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Abstract

As is well known, Kerr–Schild metrics linearize the Einstein tensor. We shall
see here that they also simplify the Gauss–Bonnet tensor, which turns out to
be only quadratic in the arbitrary Kerr–Schild function f when the seed metric
is maximally symmetric. This property allows us to give a simple analytical
expression for its trace, when the seed metric is a five-dimensional maximally
symmetric spacetime in spheroidal coordinates with arbitrary parameters a
and b. We also write in a (fairly) simple form the full Einstein–Gauss–Bonnet
tensor (with a cosmological term) when the seed metric is flat and the oblateness
parameters are equal, a = b. Armed with these results we give in a compact
form the solution of the trace of the Einstein–Gauss–Bonnet field equations
with a cosmological term and a �= b. We then examine whether this solution
for the trace does solve the remaining field equations. We find that it does not
in general, unless the Gauss–Bonnet coupling is such that the field equations
have a unique maximally symmetric solution.
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1. Introduction

Kerr–Schild metrics [1] are such that there exist coordinate systems xμ in which the metric
coefficients can be written as

gμν = gμν + f hμhν with gμνh
μhν = 0 and hμDμhρ = 0, (1.1)

where gμν are the coefficients of a seed metric in the chosen coordinates xμ and f is an
arbitrary function of the coordinates. The vector hμ = ḡμνhν is null and geodesic. Indices
are moved with the seed metric gμν and its inverse gμν , and Dμ is its associated covariant
derivative.

As is well known, see e.g. [2], the Kerr–Newman black hole solutions of Einstein’s
equations in four dimensions (with or without a cosmological constant) are of the Kerr–Schild
type. In dimensions D > 4, the generalization of the Kerr-(A)dS black hole solution is also
of the Kerr–Schild type [3]. Note that this is not the case for the black rings [4].

In the Einstein–Gauss–Bonnet (EGB) theory of gravity (see, e.g. [5] for an introduction;
for this theory, black holes with horizons of constant curvature have also been found in [6]) the
spherically symmetric black hole solution found in [7] which generalizes the Schwarzschild
solution is also of the Kerr–Schild type, as we shall see below. However, as already known in
the community, despite some claims to the contrary [8], and as we shall see in detail below,
the Kerr–Schild ansatz which is used in [3] to obtain the five-dimensional Kerr (AdS) black
hole solution of Einstein’s equations, does not solve the EGB vacuum field equations. Some
numerical results about the existence of five-dimensional rotating black holes with angular
momenta of the same magnitude have been presented in [9], and in [10] analytic results have
been found up to first order in a single rotation parameter. The problem of finding a rotating
black hole solution in the EGB theory of gravity is therefore still open.

In this paper we first study in section 2 the properties of the Gauss–Bonnet tensor when
the metric is restricted to be of the Kerr–Schild type. We find that it is quadratic in the arbitrary
function f (and not quartic as it could be a priori) when the seed metric gμν is maximally
symmetric. This property considerably simplifies calculations. Indeed, it allows us to give in
section 3 a simple analytical expression for the trace of the Gauss–Bonnet tensor, when the
seed metric is a five-dimensional maximally symmetric spacetime in spheroidal coordinates
with arbitrary oblateness parameters a and b.

The solution of the trace of the EGB field equations with a cosmological term can hence
be given in a compact form, even when the seed metric does not solve the field equation.
Furthermore, it is shown in section 4 that when the seed metric is restricted to be flat and when
the parameters a and b are equal, the full EGB tensor acquires a (fairly) simple form. Thus we
can easily examine in this case whether the solution for the trace obtained in section 3 satisfies
the remaining field equations. We find that it does not, unless the Gauss–Bonnet coupling is
such that there is a unique maximally symmetric solution of the field equations. In section 5
we generalize this particular solution to the case when the seed metric is no longer flat and the
parameters a and b are no longer equal and we comment on a few of its properties (a detailed
analysis is left to further work [19]).

