denote the area integrand,

abbreviate Φ = Ψ§
0 and note D2Φ(0) = Υ with Υ as in 2.1 by [Fed69, 5.1.9].

Define ε = ε2.17(m,n), ∆ = Γ2.20(m(n−m), 2), s = ε/∆ and choose 0 < δ <
∞ such that

‖D2Φ(σ) −D2Φ(0)‖ ≤ s whenever σ ∈ Hom(Rm,Rn−m) ∩B(0, δ).

Applying 2.20 with H , k, l, a replaced by Hom(Rm,Rn−m), 2, 3, 0, one obtains
F : Hom(Rm,Rn−m) → R of class 3 such that

DiF (σ) = DiΦ(σ) for i = {0, 1, 2}, σ ∈ Hom(Rm,Rn−m) ∩B(0, δ/2),

‖D2F (σ)−D2Φ(0)‖ ≤ ∆s = ε whenever σ ∈ Hom(Rm,Rn−m),

D3F has compact support,

hence LipD2F <∞. Define L = m−1/2δ/2 and apply 3.3 with p, q, α replaced
by 1, 2, 1/2 to obtain P and H with the properties listed there. Fix Z ∈ H
and take π1 ∈ O and π2, g, G, K as in 3.3 to infer from 2.17, 2.18 and 3.3 (6),
noting 3.3 (5) with β = 1/2 and r = 2, the existence a sequence of functions
ui : Rm → Rn−m of class 2 such that with Ai = K ∩ {x : g(x) = ui(x)} for
i ∈ P

〈

D2ui(x), CF (Dui(x))
〉

= Φ(Dui(x))π2(h(V ;G(x)))

for L m almost all x ∈ Ai. Defining Mi = im(π∗
1 + π∗

2 ◦ ui) and noting
〈

D2ui(x), CΦ(Dui(x))
〉

= Φ(Dui(x))π2(h(Mi; (π
∗
1 + π∗

2 ◦ ui)(x)))

for x ∈ Rm where CΦ is as in 2.1 and

CΦ(σ) = CF (σ) for σ ∈ Hom(Rm,Rn−m) ∩B(0, δ/2),

|Dui(x)| = |Dg(x)| ≤ Lm1/2 = δ/2 for L
m almost all x ∈ Ai

by 3.3 (2), one concludes

π2(h(V ;G(x))) = π2(h(Mi;G(x))) for L
m almost all x ∈ Ai,

hence by 3.5, since h(V ; z) ∈ Norm(‖V ‖, z) for ‖V ‖ almost all z by Brakke
[Bra78, 5.8],

h(V ;G(x)) = h(Mi;G(x)) for L
m almost all x ∈ Ai.

Finally, recall ‖V ‖(U ∼P ) = 0.
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3.7 Remark. One could also prove Brakke [Bra78, 5.8] instead of using it. Since
the proof then still yields a collection C with all properties except of the last
one, one can define a ‖V ‖ measurable function h such that for ‖V ‖ almost all
z ∈ U there holds h(z) = h(M ; z) whenever z ∈ U ∩M and M ∈ C. Following
the above proof, one obtains

π2(h(V ;G(x))) = π2(h(G(x))) for L
m almost all x ∈ Ai

whenever π1 ∈ O, π2 ∈ O∗(n, n−m) with π2 ◦ π∗
1 = 0, and, as O is open, this

suffices to conclude

h(V ;G(x)) = h(G(x)) ∈ Norm(‖V ‖, G(x)) for L
m almost all x ∈ Ai.

3.8 Remark. Noting [Fed69, 2.10.19 (4)], one infers that the function mapping
‖V ‖ almost all z onto Tanm(‖V ‖, z)♮ ∈ Hom(Rn,Rn) is (‖V ‖,m) approximately
differentiable at ‖V ‖ almost all z.

Therefore, combining 3.6 with Mantegazza [Man96, Remark 3.9, Theorem
5.4], one obtains the following proposition on curvature varifolds with bound-
ary in the sense of Mantegazza [Man96, Definition 3.1]: If V is a curvature
varifold with boundary in an open subset U of Rn then then there exists a
countable collection C of m dimensional submanifolds of Rn of class 2 such
that ‖V ‖(U ∼

⋃

C) = 0 and such that for each member M of C the second fun-
damenal forms of V and M agree at ‖V ‖ almost every z ∈ U ∩M . Clearly, this
includes curvature varifolds in the sense of Hutchinson [Hut86, 5.2.3].

