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1 Introduction

One of the most spectacular recent developments in the study of four-dimensional quantum

field theory has arguably been the gradual uncovering of integrable structures underlying

N = 4 supersymmetric Yang-Mills (SYM) theory in the planar limit. The starting point

was the observation by Minahan and Zarembo [1] that, at one loop, the action of the

planar dilatation operator on a sector of gauge invariant operators of the theory, those

formed by traces of a large number of scalar fields, can be mapped to the action of an

integrable Hamiltonian on states of a particular spin chain. This implies that the problem of

diagonalising the dilatation operator (and thus finding the one-loop spectrum of anomalous

dimensions of the theory) can be rephrased as that of finding the spectrum of energy

eigenstates of an integrable spin chain, a problem for which a host of powerful methods have

been developed and can immediately be applied [2]. It was soon shown that integrability

persists at higher loops [3] and applies to all sectors of the theory at one loop [4, 5].

This conceptual breakthrough in our understanding of N = 4 SYM was followed by a

large body of work, both in the gauge theory as well as on the dual gravity side (describing

the regime of strong gauge theory coupling according to the AdS/CFT correspondence [6]),

where similar integrable structures were recognised and studied [7, 8]. The fact that inte-

grability is also seen at strong coupling strongly suggests that it persists to all orders in

perturbation theory, and, although the all-loop dilatation operator (which would be equiv-

alent to an infinitely-long range integrable Hamiltonian) is not yet known, this assumption

of integrability made it possible to conjecture a suitable scattering matrix for the spin chain

degrees of freedom [9, 10] and use it to write down an all-loop Bethe Ansatz [11], which

in principle encodes all the information on the planar anomalous dimensions of the theory

at any value of the coupling. This is a remarkable result, in that it reduces a complicated

field theory problem to the solution of a set of algebraic equations, and a large number

of checks have helped to refine some of its components (e.g. in checking a certain scalar

dressing factor which cannot be fixed by symmetries) so that it is generally believed that,

for long operators, the complete set of equations is now known. Although there are several

outstanding issues which are driving current research, such as that of relaxing the con-

straint of long operators, it is fair to say that the understanding of integrability for N = 4

SYM has reached a high degree of precision and maturity.

However, the theories that the wider scientific community would really like to un-

derstand, such as QCD, are quite far from being integrable. There often exist integrable

subsectors at special kinematic limits,1 but generically the existence of nontrivial dynamics

is a clear sign that integrability is lost. Does the discovery of a special four-dimensional

gauge theory which is integrable have any consequences for these, definitely more interest-

ing, non-integrable field theories?

Many researchers in the field would answer affirmatively, the general belief being that

N = 4 SYM is a kind of prototype solvable field theory, and that understanding its be-

haviour in detail will provide useful input to the analysis of more realistic, and complicated,

quantum field theories. But how exactly will this occur? In trying to understand to what

1This was indeed observed in the QCD context much earlier than in the AdS/CFT one [12, 13].
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extent the recent advances in our knowledge for N = 4 can teach us something about

generic quantum field theories, it is natural to first consider theories which are as close as

possible to the N = 4 integrable point, without themselves being integrable.

In this work, we will argue that a suitable setting for beginning the study of this

question is that of the exactly marginal deformations of N =4 SYM, otherwise known as

Leigh-Strassler theories. These theories, which will be reviewed below, arise from N =

4 SYM via superpotential deformations which break the supersymmetry down to N =

1. Despite the reduced supersymmetry, they are believed to be finite to all orders in

perturbation theory, in much the same way as N =4 SYM is (this will be quantified later).

The finiteness property clearly distinguishes these theories as belonging to a very special

subclass of four-dimensional field theories, and naturally leads to ask whether there is a

special, non-apparent symmetry which guarantees this finiteness. Supersymmetry is clearly

not enough since the generic N =1 theory is certainly not finite.

The story becomes more interesting once we consider the integrability properties of the

Leigh-Strassler theories. As will be discussed more fully in the following, and in marked

contrast to N = 4 SYM, which is believed to be planar integrable in all subsectors (defined

by the classes of gauge invariant operators one considers), its marginal deformations are

generically not integrable, though there are special choices of the perturbation parameters

where integrability is found in certain subsectors. Therefore, having argued that the finite-

ness of the LS theories is possibly a result of a certain hidden symmetry, it seems that

this symmetry is not strong enough to imply integrability as well. Note that integrability,

at least as it is understood at present, has finiteness (or at least conformality) as a pre-

requisite, because only in conformal theories is the dilatation operator a member of the

symmetry algebra of the theory and can thus be used in classifying states according to their

eigenvalues, and eventually be mapped to a Hamiltonian of a spin chain. But the opposite

direction is clearly not true: As evidenced by the Leigh-Strassler theories, integrability is

a much more stringent constraint than finiteness.

Our proposal for understanding this issue is simply to take a closer look at the symme-

tries of the theory. In previous work it has been observed that the Leigh-Strassler theories

are closely related to some kind of quantum deformation, in the sense of quantum groups,

of the SU(4) R-symmetry group of N = 4 SYM. However, precisely which quantum group,

if any, corresponds to the most general Leigh-Strassler theory was never fully clarified.

By mapping this question to that of characterising the symmetries of a suitable quantum

plane, we will exhibit a certain Hopf algebraic structure for the general Leigh-Strassler

deformation. This can be thought of as a non-standard deformation of the SU(3) part

of the R-symmetry group. For the special cases where the gauge theory is known to be

integrable, such as N = 4 SYM itself and a certain subclass of deformations, our algebra

becomes dual to a quasi-triangular Hopf algebra.

Although spin chains are of course an essential part of any discussion of gauge theory

integrability, they play a slightly secondary role in our approach. Instead of looking at the

symmetries of the one-loop spin chain Hamiltonian, we identify the quantum symmetry

directly as the invariance group of the classical four-dimensional Lagrangian of the gauge

– 3 –
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theory.2 Assuming no anomalies at the quantum level, this symmetry is then naturally a

symmetry of the one-loop Hamiltonian as well.

The plan of this paper is as follows: In the following section we review some known

features of the Leigh-Strassler marginal deformations of N = 4 SYM, and in particular what

is known about the integrability properties of these theories. Section 3 aims to provide a

brief and non-technical introduction to those aspects of Hopf algebras that we will need

in the discussion to follow. After these introductory sections, section 4 contains our main

assertion, which is that the Leigh-Strassler theories enjoy a certain Hopf algebra symmetry

which is visible at the level of the classical Lagrangian. In section 5 we focus on some

special cases where the Hopf algebra is enhanced to a dual quasi-triangular Hopf algebra,

thus signaling the presence of integrability. In section 6 we make contact with previous

work on how noncommutativity (in the sense of star-products) arises in the Leigh-Strassler

theories, while section 7 contains our conclusions. We have also included an appendix with

some fundamental Hopf algebra definitions, two appendices containing the derivations of

the defining relations of our algebra, and one discussing the possibility of constructing

explicit matrix representations of the algebra generators.

2 Essentials of the Leigh-Strassler deformations

In this section, after briefly reviewing some aspects of the marginal deformations of N = 4

SYM, both at weak coupling and in the dual strong coupling description, we discuss what

is known regarding integrability for these models.

2.1 Marginal deformations of N = 4 SYM

It has long been known that N = 4 SYM is contained within a much larger class of

finite four-dimensional quantum field theories, which generically preserve only N = 1

supersymmetry. In N = 1 superspace language, these theories can be reached by suitable

marginal deformations of the superpotential:

WN=4 = gTr(Φ1[Φ2,Φ3]) −→ WLS = κTr

(
Φ1[Φ2,Φ3]q+

h

3

(
(Φ1)3+(Φ2)3+(Φ3)3

))
(2.1)

where [A,B]q = AB−qBA is the q-deformed commutator. The gauge group here and in the

following is taken to be SU(N). Deforming the theory in this way clearly breaks the N =4

supersymmetry to N =1, as can be seen by considering the R-symmetry: WN=4 is invariant

under SU(3) × U(1)R (the largest subgroup of the SU(4) R-symmetry of N = 4 which is

explicit in the N =1 notation we are using), but turning on both q and h generically breaks

the SU(3) component to a discrete subgroup. Note that the space of classically marginal

N = 1 deformations is much larger, and can be parametrised by a symmetric three-index

tensor hIJK in the 10 of SU(3), with the deformation of the superpotential taking the

2Although, as we will see, the spin chain Hamiltonian will play a significant role in defining the quantum

symmetry. More precisely, the generators of the algebra will commute with the Hamiltonian and as such

the Hopf algebra will directly be a symmetry of the spin chain.
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form Tr hIJKΦIΦJΦK . However, only a two-parameter subgroup, parametrised by q and

h, extends to quantum finiteness, giving an exactly marginal theory.

The finiteness of the marginally deformed theories was first demonstrated order-

by-order in perturbation theory [14–18], with an all-orders proof given by Leigh and

Strassler [19] using the NSVZ beta-function [20].3 In particular, Leigh and Strassler showed

that the condition for finiteness can be parametrised by a single function of the four cou-

plings f(g, κ, q, h) = 0, where g is the gauge coupling (we set the theta angle to zero).

One crucial aspect of their proof is that the (q, h)-theories enjoy a Z3 symmetry cyclically

permuting the three chiral superfields. This guarantees that their anomalous dimensions

are equal, reducing the number of variables and guaranteeing that there is a solution for

the simultaneous vanishing of all beta functions and anomalous dimensions. It is precisely

this symmetry which singles out the two parameters q and h out of the 10-dimensional

space of classically marginal deformations.

The function f(g, κ, q, h) is not known in general, but at one-loop order, and with the

above conventions, it reduces to the condition:4

2g2 = κκ̄

[
2

N2
(1 + q)(1 + q̄) +

(
1 − 4

N2

)(
1 + qq̄ + hh̄

)]
. (2.2)

This one-loop condition is actually sufficient to guarantee finiteness at two loop order, and

in the planar limit to three–loop order (see [25] for a recent discussion). However, even in

the planar limit, at higher loops the requirement of finiteness will eventually modify (2.2).

An exception to this is the so-called real β deformation, corresponding to q̄ = 1/q, h = 0,

i.e. q = exp(iβ) with β real. It has been shown [30] that for this case the resulting finiteness

condition (κκ̄ = g2) is exact to all orders in planar perturbation theory. Since this condition

does not depend on q, it is the same for the N = 4 fixed line at q = 1, h = 0. Note however

that for N = 4 SYM this condition is unmodified when passing to the non-planar level,

but it will receive non-planar corrections in the real β case.

Staying at planar level, we can now be more precise regarding the finiteness properties

of the Leigh-Strassler theories compared to N = 4 SYM: In all cases apart from the real β

deformation, and certain other very special cases which, as we will see, are related to it by

Hopf twists, the planar one-loop finiteness condition receives corrections at higher loops.

As has been observed in the past [25], and will be discussed further in section 5, exactness

of the one-loop finiteness condition is correlated to integrability.

The full (q, h)-deformed theory has a left-over Z3×Z3 symmetry (apart from the U(1)R
symmetry which is of course preserved by the—N = 1 supersymmetric — deformation).

These Z3’s can be taken to act as

Z
A
3 : Φ1 → Φ2 , Φ2 → Φ3 , Φ3 → Φ1 (2.3)

3There has recently been some controversy regarding the higher-loop finiteness of the marginal defor-

mations beyond the case of real β [21–25]. Although in this work we do take the traditional point of view,

based on the validity of the NSVZ beta-function, at present we are not interested in going beyond one

loop so our results are not affected by this issue. However, it could be that a better understanding of the

symmetries (which is the main aim of this work) will eventually provide some input into this discussion.
4There are various derivations and discussions of this condition in the recent literature, e.g. [25–29].

– 5 –



J
H
E
P
1
0
(
2
0
1
0
)
0
4
3

(this is the cyclic permutation symmetry discussed above) and

Z
B
3 : Φ1 → Φ1 , Φ2 → ωΦ2 , Φ3 → ω2Φ3 (2.4)

with ω a third root of unity. The two Z3’s do not commute with each other and, together

with another Z3 contained within U(1)R (acting simply as Φi → ωΦi), combine to form

a trihedral group [31] which will be discussed in more detail in section 4.3. In [32] it was

checked that this discrete symmetry was preserved in the quantum theory at least up to two

loops. We should also note that the real β deformation preserves a larger U(1)3 subgroup

of SU(3) × U(1)R.

Following the influential work of Witten [33] on the description of tree-level amplitudes

in N = 4 SYM through a suitable twistor string (a B-model topological string defined on

super-twistor space |||CP3|4), it was shown in [34] that the marginal deformations can be

straightforwardly embedded in the twistor string framework by introducing a suitable star

product among the fermionic directions of |||CP3|4, thus making them non-anticommutative.

That work considered only tree-level MHV amplitudes and was restricted to first order in

the deformation parameter. The difficulty in extending to higher orders was linked to the

fact that the star product was coordinate-dependent, which led to loss of associativity. The

approach of [34] was later applied to non-MHV amplitudes in [35]. More importantly, for

the real β-deformation, the authors of [35] were able to show that the star product can be

extended to all orders in the deformation parameter while preserving associativity.

In the context of amplitudes at loop level, other works discussing perturbative aspects

of the β-deformed theories include [36], where the equivalence of the gluonic amplitudes to

those in N = 4 SYM was shown (see also [37]), as well as [38], where a light-cone approach

was used to demonstrate the all-loop finiteness of the β deformation.

2.2 The dual gravity picture

The AdS/CFT correspondence [6] for N = 4 SYM is the conjecture that this theory is

precisely equivalent to Type IIB string theory on AdS5 × S5 plus RR five-form flux. A

useful limit of this statement, and the one which has received the most attention, is that

where the gauge theory is taken to be planar, and its ’t Hooft coupling to be strong. In

that case the dual string theory reduces to classical IIB supergravity on AdS5×S5, with the

AdS5 part of the geometry parametrising the conformal invariance of the gauge theory. It

is a natural question whether the marginal deformations of N = 4 admit a similar gravity

dual. Since conformal invariance is maintained, it is clear that the AdS part of the gravity

background should remain, though in principle its radius of curvature could become small,

thus invalidating a supergravity approach. However, for small (but finite) values of the

deformation parameters the deformation should be reflected by a suitable deformation of

the round S5 geometry which is visible within supergravity.

Some early works which approached the problem perturbatively in the deformation

parameter are [31, 39]. However, progress in this direction has been hampered by the very

small amount of leftover symmetry in the full deformation. Generically one only expects

to have a single U(1) isometry direction, corresponding to the R-symmetry of the gauge

– 6 –
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theory, plus some discrete symmetries as discussed above, and this symmetry is not enough

to construct a useful ansatz which would simplify the solution of the supergravity equations.

However, in the case of the β-deformation one expects a residual U(1)3 isometry group,

and in this case Lunin and Maldacena [40] showed that one can obtain the dual background

by making use of the two non-R–symmetry U(1)’s to perform a sequence of T-dualities and

phase shifts. This breakthrough led to a renewed interest in the properties of the marginally

deformed geometries. It is now understood how the LM background fits into the general

framework of N = 1 Type IIB flux compactifications, in particular in relation to generalised

geometry [41–43].

The LM solution also spurred certain attempts to find the geometry dual to the most

general (q, h) deformation. Inspired by the appearance of non-commutativity in the Lunin-

Maldacena approach, the works [44, 45] attempted to obtain the full background by con-

sidering the mapping of the open string metric (which is the one seen by the gauge theory,

and which exhibits non-commutativity) to the closed string one (where the coordinates are

commutative, but there is a B-field turned on) in the spirit of Seiberg and Witten [46].

Although this approach (which will be expanded on in section 6.2) was successful for the

case of real β, it quickly ran into difficulties when applied to the full (q, h)-deformation,

and, as on the twistor string side [34], the problem could be traced to the non-associativity

of the star product for the full deformation. Thus, at present, the construction of the dual

background for the full Leigh-Strassler deformed theory remains an open problem.

2.3 Marginal deformations vs. integrability

The Leigh-Strassler theories, being perturbatively finite, are clearly very special among

four-dimensional quantum field theories. One can therefore ask whether the remarkable

properties of N = 4 SYM related to integrability extend to its marginal deformations. In

other words, is the property of finiteness enough to guarantee the presence of integrable

structures in the study of the spectrum of the theory? The answer, as we now review,

turns out to be negative.

One of the first works to address the issue of integrability in the Leigh-Strassler theories

was [47], which demonstrated one-loop integrability in the SU(2) subsector for general q

(with indications that it extends beyond that). The integrable spin chain Hamiltonian

describing this sector turned out to be a certain parity-violating extension of the XXZ

Heisenberg spin-chain. As explained in [48], this Hamiltonian is related to the Temperley-

Lieb generator (see e.g. [49]). The parity violation does not affect the quantum group

symmetry of XXZ, which is known to be Uq(su(2)) (for its definition, see appendix A), and

in any case for a closed spin chain the difference between the XXZ Heisenberg spin chain

and its parity breaking-version vanishes. The conclusion is that the Hamiltonian of the

q-deformation in the SU(2) sector enjoys Uq(su(2)) symmetry, or SUq(2) in dual language.

The approach of [47] was to start from a scalar field theory Lagrangian engineered to

produce a desired integrable spin chain Hamiltonian as its one-loop dilatation operator.

The main issue is then whether this Lagrangian can be extended by adding “flavour-

blind” interactions to form part of a full-fledged supersymmetric field theory. Berenstein

and Cherkis [50] applied similar ideas to examine whether the integrable Hamiltonian

– 7 –
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corresponding to the SO(6) XXZ model, which has SOq(6) symmetry, can be obtained

from a suitable deformation of the N = 4 Lagrangian. They found a mismatch between

the SO(6) XXZ spin chain and the q-deformation, which implied that the full scalar sector

of the q-deformed theory was not integrable. Furthermore, although from the analysis

of [47] in the SU(2) sector one might be led to expect that the q-deformed holomorphic

SU(3) sector would also be integrable, they showed that not to be the case unless q is just

a phase. Finally, they observed that for q a root of unity the one loop dilatation operator

in that sector could be related through a global transformation to the non-deformed case.

For β real, one-loop integrability in the full scalar field sector (and actually for the

larger SU(2|3) sector) was later shown in [51]. In this case integrability is also present

on the dual gravity side [52]. Some aspects of higher-loop integrability for general q were

discussed in [53].

A complete classification of the allowed form for a spin chain Hamiltonian with U(1)3

symmetry which had the potential to describe a three-scalar-field sector (and which ex-

cluded the possibility for a new class of complex 3-parameter Lunin-Maldacena deforma-

tions to be integrable) was provided in [54].