2. The Einstein–Gauss–Bonnet tensor for Kerr–Schild metrics

The EGB tensor is [11]:

Eμ
ν ≡ �δμ

ν + κ−1Gμ
ν + αHμ

ν , (2.1)
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with Gμ
ν and Hμ

ν being the Einstein and Gauss–Bonnet tensors, respectively: Gμ
ν ≡ Rμ

ν −
1
2Rδμ

ν , and

Hμ
ν ≡ 2Rμα

βγ Rβγ
να − 4Rμα

νβRβ
α − 4Rμ

α Rα
ν + 2RRμ

ν − 1
2δμ

ν

(
Rαβ

γ δR
γ δ

αβ − 4Rα
βRβ

α + R2).
(2.2)

Rμ
νρσ ≡ 2∂[ρ�

μ

σ ]ν + 2�
μ

λ[ρ�
λ
σ ]ν, Rμν = Rρ

μρν and R are the Riemann tensor, Ricci tensor
and curvature scalar of the metric gμν . The signature is (− + + · · ·). One can rewrite the
cosmological constant � as

� ≡ − (D − 1)(D − 2)

2�2

(
κ−1 − (D − 3)(D − 4)α

�2

)
, (2.3)

where D is the dimension of spacetime and where the two roots for �−2 are the curvatures of
the maximally symmetric solutions of Eμ

ν = 0. It is worth pointing out that if the Newton
constant κ and the Gauss–Bonnet coupling α are related as

κ = �2

2(D − 3)(D − 4)α
�⇒ � = − (D − 1)(D − 2)(D − 3)(D − 4)α

2�4
, (2.4)

then the EGB vacuum equations have a unique maximally symmetric vacuum [12], and they
admit solutions with a relaxed fall-off as compared with the standard one [13]. This property
enlarges the space of allowed solutions, as well as the freedom in the choice of the metric at
the boundary [14].

When the metric is of the Kerr–Schild type (1.1) the Ricci tensor Rμ
ν is linear in f , as is

well known [1, 3]. As for the Riemann tensors Rμ
νρσ and Rμν

ρσ they are only quadratic in f

(see the appendix for their explicit expressions). It also turns out that the contracted products
Rμα

βγ Rβγ
να and Rμα

νβRβ
α are also quadratic in f (and not respectively quartic and cubic as

they could be a priori), at least when the seed metric is maximally symmetric. Hence the result
is that the Gauss–Bonnet tensor Hμ

ν is quadratic in f . See the appendix for a justification of
these claims.

Let us henceforth restrict our attention to anti-de Sitter seeds with curvature L−2:

Rμνρσ = − 1

L2
(gμρgνσ − gμσgνρ). (2.5)

(Minkowski spacetime corresponds to L → ∞ and the de Sitter case is obtained by changing
the sign of L2.) Note that we do not impose the seed metric to solve the field equations, that
is, we do not impose L = �.

Now, at linear order in f , the Einstein and Gauss–Bonnet tensors are proportional [7] (see
also [15]). The remaining, quadratic, part of the Gauss–Bonnet tensor is also easily computed,
so that the full EGB tensor reads

Eμ
ν = δμ

ν (� − �seed) +

(
κ−1 − 2(D − 3)(D − 4)α

L2

)[
(D − 1)

L2
f hμhν + R

μ

(L)ν − 1

2
δμ
ν R(L)

]

+ 2α

(
K

L2
f hμhν + R

μα

(L)βγ R
βγ

(L)να − 2R
μα

(L)νβR
β

(L)α − 2R
μ

(L)αRα
(L)ν + R(L)R

μ

(L)ν

)

− α

2
δμ
ν

(
R

αβ

(L)γ δR
γ δ

(L)αβ − 4Rα
(L)βR

β

(L)α + R2
(L)

)
, (2.6)

with the notation

�seed ≡ − (D − 1)(D − 2)

2L2

(
κ−1 − (D − 3)(D − 4)α

L2

)
, (2.7)

and with the following definitions (see the appendix):

R
μν

(L)ρσ = gνα
(
Dρ�

μ
ασ − Dσ�μ

αρ

)
, R

μ

(L)ν = gμσDρ�
ρ
νσ , R(L) = Dρ[hρDμ(f hμ)] (2.8)

3
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with

�μ
νρ = 1

2 [Dν(f hμhρ) + Dρ(f hμhν) − D
μ
(f hνhρ)]. (2.9)

As for the function K it is given by

K ≡ 3(hα∂αf )Dβhβ + 2(D − 1)f Dα(hαDβhβ) + (4D − 7)f Dαhβ(Dβhα − D
α
hβ). (2.10)

As the Gauss–Bonnet tensor is quasilinear in the second derivatives [5], all terms quadratic
in Dλ∂ρf can be ignored, which simplifies the calculations. Moreover, once it has been made
clear that the equations of motion are quadratic in f , indices in (2.6) can be moved at will
using the seed metric (e.g. R

μα

(L)βγ R
βγ

(L)να can be replaced by R
μ β

(L)α γ R
α γ

(L)ν β , etc).