4 Applications to decay rates of tilt-excess for

integral varifolds

The present section discusses some consequences of 3.6 in terms of decay and
differentiability of tilt quantities.

4.1 Lemma. Supposem,n,Q ∈ P, m < n, either p = m = 1 or 1 < p < m = 2
or 1 ≤ p < m > 2 and mp

m−p = 2, 0 < δ ≤ 1, and 1 ≤M <∞.
Then there exist positive, finite numbers ε and Γ with the following property.
If a ∈ Rn, 0 < r < ∞, V ∈ IVm(U(a, 6r)), ψ and p are related to V as in

3.2, T ∈ G(n,m), Z is a ‖V ‖ measurable subset of C(T, a, r, 3r),

(Q− 1/2)α(m)rm ≤ ‖V ‖(C(T, a, r, 3r)) ≤ (Q + 1/2)α(m)rm,

‖V ‖(C(T, a, r, 4r)∼C(T, a, r, r)) ≤ (1/2)α(m)rm,

‖V ‖U(a, 6r) ≤Mα(m)rm, ‖V ‖(C(T, a, r/2, r/2)) ≥ (Q− 1/4)α(m)(r/2)m,

‖V ‖(C(T, a, r, 3r)∼Z) ≤ εα(m)rm,
(´

|S♮ − T♮|
2 dV (z, S)

)1/2
≤ εrm/2,

then

(

r−m
´

C(T,a,r/4,r/4)×G(n,m)
|S♮ − T♮|

2 dV (z, S)
)1/2

≤ δ
(

r−m
´

C(T,a,r,r)×G(n,m)|S♮ − T♮|
2 dV (z, S)

)1/2

+ Γ
(

r−m−1
´

Z
dist(z − a, T ) d‖V ‖z + r1−m/pψ(U(a, 6r))1/p

)

.

Proof. See [Men09b, 7.5].
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4.2 Theorem. Suppose m, n, p, U , and V are as in 3.2, V ∈ IVm(U) and

φ(a, r, T ) =
(

r−m
´

U(a,r)×G(n,m)|S♮ − T♮|
2 dV (z, S)

)1/2

whenever a ∈ Rn, 0 < r <∞, U(a, r) ⊂ U , and T ∈ G(n,m).
Then the following two statements hold:

(1) If either m = 2 and 0 < τ < 1 or sup{2, p} < m and τ = mp
2(m−p) < 1 then

lim
r→0+

r−τφ(a, r, T ) = 0 for V almost all (a, T ) ∈ U ×G(n,m).

(2) If either m = 1 or m = 2 and p > 1 or m > 2 and p ≥ 2m/(m+ 2) then

lim sup
r→0+

r−1φ(a, r, T ) <∞ for V almost all (a, T ) ∈ U ×G(n,m).

Proof of (1). From 3.6 one obtains a sequence of maps Ri : U → Hom(Rn,Rn)
of class 1 such that the sets Ai = U ∩ {z :Ri(z) = Tanm(‖V ‖, z)♮} cover ‖V ‖
almost all of U . By [Men09b, 8.6] and [Men09a, 3.7 (i)] one infers

lim
r→0+

r−τ−m/2
(´

B(z,r)×G(n,m)|Ri(z)− S♮|
2 dV (ξ, S)

)1/2
= 0

for ‖V ‖ almost all z ∈ Ai and the conclusion follows.

Proof of (2). Assume that either p = m = 1 or 1 < p < m = 2 or 1 ≤ p < m >
2 and mp

m−p = 2. Choose C as in 3.6. Then by 3.6 and [Fed69, 2.10.19 (4), 2.9.5]

for ‖V ‖ almost all a ∈ U there holds for some Q ∈ P, T ∈ G(n,m) and some
M ∈ C

T = Tan(M,a), Θm(‖V ‖ xU ∼M,a) = 0,

lim sup
r→0+

r−m/pψ(B(a, r))1/p <∞,

r−m
´

φ(r−1(z − a), S) dV (z, S) → Q
´

T
φ(z, T ) dH

mz as r → 0+

whenever φ ∈ K (Rn ×G(n,m)). Note that

lim sup
r→0+

r−m−2
´

C(T,a,r,3r)∩M dist(z − a, T ) d‖V ‖z <∞

as M is submanifold of class 2. It follows with δ = 2−m−3, ∆1 = 7mQ that
there exist 0 < R <∞ and 0 ≤ γ <∞ such that U(a, 6R) ⊂ U ,