Just as for N = 4 SYM, when investigating the integrability of the (q, h)-deformed

spin chain it is convenient to restrict to particular subsectors of the theory. Beyond the

SU(2) sector discussed above, the most obvious such sector is the holomorphic SU(3) sector,

where one restricts to single-trace operators composed of the three holomorphic scalars of

the theory, Φ1,Φ2 and Φ3. In this holomorphic sector, the one-loop spin chain Hamiltonian

for the general deformation was written down in [55]:5

Hl,l+1 =
1

1 + qq̄ + hh̄




h h̄ 0 0 0 0 h̄ 0 −h̄ q 0

0 1 0 −q 0 0 0 0 h

0 0 q q̄ 0 −h q̄ 0 −q̄ 0 0

0 −q̄ 0 q q̄ 0 0 0 0 −h q̄

0 0 −h̄ q 0 h h̄ 0 h̄ 0 0

h 0 0 0 0 1 0 −q 0

0 0 −q 0 h 0 1 0 0

−h q̄ 0 0 0 0 −q̄ 0 q q̄ 0

0 h̄ 0 −h̄ q 0 0 0 0 h h̄




. (2.5)

Associating (Φ1,Φ2,Φ3) → (|1〉, |2〉, |3〉), this nearest-neighbour Hamiltonian is taken

to act on the basis given by {|11〉, |12〉, |13〉, |21〉, |22〉, |23〉, |31〉, |32〉, |33〉}.
The Hamiltonian (2.5) is not integrable for general values of (q, h). The cases where it

reduces to an integrable Hamiltonian have been investigated in [55]. Apart from the real

β case (q̄ = 1/q, h = h̄ = 0), already discussed in [50, 51], and certain roots of unity [50],

it was found that there exist a number of other integrable cases, but that most of them

could be related by similarity transformations to the real β case.

5Due to a different convention, the Hamiltonian appearing in [55] is the transpose of the one here. Our

conventions here are such that the Hamiltonian agrees with the full Hamiltonian written down in [48] when

restricted to the holomorphic sector.

– 8 –



J
H
E
P
1
0
(
2
0
1
0
)
0
4
3

Going beyond the holomorphic sector, integrability for the full scalar field sector was in-

vestigated in [48] using Reshetikhin’s integrability criteria, which guarantee the existence of

an infinite number of commuting charges. Integrability of the holomorphic sector was pre-

served in most cases when extending to the full scalar field sector. In that work it was also

found that, for h = 0 and any complex q, there exists an integrable subsector with Uq(su(3))

symmetry consisting of two holomorphic and one anti-holomorphic scalar (and vice versa),

where the anti-holomorphic scalar is not conjugate to either of the holomorphic ones.

Having a spectral-parameter dependent R-matrix, an integrable spin chain can be

recovered via a standard procedure (e.g. [2]),

H = −iP
d

du
R(u)|u=0 (2.6)

where u = 0 is the value of the spectral parameter where the R-matrix reduces to the

permutation operator P . For all the integrable cases of the holomorphic Hamiltonian (2.5)

there exist rational R-matrices, while the R-matrix describing the integrable subsector with

two holomorphic and one anti-holomorphic scalar is trigonometric.

Yangians play a major role for rational integrable models. They are infinite-

dimensional Hopf algebras, which provide R-matrices with spectral-parameter dependence

for the rational models. Their appearance in the N = 4 context, both at weak and strong

coupling, was first discussed in [56, 57], with more recent studies focusing on their role as

symmetries of the AdS/CFT S-matrix [58–61]. For the real β-deformed case the Yangian

symmetry was discussed in [62]. For trigonometric integrable models the corresponding

infinite-dimensional symmetry is an affine quantum group. For example, for the quasi-

triangular Hopf algebra Uq(su(3)), introducing an extra parameter to the algebra it is

possible to extend it to an affine quantum group [49, 63]. We will only discuss Hopf al-

gebras related to R-matrices without spectral-parameter dependence. However, for the

integrable cases we will make some connections to the known R-matrices with spectral-

parameter dependence. It will be interesting to uncover a connection between the Hopf

algebra we find for the general case and an affine version or an elliptic quantum group.

In the next section we will introduce Hopf algebras of the type we will later (in section

four) see appearing in the Leigh-Strassler deformations of N = 4 SYM.

3 Introducing Hopf algebras

The plan of this section is to introduce some basic ingredients about Hopf algebras which

will be essential for the analysis in the next section where we will show how a Hopf algebra

structure appears in our physical system. For more reading on these basics we refer to

e.g. [49, 63–65].

3.1 Quantum linear algebra

One of the most concrete ways of thinking about quantum symmetries is perhaps in terms

of quantum linear algebra. Quantum linear algebra works in analogy with linear algebra.

Thus the quantum vector space consists of quantum vectors x = (xi) and quantum co-

vectors u = (ui) , where the elements xi and ui take their values in a noncommutative
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space V . Linear transformations are described by quantum matrices t = {tij}, which

can be thought of as ordinary matrices with the difference that the elements tij are now

operators instead of numbers.

In quantum vector algebra it is common to specify the commutation relations between

vector elements, and between co-vector elements, using a matrix R [66]. This is a |||C-valued

matrix acting on the noncommutative space V ⊗ V . Using the tensor components of the

matrix R, the relation can be written as

λxbxa = Rab
jlx

jxl , (3.1)

λuaub = ujuiR
ji
ba , (3.2)

where λ is one of the eigenvalues of the matrix R̂ab
kl := Rba

kl, or without indices R̂ := PR.

Here P is the permutation matrix, P ij
kl = δj

kδ
i
l . Then a quantum symmetry could be

considered to be the transformation of the quantum vector and quantum co-vector which

preserves the forms (3.1) and (3.2). Thus the transformations under consideration are

x′j = tjlx
l , and u′

j = ul(t
−1)lj . (3.3)

Here we have made the assumption that t has an inverse (we will soon introduce a more

precise notion, that of an antipode), otherwise the co-plane should have been defined in a

different way. As will be clear, this choice is natural when one is interested in quantum

generalisations of GL(n). It can be checked that the transformations (3.3) will preserve

the forms of (3.1) and (3.2) if the elements tij satisfy

Ri k
a bt

a
jt

b
l = tkbt

i
aR

a b
j l , (3.4)

where, in performing the calculations, it is assumed that the elements tij commute with the

vector and co-vector elements. Equations (3.4) go under the name of FRT [66], or simply

RTT, relations. They give rise to what is known as a right/left A(R)-co-module algebra,

where A(R) will be a bialgebra with generators tij soon to be defined.

3.1.1 An example

But first, let us make all this more concrete with an example. The most famous one is

Manin’s quantum plane:

0 = qxy − yx , where x = x1 y = x2 (3.5)

and the corresponding co-plane

0 = vw − qwv , where v = u1 w = u2 . (3.6)

This quantum plane arises from (3.1) when using the Uq(sl(2)) R-matrix:

R = q−
1
2




q 0 0 0

0 1 q − q−1 0

0 0 1 0

0 0 0 q


 , (3.7)
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where the eigenvalue λ = q1/2 has been chosen. We may ask whether there exists a linear

transformation

x′i = tijx
j , (3.8)

which preserves this quantum plane. This is indeed the case, when the elements tij satisfy

t11t
1
2 = q−1t12t

1
1 , t11t

2
1 = q−1t21t

1
1 , t12t

2
2 = q−1t22t

1
2 , t21t

2
2 = q−1t22t

2
1 ,

t12t
2
1 = t21t

1
2 , t11t

2
2 − t22t

1
1 = (q−1 − q)t12t

2
1 ,

(3.9)

which we leave as an exercise for the interested reader. The above relations can be deduced

from (3.4) using the R-matrix (3.7). The matrix t = {tij} has many similarities with the

matrix representation of a group. In particular, assuming that the elements tij
′
commute

with the elements tij , then tlm
′′

= tli
′
tim also represents a generator of the above algebra.

If we now demand the form invariance of the expression

f(x, y) := xy − q−1yx , (3.10)

under the quantum symmetry, we need to impose an extra constraint on the generators

tij . Defining the quantum determinant as D := t11t
2
2 − q−1t21t

1
2, it can be shown that it

is central, i.e. it commutes with all the generators tij and we can therefore make a further

quotient D = 1 of the algebra, in addition to the quadratic relations. This defines out of

the quantum deformation of GL(2) a quantum deformation of SL(2). Doing this we obtain

that f(x′, y′) = f(x, y). This will be most relevant when constructing the Hopf algebra in

the next section.

As will be clear from the definition below, the tij are the generators of a quantum matrix

bialgebra. The special case considered above is not just a bialgebra, but a very special Hopf

algebra which is dual to a quasi-triangular Hopf algebra, the universal enveloping algebra

Uq(sl(2)). See appendix A for the basic definitions of bialgebras and Hopf algebras.

3.2 Quantum matrix algebra

We now discuss how the general definitions of bialgebras and Hopf algebras in appendix A

apply to the matrix algebra case. In the following Mn is the space of n × n matrices.

Quantum matrix bialgebra. Let R be an element of Mn ⊗ Mn. The bialgebra A(R)

of quantum matrices is defined as being generated by 1 and n2 indeterminates t = {tij}
with

Ri k
a bt

a
jt

b
l = tkbt

i
aR

a b
j l, ∆tij =

∑

a

tia ⊗ taj, ǫtij = δi
j (3.11)

where ∆ is the comultiplication operator and ǫ the counit (see appendix A). Note that the

multiplication in the above example, tlm
′′

= tli
′
tim, where the elements tij

′
were assumed

to commute with the elements tij , is nothing but a realisation of the co-product ∆.

It will be useful to think of the algebra A(R) as a quotient algebra of a free algebra,

A(R) = |||C[[tij ]]/I, where I is the ideal generated by the quadratic relations coming from

the RTT relations (the first relation in (3.11)).
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Quantum matrix Hopf algebra. The above bialgebra becomes a Hopf algebra

if there exists, for a given matrix t, a matrix, denoted by s = {si
j}, which satisfies

si
kt

k
j = δi

j = tiks
k
j. In that case the mapping S(tij) → si

j will satisfy the axioms for

an antipode. For the example above an explicit expression can be written down for the

antipode in terms of linear combinations of the generators tij , demonstrating that they

represent a Hopf algebra. Moreover the R in (3.7) satisfies the Yang-Baxter equation

(without spectral-parameter dependence)

R12R13R23 =R23R13R12 (in index notation: Ri j
s rR

s k
l pR

r p
m n =Rj k

s pR
i p
r nRr s

l m). (3.12)

When R satisfies the Yang-Baxter equation (YBE) one is guaranteed that the algebra is

not too trivial and it can be shown to be dual to a quasi-triangular Hopf algebra. As is

well known (e.g. [2, 49]), this is the case that corresponds to integrable systems.

As a bialgebra, A(R) is perfectly well defined even without the matrix R satisfying the

Yang-Baxter equation. But when taking R to be an arbitrary matrix one is not guaranteed

that the first relation in (3.11) has any solutions (except for t being the identity matrix).

This is because of the large number of equations which are obtained from this relation: If n

is the number of generators, the number of equations will be n2, but only n(n−1)/2 of those

should be independent commutation relations. Even if for a given matrix R there exists a

non-trivial solution for the quadratic relation, one also obtains extra cubic relations when

R does not satisfy Yang-Baxter. There are two different ways to obtain cubic relations,

which follow from applying the quadratic relations in different order: Either

R12R13R23t1t2t3 = R12R13t1t3t2R23 = R12t3t1t2R13R23 = t3t2t1R12R13R23 (3.13)

or

R23R13R12t1t2t3 = R23R13t2t1t3R12 = R23t2t3t1R13R12 = t3t2t1R23R13R12 . (3.14)

In deriving (3.13) and (3.14) we used the fact that the algebra is associative (by defini-

tion). We see that the YBE guarantees that both orderings lead to equivalent relations.

Combining the two equations we find:

(R12R13R23 − R23R13R12)t1t2t3 = t3t2t1(R12R13R23 − R23R13R12) . (3.15)

Clearly this equation is automatically satisfied when the matrix R is in the same equivalence

class as an R-matrix which satisfies the Yang-Baxter equation. If this is not the case

the equation leads us to extra cubic relations, which make the algebra inconsistent as a

quadratic algebra (see e.g. [67] for a discussion). This means that the ideal generated by

the quadratic relations also leads to at least cubic relations and maybe even higher order

relations. This makes the ideal of the algebra larger, and thus the algebra more trivial.

In [67] there is a simple example of how the cubic constraints follow from the quadratic

ones by performing the multiplication of a cubic term in two different orderings.

Equivalently to the defining relations (3.11) we could also have used the permuted

R-matrix to define the algebra R̂ = PR, or, written in index notation R̂ij
kl = Rji

kl, as follows

R̂i k
a bt

a
jt

b
l = tkbt

i
aR̂

b a
j l . (3.16)
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Actually, we could always add a matrix proportional to the identity matrix to the matrix

R̂ and it would still give us the same algebra, or equivalently we could add a matrix

proportional to the permutation matrix to the matrix R in (3.11). In formulas, we can

express this as

R̂ ∼ aI + bR̂ , where a, b ∈ |||C, b 6= 0 (3.17)

where ∼ denotes that they belong to the same equivalence class. This means that there is

a large equivalence class of R-matrices which generate the same algebra. Also, even if an

R-matrix does not fulfil the YBE it will still generate an algebra dual to a quasi-triangular

Hopf algebra, as long as it belongs to the same class as one that does. From equation (3.16)

we see that if we could think of R̂ as the nearest neighbour interaction of a Hamiltonian, the

matrix U = t⊗ t looks like a symmetry (here the tensor product refers to a normal matrix

tensor product and not as in the definition of the bialgebra). For instance, as discussed

in [48], the spin-chain Hamiltonian describing the dilatation operator for the SU(2) sector

can be written as

H =
L∑

i

ei , (3.18)

where ei is the Temperley-Lieb generator acting on spin sites i and i + 1, which is related

to the R-matrix (3.7) as follows

ei = qI − q1/2R̂ . (3.19)

Thus the Hamiltonian (3.18) commutes with t⊗L and the Temperley-Lieb generator ei

is in the same equivalence class as R̂. In the same way the full holomorphic spin chain

Hamiltonian (2.5) representing the planar one-loop dilatation operator is related to R̂,

which describes (as we will show) the Hopf algebra describing the symmetry of the Leigh-

Strassler deformation. When doing the Hopf algebra calculations in appendices B and C,

we will find it convenient to use R̂, because of the simple way it is expressed in terms of

the tensor Eijk that will be defined in the next paragraph.

3.3 The three-dimensional quantum plane

Let us now briefly review some aspects of work by Ewen and Ogievetsky [68], which has

provided the inspiration for much of our approach. That work is concerned with the

classification of three-dimensional quantum planes, defined as a polynomial algebra with

three elements obeying quadratic relations such that the Poincaré series of the algebra

coincides with the classical one.6 Ewen and Ogievetsky find that for three-dimensional

planes this condition is equivalent to the matrix R generating the quantum plane satisfying

the YBE. They start out by defining the quadratic relations

Eα
ijx

ixj = 0, uiujF
ij
α = 0 . (3.20)

Demanding that the independent relations be the same as in the classical case they obtain

three linearly independent relations. They introduce two tensors Eijk and F ijk defining

6This essentially means that the number of relations obeyed by the quantum algebra generators at every

degree (quadratic, cubic, etc.) is the same as in the classical algebra.
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the quantum plane and the quantum co-plane respectively:

Eijkx
ixjxk = 0 , and uiujukF

ijk = 0 . (3.21)

These tensors are related to the ones in (3.20) through:

Eijk = Eα
ijfαk, and Elij = elαEα

ij , (3.22)

where the fαk and elα are related to the cyclicity properties of the Eijk tensor as follows

Eijk = Ql
kElij , with Qi

j = fαj(e
−1)αi . (3.23)

We will be interested in the case when Q is the identity matrix such that Eijk becomes

periodic in the indices. As will be clear, this is forced upon us by the physical system we

have in mind, and in particular the wish to preserve the Z3 symmetry of the superpotential

mentioned above. For similar reasons we also want the co-plane to have the same nonzero

components as the plane. The condition provided in [68] for R̂ to generate the appropriate

algebra is the following

R̂ij
kl = δi

kδ
j
l − EklmFmij , (3.24)

where Eijk and F ijk need to satisfy

δi
j =

1

2
EjmnFmni , (3.25)

and

EajmFmibEebkF
kcj = δc

aδ
i
e + δi

aδ
c
e . (3.26)

Apart from [68], these equations were later studied in detail in [69] (see also [70] for some

background) in order to classify the SL(3) cases, and it was found they only have a solution

in exceptional cases. We should point out that we have rescaled the Eijk and F ijk tensors

relative to [68]. In particular, their formula equivalent to (3.24) would have a 2 in front of

EklmFmij . This is just a choice of normalisation of the tensors and has no real significance.

On the other hand, once we have fixed this normalisation (e.g. by requiring (3.25)) the

relative factor between the first identity term and the second term in (3.24) is important

for the R-matrix to satisfy the YBE. But in the subsequent discussion we will relax the

Yang-Baxter condition, because our main interest is to find an interesting Hopf algebra

(not necessarily dual quasi-triangular). We will also not be concerned with preserving the

classical number of independent relations at each degree, or equivalently the Poincaré series

condition of [68].

The quantum determinant D for three-dimensional quantum planes is defined through

the tensor E [68]:

Eijkt
i
lt

j
mtkn = DElmn . (3.27)

This should be read as a condition for the invariance of the quantum plane as well as a

natural definition for the quantum determinant, because if we set D = 1 (which is only

possible if it is central), we obtain the condition for a quantum deformation of SL(3) instead

of GL(3), just as in the classical case. Another expression for the quantum determinant

follows from (3.27) by contracting it with F from the right:

D =
1

6
Eijkt

i
lt

j
mtkmF lmn . (3.28)
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3.4 Hopf algebra twists

An important property of quasi-triangular Hopf algebras is that they can be twisted to

produce new quasi-triangular Hopf algebras with a twisted R-matrix and corresponding

twisted coproduct. To define twisting, one starts with a counital 2-cocycle, an element

F ∈ H ⊗H which is invertible and satisfies7

(ǫ ⊗ id)F = 1 = (id ⊗ ǫ)F (3.29)

and

(1 ⊗F)(id ⊗ ∆)F = (F ⊗ 1)(∆ ⊗ id)F . (3.30)

We are only interested in the effect of the twist on the original R-matrix. It is given by

R′
12 = F21R12F−1

12 . (3.31)

Upon expressing the above equation for R̂ we see it takes the form

R̂′
12 = F12R̂12F−1

12 . (3.32)

Here we see that F acts as a similarity transformation on R̂, but recall that it does not

mean that the algebras will be isomorphic, because for that to happen the transformation

needs to act separately in the t1 and t2. A normal change of basis of the generators tij in

the dual algebra would correspond to a F written in the form U ⊗ U with the matrices U

being the same.

Note that the axioms for F are consistent with the axioms for R to define a quasi-

triangular Hopf algebra (A.6), that is a matrix F that satisfies the axioms (A.6) can be

shown to also satisfy the axioms (3.29) and (3.30). Taking two different twists, one can ask

how do we know that they will generate two genuinely different Hopf algebras which are

not isomorphic? This depends on whether the twists are in the same cohomology class [64]

Fγ = (γ ⊗ γ)F∆γ . (3.33)

In section 5 we will make use of the twist transformation to relate the quasi-triangular

Hopf algebras associated to several integrable Leigh-Strassler deformations.