3. Solving the trace of the Einstein–Gauss–Bonnet equations in five dimensions

The general D-dimensional (A)dS metric in spheroidal coordinates can be found in [3]. To be
specific, the five-dimensional AdS metric in those coordinates xμ = (t, r, θ, φ, ψ) reads

ds2 = − (1 + r2/L2)�θ

�a�b

dt2 +
r2ρ2

(1 + r2/L2)(r2 + a2)(r2 + b2)
dr2 +

ρ2

�θ

dθ2

+
r2 + a2

�a

sin2 θ dφ2 +
r2 + b2

�b

cos2 θ dψ2, (3.1)

where �θ ≡ �a cos2 θ + �b sin2 θ , with

ρ2 ≡ r2 + a2 cos2 θ + b2 sin2 θ, (3.2)

and where �a and �b are related to the parameters a and b by �a ≡ 1−a2/L2, �b ≡ 1−b2/L2.
As for the null and geodesic vector hμ it is given by

hμdxμ = �θ

�a�b

dt +
r2ρ2

(1 + r2/L2)(r2 + a2)(r2 + b2)
dr +

a sin2 θ

�a

dφ +
b cos2 θ

�b

dψ. (3.3)

Using the properties listed in the preceding section, and imposing f to depend on r and
θ only, the trace of the EGB tensor in these coordinates is easily calculated and turns out to
have the following remarkably simple form:

E = 5(� − �seed) − (rQt)
′′

2rρ2
with Qt =

(
κ−1 − 4α

L2

)
Ql + αQq and⎧⎨

⎩
Ql = 3ρ2f

Qq = 2(4r2 − ρ2)
f 2

ρ2
,

(3.4)

prime denoting derivation with respect to r.
It is now a simple matter to solve the vacuum EGB equation for the trace, E = 0:

Qt = 6m(θ) +
d(θ)

r
+

(� − �seed)

6
r2(10ρ2 − 7r2), (3.5)

where m(θ) and d(θ) are arbitrary functions of θ . The solutions for f are therefore the roots
of the second degree equation

2α(4r2 − ρ2)
f 2

ρ2
+ 3

(
κ−1 − 4α

L2

)
ρ2f = 6m(θ) +

d(θ)

r
+

(� − �seed)

6
r2(10ρ2 − 7r2).

(3.6)

We have now to check whether this solution for the trace satisfies the remaining field
equations. As we shall first see explicitly in the following section, in the particular case when
L → ∞ and a = b, the answer is ‘no’ unless the Gauss–Bonnet coupling is fixed as in
equation (2.4).

4
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4. Flat seed metric and equal oblateness parameters

4.1. The EGB tensor in terms of f:

In contrast to the trace, it is a more painstaking task to express the full EGB tensor Eμ
ν in a

simple manner. Thus, as a warming up exercise, we shall restrict our attention in this section
to the simple case L → ∞ and a = b (the case a = −b is trivially obtained by a parity
transformation). The (flat) seed metric then simply reads

ds2 = −dt2 +
r2

r2 + a2
dr2 + (r2 + a2)(dθ2 + sin2 θ dφ2 + cos2 θ dψ2), (4.1)

and the null and geodesic vector is

hμ =
(

1,
r2

r2 + a2
0, a sin2 θ, a cos2 θ

)
. (4.2)

The trace of the EGB tensor reduces to, see (3.4) and (3.2)

E = 5� − (rQt)
′′

2r(r2 + a2)
with Qt = κ−1Ql + αQq where

⎧⎨
⎩

Ql = 3(r2 + a2)f

Qq = 2(3r2 − a2)

r2 + a2
f 2,

(4.3)

and the solution of E = 0 is

Qt = 6m +
d

r
+

�

6
r2(3r2 + 10a2). (4.4)