r−m−1
´

C(T,a,r,3r)∩M dist(z − a, T ) d‖V ‖z + r1−m/pψ(U(a, 6r))1/p ≤ γr

for 0 < r ≤ R, and V satisfies the hypotheses of 4.1 for each 0 < r ≤ R
with ε = ε4.1(m,n,Q, p, δ,∆1) and M , Z replaced by ∆1, C(T, a, r, 3r) ∩M .

With f(r) = r−m/2
( ´

C(T,a,r,r)×G(n,m) |S♮−T♮|2 dV (z, S)
)1/2

for 0 < r ≤ R one

defines

∆2 = Γ4.1(m,n,Q, p, δ,∆1), ∆3 = sup
{

2m+3∆2γ, 2
m+2R−1f(R)

}

,
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one inductively infers from 4.1

f(r) ≤ ∆3r whenever 0 < r ≤ R;

in fact it holds for R/4 ≤ r ≤ R and, provided it holds for r,

f(r/4) ≤ 2m(δ∆3r +∆2γr) ≤ ∆3(r/4)

by 4.1. The conclusion is now evident.

4.3 Remark. Having 3.6 at one’s disposal, the proof of (2) follows Schätzle in
[Sch09, Theorem 3.1] where the case p ≥ 2 is treated. In extending the result
to the present case, the main difference is the use of the coercive estimate in
[Men09b, 3.9] in the proof of 4.1 replacing the use of corresponding estimate in
Brakke [Bra78, 5.5] (see also Allard [All72, 8.13]).

4.4 Remark. For both parts the family of examples provided in [Men09a, 1.2]
shows that if m > 2 then p cannot be replaced by any smaller number, see
[Men09b, 8.7].

4.5 Remark. In case of (2) combining this result with [Men09a, 3.9], one obtains

ffl

B(a,r)
(|R(z)−R(a)− 〈R(a)(z − a), apDR(a)〉 |/|z − a|)2 d‖V ‖z → 0

as r → 0+ for ‖V ‖ almost all a where R(z) = Tanm(‖V ‖, z)♮ and the approxi-
mate differential is taken with respect to (‖V ‖,m).

4.6 Remark. Clearly, one can also obtain decay results for height quantities from
this result by use of [Men10, 4.11].

A Lebesgue points for a distribution

In this Appendix the part q = 1 of Theorem 4 of the Introduction is provided.
Its purpose is to clarify the relations of the sets A1 and A2 occurring in 2.17.

A.1 Lemma. Suppose m,n ∈ P, m < n, A is a closed subset of Rm, R ∈
D ′(Rm,Rn−m), dist(sptR,A) > 0, 0 ≤ γ <∞, and 0 < r <∞ such that

|R|−1,1;x,̺ ≤ γ ̺m+1 whenever 0 < ̺ < 5r, x ∈ A.

Then

|R|−1,1;a,r ≤ Γ γ rL
m(B(a, 4r)∼A) for a ∈ A

where Γ is a positive, finite number depending only on m.

Proof. Assume r ≤ 2
9 , let a ∈ A, θ ∈ D(Rm,Rn−m) with spt θ ⊂ U(a, r),

choose 0 < ε ≤ inf{r, dist(sptR,A)}, define

B = Rm ∩ {x : dist(x, spt(R x θ)) ≤ ε/2}

where R x θ ∈ E0(R
m) is defined by (R x θ)(v) = R(vθ) for v ∈ E 0(Rm), and

apply [Fed69, 3.1.13] to obtain S, vs, and h with Φ = {Rm∼A,Rm ∼B}; in
particular S is a countable subset of

⋃

Φ,

h(x) = 1
20 sup{inf{1, dist(x,A)}, inf{1, dist(x,B)}} for x ∈

⋃

Φ
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and vs for s ∈ S form a partition of unity on
⋃

Φ with spt vs ⊂ B(s, 10h(s)) for
s ∈ S. Noting

⋃

Φ = Rm, one defines T = S ∩ {s :B ∩ spt vs 6= ∅} and infers

∑

s∈S∼T vs(x) = 0 for x ∈ Rm with dist(x, spt(R x θ)) < ε/2,

hence (R x θ)(
∑

s∈S∼T vs) = 0 and

R(θ) = R
(

(
∑

s∈T vs)θ
)

=
∑

s∈TR(vsθ).