4 Hopf symmetry of the classical Lagrangian

In the following we will discuss a particular Hopf symmetry which is the invariance sym-

metry of the one-loop planar dilatation operator, or equivalently the Hamiltonian (2.5). In

particular, the generators tij of the Hopf algebra represented by the matrix t will turn out

to satisfy

s⊗LHt⊗L = H , (4.1)

7As shown by Drinfel’d [71], these conditions on F , including invertibility, can actually be relaxed in a

useful way. Twists with these more general F ’s would take us out of the regime of Hopf algebras to that of

(non-associative) quasi-Hopf algebras.
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where H =
∑L

i=1 Hi,i+1 and s the antipode discussed above. However, the viewpoint we

would like to take in this work is that this Hopf symmetry of the one-loop Hamiltonian is

actually already present at the level of the classical Lagrangian.

An early indication that there exists a quantum symmetry related to the general Leigh-

Strassler theory appeared in the work of [72]. Those authors noticed that the moduli space

of vacua of the theory (obtained by minimising the potential) has a (cyclic) quantum plane

structure:

φ1φ2 = qφ2φ1 − h(φ3)2

φ2φ3 = qφ3φ2 − h(φ1)2

φ3φ1 = qφ1φ3 − h(φ2)2
(4.2)

where φi denotes the expectation value of the scalar part of Φi. Correspondingly we could

write the conjugated relations, defining a cyclic co-plane. As discussed earlier, one possible

definition of quantum groups is as the symmetry groups of quantum planes. Thus, by

considering the geometry of the moduli space we see that there should be an appropriately

defined quantum group acting on it. However, the work of [72] did not specify precisely

which quantum symmetry corresponds to the general (q, h) deformation.

Motivated by [72], in the following we will explore the symmetries of the quantum

plane in (4.2). However, we will be even more general, and will ask which are the quantum

transformations which leave the superpotential itself invariant, rather than just its space

of solutions.

4.1 Deforming the superpotential

We will start by exhibiting the full deformed superpotential, with both q and h nonzero, in a

form which will help to make the relation to Hopf algebras, in the way discussed in the pre-

vious section, obvious. This will result in a two parameter deformation of the su(3) algebra.

Let us start from the N = 4 superpotential:

WN=4 = gTr
{
Φ1[Φ2,Φ3]

}
=

g

3
ǫijkTr

{
ΦiΦjΦk

}
. (4.3)

Here the superpotential is expressed via the SU(3)-invariant tensor ǫijk. We would now

like to see the Leigh-Strassler superpotential as arising from deforming the ǫijk tensor to

Eijk, a tensor invariant under a quantum deformation of SU(3). The goal is to prove its

invariance under some generators t, which form a Hopf algebra, as explained in section 3.

We will also of course need invariance of the hermitian conjugate of the superpotential,

which will define for us the co-tensor F ijk. Let us use the trace structure to write the

Leigh-Strassler superpotential (2.1) as

WLS =
κ

3
Tr
{
Φ1Φ2Φ3 + Φ2Φ3Φ1 + Φ3Φ1Φ2 − q(Φ1Φ3Φ2+Φ2Φ1Φ3+Φ3Φ2Φ1)

+h[(Φ1)3 + (Φ2)3 + (Φ3)3]
}
. (4.4)

Our main interest is the form invariance of the superpotential which is related to the three-

dimensional quantum plane, in an analogous way to the example in the previous section
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exhibiting the relation between Manin’s quantum plane and the form invariance in (3.10).

To investigate form invariance, we express the superpotential and its hermitian conjugate

in terms of the tensors Eijk and F ijk as

WLS + W†
LS =

1

3
Tr
(
EijkΦ

iΦjΦk + ΦiΦjΦkF
ijk
)

. (4.5)

Comparing with (4.4), and using the notation of [68], we find:

F ijk = Eijk (the bar denotes complex conjugation),

E123 = E231 = E312 =
1

d
,

E321 = E213 = E132 = − q

d
,

E111 = E222 = E333 =
h

d
, where d2 =

1 + q̄q + h̄h

2
.

(4.6)

where the normalisation is such that equation (3.25) in section 3 is satisfied. However,

comparing with the finiteness condition (2.2), we find that the coefficient in front of the

superpotential is precisely what is required by planar finiteness, in other words κ = 1/d.

Recall that (3.25) was required to obtain an R-matrix satisfying the YBE, but since we will

be working in a more general setting we are in principle free to choose the normalisation of

the tensors Eijk and F ijk. It is however a peculiar coincidence that the most natural way to

choose the normalisation agrees with what is obtained for the planar finiteness condition.

As we will see, this normalisation also has its advantages when expressing the quantum

determinant. Note that in our discussion of the algebra below we will not assume that we

are in the planar limit.

These choices for E and F were included in the analysis of [68], even though the

condition to fulfil the classical Poincaré series was too strong for generic values of q and h

to be included in their definition of a quantum plane. The case of arbitrary q and h = 0

was included for the quantum plane but with a different co-plane, and similarly for the

case of arbitrary h and q = 0. For the case h = 0, Eijk is proportional to the q-epsilon

tensor as defined in Majid [64].

Let us now recall that the component scalar field part of the F-term Lagrangian can

be written as [47]:

LF,s = TrφiφjH
ij
lmφlφm (4.7)

where H ij
lm are the components of the hermitian matrix H, given explicitly in (2.5), de-

scribing the local action of the one-loop dilatation operator on nearest neighbours,

H = Hjk
mnejm ⊗ ekn where Hjk

mn = EmnaF
ajk . (4.8)

Here we introduced the operators emn, which are defined through their action on the spin

state |k〉, as emn|k〉 = δnk|m〉.
We would like to show that there exists a quantum algebra transformation acting on

Φi as

Φi → tijΦ
j (4.9)
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under which the deformed superpotential is invariant. Invariance of the superpotential

implies that

EijkΦ
iΦjΦk → Eijkt

i
lt

j
mtknΦlΦmΦn = ElmnΦlΦmΦn (4.10)

i.e. that the tij generators we are interested in finding satisfy

Eijkt
i
lt

j
mtkn = Elmn . (4.11)

A similar condition arises by requiring invariance of the hermitian conjugate of the super-

potential:

Φi → Φjt
j
i

∗ ⇒ tli
∗
tmj

∗tnk
∗F ijk = F lmn . (4.12)

These relations impose strong restrictions on the generators tij of the algebra, which, as

we will see, are compatible with the cubic relations derived for our Hopf algebra in ap-

pendix C. The condition (4.11) above should be compared to the condition (3.27) for the

three dimensional quantum plane in the previous section, from which it follows that the

quantum determinant occurring in (3.27) should be set to one.

Since the non-abelian nature of the scalar superfields is not relevant for the following

discussion (the generators of SU(N) being taken to commute with the tij) from now on we

will return to the quantum plane notation of section 3 and look at the form invariance of

the expression

f(x, y, z) := Eijkx
ixjxk (4.13)

where we have associated each of the three holomorphic scalars to one of the quantum

plane coordinates.

As discussed, setting the quantum determinant to one is just the step passing from a

quantum deformation of GL(3) to that of SL(3). However we also need to require form

invariance of

g(x̄, ȳ, z̄) := x̄ix̄jx̄kF
ijk = f̄(x̄, ȳ, z̄) (4.14)

which assures the reality condition. We will see that this results in a deformation of SU(3)

instead of SL(3).

Form invariance for f(x, y, z) and g(x, y, z) together is equivalent to invariance of H ij
kl .

H ij
kl is an hermitian operator which gives the reality condition for the Hopf algebra that,

as we will show, is generated by it. It is necessary for the existence of a tij
∗

generator.

A Hopf algebra of this type is called real type if the following condition on the R-matrix

is satisfied:

Ri j
k l = Rl k

j i (4.15)

which is equivalent to that R̂i k
j l = Rk i

j l is hermitian as a 9× 9 matrix. Here H ij
kl will play

the role of R̂i k
j l, and since H is hermitian (2.5) we are guaranteed to obtain an R-matrix

of real type. When R is of real type the definition

tij
∗

= S(tij) = si
j (4.16)

is compatible with the relations Rt1t2 = t2t1R of the Hopf algebra A(R). So, as in our

example in section 3.1.1, the co-plane coordinates transform according to the antipode.
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Our first question is now whether we can have a non-trivial bialgebra generated by

H ij
kl as explained in the previous section, i.e. whether there exists a a non-trivial solution

to

H ij
klt

k
mtln = tikt

j
lH

kl
mn . (4.17)

Note that the same algebra can equally well be generated by any R̂ matrices belonging to

the same equivalence class as R̂ij
kl = H ij

kl, equation (3.17).

If this is the case, we would then like to show the existence of an antipode from which

it will also follow that the superpotential is invariant, since it will imply that the quantum

determinant is central. At the same time, having an antipode will imply (4.1) and thus

guarantee invariance of the spin chain Hamiltonian under the Hopf algebra. We will turn

to the analysis of (4.17) after first exhibiting the R-matrix related to our Hamiltonian.

4.1.1 The R–matrix for the general deformation

For concreteness, let us give here the form of the R-matrix that follows from the choice (4.6)
via (3.24):

R =
1

2d2




1+qq̄−hh̄ 0 0 0 0 −2h̄ 0 2h̄q 0

0 2q̄ 0 1−qq̄+hh̄ 0 0 0 0 2hq̄

0 0 2q 0 −2h 0 qq̄+hh̄−1 0 0

0 qq̄+hh̄−1 0 2q 0 0 0 0 −2h

0 0 2h̄q 0 1+qq̄−hh̄ 0 −2h̄ 0 0

2hq̄ 0 0 0 0 2q̄ 0 1−qq̄+hh̄ 0

0 0 1−qq̄+hh̄ 0 2hq̄ 0 2q̄ 0 0

−2h 0 0 0 0 qq̄+hh̄−1 0 2q 0

0 −2h̄ 0 2h̄q 0 0 0 0 1+qq̄−hh̄




(4.18)

The first observation about the above R-matrix is that is cyclic, Rab
cd = R

(a+1)(b+1)
(c+1)(d+1) =

R
(a−1)(b−1)
(c−1)(d−1) . This feature, which can be traced back to the cyclic quantum plane rela-

tions (4.2) (which in turn was forced upon us by the need to preserve the cyclic Z3 sym-

metry) distinguishes this R-matrix from those corresponding to standard quantum defor-

mations of SU(3), see e.g. [64, 68]. Those are related to the symmetries of ordered Manin

planes and are thus not cyclic.

It is also straightforward to check that this R-matrix leads to the expression (cf. (3.10))

f(xa, xa+1) = Ra a+1
k lx

kxl − xa+1xa =
(
xaxa+1 − qxa+1xa + hxa−1

a−1x
a−1
a−1

)
· q̄/d2 (4.19)

with consistent relations from f(xa+1, xa) and f(xa, xa) and similarly for the co-plane co-

ordinates. Note that R̂ has 1 as one of its eigenvalues, so we chose λ = 1 in defining the

quantum plane (cf. (3.1)). Setting f(xa, xa+1) = 0 we thus reproduce the cyclic quantum

plane structure in (4.2). However, according to the general discussion in section 3, and

as will be discussed more thoroughly in the following, the quantum algebra produced by

R leaves not just f(xa, xa+1) = 0 invariant, but the form of the full “off shell” expression

f(xa, xa+1). It will thus lead to a symmetry of the Lagrangian itself and not only of the

moduli space.
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(a) tact
a+1
c − qta+1

c tac + hta−1
c ta−1

c = h
(
tac+1t

a+1
c−1 − q̄tac−1t

a+1
c+1 + h̄tact

a+1
c

)

(b) q[ta+1
c+1, t

a
c] = −q2ta+1

ct
a
c+1 + hqta−1

ct
a−1

c+1 + hta−1
c+1t

a−1
c + tac+1t

a+1
c

(c) −qta+1
c tac+1 + q̄tac+1t

a+1
c = h̄tac−1t

a+1
c−1 − hta−1

c ta−1
c+1

(d) h(tac+1t
a
c−1 − q̄tac−1t

a
c+1) = h̄(ta+1

c ta−1
c − qta−1

c ta+1
c )

Table 1. The quadratic quantum algebra relations for the algebra A(R) corresponding to the

general (q, h)-deformation. The indices are identified modulo 3, e.g. a + 1 = a − 2.

The final important property of (4.18) is that, for generic values of the deformation

parameters, it does not satisfy the Yang-Baxter equation. It is thus a slight abuse of

language to call it an R-matrix (to emphasise this, we will sometimes refer to it as a

generalised R-matrix). The fact that the YBE is not satisfied means that it is not automatic

that the RTT relations have nontrivial solutions, and furthermore the associativity of the

algebra will lead to new relations at cubic order.

4.1.2 The quadratic algebra relations

The quantum algebra relations following from the R-matrix in (4.18) are derived in more

detail in appendices B and C. Here we will just tabulate the resulting independent quadratic

relations in table 1. We will refer to the quantum algebra defined by (4.17) as A(R). There

are several crucial things which have to work for A(R) to be a consistent algebra. First of

all, it is highly non-trivial to have a solution in general to the equation (4.17). We already

know that for general values of h and q there is no R-matrix related to the quantum plane

which satisfies the YBE (had there been, we would be guaranteed a non-trivial solution

to (4.17)). Luckily, in the table we have exactly 36 independent relations, which is what is

needed. As shown in appendix B, all remaining relations are linearly dependent on these.

In appendix D, we discuss the possibility of representing the elements tij satisfying these

relations in terms of matrices.

The Yang-Baxter equation also ensures that the associativity of the algebra does not

lead to additional cubic relations. When R does not belong to the equivalence class of

R-matrices satisfying the YBE, the ideal generated by the quadratic relations will contain

higher order (at least cubic) terms. This leads to a potential danger, since the ideal could

in principle become too large and trivialise the algebra at cubic order. The cubic relations

are analysed in appendix C, with the result that the new relations do not spoil the desired

properties of the algebra, like the existence of an antipode and quantum determinant, as

we will now discuss.

4.1.3 The antipode and quantum determinant

As discussed, for A(R) to be a symmetry of the Lagrangian the quantum determinant (3.28)
has to be central. Thanks to the cubic relations derived in appendix C, we will manage
to prove that this is the case. In the process we will show the existence of an antipode,

– 20 –



J
H
E
P
1
0
(
2
0
1
0
)
0
4
3

thus showing that our bialgebra is in fact a Hopf algebra. Let us explicitly write out the
quantum determinant for the case under consideration:

D =
1

6d2

(
t1

1
t2

2
t3

3
−qt2

1
t1

2
t3

3
+ ht3

1
t3

2
t3

3
+ t3

1
t1

2
t2

3
−qt1

1
t3

2
t2

3
+ ht2

1
t2

2
t2

3
+ t2

1
t3

2
t1

3
−qt3

1
t2

2
t1

3

+ht1
1
t1

2
t1

3

−q̄(t1
1
t2

3
t3

2
−qt2

1
t1

3
t3

2
+ ht3

1
t3

3
t3

2
+ t3

1
t1

3
t2

2
−qt1

1
t3

3
t2

2
+ ht2

1
t2

3
t2

2
+ t2

1
t3

3
t1

2
−qt3

1
t2

3
t1

2

+ht1
1
t1

3
t1

2
)

+h̄(t1
1
t2

1
t3

1
−qt2

1
t1

1
t3

1
+ ht3

1
t3

1
t3

1
+ t3

1
t1

1
t2

1
−qt1

1
t3

1
t2

1
+ ht2

1
t2

1
t2

1
+ t2

1
t3

1
t1

1
−qt3

1
t2

1
t1

1

+ht1
1
t1

1
t1

1
) + cyclic permutations

)
. (4.20)

It is possible to see that all the rows above are proportional to each other just directly

from the quadratic relations, which we will demonstrate with the first two rows. Below we

write what the first row minus the second row times (qq̄)−1 is

{row one} − (qq̄)−1{row two} =

=t11(t
2
2t

3
3 − t33t

2
2 − qt32t

2
3 + q−1t23t

3
2 + ht12t

1
3 − hq−1t13t

1
2)

+ t21(−qt12t
3
3 − t13t

3
2 + ht22t

2
3 − hq−1t23t

2
2 + t32t

1
3 + q−1t33t

1
2)

+ t31(ht32t
3
3 + hq−1t33t

3
2 + t12t

2
3 + q−1t13t

2
2 − qt22t

1
3 − t23t

1
2) = 0 .

(4.21)

Every parenthesis above is separately zero as a consequence of the (b) quadratic relation in

table 1. Note that this is consistent with the cubic relations from equation (4.11). There

is also a symmetry for these relations if we interchange upper and lower indices and at the

same time let (q̄, h̄) → (q, h).

The next step is to show that all cyclic permutations of the first row are equal. This

is again straightforward. Let us write one of them:

t22t
3
3t

1
1−qt32t

2
3t

1
1+ht12t

1
3t

1
1+t12t

2
3t

3
1−qt22t

1
3t

3
1+ht32t

3
3t

3
1+t32t

1
3t

2
1−qt13t

3
3t

2
1+ht22t

2
3t

2
1 .

(4.22)

Now move the last t factor in each of the underlined terms to the front, commuting it

through the other two t’s. Again for this only relation (b) is needed. All unwanted terms

cancel and we are left precisely with the first row in (4.20). Proceeding in this way we

conclude that

D = t11t
2
2t

3
3 − qt21t

1
2t

3
3 + ht31t

3
2t

3
3 + t31t

1
2t

2
3 − qt11t

3
2t

2
3 + ht21t

2
2t

2
3 + t21t

3
2t

1
3 − qt31t

2
2t

1
3

+ht11t
1
2t

1
3. (4.23)

It is crucial that the cubic constraints discussed in appendix C can never take this particular

form. So D is guaranteed to be a nontrivial cubic element. We now have to show that it is

central.

Centrality of the quantum determinant is related to the existence of an antipode s,

which can be thought of as an inverse matrix to tij satisfying

tiks
k
j = δi

j and si
kt

k
j = δi

j . (4.24)
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This is because, if it is possible to find a matrix s which satisfies

tiks
k
j = δi

jD and si
kt

k
j = δi

jD , (4.25)

it follows that D is central8 and therefore can be chosen to equal one, and s would sat-

isfy (4.24). We will now check that the following s satisfies (4.25):

s1+i
1+k = t2+k

2+it
3+k
3+i − q̄t2+k

3+it
3+k
2+i + h̄t2+k

1+it
3+k
1+i = t2+k

2+it
3+k
3+i − qt3+k

2+it
2+k
3+i + ht1+k

2+it
1+k
3+i . (4.26)

The two expressions for s are easily seen to be equal by use of relation (c) in table 1.

First we check the diagonal elements. Writing out e.g. s3kt
k
3 we have

s3kt
k
3 = t11t

2
2t

3
3 − qt21t

1
2t

3
3 + ht31t

3
2t

3
3 + t31t

1
2t

2
3 − qt11t

3
2t

2
3 + ht21t

2
2t

2
3 + t21t

3
2t

1
3

−qt31t
2
2t

1
3 + ht11t

1
2t

1
3 (4.27)

which is nothing but D in (4.23). The same can be checked for the other two diagonal

elements, which can be obtained from cyclicity. We have thus shown that the diagonal

terms in st are all proportional to the quantum determinant.