Since Qt is known in terms of f (see (4.3)), f hence solves the trace equation if it is a root of

2α
(3r2 − a2)

(r2 + a2)
f 2 + 3κ−1(r2 + a2)f = 6m +

d

r
+

�

6
r2(3r2 + 10a2). (4.5)

Careful examination then shows that all components of Eμ
ν can be expressed in terms of

Er
r and E

φ
ψ as

Et
t = − a2

3(r2 + a2)

(
a2 + r2

r
Er

r
′ +

2E
φ
ψ

cos2 θ

)
+ Er

r

Et
φ = −a sin2 θ

3

(
a2 + r2

r
Er

r
′ +

2E
φ
ψ

cos2 θ

)

Et
ψ = −a cos2 θ

3

(
a2 + r2

r
Er

r
′ +

2E
φ
ψ

cos2 θ

)
(4.6)

Eθ
θ = 1

3

(
a2 + r2

r
Er

r
′ − E

φ
ψ

cos2 θ

)
+ Er

r

E
φ
φ = 1

3

(
a2 + r2

r
Er

r
′ + (2 − 3 cos2 θ)

E
φ
ψ

cos2 θ

)
+ Er

r

E
ψ

ψ = 1

3

(
a2 + r2

r
Er

r
′ − (1 − 3 cos2 θ)

E
φ
ψ

cos2 θ

)
+ Er

r ,

all other components being either zero or obtained by raising/lowering indices with the seed
metric. As for Er

r and E
φ
ψ they are expressed in terms of the function f or, rather, Qt and Qq ,

see (4.3), as

Er
r = � +

1

6r(r2 + a2)2

[
−(3r2 + a2)Q′

t + 8αa4

(
Qq

3r2 − a2

)′]
, (4.7)

5
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and (an admittedly ugly expression)

E
φ
ψ

cos2 θ
= a2[(a2 + 5r2)Q′

t − r(r2 + a2)Q′′
t ]

6r3(r2 + a2)2
+

4αa2(27r4 + 42r2a2 + 31a4)

(3r2 − a2)3(r2 + a2)2
Qq

− 4αa2(18r6 + 27r4a2 + 16r2a4 − a6)

3r3(3r2 − a2)2(r2 + a2)2
Q′

q

+
2αa2(3r2 + 2a2)

3r2(3r2 − a2)(r2 + a2)
Q′′

q . (4.8)

4.2. Recovering the Boulware–Deser metric (a = b = 0).

In the case of vanishing oblateness parameters, that is, when the Minkowski seed metric (4.1)
is written in standard spherical coordinates, the non-zero components of the five-dimensional
EGB tensor (4.6)–(4.8) simplify into

Et
t = Er

r = − Q′
t

2r3
+ �, Eθ

θ = E
φ
φ = E

ψ

ψ =
[
r3Er

r

]′

3r2
. (4.9)

Thus, the field equations Eμ
ν = 0 are solved by

Qt = 6m +
�

2
r4. (4.10)

It then follows from equation (4.3) that the function f is given by

f (r) = r2

4κα

(
−1 ±

√
1 +

8κ2α

3r4

(
6m +

�r4

2

))
, (4.11)

which is nothing but the EGB solution first found in [7], written here in Kerr–Schild form.
(The equivalence of the metrics follows from the generalized Birkhoff theorem [15], and can
be explicitly seen from the coordinate transformation, t = T +

∫
f (r)

1−f (r)
dr , which brings it into

the Schwarzschild gauge.) The constant of integration m is interpreted as the total mass, see
[7, 16–18].

4.3. Switching on the oblateness parameters (a = b �= 0).

In this case the solutions of the trace equation are the roots of (4.5), that is

f (r) = 3(r2 + a2)2

4κα(3r2 − a2)

(
−1 ±

√
1 +

8κ2α(3r2 − a2)

9(r2 + a2)3

(
6m +

d

r
+

�

6
r2(3r2 + 10a2)

))
.