Choose ξ(s) ∈ A for each s ∈ T such that |s − ξ(s)| = dist(s, A). If s ∈ T
then there exists y ∈ B ∩ spt vs ⊂ B(a, r + ε/2) and one observes

dist(y,A) ≤ |y − a| ≤ r + ε/2 ≤ (3/2)r ≤ 1
3 < 1, h(y) = 1

20 dist(y,A),

|s− y| ≤ 10h(s) ≤ 10h(y) + 1
2 |s− y|, |s− y| ≤ 20h(y) = dist(y,A) ≤ |y − a|,

dist(s, A) ≤ |s− y|+ dist(y,A) ≤ 2 dist(y,A) ≤ 3r ≤ 2
3 < 1,

B ∩B(s, 10h(s)) 6= ∅, 1
20 dist(s,B) ≤ 1

2h(s), 0 < h(s) = 1
20 dist(s, A),

|s− ξ(s)| ≤ |s− a| ≤ |s− y|+ |y − a| ≤ 2r + ε ≤ 3r ≤ 2
3 ,

B(s, h(s)) ⊂ B(a, 4r)∼A.

Moreover, for any x ∈ B(s, 10h(s)), s ∈ T

|x− ξ(s)| ≤ |x− s|+ |s− ξ(s)| ≤ (3/2)|s− ξ(s)| < 5r,

spt vs ⊂ B(ξ(s), (3/2)|s− ξ(s)|),

dist(s, A) ≤ dist(x,A) + |x− s| ≤ dist(x,A) + 1
2 dist(s, A),

|s− ξ(s)| = dist(s, A) ≤ 2 dist(x,A),

dist(x,A) ≤ dist(s, A) + |x− s| ≤ 3
2 dist(s, A) ≤ 1,

h(x) ≥ 1
20 dist(x,A) ≥

1
40 |s− ξ(s)|.

Using the estimates of the preceding paragraph and the estimates of |Dvs|
given in [Fed69, 3.1.13], one infers for s ∈ T , since θ has compact support in
U(a, r),

|(Dvs)θ|∞;a,r ≤ 40∆|s− ξ(s)|−1r|Dθ|∞;a,r,

|D(vsθ)|∞;a,r ≤ 40∆(|s− ξ(s)|−1r + 1)|Dθ|∞;a,r

where ∆ is a positive, finite number depending only on m with 40∆ ≥ 1, hence

|R(vsθ)| ≤ γ(3/2)m+1|s− ξ(s)|m+140∆(|s− ξ(s)|−1r + 1)|Dθ|∞;a,r

= γ(3/2)m+140∆|s− ξ(s)|m(r + |s− ξ(s)|)|Dθ|∞;a,r

≤ γ160∆(3/2)m+1
α(m)−1(20)mrL

m(B(s, h(s))) |Dθ|∞;a,r.

Recalling from [Fed69, 3.1.13] that the family {B(s, h(s)) : s ∈ S} is disjointed,
one concludes

|R(θ)| ≤ Γ γ rL
m(B(a, 4r)∼A)|Dθ|∞;a,r

where Γ = 8(30)m+1∆α(m)−1.
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A.2 Remark. Some ideas of the proof were taken from Calderón and Zygmund
[CZ61, Theorem 10] and [Fed69, 2.9.17].

A.3 Theorem. Suppose m,n ∈ P, m < n, U is an open subset of Rm,
T ∈ D ′(U,Rn−m), and A denotes the set of all a ∈ U such that

lim sup
r→0+

r−1−m|T |−1,1;a,r <∞.

Then A is a Borel set and for L m almost all a ∈ A there exists a unique
constant distribution Ta ∈ D ′(U,Rn−m) such that

lim
r→0+

r−1−m|T − Ta|−1,1;a,r = 0.

Moreover, Ta depends L m
xA measurably on a.