To see the vanishing of the off-diagonal terms, we will need to employ the nontrivial

cubic relations in appendix C. For instance let us write explicitly the off-diagonal term

s3kt
k
2 = t11t

2
2t

3
2−qt21t

1
2t

3
2+ht31t

3
2t

3
2+t31t

1
2t

2
2−qt11t

3
2t

2
2+ht21t

2
2t

2
2+t21t

3
2t

1
2

−qt31t
2
2t

1
2+ht11t

1
2t

1
2

= t11(t
2
2t

3
2 − qt32t

2
2 + ht12t

1
2) + t21(t

3
2t

1
2 − qt12t

3
2 + ht22t

2
2)

+t31(t
1
2t

2
2 − qt22t

1
2 + ht32t

3
2) . (4.28)

That this vanishes follows from the cubic constraint (C.31).

In order to complete the proof, we have to check that we get the same if we multiply

t and s in the reverse ordering. Now we use the second expression for the components sk
l,

to compute e.g.

t3ks
k
3 = t11t

2
2t

3
3 − q̄t12t

2
1t

3
3 + h̄t13t

2
3t

3
3 + t13t

2
1t

3
2 − q̄t11t

2
3t

3
2 + h̄t12t

2
2t

3
2 + t12t

2
3t

3
1

−q̄t13t
2
2t

3
1 + h̄t11t

2
1t

3
1 , (4.29)

which is also equal to D using relation (c). As for the off-diagonal terms, we can check e.g.

t1ks
k
3 = (t12t

1
3−q̄t13t

1
2+h̄t11t

1
1)t

2
1+(t13t

1
1−q̄t11t

1
3+h̄t12t

1
2)t

2
2+(t11t

1
2−q̄t12t

1
1+h̄t13t

1
3)t

2
3 .

(4.30)

This is zero due to the cubic constraint (C.29) following from the RTT relations (see

appendix C).

It is crucial that the cubic relations related to the diagonal terms come from the

components of the YBE which are fulfilled (these are the choices of indices where no new

cubic constraints arise), while the off-diagonal relations arise when the YBE is not fulfilled.

8Multiplying the first of (4.25) by tj

l on the right, we find ti
ksk

jt
j

l = Dδi
jt

j

l =⇒ ti
kδk

lD = D ti
l =⇒

ti
lD = D ti

l.
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If the YBE had not been satisfied for the diagonal relations they would have become zero

and we would not have been able to define the quantum determinant.

We conclude that our matrix quantum algebra A(R) is equipped with an antipode and

is thus a Hopf algebra. Furthermore, the quantum determinant is central, which, as dis-

cussed above, implies that we can set D=1. This makes the superpotential A(R)-invariant.

4.1.4 Invariance of the full Lagrangian

Up to this stage we have only been discussing the invariance of the F-terms in the La-

grangian under A(R). Having shown that there exists an antipode, we can now check

invariance of the kinetic term TrΦeV Φe−V . Since the eV ’s, being SU(3) singlets, are not

relevant for this, we can simply check invariance of ΦΦ:

ΦiΦ
i → Φjt

j
i

∗
tikΦ

k . (4.31)

Thus invariance requires tj i

∗
tik = δj

k, which of course is satisfied because t∗ is the an-

tipode (4.16). Note that the reality condition on the R-matrix, which reduced the quantum

deformation of SL(3) down to a quantum deformation of SU(3), is crucial for this to hold.

As a consequence of A(R)-invariance of the scalar kinetic term we conclude that the

D-terms (and therefore the full Lagrangian) are also invariant.

Quantum groups have long been known to play a fundamental role in two-dimensional

physics, and 2d conformal field theory in particular [49]. So far, their role in four-

dimensional field theory has been much more limited, although they have been considered

both as candidates for gauge groups [73] (see also [74] for a recent review and references)

and flavour groups (see e.g. [75] for a summary of results in this direction). We have

just constructed a new example: Being a quantum deformation of the SU(3) R-symmetry

group, A(R) plays the role of a flavour group in the Leigh-Strassler theories (though the

flavours here are adjoint).

4.2 Quantum symmetry and finiteness?

In the preceding sections we showed that the classical (q, h)-deformed Leigh-Strassler

Lagrangian enjoys a Hopf algebra symmetry A(R), which is defined through the R-

matrix (4.18) related in a simple way to the holomorphic one-loop spin chain Hamiltonian of

the theory. Since the classical Lagrangian knows nothing about spin chains, this should be

understood in the opposite direction: That the one-loop Hamiltonian has A(R) as a symme-

try is a consequence of A(R) not being broken at one-loop level in the planar limit. It should

be emphasised that we have not been assuming the planar limit in the discussion above.9

So is A(R) the hidden symmetry that, as argued in the introduction, might be related

to the finiteness properties of the Leigh-Strassler theories? The story is certain to be more

subtle, since the finiteness condition (2.2) depends non-trivially on the number of colours

N , while (as just discussed) A(R) was defined without any reference to N . Assuming that

9Among other things, this indicates that the full dilatation operator of the theory (i.e. including non-

planar corrections) should exhibit the quantum symmetry. Confirming this would provide a non-trivial

check of our construction.
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there is a correlation, it could be that the requirements of finiteness and quantum symmetry

invariance only overlap in the planar limit. The fact that, as we saw, the most natural

normalisation matches what is required by planar finiteness points in this direction. This

normalisation is forced upon us if we wish to impose (3.25) as part of our definitions. That

condition was crucial for [68] who were working in the quasi-triangular case, but since we

are relaxing several of their assumptions we do not yet have an argument for why (3.25),

with the precise factor of 1/2, is singled out from the matrix quantum algebra point of

view. This link definitely deserves to be explored further.

Conversely, it might be that the definition of A(R) could be suitably extended to

involve N so as to make contact with the full finiteness condition (2.2). It is also possible

that finiteness and A(R) are completely unrelated, which would be demonstrated most

clearly by finding an example of a non-finite theory with a similar quantum symmetry

structure. Since a simple way of keeping A(R) without preserving finiteness would be to

(non-supersymmetrically) change the relative coefficients between the F– and D-terms, it

will be important to go beyond the holomorphic sector and include the D-terms in the

discussion of A(R).

Leaving the resolution of these issues to future work, we will continue to explore the

properties of our novel quantum symmetry algebra by considering how it is acted upon by

the known discrete symmetries of the Lagrangian.

4.3 Discrete symmetry in the general deformation

As discussed above, the general Leigh-Strassler deformations preserve certain discrete sym-

metries: A cyclic Z3 symmetry and another Z3 which acts by multiplying the scalars by

a third root of unity. Acting on the three scalar superfields, these symmetries can be

represented as shift and clock matrices [31]:

U =




0 1 0

0 0 1

1 0 0


 , V =




1 0 0

0 ω 0

0 0 ω2


 . (4.32)

This representation makes it clear that these are (very special) elements of the original

SU(3) subgroup of the N = 4 R-symmetry which was acting on the scalars. In addition to

these, there is another, central, Z3 symmetry within U(1)R which, in this basis, simply acts

as W = ω11. All these Z3’s do not commute, rather they combine to produce a trihedral

group with 27 elements (given by all combinations of the generators U , V and W up to

the relations U3 = V 3 = W 3 = 1 and UV = WV U) known as ∆27 [31, 76]. Some aspects

of this discrete group have been investigated in [32, 77], where it was shown that it is

unbroken at the first few orders in perturbation theory. We should emphasise that the fact

that these symmetries are preserved at the quantum level is a crucial consistency check,

since in particular the cyclic symmetry is used as input in the Leigh-Strassler argument

which equates the anomalous dimensions of the three scalars.

Given our new-found understanding of the general Leigh-Strassler deformation as a

quantum deformation of SU(3), rather than a simple breaking to Z3×Z3, it is important to
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clarify the role of the discrete symmetries in our setting. As we will now show, they simply

act as automorphisms of the quantum symmetry algebra. Given the close relationship

of the general Leigh-Strassler deformation to cubic forms [68, 76] this is of course not

surprising. In the following we will closely follow the discussion in [68] for the deformations

of GL(3) they consider.

Recall that, for the quantum plane, an automorphism is a mapping xi → Zi
jx

j which

leaves Eijk invariant (and similarly for the co-plane). For the Eijk corresponding to the

general deformation we can easily check invariance under the above transformations. We

are now interested in how the automorphism group acts on the algebra generators. This

will be by conjugation, as tij → Zi
kt

k
lZ

−1l
j. We thus find:

U :




t11 t12 t13
t21 t22 t23
t31 t32 t33


 −→




t22 t23 t21
t32 t33 t31
t12 t13 t11


 , i.e. tab → ta+1

b+1 (4.33)

while

V :




t11 t12 t13
t21 t22 t23
t31 t32 t33


 −→




t11 ω2t12 ωt13
ωt21 t22 ω2t23
ω2t31 ωt32 t33


 , i.e.





taa → taa
ta+1

a → ωta+1
a

taa+1 → ω2taa+1

. (4.34)

It can be easily checked that the algebra commutation relations tabulated in table 1 are

invariant under these transformations, as well as their combinations. So we have explicitly

exhibited how the discrete symmetries act on the quantum symmetry algebra A(R).

It might be of interest to note that the elements U and V can be obtained by suitable

truncations of the full A(R) algebra. The action of U on the scalar field is:

Φ1 → t12Φ
2 , Φ2 → t23Φ

3 , Φ3 → t31Φ
1 . (4.35)

So to exhibit this symmetry, we truncate the algebra by setting tij = 0 except for t12, t
2
3, t

3
1.

Looking at the relations in table 1, we see that the only nontrivial ones left are

[t12, t
2
3] = 0

(
from q[t23, t

1
2] = t13t

2
2 − q2t22t

1
3 + hqt32t

3
3 + ht33t

3
2

)
(4.36)

and

t12t
2
3 = (t31)

2
(
from t11t

2
1 − qt21t

1
1 + ht31t

3
1 = h

(
t12t

2
3 − q̄t13t

2
2 + h̄t11t

2
1

) )
(4.37)

as well as their cyclic relations. From (4.36) we conclude that in this subsector the taa+1

commute among themselves, so that we can treat them as actual numbers. From the

constraint (4.37) we then conclude that they have to be cubic roots of unity, and in the

simplest case (corresponding to U) they can be set to 1.

As for the action of V , it is

Φ1 → t11Φ
1 , Φ2 → t22Φ

2 , Φ3 → t33Φ
3 (4.38)
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where again we need to show that when all other tij are set to zero, the three taa commute.

This is also the case:

[t11, t
2
2] = 0

(
from q[t11, t

2
2] = −t12t

2
1 + q2t21t

1
2 − hqt31t

3
2 − ht32t

3
1

)
(4.39)

and

t11t
2
2 = (t33)

2
(
from t13t

2
3 − qt23t

1
3 + ht33t

3
3 = h

(
t11t

2
2 − q̄t12t

2
1 + h̄t13t

2
3

) )
(4.40)

and cyclic permutations. We can thus choose t11 = 1, t22 = ω and t33 = ω2, obtaining the

element V .

There is yet a third class of elements obtained by setting all generators to zero apart

from ta+1
a, and proceeding in this way we can see how the remaining elements of ∆27 can

be embedded in the quantum symmetry algebra.10

4.4 Beyond the SU(3) sector

Up to now we have been mostly interested in the quantum symmetry underlying the holo-

morphic sector of the theory, spanned by the three scalar superfields Φi that enter the

superpotential. As discussed, these can be usefully mapped to the coordinates xi of a

quantum plane defined by the R-matrix (4.18) through the relations (note that, as men-

tioned, 1 is an eigenvalue of R̂, which allows us to choose λ = 1 in (3.1))

Ri j
k lx

kxl = xjxi (4.41)

with the RTT relations (3.4) guaranteeing invariance of the plane under the quantum

symmetry transformations xi → tijx
j.

Similarly the antiholomorphic scalars are mapped to the coordinates x̄ī = ui of a

quantum co-plane, defined through the same R-matrix via

ukulR
k l
i j = ujui (4.42)

Since, as discussed, the co-plane coordinates transform as ui → ujs
j
i under the quantum

symmetry (where s is the antipode), the relation that guarantees invariance of the co-

plane reads sr
is

s
jR

i j
k l = Rr s

i js
j
ls

i
k. This can be easily seen to follow from the original

RTT relations.

However, a moment’s thought shows that this cannot be the end of the story. The

full Hamiltonian certainly mixes the plane and co-plane coordinates, which means that

the (36 × 36) R-matrix which should define the quantum symmetry of the full scalar field

sector will also imply nontrivial commutation relations between the xi and ui planes. If

we converted to real notation (schematically yI = xi ± iui, I = 1 . . . 6) we would get a six

dimensional quantum plane acted on by a suitable deformation of SO(6) [50].

On the other hand, since the Leigh-Strassler theories arise just through a superpotential

deformation, there should not be any additional information in the 36× 36 R-matrix than

10Note that (as per the discussion below (3.11)) successive actions of t belong to different copies of Mn

and thus commute with each other.
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that which is already contained in the holomorphic 9 × 9 R-matrix (4.18). So the mixed

commutation relations should be derivable through suitable conditions involving R.

Following e.g. [64] (see also [78]), we propose the following as suitable definitions for

the mixed planes:

ulR
j l
k ix

k = xjui and xkR̃i l
k jul = ujx

i . (4.43)

Here R̃ is the so-called second inverse of R, defined through11

R̃i n
m jR

m k
l n = δi

lδ
k
j = Ri n

m jR̃
m k

l n . (4.44)

These relations are invariant under the quantum symmetry transformations of xi and

ui. To see this, one needs to use the relations

ss
jR

a j
k lt

k
b = takR

k s
b js

j
l , and ss

dR̃
b f
e st

c
b = taeR̃

c l
a ds

f
l (4.45)

which also follow straightforwardly from the original RTT relations.

The above mixed plane relations will be useful in section 6 where we will make contact

with previous work on the noncommutative description of the Leigh-Strassler theories.

5 The integrable cases

Having discussed the general framework necessary to understand the quantum symmetry

of the general Leigh-Strassler deformation, in this section we will focus on the subset

of cases which are integrable. Not surprisingly, these are the special cases where the R-

matrix (4.18) satisfies the YBE, and A(R) becomes dual to a quasi-triangular Hopf algebra.

While the material in this section is not new, we believe that it is appealing and instructive

to reconsider these cases from the Hopf algebra perspective we have been developing.

5.1 The real β deformation

As the simplest example of the general discussion above, we turn to the case where h = 0,

while q is taken to be just a phase, q = eiβ , with β real. As mentioned previously, this

is a well known case where integrability of the one-loop dilatation operator of N = 4 is

preserved. So it is to be expected that this case will reveal even more structure than the

general (q, h)-deformation. Due to the amount of attention this particular case has received

in the literature, we will aim to keep the discussion in this section self-consistent, at the

expense of some repetition from the previous section.

In this case the superpotential is simply given by

W = Tr[Φ1Φ2Φ3 − qΦ1Φ3Φ2] (5.1)

which leads us to the following choice for Eijk, F ijk:

E123 = 1 , E132 = −q , F 123 = 1 , F 132 = −1

q

(
+ cyclic permutations

)
. (5.2)

11The normal inverse of R of course simply satisfies (R−1)i j
m nRm n

k l = δi
kδ

j

l = Ri j
m n(R−1)m n

k l.
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According to the above general discussion, the quantum algebra transformations Φi →
tijΦ

j that leave the superpotential invariant will be generated by an R-matrix constructed

through Eijk and F ijk.

The R-matrix for β real. As before, this R-matrix will be given through Ri j
k l = R̂j i

k l,

where R̂ is defined by

R̂i j
k l = δi

kδ
j
l − EklmFmij . (5.3)

By construction, this R-matrix will be cyclic, and is given explicitly by

R =




1 0 0 0 0 0 0 0 0

0 q−1 0 0 0 0 0 0 0

0 0 q 0 0 0 0 0 0

0 0 0 q 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 q−1 0 0 0

0 0 0 0 0 0 q−1 0 0

0 0 0 0 0 0 0 q 0

0 0 0 0 0 0 0 0 1




. (5.4)

It is worth repeating that this diagonal R-matrix is not the one corresponding to the

standard one-parameter q-deformation of SU(3) (e.g. [64]), whose R-matrix is not cyclic

and leads to i < j ordered, rather than cyclic, quantum plane relations. However, it

is contained as a special case of several R-matrices in the literature, such as the X = 1,

q13 = 1/q12 case of [79] and a special case of the multiparameter R-matrix of [80]. Diagonal

R-matrices of this type have been considered as deformations of GL(3) in [81].

Furthermore, this R-matrix has appeared previously in discussions of integrability for

the real β deformation [51]. To be precise, the R-matrix presented in that work is more

general in several respects: It applies to more general (nonsupersymmetric) γ-deformations

(where instead of β one deforms by three real phases [82]), it is valid for the larger SU(2|3)
sector and, importantly, it has spectral-parameter dependence. Restricting to just real β

and the SU(3) sector, the R-matrix of [51] is given by12

Ri j
k l =

1

u + i

(
ue−iBij δi

kδ
j
l + iP i j

k l

)
, where Bij =




0 β −β

−β 0 β

β −β 0


 . (5.5)

It is easy to check that this R-matrix reduces to (5.4) in the limit of large spectral parameter

(u → ∞), which is precisely the regime where one expects to make contact with the

underlying quantum symmetry (for a discussion, see e.g. [49]). It was noted in [51] that

the R-matrix in this case was related to the R-matrix for the pure N = 4 SYM case with

a twist [83] exactly of the type discussed in section 3, with the nonzero matrix elements of

F in (3.31) being

F ii
ii = 1 F ii+1

ii+1 = eiβ/2 F i+1i
i+1i = e−iβ/2 . (5.6)

(This is nothing but the R-matrix with β → −1/2β.)

12We have performed a trivial rescaling β → −β relative to [51].
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The symmetry algebra. We now turn to the characterisation of the quantum algebra

for the real β deformation. The quantum plane relations one obtains, through Ri j
k lx

kxl =

xjxi, are:

x1x2 = qx2x1 , x2x3 = qx3x2 , x3x1 = qx1x3 (5.7)

which are clearly also cyclic.

The relations between the various quantum algebra generators following from (5.4) (or

from the appropriate limit of those in table 1) can be summarized as follows:

[ta+1
c, t

a
c−1] = 0 , [tac, t

a+1
c]q = 0 , [tac, t

a
c+1]q−1 = 0 , [tac, t

a+1
c−1]q2 = 0 . (5.8)

Note that since in this case the R-matrix satisfies the Yang-Baxter equation, these quadratic

relations will not generate additional cubic relations. That the R-matrix satisfies the YBE

implies that the algebra is dual (in the sense explained in the appendix) to a quasi-triangular

Hopf algebra, which is the underlying reason that the real β deformations are integrable.

Using these relations, we can now easily check that the quantum determinant

D = t11t
2
2t

3
3 + t12t

2
3t

3
1 + t13t

2
1t

3
2 − q−1(t11t

2
3t

3
2 + t13t

2
2t

3
1 + t12t

2
1t

3
3) (5.9)

is central. Setting D = 1 we conclude that the superpotential is indeed invariant under the

quantum symmetry.

The antipode. Setting D = 1 above reduced the algebra from a q-deformation of GL(3)

to a q-deformation of SL(3). So far we have not imposed any relations between the trans-

formation of the plane and co-plane, or, in other words, a reality condition. From the

physical point of view, it is the invariance of the kinetic term which further reduces the

algebra down to SU(3) in the undeformed case. On the quantum algebra side, this comes

through consideration of the antipode. By definition, the antipode, when it exists, satisfies

si
jt

j
k = tijs

j
k = δi

k . (5.10)

It is easy to write down the form of the antipode explicitly:

S =




t22t
3
3 − q−1t23t

3
2 t13t

3
2 − qt12t

3
3 t12t

2
3 − q−1t13t

2
2

t23t
3
1 − q−1t21t

3
3 t11t

3
3 − qt13t

3
1 t13t

2
1 − q−1t11t

2
3

t21t
3
2 − q−1t22t

3
1 t12t

3
1 − qt11t

3
2 t11t

2
2 − q−1t12t

2
1


 . (5.11)

Notice this is exactly the antipode (4.26) for h = 0 and q̄ = q−1. We can easily check

invariance of the kinetic term as in section 4.1.4. Thus we have shown that the real–β

Leigh-Strassler lagrangian is indeed invariant under the quantum deformation of SU(3)

provided by Rβ.

5.2 The other extreme: q = 0, h̄ = 1/h

Let us now turn to other integrable cases which can be embedded in the above framework.

One of the cases considered in [48] is that of q = 0, h̄ = 1/h. In this case the epsilon tensor

becomes

E123 = 1 , E111 = −h , F 123 = 1 , F 111 = −1

h

(
+ cyclic permutations

)
(5.12)
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providing the quantum plane relations

x1x2 = −h(x3)2 , x2x3 = −h(x1)2 , x3x1 = −h(x2)2 . (5.13)

The resulting R-matrix is:

R =




0 0 0 0 0 − 1
h 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 −h 0 0 0 0

0 0 0 0 0 0 0 0 −h

0 0 0 0 0 0 − 1
h 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

−h 0 0 0 0 0 0 0 0

0 − 1
h 0 0 0 0 0 0 0




. (5.14)

This R-matrix satisfies the quantum Yang-Baxter equation, but it is in several respects

rather unusual. Taking the undeformed limit h = 1, we find that it does not reduce to the

trivial undeformed R-matrix (i.e. 1 ⊗ 1). As a consequence there does not seem to be a

well-defined classical r-matrix (see section 6.1). Of course there is no reason to expect a

smooth classical limit since the point q = 0 is very special (and very far from the classical

point q = 1). We should point out that this R-matrix can, in an analogous way as in the

real β-deformed case, be obtained from the R-matrix with spectral-parameter dependence

related to the dilatation operator found in [55].

We should also remark that precisely this choice of parameters (q = 0, h̄ = 1/h) has

been considered in the work of [25] in the context of the finiteness properties of the general

Leigh-Strassler deformation. There it was shown that this is one of only two cases where

the one-loop (planar) finiteness condition is exact to very high loop order (and conjecturally

to all loop orders).13 The other case is the real β deformation (along with cases which are

“unitary equivalent” to real β in a sense discussed in [25]). It would be very interesting to

further understand the interplay between the quasi-triangular Hopf algebra structure that

we have exhibited and the higher-loop exactness of the one-loop finiteness condition.

In [55] this case was shown to be related to the real β case via a suitable site-dependent

redefinition. Therefore we know that it can be obtained by a twist starting from the real

β R-matrix of the previous section. The matrix F we need is simply the following:

F = U ⊗ U2 (5.15)

where U is the shift matrix defined in (4.32) and where one should rename q = −1/h

in (5.4) to arrive precisely at (5.14). Thus the required twist transformation here is of the

generic form F = Z ⊗ Z−1, where Z is an element of the automorphism group.

13We wish to thank G. Vartanov for pointing out the relevance of [25] to this particular case, as well as

M. Kulaxizi for a relevant discussion.
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5.3 Other integrable cases and twisting

There are several other choices for the R-matrix (4.18) which solve the Yang-Baxter equa-

tion. These match the known cases where the general (q, h)–deformation gives an integrable

one-loop Hamiltonian in the SU(3) sector [55]. The common characteristic of these solu-

tions is that q and h are related. For instance, the values

q = (1 + ρ)e
2πim

3 and h = ρe
2πin

3 (ρ real , m, n integers) (5.16)

lead to integrable Hamiltonians, and from our present point of view to R-matrices satisfying

the YBE (as can be easily checked). However, as shown in [55] these cases also turned out to

be related to that of real β by similarity transformations, in some cases combined with site-

dependent redefinitions on the spin chain. Similar arguments based on unitary equivalence

were later used in [25] to demonstrate that they are not really new cases. Also from our

Hopf algebra point of view it is straightforward to show that these cases are related to

the real β case by Hopf algebra twists. The matrix F in equation (3.31) can be implicitly

found in [55]. In order to reproduce (5.16) with the phases set to zero, F takes the form

F = T ⊗ T , where T is defined as

T =
1√
3




1 1 1

1 ei 2π
3 e−i 2π

3

1 e−i 2π
3 ei 2π

3


 , (5.17)

and the phase q in (5.4) is related to ρ as

q =
1 + 2ρe−

πi
3 + ρ2e−

2πi
3

1 + ρ + ρ2
. (5.18)

We see that for zero phases the twist transformation just becomes a similarity transforma-

tion. This was discussed earlier and corresponds just to a linear basis shift for the generators

tij . In order to add the phases in (5.16) one simply twists again with F = Z⊗Z−1 as in the

previous section, where Z is now taken to be a general element of the automorphism group.

There are certain other parameter choices which were shown to be integrable in [55].

They are

q = −e
2πim

3 , h = e
2πin

3 (5.19)

as well as the very special case q = 0, h = 0. These cases are slightly particular in that

the R-matrices arising from directly substituting these values into (4.18) do not satisfy

the YBE. However, it is easy to verify that they belong to the same equivalence class

as R-matrices that do. To see this, recall from (3.17), that the more general definition

R̂ = aI −EF leads to the same algebra. For the present cases, the values a = 0, 2 produce

R-matrices satisfying the YBE.

5.4 Beyond the holomorphic sector?

The above are the only known parameter choices where the Leigh-Strassler theories

exhibit planar integrability at one loop, and they could all be seen to easily fit within

– 31 –



J
H
E
P
1
0
(
2
0
1
0
)
0
4
3

our formalism, as the special cases where the quantum algebra A(R) reduces to a

quasi-triangular Hopf algebra.

However, there is one more case in the literature where one-loop integrability has been

observed [48]. This involves moving out of the holomorphic SU(3) sector by considering a

sector made up of two holomorphic and one antiholomorphic scalar, say Φ1,Φ2,Φ3. In [48]

it was shown that for any complex q the Hamiltonian in this sector satisfies Reshetikhin’s

criteria for integrability. It is natural to wonder whether this case can also be seen to arise

from our formalism, i.e. be understood at the level of quantum symmetries of the classical

Lagrangian. The immediate problem is that in this sector the D-terms are not flavour-blind

and thus contribute non-trivially to the Hamiltonian, with their contribution actually being

crucial for integrability. A further problem that arises when trying to apply our approach

to that case is related to that the XXZ spin chain arises there as a subspace. For the XXZ

spin chain Hamiltonian it is not possible to use the Hamiltonian as a spectral-parameter-

independent R̂ matrix (it gives too trivial a solution of the RTT relations). Even though

for closed spin-chains it is equivalent with the Hamiltonian consisting of Temperley-Lieb

generators, from the view of the Lagrangian they will always be distinguishable. To see the

Uq(su(2)) quantum symmetry for the XXZ spin chain one needs the affine symmetry. Using

the spectral-parameter-dependent R-matrix one builds up a transfer matrix commuting

with the Hamiltonian.

To make the above discussion more concrete we write out the scalar field part of the

Lagrangian which is responsible for the sector with φ1 and φ
2

φ̃iφ̃jH
XXZij

klφ̃
kφ̃l, φ̃1 = φ1 , φ̃2 = φ2 , φ̃1 = φ1 , φ̃1 = φ

2
(5.20)

with HXXZ being the nearest neighbour XXZ spin chain interaction. Up to a term pro-

portional to the identity matrix, its nonzero elements can be normalised to (we just write

H from now on):

H12
12 = H21

21 = Q H12
21 = H21

12 = −1 . (5.21)

It is easy to see that we get more constraints from the RTT relation than we want for R̂.

The RTT relations for R̂ (or equivalently for H) give

0 = t11t
1
2H

12
12 + t12t

1
1H

21
12 0 = t12t

1
1H

21
21 + t11t

1
2H

12
21 . (5.22)

The equation above leads to (when Q 6= 1 which is the non-deformed case)

t11t
1
2 = 0 and t12t

1
1 = 0 . (5.23)

This clearly has more constraints that those coming from the Temperley-Lieb genera-

tor (3.9). We hope to clarify how our construction extends beyond the holomorphic sector

in future work.

6 The classical r–matrix and noncommutativity

In this section we show how the quantum symmetries we have been discussing so far

are linked to the previously known picture of the Leigh-Strassler marginal deformations
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as non-commutative deformations, in the sense of replacing standard multiplication by

multiplication with a suitable star product. We begin with a short discussion of the classical

r-matrix, and show how this is related to the noncommutativity parameter appearing in

the star product. We conclude with some comments on the dual gravity side.

6.1 The classical r–matrix

Given the R-matrix (5.4) for the real β-deformation, we can take the classical limit, which,

for the (spectral-parameter-independent) case we are examining, corresponds to an expan-

sion for small β. We thus write

Ri j
k l = δi

kδ
j
l + iβri j

k l + O(β2) (6.1)

where r is known as the classical r-matrix. Explicitly, for real β it is given by

r = diag(0,−1, 1, 1, 0,−1,−1, 1, 0) . (6.2)

It satisfies the classical Yang-Baxter equation,

[r12, r13] + [r12, r23] + [r13, r23] = 0 . (6.3)

The classical r-matrix as a limit of the R-matrix with spectral dependence, in the context

of N = 4 SYM has been discussed in [84–87], though of course there the classical limit was

taken not with respect to the deformation parameter β (which was zero) but rather with

respect to a suitable combination of momenta and the YM coupling constant (see e.g. [86]

for further discussion of possible classical limits).

6.2 Noncommutativity and Leigh-Strassler

It has been known for some time that the Leigh-Strassler theories are related to the intro-

duction of non-commutativity in the geometry probed by the six scalars of N = 4 SYM

(thought of as the transverse coordinates to the stack of D3-branes used to define the

theory), and therefore to a star product between the fields. Focusing on the real β case,

Berenstein et al. [72] discussed the noncommutative structure of the moduli space of the

theory parametrised by the vacuum expectation values of these scalars. On the amplitude

side, [34] introduced a twistor-space star product for the full Leigh-Strassler deformation,

which, however, was coordinate dependent and therefore not associative in general.

Additional insight into the noncommutative structure of the Leigh-Strassler theories

came with the work of Lunin and Maldacena [40], who, as discussed above, constructed

the AdS/CFT dual geometry of the real β deformation. As part of their construction,

these authors introduced a certain star product between the scalar fields of N = 4 SYM

which concisely encoded the β deformation. Partly inspired by the work of [40], Gao and

Wu [35] showed that for real β the twistor space star product of [34] is indeed associative

and one can thus use it to provide a consistent definition for (tree-level) amplitudes at all

orders in the deformation parameter. LM-type star products were also used in an essential

way in [36–38]. In [88], the star-product approach was extended to the integrable cases

(discussed in section 5.3) related to the β-deformation by changes of basis.
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The main idea of [40] was that, in the spirit of Seiberg and Witten [46], noncommu-

tativity on the gauge theory (open string side) would manifest itself as a deformed (but

commuting) geometry plus NS and RR fields on the closed string side. Although this direct

approach of mapping the noncommutativity parameter to a B-field was not the one that

Lunin and Maldacena actually followed in constructing the dual background, it was later

carried through in the work of [44] (similar ideas were also discussed in [89], though with-

out emphasising the role of the noncommutativity parameter). What was shown in [44]

was that the β deformation can be encoded by introducing the following star-commutators

between the coordinates of the |||C3 which is transverse to the stack of D3-branes:

[zi, zj ]∗ = iβΘij
klz

kzl, [zi, z̄j̄ ]∗ = iβΘij̄

kl̄
zkz l̄, [z̄ ī, z̄j̄ ]∗ = iβΘīj̄

k̄l̄
zk̄z l̄ . (6.4)

Here all effects of noncommutativity are encoded in the ∗-product, so in particular the

z’s on the right-hand side are commuting. Note that there are non-trivial star products

between holomorphic and antiholomorphic coordinates, which, translated to field theory

language, turned out to be necessary in order for the D-terms to stay invariant under the

noncommutative deformation [44].

Looking at the holomorphic sector, the explicit form of Θij
kl in [44] is14

Θ = −diag(0,−1, 1, 1, 0,−1,−1, 1, 0) , (6.5)

i.e. the holomorphic noncommutativity parameter is simply the classical r-matrix (6.2). To

be precise, ri j
k lx

kxl = −Θij. Thus, in the holomorphic sector, the description of the real β

deformation in [44] (and therefore also in [40]) via the introduction of non-commutativity

between the scalars of N = 4 SYM is just a first-order manifestation of the quantum

symmetry we have been discussing.

However, in order to complete this identification, it is necessary to move beyond the

holomorphic sector. Can we make contact to the mixed and antiholomorphic relations

in (6.4)? In order to do so, it is more intuitive to go back to the geometry of the quan-

tum plane.

As we have seen, the holomorphic coordinates are taken to live on a quantum plane,

defined by

Ri j
k lx

kxl = xjxi . (6.6)

At first order in β, these relations become

xixj − xjxi = −iβrij
klx

kxl . (6.7)

On translating from this quantum plane picture, where the coordinates are noncommuting,

to an equivalent one where the coordinates commute, but noncommutativity is transferred

14In [44] Θ is given in the form Θij = Θij

klz
kzl. Since in that reference the z’s on the right-hand side were

commuting coordinates (the noncommutativity being encoded in the star product) their ordering was not

important, which could potentially introduce an ambiguity between Θij

kl and Θij

lk. However, the relation

to the classical r-matrix naturally selects one of the orderings, namely the one for which Θij

kl is diagonal as

a 9 × 9 matrix.
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to the star product, we immediately see the equivalence of (6.7) to the first of the star-

product relations in (6.4).15

As for the antiholomorphic coordinates, their commutation relations should clearly be

obtained from the definition of the co-plane (4.42):

ukulR
k l
i j = ujui −→ uiuj − ujui = iβukulr

kl
ij . (6.8)

This can also be seen to match the antiholomorphic star-product relation in (6.4).

Finally, we need to check the relations following from the mixed plane relations (4.43).

First of all, expanding R̃ = 1 + iβr̃ + O(β2) it is easy to check that r̃ = −r (this is true in

general to first order in the parameters). So the relations in (4.43) reduce to:

uix
j − xjui = iβulr

jl
kix

k, xiuj − ujx
i = −iβxkril

kjul (6.9)

which are of course consistent. Having these relations at hand, we can now straightfor-

wardly check that the remaining 3×3 blocks of the noncommutativity matrix are precisely

reproduced. Therefore we conclude that, for real β, our understanding of the field theory

deformations as arising from the R-matrix (5.4) is consistent with the work of [44] on the

star product description of these theories.

Of course the fact that the real β story works so well is not that surprising. However,

in [45] this star-product approach was extended beyond the real β case. The goal there

was to attempt to construct the (still unknown) supergravity dual geometry of the general

Leigh-Strassler theory by first understanding the open-string side in terms of noncommu-

tativity of the scalar fields (the transverse directions to the D3-brane defining the gauge

theory) and then following the Seiberg-Witten procedure to obtain the closed-string fields.

The first step in this programme is thus to construct the noncommutativity matrix ΘIJ

(c.f. (6.4)) describing the general deformation (here I = {i, ī}, J = {j, j̄}). Initially restrict-

ing to the case of a purely h-deformation, and with the help of a number of assumptions

(which are expanded on in [45]) one arrives at a unique choice for ΘIJ for q = 1, h = h̄ = ρ1

as well as for q = 1, h = −h̄ = iρ2. The classical r-matrices for these two cases are

h = ρ1 : r11
23 = r13

22 = −1 , r11
32 = r12

33 = 1 , and

h = iρ2 : r11
23 = r12

33 = 1 , r13
22 = r11

32 = −1 (6.10)

plus cyclic permutations. Writing our holomorphic, antiholomorphic and mixed quantum

plane relations for these two cases, we find that the resulting noncommutativity matrix

precisely corresponds to the ΘIJ in [45]. We believe that this lends support to that first

step of the programme and to the assumptions used to derive the noncommutativity matrix.

On the other hand, the next step, which involves using the Seiberg-Witten equations

to derive the closed-string background, is on less firm ground, since (as discussed in [45])

the noncommutativity parameter does not seem to reduce to a constant matrix in an

appropriate coordinate system. So one is essentially applying the Seiberg-Witten equations

15For a deeper understanding of the relation between Hopf algebras and noncommutativity than that

provided here, see [90].
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beyond their original regime of validity (of constant noncommutativity). A related problem

is associated to the fact that this particular case is not integrable.16 The immediate result

of this is that the star product turns out not to be associative, which in [45] led to a series

of complications in constructing the dual background. Despite this, a nontrivial solution of

IIB supergravity was found in that work, up to third order in the deformation parameter.

We do not know whether the methods of [44, 45] can be extended in order to construct

the full supergravity solution. However, we believe that, since our R-matrix approach

places more emphasis on the symmetries of the problem, it could provide more insight on

the underlying noncommutative geometry than that based purely on a star product and

thus provide some useful input towards overcoming some of the problems that arose there.

7 Discussion and conclusions

In this work we identified and characterised the quantum symmetry (Hopf) algebra which

underlies the Leigh-Strassler deformations of N = 4 SYM. We did this by mapping the

problem to that of understanding the symmetries of a particular type of cyclic quantum

plane. The resulting algebra is a quantum deformation of the SU(3) R-symmetry present

in the N = 4 SYM theory, and the commutation relations for the algebra generators

are explicitly constructed from a generalised R-matrix via the standard RTT relations.

However, this algebra is not one of the standard multiparameter deformations of SU(3)

known in the literature. In particular, since our R-matrix (4.18) does not satisfy the Yang-

Baxter equation for generic values of the parameters q and h, the fact that there exists a

solution to the RTT relations spanned by all the nine (before imposing the determinant

condition) generators of the algebra is nontrivial.