Proof. The conclusion is local, hence one may assume sptT to be compact and
U = Rm. Since |T |−1,1;a,r depends lower semicontinuously on (a, r), the sets

Ai = Rm ∩ {a : |T |−1,1;a,r ≤ i rm+1 for 0 < r < (10)/i}

defined for i ∈ P are closed. Observing A =
⋃

{Ai : i ∈ P}, the conclusion will
be shown to hold for L m almost all a ∈ Ai.

Let 0 < ε < 5/i, choose Φ ∈ D0(Rm) with
´

ΦdL m = 1, sptΦ ⊂ U(0, 1)
and define Φε(x) = ε−mΦ(ε−1x) for x ∈ Rm,

Tε(θ) = T (Φε ∗ θ) =
´

fε • θ dL
m for θ ∈ D(Rm,Rn−m)

with fε ∈ E (Rm,Rn−m) given by

z • fε(x) = Ty(Φε(y − x)z) whenever x ∈ Rm and z ∈ Rn−m,

see [Fed69, 4.1.2]. Clearly Tε → T as ε→ 0+ and

|fε(x)| ≤ i2m+1|DΦ|∞;0,1 for x ∈ Rm, a ∈ Ai with |x− a| ≤ ε.

One defines aε to be the characteristic function of Rm∩{x : dist(x,Ai) ≤ ε} and
Sε, Rε ∈ D ′(Rm,Rn−m) by

Sε(θ) =
´

aεfε • θ dL
m for θ ∈ D(Rm,Rn−m), Rε = Tε − Sε.

Estimating for a ∈ Ai, 0 < ̺ < 5r < 5/i, θ ∈ D(Rm,Rn−m) with spt θ ⊂
U(a, ̺) and |Dθ|∞;a,̺ ≤ 1

spt(Φε ∗ θ) ⊂ U(a, ε+ ̺), |Tε(θ)| ≤ i(ε+ ̺)m+1 ≤ i2m+1̺m+1 if ε ≤ ̺,

(sptRε) ∩ {x : dist(x,Ai) < ε} = ∅, Rε(θ) = 0 if ε > ̺,

|Sε(θ)| ≤ |aεfε|∞;a,̺ |θ|1;a,̺ ≤ i2m+1|DΦ|∞;0,1α(m)̺m+1

|Rε|−1,1;a,̺ ≤ γ ̺m+1 with γ = 2m+1i
(

1 + |DΦ|∞;0,1 α(m)
)

,

Now, A.1 may be applied with A, R replaced by Ai, Rε to obtain

|Rε|−1,1;a,r ≤ Γ γ rL
m(B(a, 4r)∼Ai) for 0 < r < 1/i.
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Since L1(L
m,Rn−m) is separable, one can use [DS88, V.4.2,V.5.1, IV.8.3] to

infer the existence of S ∈ D ′(Rm,Rn−m), f ∈ L∞(L m,Rn−m) and a sequence
εj with εj ↓ 0 as j → ∞ such that

S(θ) =
´

f • θ dL
m for θ ∈ D(Rm,Rn−m), Sεj → S as j → ∞.

Defining R = T − S and noting Rεj → R as j → ∞,

|R|−1,1;a,r ≤ Γ γ rL
m(B(a, 4r)∼Ai) for 0 < r < 1/i

and [Fed69, 2.9.11] implies

lim
r→0+

r−1−m|R|−1,1;a,r = 0 for L
m almost all a ∈ Ai.

Moreover,

∣

∣

´

(f(x)− f(a)) • θ(x) dL
mx
∣

∣ ≤
(´

U(a,r)
|f(x)− f(a)| dL

mx
)

r |Dθ|∞;a,r

whenever a ∈ A, 0 < r < ∞, θ ∈ D(Rm,Rn−m) with spt θ ⊂ U(a, r)
and [Fed69, 2.9.9] implies that one can take Ta defined by Ta(θ) =

´

θ(x) •
f(a) dL mx for θ ∈ D(Rm,Rn−m) for L m almost all a ∈ Ai in the existence
part of the conclusion.

The uniqueness follows from 2.16.

A.4 Remark. The splitting of T into S and R was inspired by a similar procedure
for functions used by Calderón and Zygmund in [CZ61, Theorem 7].
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[Reš68] Yurii G. Rešetnyak. Generalized derivatives and differentiability al-
most everywhere. Math. USSR, Sb., 4:293–302, 1968.
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