A further complication arising from the violation of the Yang-Baxter equation is that

the associativity condition for the Hopf algebra implies that the quadratic RTT relations

generate new higher order (at least cubic) relations. Thus the algebra is not consistent as

a quadratic algebra, but will rather be a higher order algebra. Although this carries the

danger of trivialising the algebra (by making the ideal too large) we showed that this does

not occur and that, in particular, the cubic relations are not in conflict with the existence

of an antipode and a central quantum determinant.

Considering that quantum matrix Hopf algebras defined by generalised R-matrices

(not satisfying the YBE) have not received much attention in the literature, it would be of

great interest to study them more and understand their consequences for various physical

systems. A better understanding of our Hopf algebra would not only provide more insight

into the Leigh-Strassler deformation, but also into the spin-chain Hamiltonian which the

dilatation operator is mapped to. It would also be interesting to understand its relation

to the non-hermitian Hamiltonian [48] obtained from the Belavin R-matrix [91], which

generates the same quantum plane but not the same co-plane (since it is not hermitian).

Notice that for our proof that we have a Hopf algebra we could treat q̄ and h̄ as independent

of q and h and thus it was not necessary for them to be complex conjugates of each other.

16This is in contrast to the q = 0, h 6= 0 case in section 5.2. However, as we discussed, that case does not

seem to have a well-defined classical limit and might not be describable by a star product in a simple way.
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This means that included in the Hopf algebra we found is the case describing the Belavin

non-hermitian Hamiltonian. It would be interesting to understand if this Hopf algebra is

related to the elliptic quantum group which gives rise to the Belavin R-matrix.

Quantum symmetries have, for special values of q and h, of course been observed be-

fore for the Leigh-Strassler theories in the context of spin chains, although they were never

written down explicitly in the matrix quantum algebra picture, which we find the most

intuitive one from a physicist’s point of view (in the sense of being the most straightforward

generalisation of the usual matrix Lie algebra picture). The main novelty of our approach

is that we can identify the quantum symmetry directly from the (four-dimensional) field

theory Lagrangian without needing to consider the corresponding spin chain. From this

point of view, the fact that the planar one-loop spin chain Hamiltonian enjoys this sym-

metry is simply due to the fact that the quantum (in the Hopf algebra sense) symmetry is

not broken at the quantum (in the sense of planar gauge perturbation theory) level. This

would also imply that this symmetry would remain beyond one-loop order, even though

on the spin chain side we would have to consider long-range Hamiltonians.17 Going be-

yond spin chains, one could hope that this quantum symmetry would provide some input

towards algebraically determining the structure of the higher-loop finiteness conditions,

thus (at least at the planar level) potentially helping to characterise the parameter space

of exactly marginal deformations, parametrised by the function f(g, κ, q, h) = 0. We made

some preliminary comments on this possibility in section 4.2.

In the special cases where the generalised R-matrix reduces to an actual R-matrix

satisfying the Yang-Baxter equation, our Hopf algebra becomes an honest dual quasi-

triangular Hopf algebra. This provides a very appealing explanation of why the generic LS

theory is not (one-loop) integrable: Integrability requires this quasi-triangular Hopf algebra

structure which is not present in general. Thus we have come closer to the answer to the

main questions posed in the introduction: What is the crucial property that differentiates

N = 4 SYM, the real β deformation and a few other examples of planar-integrable 4d

field theories from the much larger class of perturbatively finite 4d field theories? And,

perhaps more importantly, is there a property that differentiates those latter cases from

the far larger class of conformal theories? Of course, the fact that integrability requires

an underlying quasi-triangular Hopf algebra structure is by no means surprising. What we

would like to advocate is that there might be a more general algebraic structure underlying

finiteness, some properties of which we have begun to uncover. Understanding whether

this is a general feature will require considering a wider range of finite theories beyond the

Leigh-Strassler deformations.

In this context, it is interesting to speculate whether there are other deformations of

N = 4 beyond the Leigh-Strassler examples which might be integrable. One direction to

be explored is clearly that of breaking supersymmetry by involving the U(1)R factor in

the deformation [82]. Thus one would be looking at integrable quantum deformations of

SU(4). But another possibility would be to look at other deformations of SU(3), e.g. those

17Another potential issue when considering the spin chain at higher loops is that the SU(3) sector ceases

to be closed, so one would need to consider at least the SU(2|3) sector (see [92] for the N = 4 discussion).
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appearing in the classification of [68]. Doing so would involve overcoming some immediate

problems, since, although these deformations do lead to R-matrices satisfying the YBE,

they also have several features which from a physical point of view seem to make them

undesirable in describing superpotential deformations. They generically break the cyclic

Z3 symmetry (essential in the finiteness argument of [19]), and also do not seem to lead to

real Lagrangians (since Eijk and F ijk are not conjugates).

Eventually one would also like to explore how our algebra can be embedded into the

full supergroup SU(2, 2|4). Along these lines one might try to make contact with the work

of [93], which considered integrable quantum deformations of the psu(2|2)×IR3 symmetry of

the N = 4 SYM S-matrix [10]. Since the requirements of integrability and the q-deformed

theories do not match in general [50], the connection of our work to [93] is not immediately

clear but certainly deserves further study.

The fact that the associativity requirement on our Hopf algebra led to cubic relations,

and thus to the algebra not being consistent as a quadratic algebra, could perhaps be

considered an unsatisfactory aspect of our construction. An alternative approach would

be to try to live with non-associativity. One well-known class of quantum algebras which

have non-associativity built in (and under full control) is that of quasi–Hopf algebras,

introduced by Drinfel’d [71]. In an important subclass of these, called quasi-triangular

quasi-Hopf, one considers a generalised R-matrix which satisfies a generalised Yang-Baxter

equation. Furthermore, quasi-Hopf algebras have been considered in the past as suitable

candidates for internal symmetries in field theory [94]. It would certainly be very appealing

if our algebra were to fall within this framework. We hope to report on this possibility in

future work.

One fundamental element of any discussion of quantum groups and integrability which

was conspicuous by its absence in this work is spectral-parameter dependence. Our general

R-matrix (4.18) clearly does not involve a spectral parameter. The spectral-parameter-

dependent Hopf algebra structure in the N = 4 context was essential in order to understand

crossing and constrain the dressing phase [95–97]. Similarly, being able to introduce it here

would certainly provide more insight into the structure of the Leigh-Strassler theories. The

standard procedure for introducing the spectral parameter is passing to the affine group,

and it could be worthwhile to understand whether it can be applied here. On the other

hand, it is not clear whether we should expect to see any spectral-parameter dependence

at the level of the classical Lagrangian.

With regard to the dual geometry, we should emphasise that one should probably not

expect the quantum symmetry to be evident on the gravity side where, as observed in [72]

in a similar context, it is only the centre of the algebra which should be manifest. As

discussed in section 6.2, one way to understand the effect of the quantum symmetry on

the dual geometry (at least to first order) is through open/closed duality and the ideas

of [46]. We should note, however, that in applying the generalised geometry formalism to

the real β deformations [41–43] one can actually identify the noncommutativity matrix on

the gravity side as part of the construction. Perhaps this observation could be extended to

the full quantum symmetry.

Quantum groups are well-known to exhibit very interesting features at special values of
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the parameters corresponding to roots of unity. In particular the representation structure

at these points is very different from the classical case. The Leigh-Strassler theories with q

a root of unity have been studied in [72, 98], both with regard to the gauge theory moduli

space as well as to their dual string backgrounds (which correspond to near-horizon limits

of branes on orbifolds with discrete torsion). In order to make contact with and possibly

extend that work, one would have to consider our algebra at roots of unity and understand

the new features that might emerge there.

To conclude, using the Leigh-Strassler marginal deformations as our motivation, we

have provided what we believe is a fresh and potentially unifying point of view on the

interplay between integrability and finiteness in four-dimensional field theory. Although

some aspects of our construction are perhaps tentative, we believe that it provides a useful

starting point from which to better understand the origins and consequences of integrability

in field theory, as well as a glimpse into what lies beyond.
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A Definitions

Since the language of quantum matrix bialgebras might not be familiar to all readers, we

will provide some of the most important definitions. For more details and proofs, the reader

should consult one of the excellent references on quantum groups and Hopf algebras, for

instance [49, 63, 64]. Much of the discussion below closely follows [64].

The main new features of bialgebras compared to algebras are the presence of a co-

product and a counit, which act as shown in figure 1.

A coalgebra (C,+,∆, ǫ; k) over the field k is a vector space (C,+; k) over k along with

a linear coproduct map ∆: C → C⊗C, which is coassociative and there exists a counit map

ǫ : C → k as shown in the figure. Note that reversing the arrows in the above figure gives

an algebra.

A coalgebra is said to be cocommutative if τ ◦ ∆ = ∆, where τ is the transposition

map: τ(v ⊗ w) = w ⊗ v.

A bialgebra (H,+, ·, η,∆, ǫ; k) over k (where · and η are the standard algebra product

and unit map respectively) is a vector space (H,+; k) which is both an algebra and a
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ǫ ⊗ Id Id ⊗ ǫ∆

(b)

Figure 1. A schematic representation of the action of the coproduct ∆ and the counit ǫ.

coalgebra in a compatible way:

∆(hg) = ∆(h)∆(g), ∆(1) = 1 ⊗ 1 , ǫ(hg) = ǫ(h)ǫ(g) , (h, g ∈ H) . (A.1)

A Hopf algebra is a bialgebra with an antipode S : C → C, which is an inverse-like object

(though its action need not square to the unit element). The defining relations of the

antipode are

· (S ⊗ id) ◦ ∆ = ·(id ⊗ S) ◦ ∆ = η ◦ ǫ . (A.2)

In the text we are interested in Hopf algebras which are quantum deformations of the

algebra of functions of SU(3). However, in order to demonstrate the relevant concepts, let

us briefly discuss the simpler case of GL(2) in some detail. Let us start by considering an

element g of (the classical Lie group) GL(2). One way to describe the group is through the

matrix entries {a, b, c, d} of the group element g of GL(2)

g =

(
a b

c d

)
(A.3)

with ad − bc 6= 0. The algebra, fun(GL(2)) of polynomial functions of the elements

{a, b, c, d} is a commutative algebra. With the (non-cocommutative) coproduct defined

as

∆gm
n =

∑

k

gm
k ⊗ gk

n, ǫgm
n = δm

n (A.4)

(here gm
n denotes the elements of g, for example g1

1 = a) and the antipode map

S(g) → g−1 (A.5)

it becomes a commutative and non-cocommutative Hopf algebra.

A quasi-triangular Hopf algebra is a Hopf algebra which is not cocommutative, but

where the non-cocommutativity is controlled by a matrix R, called the universal R-matrix.

More precisely, it consists of a pair (H,R), where H is the Hopf algebra and R is an

invertible matrix in H⊗H and satisfies (h ∈ H)

(∆ ⊗ id) ◦ R = R13R23, (id ⊗ ∆) ◦ R = R13R12

τ ◦ ∆h = RhR−1 .
(A.6)

Using these axioms it is possible to show that R satisfies an abstract Yang-Baxter equation.
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The existence of both a product and co-product leads to a natural notion of duality

for Hopf algebras: Given a Hopf algebra H one can always define a dual Hopf algebra H∗

where the arrows in the diagrams above are interchanged. Thus what is the coproduct in

the original Hopf algebra becomes the product in the dual Hopf algebra. This is the duality

referred to in the text when we mention that for some particular cases of the parameters

our Hopf algebra is dual to a quasi-triangular Hopf algebra.

All our discussion in the text is in the dual Hopf algebra picture, and in particular

the Hopf algebra A(R) defined by the relations in table 1 is really a dual Hopf algebra H∗

from the point of view of the definitions above. The reason we take this perspective is clear

from the definition (A.4) of the coproduct (which we keep for A(R)): It is what allows

us to represent the algebra generators as matrices and work with them as we would in

linear algebra. Notice that in the Hopf algebra dual to A(R) it is the non-cocommutativity

which is controlled by an R-matrix, while in A(R) itself it is the noncommutativity which

is controlled by an R-matrix. The fact that A(R) has the coproduct (A.4) is the reason

that we can perform matrix multiplication of the elements t of A(R) as usual, while the

fact that it is noncommutative is what causes the individual matrix components tij not to

commute among themselves. If they did (i.e. R became the unit matrix) we would reduce

to the Lie algebra of SU(3) just as in the GL(2) example above.

The duality between the two pictures is reflected by a difference in notation. Quantum

groups are usually defined in terms of a deformation of the universal enveloping algebra of a

certain undeformed Lie algebra, which e.g. for the standard q-deformation of su(N) would

be denoted as Uq(su(N)). The dual, linear algebra, picture would in this case be denoted

by SUq(N) (where the capital notation should not distract from the fact that quantum

groups are Hopf algebras and not groups). Although we could have chosen to employ the

notation SUq,h(3) to denote our two-parameter deformation of SU(3), this might allude to

the standard deformations of SU(3) which are different from ours, therefore we have simply

denoted our matrix quantum algebra A(R).

Let us now review some basic facts about the quasi-triangular Hopf algebra Uq(sl(2)).

The defining commutation relations are [64]:

q
H
2 X±q−

H
2 = q±X±, [X+,X−] =

qH − q−H

q − q−1
. (A.7)

This forms a Hopf algebra with coproduct

∆q±
H
2 = q±

H
2 ⊗ q±

H
2 , ∆X± = X± ⊗ q

H
2 + q−

H
2 ⊗ X± (A.8)

(we suppress the explicit expressions for the counit and antipode). The universal R-matrix

R related to the quasi-triangular structure is given by

R = q
H⊗H

2

∞∑

n=0

(1 − q−2)n

[n]!
(q

H
2 X+ ⊗ q−

H
2 X−)nq

n(n−1)
2 , where [n] =

qn − q−n

q − q−1
. (A.9)

In order to exhibit this abstract R as a concrete R-matrix we need to evaluate it in a partic-

ular representation of the algebra. Let us choose the fundamental (spin–1
2) representation
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as follows:

Hv0 = v0, X+v0 = 0, X−v0 = v1

Hv1 = −v1, X+v1 = v0, X−v1 = 0
(A.10)

or in other words, choosing v0 =

(
1

0

)
and v1 =

(
0

1

)
,

ρ(H) =

(
1 0

0 −1

)
, ρ(X+) =

(
0 1

0 0

)
, ρ(X−) =

(
0 0

1 0

)
. (A.11)

It is clear that out of the infinite series in (A.9) only the first two terms are nonzero. We

then find

R = (ρ ⊗ ρ)(R) =

(
q

1
4 0

0 q−
1
4

)
⊗
(

q
1
4 0

0 q−
1
4

)(
1 ⊗ 1 + (1 − q−2)

(
0 q

1
2

0 0

)
⊗
(

0 0

q
1
2 0

))

= q−1/2




q 0 0 0

0 1 q − q−1 0

0 0 1 0

0 0 0 q


 . (A.12)

Thus the matrix representation of the action of the universal R-matrix R is just the R-

matrix (3.7).

B The quadratic bialgebra relations

In this section we will show that any matrix R̂ of the form R̂i j
k l = aδi

kδ
j
l+EklrF

rij provides

a non-trivial solution to the quadratic RTT equations (3.4). Here the only restriction we

put on E and F is that they are cyclic in the indices and that they are zero when two of

the indices are alike but not the third. There is no loss in generality if we normalise the

tensors Eijk and F lmn by setting d = 1 in (4.6), so we could choose to call the various

non-zero elements

El(l+1)(l+2) = 1, El(l+2)(l+1) = −q, Elll = h

F l(l+1)(l+2) = 1, F l(l+2)(l+1) = −q̄, F lll = h̄ .
(B.1)

In the general case we do not need to consider (q̄, h̄) to be the complex conjugates of (q, h),

so in all we do here we will consider them to be linearly independent. Of course for the

physical applications we consider we will restrict to the special case where q̄ and h̄ are the

complex conjugates of q and h, as dictated by reality of the Leigh-Strassler Lagrangian.

Considering that the value of the constant a does not affect the bialgebra we will choose it

to be zero in the following.

The RTT equations can be written in terms of R̂ as

R̂a b
i jt

i
ct

j
d = tait

b
jR̂

i j
c d (B.2)
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or in terms of E and F

EijlF
labtict

j
d = tait

b
jEcdlF

lij . (B.3)

On the left-hand side we have three possibilities for b:

b = a; b = a + 1; b = a − 1 . (B.4)

That means for a given c and d we have in total nine possibilities on the left-hand side

when we include the cyclic permutation of the indices a. Equivalently on the right-hand

side we have three possibilities for d:

d = c; d = c + 1; d = c − 1 , (B.5)

and all together for a given a and b we have in total nine possibilities on the right-hand

side. This gives in total 81 equations for our nine generators, whose commutation relations

we wish to know. If we require that all the generators are non-trivial we should have just

36 (8+7+6+5+4+3+2+1) commutation relations. In order for this to be consistent we

need to show that the remaining equations are linearly dependent on these.

In order to keep track of all the equations we define the tensor

Mab
cd := EijlF

labtict
j
d − tait

b
jEcdlF

lij . (B.6)

From M
a(a+1)
cc = 0 we obtain

− qta+1
c tac + tact

a+1
c = h(tac+1t

a+1
c−1 − tac−1t

a+1
c+1q̄ + tact

a+1
c h̄) − hta−1

c ta−1
c . (B.7)

Similarly from M
a(a+1)
c(c−1) = 0 we find

[ta+1
c , tac−1] = (−tact

a+1
c−1q̄ + tac+1t

a+1
c+1h̄) +

h

q
ta−1

c ta−1
c−1 +

1

q
tact

a+1
c−1 , (B.8)

and M
a(a+1)
c(c+1) = 0 gives

− qta+1
c tac+1 + q̄tac+1t

a+1
c = tac−1t

a+1
c−1h̄ − hta−1

c ta−1
c+1 . (B.9)

The above equations give us 27 equations. We can get nine more from Maa
cc :

tac+1t
a
c−1 − q̄tac−1t

a
c+1 =

h̄

h
(ta+1

c ta−1
c − qta−1

c ta+1
c ) . (B.10)

Thus the above gives us all the 36 commutators (or deformed commutators) between the

nine generators! These are tabulated in table 1.18

In order to prove our statement that there exist non-trivial solutions to (B.2) we now

need to show that the remaining equations, encoded by M
(a+1)a
cc ,M

(a+1)a
c(c−1) ,M

(a+1)a
(c−1)c ,M cc

(a+1)a

18Relation (b) in table 1 is actually a combination of (B.8) and (B.9) that we found more useful in various

manipulations.
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and M cc
a(a+1) are linearly dependent on the above. Let us now show that. The following

equations are all the same

1

h

(
q̄Ma(a+1)

cc + M (a+1)a
cc

)
=−1

q̄

(
M

a(a+1)
(c−1)(c+1) + M

(a+1)a
(c−1)(c+1)

)
= q̄M

a(a+1)
(c+1)(c−1) + M

(a+1)a
(c+1)(c−1)

= (q̄2tac−1t
a+1
c+1 − ta+1

c+1t
a
c−1) − q̄(tac+1t

a+1
c−1 − ta+1

c−1t
a
c+1) + h̄(−q̄tact

a+1
c − ta+1

c tac)

=
1

q

(
M

a(a+1)
(c+1)(c−1) − M (a−1)(a−1)

cc − q̄M
a(a+1)
(c−1)(c+1)

)
. (B.11)

Note that the last expression contains only equations belonging to our original 36. The

linear dependence of M cc
(a+1)a and M cc

a(a+1) follows from invariance under exchanging the

upper and lower indices together with exchanging the barred parameters with the unbarred

ones, from which we obtain the equation

M cc
(a+1)a + qM cc

a(a+1) =
h̄

q̄

(
M

(c+1)(c−1)
a(a+1) − M cc

(a−1)(a−1) − q̄M
(c−1)(c+1)

a(a+1)

)
. (B.12)

Finally, it is straightforward to show the following relation

hMaa
c(c+1) = Maa

(c−1)(c−1) − h̄M
(a+1)(a−1)
(c−1)(c−1) + hh̄M

(a+1)(a−1)
c(c+1) . (B.13)

We have thus related all remaining Mab
cd to the four ones chosen above. We have therefore

proved that there exist non-trivial solutions to the quadratic equations. The cubic relations

following from them will be discussed in appendix C.

C The cubic bialgebra relations

There are two different ways to obtain cubic relations, either (c.f. (3.13))

R̂12R̂23R̂12t1t2t3 = t1t2t3R̂12R̂23R̂12 (C.1)

or (c.f. (3.14))

R̂23R̂12R̂23t1t2t3 = t1t2t3R̂23R̂12R̂23 . (C.2)

These two sets of equations are equivalent for any R-matrix in the same equivalence class

as one which satisfies the Yang-Baxter equation. For our generalised R-matrix this is not

the case, and in the subsequent text we will analyse the extra cubic relations which follow

from these (for more discussion on this see section 3). As in appendix B, it is sufficient to

analyse the nontrivial EF part of R̂. To have the relations under better control we will

again define some tensors

Mabc
def := ML

abc
def − MR

abc
def

Nabc
def := NL

abc
def − NR

abc
def

(C.3)

where

ML
abc
def := EijαFαabEklβF βjcEmnγF γiktmdt

n
et

l
f ,

MR
abc
def := tait

b
jt

c
kElmαFαijEnfβF βmkEdeγF γln ,

NL
abc
def := EijαFαbcEklβF βaiEmnγF γljtkdt

m
et

n
f ,

NR
abc
def := tait

b
jt

c
kElmαFαjkEdnβF βilEefγF γnm .

(C.4)
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In this new notation the equations (C.1) and (C.2) take the form

ML
abc
def − MR

abc
def = 0

NL
abc
def − NR

abc
def = 0 .

(C.5)

Our main goal in this appendix is to show that these cubic relations are not in conflict with

the existence of an antipode and a central quantum determinant. The problem is that (C.5)

are complicated relations which contain redundant information about the algebra, so they

are not immediately useful. We would like to manipulate them in order to find an irreducible

set of cubic equations that are easier to work with. To do this, we will start by splitting

them into two classes: The first one will be related to the diagonal components of the

matrices st and ts (where s is the antipode (4.24)) while the second class to the off-

diagonal components. As we will see, the reason for treating them separately is that the

first class does not lead to new cubic relations while the second one does.

The diagonal components. This is the case where both the upper indices of the ML

and NL tensors are either all equal or all different, and similarly for the lower set of indices

of MR and NR. Let us write our cubic tensors a bit more explicitly by choosing a value for

one index. This is completely general, since the other choices can be recovered by cyclic

symmetry. We obtain:

ML
ab3
def = F ab3

(
(t1dt

2
et

3
f − qt2dt

1
et

3
f + ht3dt

3
et

3
f )(1 + (q̄q)2 + (h̄h)2) (C.6)

+(t2dt
3
et

1
f − qt3dt

2
et

1
f + ht1dt

1
et

1
f )(q̄q + h̄h + q̄qh̄h)

+(t3dt
1
et

2
f − qt1dt

3
et

2
f + ht2dt

2
et

2
f )(q̄q + h̄h + q̄qh̄h)

)
, {a, b|F ab3 6= 0} ,

MR
abc
de1 = Ede1

(
(ta1t

b
2t

c
3 − q̄ta2t

b
1t

c
3 + h̄ta3t

b
3t

c
3)(q̄q + h̄h + q̄qh̄h) (C.7)

+(ta3t
b
1t

c
2 − q̄ta1t

b
3t

c
2 + h̄ta2t

b
2t

c
2)(q̄q + h̄h + q̄qh̄h)

+(ta2t
b
3t

c
1 − q̄ta3t

b
2t

c
1 + h̄ta1t

b
1t

c
1)(1 + (q̄q)2 + (h̄h)2)

)
, {d, e|Ede1 6= 0} ,

NL
3bc
def = F 3bc

(
(t3dt

1
et

2
f − qt3dt

2
et

1
f + ht3dt

3
et

3
f )(1 + (q̄q)2 + (h̄h)2) (C.8)

+(t1dt
2
et

3
f − qt1dt

3
et

2
f + ht1dt

1
et

1
f )(q̄q + h̄h + q̄qh̄h)

+(t2dt
3
et

1
f − qt2dt

1
et

3
f + ht2dt

2
et

2
f )(q̄q + h̄h + q̄qh̄h)

)
, {b, c|F 3bc 6= 0}

and

NR
abc
1ef = E1ef

(
(ta3t

b
1t

c
2 − q̄ta3t

b
2t

c
1 + h̄ta3t

b
3t

c
3)(q̄q + h̄h + q̄qh̄h) (C.9)

+(ta2t
b
3t

c
1 − q̄ta2t

b
1t

c
3 + h̄ta2t

b
2t

c
2)(q̄q + h̄h + q̄qh̄h)

+(ta1t
b
2t

c
3 − q̄ta1t

b
3t

c
2 + h̄ta1t

b
1t

c
1)(1 + (q̄q)2 + (h̄h)2)

)
, {e, f |E1ef 6= 0} .

First we will prove that the equations (C.6) and (C.7) do not lead to any cubic relations.

Then we will use the fact that N and M are related through the combined operation of

switching the upper and lower indices, and switching barred and unbarred parameters. To

do this we will find it useful to consider special linear combinations of the tensors which
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considerably simplify the calculation. Before writing them down, we will make the following

definitions

x :=
(
q̄(t11t

2
2t

3
3 − q̄t12t

2
1t

3
3 + h̄t13t

2
3t

3
3) + (t21t

1
2t

3
3 − q̄t22t

1
1t

3
3 + h̄t23t

1
3t

3
3)
)

,

y :=
(
q̄(t12t

2
3t

3
1 − q̄t13t

2
2t

3
1 + h̄t11t

2
1t

3
1) + (t22t

1
3t

3
1 − qt23t

1
2t

3
1 + ht21t

1
1t

3
1)
)

,

z :=
(
q̄(t13t

2
1t

3
2 − q̄t11t

2
3t

3
2 + h̄t12t

2
2t

3
2) + (t23t

1
1t

3
2 − q̄t21t

1
3t

3
2 + h̄t22t

1
2t

3
2)
)

,

A := 1 + (q̄q)2 + (h̄h)2 , B := q̄q + h̄h + q̄qh̄h .

(C.10)

Now we write down some linear combinations of the M tensors that lead to nice looking

equations:

q̄M123
de3 + M213

de3 = 0 ⇒ q̄MR
123
de3 + MR

213
de3 = 0 ⇒ Ax + By + Bz = 0

q̄M123
de1 + M213

de1 = 0 ⇒ q̄MR
123
de1 + MR

213
de1 = 0 ⇒ Bx + Ay + Bz = 0 (C.11)

q̄M123
de2 + M213

de2 = 0 ⇒ q̄MR
123
de2 + MR

213
de2 = 0 ⇒ Bx + By + Az = 0 .

Note that the first step (canceling the ML parts) is possible for any values of the e, f

indices, however for the second step we need to require the condition in (C.7). The three

equations in (C.11) imply that each of x, y and z must be zero (unless A = B) and the

resulting cubic conditions all have the form e.g.:

q̄
(
t11t

2
2 − q̄t12t

2
1 + h̄t13t

2
3 − q̄−1(t12t

2
1 − q̄t22t

1
1 + h̄t32t

3
1)
)
t33 = 0 . (C.12)

However, it follows from the quadratic relations that the expression inside the parentheses

is zero, and thus for this choice of indices in the tensor M the quadratic relations did not

induce further cubic restrictions. The same happens for N starting from (C.8) and (C.9).

Thus, if these were all the possibilities for the indices, the story would have been over and

we would have had a consistent quadratic algebra. But now this is not the end of a story,

but the beginning of a new one.

The off-diagonal components. Now we consider the cases where the upper indices of

M and N are such that two are equal and the third is different. In this case we will see

that the quadratic relations lead us to cubic ones as a consequence of the different possible

orderings. Consider e.g. ML
112
def :

ML
112
def =h̄

(
(t1dt

2
et

1
f − qt2dt

1
et

1
f + ht3dt

3
et

1
f )(q̄2h − qh̄2 − qh)

+(t3dt
1
et

3
f − qt1dt

3
et

3
f + ht2dt

2
et

3
f )(q2h̄ − q̄h2 − q̄h̄)

+(t2dt
3
et

2
f − qt3dt

2
et

2
f + ht1dt

1
et

2
f )(q̄q + h̄h + q̄qh̄h)

)
.

(C.13)

From this, and the similar expression for ML
122
def , we deduce the following relations

− 1

q̄
ML

322
def = ML

232
def =

1

h̄
ML

112
def and ML

122
def = −1

q̄
ML

212
def =

1

h̄
ML

332
def . (C.14)

Similarly for NL we find

NL
112
def =

(
(t3dt

3
et

1
f − qt3dt

1
et

3
f + ht3dt

2
et

2
f )(q̄2h − qh̄2 − qh)

+(t2dt
2
et

3
f − qt2dt

3
et

2
f + ht2dt

1
et

1
f )(q2h̄ − q̄h2 − q̄h̄)

+(t1dt
1
et

2
f − qt1dt

2
et

1
f + ht1dt

3
et

3
f )(q̄q + h̄h + q̄qh̄h)

)
.

(C.15)
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Considering also NL
122
def , we obtain

− 1

q̄
NL

121
def = NL

112
def =

1

h̄
NL

133
def and NL

131
def = −1

q̄
NL

113
def =

1

h̄
NL

122
def . (C.16)

The above equations (C.14) and (C.16) will guide us to again make appropriate choices of

linear combinations of the M and N in order to reach irreducible cubic relations. Consider:

q̄M112
123 + h̄M322

123 = 0 ⇒ q̄MR
112
123 + h̄MR

322
123 = 0 ⇒

(
q̄(t11t

1
2t

2
3−q̄t12t

1
1t

2
3+h̄t13t

1
3t

2
3)+h̄(t31t

2
2t

2
3 − q̄t32t

2
1t

2
3 + h̄t33t

2
3t

2
3)
)
(1+(q̄q)2+(h̄h)2)

+
(
q̄(t12t

1
3t

2
1−q̄t13t

1
2t

2
1+h̄t11t

1
1t

2
1)+h̄(t32t

2
3t

2
1−q̄t33t

2
2t

2
1+h̄t31t

2
1t

2
1)
)
(q̄q + h̄h + q̄qh̄h)

+
(
q̄(t13t

1
1t

2
2 − q̄t11t

1
3t

2
2 + h̄t12t

1
2t

2
2) + h̄(t33t

2
1t

2
2 − q̄t31t

2
3t

2
2 + h̄t32t

2
2t

2
2)
)

×(q̄q + h̄h + q̄qh̄h) = 0 . (C.17)

Now by cyclically permuting the lower indices we get all in all three equations again of the

form (C.11) (but now with the x, y and z instead being what we have in the parentheses

above). This leads to

q̄(t11t
1
2t

2
3 − q̄t12t

1
1t

2
3 + h̄t13t

1
3t

2
3) + h̄(t31t

2
2t

2
3 − q̄t32t

2
1t

2
3 + h̄t33t

2
3t

2
3) = 0 , (C.18)

q̄(t12t
1
3t

2
1 − q̄t13t

1
2t

2
1 + h̄t11t

1
1t

2
1) + h̄(t32t

2
3t

2
1 − q̄t33t

2
2t

2
1 + h̄t31t

2
1t

2
1) = 0 , (C.19)

q̄(t13t
1
1t

2
2 − q̄t11t

1
3t

2
2 + h̄t12t

1
2t

2
2) + h̄(t33t

2
1t

2
2 − q̄t31t

2
3t

2
2 + h̄t32t

2
2t

2
2) = 0 . (C.20)

Now we introduce the following useful tensor

Labc = (ta1t
b
2t

c
3 − q̄ta2t

b
1t

c
3 + h̄ta3t

b
3t

c
3) + (ta2t

b
3t

c
1 − q̄ta3t

b
2t

c
1 + h̄ta1t

b
1t

c
1)

+(ta3t
b
1t

c
2 − q̄ta1t

b
3t

c
2 + h̄ta2t

b
2t

c
2). (C.21)

In this notation we can write the sum of the equations above as

(C.18) + (C.19) + (C.20) = q̄L112 + h̄L322 = 0 (C.22)

and we also have all the cyclic permutations of the equation above.

Then performing the same manipulations with the tensor N as we just did for M we

find

h̄N112
312 − N133

312 = 0 ⇒ h̄NR
112
312 − NR

133
312 = 0 ⇒

(
h̄(t13t

1
1t

2
2−q̄t13t

1
2t

2
1+h̄t13t

1
3t

2
3)−(t13t

3
1t

3
2−q̄t13t

3
2t

3
1+h̄t13t

3
3t

3
3)
)
(1+(q̄q)2+(h̄h)2)

+
(
h̄(t11t

1
2t

2
3−q̄t11t

1
3t

2
2+h̄t11t

1
1t

2
1)−(t11t

3
2t

3
3 − q̄t11t

3
3t

3
2 + h̄t11t

3
1t

3
1)
)
(q̄q+h̄h+q̄qh̄h)

+
(
h̄(t12t

1
3t

2
1 − q̄t12t

1
1t

2
3 + h̄t12t

1
2t

2
2) − (t12t

3
3t

3
1 − q̄t12t

3
1t

3
3 + h̄t12t

3
2t

3
2)
)

×(q̄q + h̄h + q̄qh̄h) = 0 (C.23)

plus using once again that the equation above plus the ones we get from cyclically permuting

are of the form (C.11) we have:

h̄(t13t
1
1t

2
2 − q̄t13t

1
2t

2
1 + h̄t13t

1
3t

2
3) − (t13t

3
1t

3
2 − q̄t13t

3
2t

3
1 + h̄t13t

3
3t

3
3) = 0 , (C.24)

h̄(t11t
1
2t

2
3 − q̄t11t

1
3t

2
2 + h̄t11t

1
1t

2
1) − (t11t

3
2t

3
3 − q̄t11t

3
3t

3
2 + h̄t11t

3
1t

3
1) = 0 , (C.25)

h̄(t12t
1
3t

2
1 − q̄t12t

1
1t

2
3 + h̄t12t

1
2t

2
2) − (t12t

3
3t

3
1 − q̄t12t

3
1t

3
3 + h̄t12t

3
2t

3
2) = 0 . (C.26)
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Again the sum of the above equations can be expressed in terms of L

(C.24) + (C.25) + (C.26) = h̄L112 − L133 = 0 (C.27)

plus cyclic permutations of this. Now we can use equations (C.22) and (C.27) in alternation

(together with their cyclically permuted versions ) to show the following

q̄L112 = −h̄L322 = −h̄2L331 =
h̄3

q̄
L211 =

h̄4

q̄
L223 = − h̄5

q̄2
L133 = − h̄6

q̄2
L112 . (C.28)

Thus we see that, for generic values of the parameters, L112 is zero. Writing it out explicitly,

(t13t
1
1 − q̄t11t

1
3 + h̄t12t

1
2)t

2
2 +(t11t

1
2 − q̄t12t

1
1 + h̄t13t

1
3)t

2
3 +(t12t

1
3 − q̄t13t

1
2 + h̄t11t

1
1)t

2
1 = 0 .

(C.29)

The quadratic expressions inside the parentheses are non-zero, thus the quadratic rela-

tions have generated cubic relations. As a consequence of this the ideal generated by the

quadratic relations includes cubic relations. These relations are the ones responsible for

the vanishing of off-diagonal terms in (4.30), where we prove the existence of the antipode.

As a consistency check, it can easily be verified that if we restrict to the real β de-

formation (where q̄ = 1/q, h = 0) this cubic relation does follow from the quadratic ones

in (5.8). This is as it should be because that case is dual quasi-triangular and there should

be no new equations at cubic order.

Clearly all the other tensors of type La(a−1)(a−1) and Laa(a+1) in (C.28) vanish. Similar

manipulations show that the Laa(a−1) and La(a+1)(a+1) tensors vanish as well. For clarity we

write L122 explicitly:

t11(t
2
2t

2
3 − q̄t23t

2
2 + h̄t21t

2
1)+ t13(t

2
1t

2
2 − q̄t22t

2
1 + h̄t23t

2
3)+ t12(t

2
3t

2
1 − q̄t21t

2
3 + h̄t22t

2
2) = 0 .

(C.30)

Finally, from equation (C.4) it is clear that MR and ML and respectively NR and NL are

related to each other through exchanging the upper indices with the lower indices at the

same time as exchanging the Eijk with F ijk. This implies that from knowing that we have

the constraint (C.30) we also know that we will have constraints of the form:

t11(t
2
2t

3
2 − qt32t

2
2 + ht12t

1
2)+ t31(t

1
2t

2
2 − qt22t

1
2 + ht32t

3
2)+ t21(t

3
2t

1
2 − qt12t

3
2 + ht22t

2
2) = 0 .

(C.31)

It is possible that many of the resulting equations will be linearly dependent, or it could

be that put together they impose even stronger cubic constraints on the algebra. We have

not performed a thorough analysis of these constraints, so we do not claim to have found

an irreducible set of equations. For our present purposes (proving the existence of the

antipode and central determinant) it is enough that relations like (C.29) and (C.31) exist

and that they can never interfere with the cubic relations that need to stay nonzero. In

particular, they do not force D = 0. There will also be further equations arising from the

sector where both the upper and lower sets of indices contain two equal indices. These

relations are also not relevant for our present purposes, since they do not arise in the proof

of the existence of the antipode. We hope to report on a full analysis of the cubic relations,

as well as the possibility of higher-order relations, in a future publication.
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D On matrix representations of the algebra generators

In this appendix we discuss the possibility of finding explicit matrix representations of our

algebra generators tij, satisfying the relations in table 1 which define our Hopf algebra

A(R). Recall that these were found through the FRT relations from the R-matrix (4.18),

after taking into account the symmetries and simplifying them to obtain an independent

set of quadratic relations.

Using these relations, we then showed that transforming the chiral superfields Φi as

Φi → tijΦ
j leaves the superpotential (4.5) invariant. Here of course the tij depend neither

on spacetime nor on the fields Φi, since the symmetry A(R) is just a deformation of the

global SU(3) symmetry group of the undeformed case. Note that in the undeformed case

q → 1, all the tij commute and can be taken to be numbers, and thus the matrix

t =




t11 t12 t13
t21 t22 t23
t31 t32 t33


 (D.1)

is simply an SU(3) matrix. But, for general q, the elements tij are not numbers, but

operators.

Although the definition of the operators tij through their commutation relations (which

we showed to be consistent, i.e. they lead to a non-trivial algebra) is sufficient for our pur-

poses, it might be interesting to check whether it is possible to represent them as matrices

in some auxiliary space. We would thus be looking for 9 matrices ρ(t11), ρ(t12), · · · , ρ(t33)

satisfying the 36 relations in table 1. It does not seem likely that they can be represented

in the space of finite-dimensional matrices in the general case. But it is certainly possible

if one restricts to a (closed) subset of the tij. This is well known in the quantum group

literature, where, for example, for the standard SUq(3) (or SLq(3) in case of complex q)

R-matrix, one can define the representation [64]

ρ(tab)
i
j = Ra i

b j (D.2)

which explicitly gives

ρ(t11) =




q 0 0

0 1 0

0 0 1


 , ρ(t22) =




1 0 0

0 q 0

0 0 1


 , ρ(t33) =




1 0 0

0 1 0

0 0 q


 , (D.3)

ρ(t12) =




0 0 0

q − q−1 0 0

0 0 0


 , ρ(t23) =




0 0 0

0 0 0

0 q − q−1 0


 , ρ(t13) =




0 0 0

0 0 0

q − q−1 0 0


 .

with the rest of the ρ(tij) being zero. These satisfy the standard SUq(3) commutation

relations.

Our R-matrix is not the standard SUq(3) one, but we can still try to look for similar

subsets of the tij. An interesting subset is the one obtained by restricting to the (closed)
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subgroup given by t11, t
1
2, t

2
1, t

2
2 and t33, i.e.

t =




t11 t12 0

t21 t22 0

0 0 11


 (D.4)

where we have chosen t33 = 11 (the unit matrix in the auxiliary space) and all the rest to

be zero. Further taking h = h̄ = 0, and q real, we find that the commutation relations in

table 1 reduce to the following:

t11t
1
2 = qt12t

1
1 , t12t

2
2 = qt22t

1
2 , [t11, t

2
2] = qt21t

1
2 − q−1t12t

2
1 ,

t21t
1
2 = t12t

2
1 , t11t

2
1 = qt21t

1
1 , t21t

2
2 = qt22t

2
1 ,

(D.5)

which, after redefining q → q−1, are precisely the commutation relations of standard

SUq(2) ((3.9) for q real). Thus our commutation relations contain standard SUq(2) as a

special case.19

For the case h = 0 and q real we can also consider the following (slightly degenerate)

subset given by only t11, t
1
2, t

2
2 and t33. In this simple case the commutation relations

become:

t11t
1
2 = qt21t

1
1 , t22t

1
2 = q−1t12t

2
2 and t11t

2
2 = t22t

1
1 (D.6)

and it is trivial to find explicit matrix representations. One possibility is in terms of a

3-dimensional auxiliary space (from now on we write just tij instead of ρ(tij)):

t11 = a ·




q−1 0 0

0 1 0

0 0 1


 , t22 = b ·




q 0 0

0 1 0

0 0 1


 , t33 = c ·




1 0 0

0 1 0

0 0 1


 , t12 = d ·




0 0 0

1 0 0

0 0 0


 , (D.7)

with a, b, c, d complex numbers. Note that a · b · c = 1 since the quantum determinant in

this case is simply detq t = t11t
2
2t

3
3 = 1. For q → 1 all matrices commute.

For clarity, let us write the transformation of the superpotential explicitly in this special

case:

Φ1Φ2Φ3 − qΦ2Φ1Φ3 → (t11Φ
1 + t12Φ

2)t22Φ
2t33Φ

3 − qt22Φ
2(t11Φ

1 + t12Φ
2)t33Φ

3

= t11t
2
2t

3
3Φ

1Φ2Φ3 + t12t
2
2t

3
3Φ

2Φ2Φ3 − qt22t
1
1t

3
3Φ

2Φ1Φ3 − qt22t
1
2t

3
3Φ

2Φ2Φ3
(D.8)

where we have used that (as always for non-braided quantum groups) the tij commute with

the quantum plane elements Φi. From here we can either proceed using the commutation

relations (D.5), or, since we have a matrix representation, by converting the tij to matrices

19The representations of this quantum group are most conveniently studied in terms of the dual Uq(su(2))

algebra [64].
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in the auxiliary space:

t11t
2
2t

3
3Φ

1Φ2Φ3 + t12t
2
2t

3
3Φ

2Φ2Φ3 − qt22t
1
1t

3
3Φ

2Φ1Φ3 − qt22t
1
2t

3
3Φ

2Φ2Φ3

=abc




1 0 0

0 1 0

0 0 1


Φ1Φ2Φ3 + dbc




0 0 0

q 0 0

0 0 0


Φ2Φ2Φ3

− qabc




1 0 0

0 1 0

0 0 1


Φ2Φ1Φ3 − qdbc




0 0 0

1 0 0

0 0 0


Φ2Φ2Φ3

=
(
Φ1Φ2Φ3 − qΦ2Φ1Φ3

)
11

(D.9)

This is proportional to the unit element of the auxiliary space and the superpotential is

thus invariant.20

Of course we did not really have to use this particular matrix representation, we could

simply have applied the full commutation relations of the tij together with those of the

Φi to show invariance. Thus the above result holds for the general commutation relations

in table 1. In particular, even though in the general case the matrix representations of

tij in some auxiliary space would be expected to be infinite-dimensional, they are still

well-defined as operators and the calculation would go through in a similar way.

References

[1] J.A. Minahan and K. Zarembo, The Bethe-ansatz for N = 4 super Yang-Mills,

JHEP 03 (2003) 013 [hep-th/0212208] [SPIRES].

[2] L.D. Faddeev, How Algebraic Bethe Ansatz works for integrable model, hep-th/9605187

[SPIRES].

[3] N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of N = 4 super

Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [SPIRES].

[4] N. Beisert, The complete one-loop dilatation operator of N = 4 super Yang-Mills theory,

Nucl. Phys. B 676 (2004) 3 [hep-th/0307015] [SPIRES].

[5] N. Beisert and M. Staudacher, The N = 4 SYM Integrable Super Spin Chain,

Nucl. Phys. B 670 (2003) 439 [hep-th/0307042] [SPIRES].

[6] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity,

Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113]

[hep-th/9711200] [SPIRES].

[7] G. Mandal, N.V. Suryanarayana and S.R. Wadia, Aspects of semiclassical strings in AdS5,

Phys. Lett. B 543 (2002) 81 [hep-th/0206103] [SPIRES].

[8] I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS5 × S5 superstring,

Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [SPIRES].

20Recall that all the expressions above are in the gauge theory trace, and cyclic permutations of the Φi

work as usual, since the quantum algebra structure is compatible with the non-abelian structure. e.g. (for

h = 0): TrΦ1Φ2Φ3 = Φ1aΦ2bΦ3cTr(T aT bT c) = qΦ2bΦ1aΦ3cTr(T aT bT c) = qΦ2bq−1Φ3cΦ1aTr(T cT aT b) =

TrΦ2Φ3Φ1.

– 51 –

http://dx.doi.org/10.1088/1126-6708/2003/03/013
http://arxiv.org/abs/hep-th/0212208
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0212208
http://arxiv.org/abs/hep-th/9605187
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9605187
http://dx.doi.org/10.1016/S0550-3213(03)00406-1
http://arxiv.org/abs/hep-th/0303060
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0303060
http://dx.doi.org/10.1016/j.nuclphysb.2003.10.019
http://arxiv.org/abs/hep-th/0307015
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0307015
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.015
http://arxiv.org/abs/hep-th/0307042
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0307042
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9711200
http://dx.doi.org/10.1016/S0370-2693(02)02424-3
http://arxiv.org/abs/hep-th/0206103
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0206103
http://dx.doi.org/10.1103/PhysRevD.69.046002
http://arxiv.org/abs/hep-th/0305116
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0305116


J
H
E
P
1
0
(
2
0
1
0
)
0
4
3

[9] M. Staudacher, The factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054

[hep-th/0412188] [SPIRES].

[10] N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945

[hep-th/0511082] [SPIRES].

[11] N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing,

J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].

[12] L.N. Lipatov, High-energy asymptotics of multicolor QCD and exactly solvable lattice models,

JETP Lett. 59 (1994) 596 hep-th/9311037 [SPIRES].

[13] L.D. Faddeev and G.P. Korchemsky, High-energy QCD as a completely integrable model,

Phys. Lett. B 342 (1995) 311 [hep-th/9404173] [SPIRES].

[14] A. Parkes and P.C. West, Finiteness in Rigid Supersymmetric Theories,

Phys. Lett. B 138 (1984) 99 [SPIRES].

[15] D.R.T. Jones and L. Mezincescu, The Chiral Anomaly and a Class of Two Loop Finite

Supersymmetric Gauge Theories, Phys. Lett. B 138 (1984) 293 [SPIRES].

[16] A.J. Parkes and P.C. West, Three–loop results in two–loop finite supersymmetric gauge

theories, Nucl. Phys. B 256 (1985) 340 [SPIRES].

[17] M.T. Grisaru, B. Milewski and D. Zanon, The structure of UV divergences in SS YM

theories, Phys. Lett. B 155 (1985) 357 [SPIRES].

[18] D.R.T. Jones, Coupling constant reparameterization and finite field theories,

Nucl. Phys. B 277 (1986) 153 [SPIRES].

[19] R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional

N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121]

[SPIRES].

[20] V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low

Function of Supersymmetric Yang-Mills Theories from Instanton Calculus,

Nucl. Phys. B 229 (1983) 381 [SPIRES].

[21] G.C. Rossi, E. Sokatchev and Y.S. Stanev, New results in the deformed N = 4 SYM theory,

Nucl. Phys. B 729 (2005) 581 [hep-th/0507113] [SPIRES].

[22] F. Elmetti, A. Mauri, S. Penati and A. Santambrogio, Conformal invariance of the planar

beta-deformed N = 4 SYM theory requires beta real, JHEP 01 (2007) 026 [hep-th/0606125]

[SPIRES].

[23] G.C. Rossi, E. Sokatchev and Y.S. Stanev, On the all-order perturbative finiteness of the

deformed N = 4 SYM theory, Nucl. Phys. B 754 (2006) 329 [hep-th/0606284] [SPIRES].

[24] F. Elmetti, A. Mauri, S. Penati, A. Santambrogio and D. Zanon, Real versus complex

β-deformation of the N = 4 planar super Yang-Mills theory, JHEP 10 (2007) 102

[arXiv:0705.1483] [SPIRES].

[25] L.V. Bork, D.I. Kazakov, G.S. Vartanov and A.V. Zhiboedov, Conformal Invariance in the

Leigh-Strassler deformed N = 4 SYM Theory, JHEP 04 (2008) 003 [arXiv:0712.4132]

[SPIRES].

[26] O. Aharony and S.S. Razamat, Exactly marginal deformations of N = 4 SYM and of its

supersymmetric orbifold descendants, JHEP 05 (2002) 029 [hep-th/0204045] [SPIRES].

– 52 –

http://dx.doi.org/10.1088/1126-6708/2005/05/054
http://arxiv.org/abs/hep-th/0412188
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412188
http://arxiv.org/abs/hep-th/0511082
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0511082
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://arxiv.org/abs/hep-th/0610251
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0610251
http://arxiv.org/abs/hep-th/9311037
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9311037
http://dx.doi.org/10.1016/0370-2693(94)01363-H
http://arxiv.org/abs/hep-th/9404173
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9404173
http://dx.doi.org/10.1016/0370-2693(84)91881-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B138,99
http://dx.doi.org/10.1016/0370-2693(84)91663-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B138,293
http://dx.doi.org/10.1016/0550-3213(85)90397-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B256,340
http://dx.doi.org/10.1016/0370-2693(85)91587-4
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B155,357
http://dx.doi.org/10.1016/0550-3213(86)90436-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B277,153
http://dx.doi.org/10.1016/0550-3213(95)00261-P
http://arxiv.org/abs/hep-th/9503121
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9503121
http://dx.doi.org/10.1016/0550-3213(83)90338-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B229,381
http://dx.doi.org/10.1016/j.nuclphysb.2005.09.017
http://arxiv.org/abs/hep-th/0507113
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0507113
http://dx.doi.org/10.1088/1126-6708/2007/01/026
http://arxiv.org/abs/hep-th/0606125
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0606125
http://dx.doi.org/10.1016/j.nuclphysb.2006.08.011
http://arxiv.org/abs/hep-th/0606284
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0606284
http://dx.doi.org/10.1088/1126-6708/2007/10/102
http://arxiv.org/abs/0705.1483
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.1483
http://dx.doi.org/10.1088/1126-6708/2008/04/003
http://arxiv.org/abs/0712.4132
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.4132
http://dx.doi.org/10.1088/1126-6708/2002/05/029
http://arxiv.org/abs/hep-th/0204045
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0204045


J
H
E
P
1
0
(
2
0
1
0
)
0
4
3

[27] S.S. Razamat, Marginal deformations of N = 4 SYM and of its supersymmetric orbifold

descendants, hep-th/0204043 [SPIRES].

[28] D.Z. Freedman and U. Gürsoy, Comments on the beta-deformed N = 4 SYM theory,

JHEP 11 (2005) 042 [hep-th/0506128] [SPIRES].

[29] S. Penati, A. Santambrogio and D. Zanon, Two-point correlators in the beta-deformed N = 4

SYM at the next-to-leading order, JHEP 10 (2005) 023 [hep-th/0506150] [SPIRES].

[30] A. Mauri, S. Penati, A. Santambrogio and D. Zanon, Exact results in planar N = 1

superconformal Yang-Mills theory, JHEP 11 (2005) 024 [hep-th/0507282] [SPIRES].

[31] O. Aharony, B. Kol and S. Yankielowicz, On exactly marginal deformations of N = 4 SYM

and type IIB supergravity on AdS5 × S5, JHEP 06 (2002) 039 [hep-th/0205090] [SPIRES].

[32] K. Madhu and S. Govindarajan, A note on perturbative aspects of Leigh-Strassler deformed

N = 4 SYM theory, arXiv:0710.5589 [SPIRES].

[33] E. Witten, Perturbative gauge theory as a string theory in twistor space,

Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].

[34] M. Kulaxizi and K. Zoubos, Marginal deformations of N = 4 SYM from open /closed twistor

strings, Nucl. Phys. B 738 (2006) 317 [hep-th/0410122] [SPIRES].

[35] P. Gao and J.-B. Wu, (Non)-supersymmetric marginal deformations from twistor string

theory, Nucl. Phys. B 798 (2008) 184 [hep-th/0611128] [SPIRES].

[36] V.V. Khoze, Amplitudes in the beta-deformed conformal Yang-Mills, JHEP 02 (2006) 040

[hep-th/0512194] [SPIRES].

[37] Y. Oz, S. Theisen and S. Yankielowicz, Gluon Scattering in Deformed N = 4 SYM,

Phys. Lett. B 662 (2008) 297 [arXiv:0712.3491] [SPIRES].

[38] S. Ananth, S. Kovacs and H. Shimada, Proof of all-order finiteness for planar beta-deformed

Yang-Mills, JHEP 01 (2007) 046 [hep-th/0609149] [SPIRES].

[39] A. Fayyazuddin and S. Mukhopadhyay, Marginal perturbations of N = 4 Yang-Mills as

deformations of AdS5 × S5, hep-th/0204056 [SPIRES].

[40] O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry

and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [SPIRES].

[41] R. Minasian, M. Petrini and A. Zaffaroni, Gravity duals to deformed SYM theories and

generalized complex geometry, JHEP 12 (2006) 055 [hep-th/0606257] [SPIRES].

[42] N. Halmagyi and A. Tomasiello, Generalized Kähler Potentials from Supergravity,

Commun. Math. Phys. 291 (2009) 1 [arXiv:0708.1032] [SPIRES].

[43] M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and

Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [SPIRES].

[44] M. Kulaxizi, On β-deformations and noncommutativity, hep-th/0610310 [SPIRES].

[45] M. Kulaxizi, Marginal deformations of N = 4 SYM and open vs. closed string parameters,

hep-th/0612160 [SPIRES].

[46] N. Seiberg and E. Witten, String theory and noncommutative geometry,

JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

[47] R. Roiban, On spin chains and field theories, JHEP 09 (2004) 023 [hep-th/0312218]

[SPIRES].

– 53 –

http://arxiv.org/abs/hep-th/0204043
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0204043
http://dx.doi.org/10.1088/1126-6708/2005/11/042
http://arxiv.org/abs/hep-th/0506128
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0506128
http://dx.doi.org/10.1088/1126-6708/2005/10/023
http://arxiv.org/abs/hep-th/0506150
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0506150
http://dx.doi.org/10.1088/1126-6708/2005/11/024
http://arxiv.org/abs/hep-th/0507282
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0507282
http://dx.doi.org/10.1088/1126-6708/2002/06/039
http://arxiv.org/abs/hep-th/0205090
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0205090
http://arxiv.org/abs/0710.5589
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0710.5589
http://dx.doi.org/10.1007/s00220-004-1187-3
http://arxiv.org/abs/hep-th/0312171
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0312171
http://dx.doi.org/10.1016/j.nuclphysb.2006.01.018
http://arxiv.org/abs/hep-th/0410122
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0410122
http://dx.doi.org/10.1016/j.nuclphysb.2008.01.027
http://arxiv.org/abs/hep-th/0611128
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0611128
http://dx.doi.org/10.1088/1126-6708/2006/02/040
http://arxiv.org/abs/hep-th/0512194
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0512194
http://dx.doi.org/10.1016/j.physletb.2008.03.019
http://arxiv.org/abs/0712.3491
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.3491
http://dx.doi.org/10.1088/1126-6708/2007/01/046
http://arxiv.org/abs/hep-th/0609149
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0609149
http://arxiv.org/abs/hep-th/0204056
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0204056
http://dx.doi.org/10.1088/1126-6708/2005/05/033
http://arxiv.org/abs/hep-th/0502086
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0502086
http://dx.doi.org/10.1088/1126-6708/2006/12/055
http://arxiv.org/abs/hep-th/0606257
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0606257
http://dx.doi.org/10.1007/s00220-009-0881-6
http://arxiv.org/abs/0708.1032
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.1032
http://dx.doi.org/10.1088/1126-6708/2009/04/075
http://arxiv.org/abs/0807.4527
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.4527
http://arxiv.org/abs/hep-th/0610310
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0610310
http://arxiv.org/abs/hep-th/0612160
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0612160
http://dx.doi.org/10.1088/1126-6708/1999/09/032
http://arxiv.org/abs/hep-th/9908142
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9908142
http://dx.doi.org/10.1088/1126-6708/2004/09/023
http://arxiv.org/abs/hep-th/0312218
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0312218


J
H
E
P
1
0
(
2
0
1
0
)
0
4
3
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