(4.12)

The Kerr–Schild metric so obtained seems to describe a massive rotating spacetime. However
one can show that, with f (r) given by (4.12), the equations of motion Eμ

ν = 0 with Eμ
ν

given by (4.6)–(4.8) cannot be satisfied, unless the Gauss–Bonnet coupling is fixed as in
equation (2.4).

This can be seen from the behavior of Er
r when r → ∞, see equation (4.7)

Er
r = 2a4

9κ2αr4

√
3 + 4κ2α�(

√
3 + 4κ2α� ∓

√
3) +

d

2r5
+ · · · . (4.13)

The leading term of equation (4.13) vanishes either for � = 0 taking the upper branch of
(4.12), or for α = − 3

4κ2�
, and the subleading term vanishes for d = 0.

6
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In the first case (� = 0, d = 0), the asymptotic behavior of Er
r becomes

Er
r = −64a4ακ2m2

r12
+ · · · , (4.14)

which means that m also must vanish. Hence f = 0 and the solution reduces to the flat seed
metric.

In the case now when α = − 3
4κ2�

(and d = 0), equation (4.7) Er
r = 0 is fulfilled provided

m = 7a4�
36 , and the solution for f in (4.12) has the remarkably simple form

f (r) = − r2 + a2

�2
, (4.15)

where �−2 = (4ακ)−1 stands for the (A)dS curvature of the unique maximally symmetric
solution of the field equations. It is an exercise to check that E

φ
ψ given in (4.8) also vanishes,

so that all the components of the EGB equations, Eμ
ν = 0 with Eμ

ν given by (4.6) are indeed
satisfied.

Thus the Kerr–Schild solution with flat seed metric (4.1) and function f (r) given by
(4.15) solves the EGB field equations when α = − 3

4κ2�
(and hence �2 = 4 ακ).

It is worth pointing out that this solution is static, since there is a coordinate transformation
that brings it into the Schwarzschild gauge, but where the three-sphere is replaced by a
squashed three-sphere, where a parameterizes the squashing [19]. This is not at odds with
the Birkhoff theorem [15] since the freedom in the choice of the metric at the boundary is
enlarged when the Gauss–Bonnet coupling is fixed as in equation (2.4), [14].

Let us now generalize the previous analysis to the case when the seed metric is no longer
flat and b is no longer equal to a.

5. An exact vacuum solution

When the seed metric is no longer flat and b is no longer equal to a, that is when the anti-
de Sitter seed metric is given by (3.1), we can no longer give simple expressions for the
components of the EGB tensor as we did in the previous section. However we know the
general solution for the trace, see (3.6)

f (r, θ) = A(−1 ±
√

1 + B) with⎧⎪⎪⎨
⎪⎪⎩

A = 3(κ−1 − 4α/L2)ρ4

4α(4r2 − ρ2)
, B = 8α(4r2 − ρ2)

9ρ6(κ−1 − 4α/L2)2
Qt

Qt =
(

6m(θ) +
d(θ)

r
+

(� − �seed)

6
r2(10ρ2 − 7r2)

) , (5.1)

where we recall that ρ2 = r2 + a2 cos2 θ + b2 sin2 θ .
Let us first extend the ‘no-go’ result of the preceding section: if a and/or b are not zero

and if one chooses � = �seed, (i.e. the seed metric solves the vacuum field equations) then,
due to the properties of the Gauss–Bonnet tensor listed in the appendix, it is possible to show
that the solution (5.1) for the trace does not solve the remaining field equations, even in the
particular case when κ−1 = 4α/�2 (unless f = 0). Therefore the Kerr–Schild ansatz which
was used in [3] to obtain the five-dimensional Kerr (AdS) black hole solution of Einstein’s
equations does not yield a rotating solution of the EGB vacuum field equations.

Let us now generalize the solution obtained in the preceding section. For � �= �seed and
the Gauss–Bonnet coupling fixed as in equation (2.4), the function f is simply given by

f (r, θ) = −
(

1

�2
− 1

L2

)
ρ2. (5.2)

7
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Thus, in five dimensions, the line element

ds2 = ds2 −
(

1

�2
− 1

L2

)
ρ2(hμ dxμ)2, (5.3)

where ds2 is the metric of a seed (anti)-de Sitter spacetime of curvature L−2 in spheroidal
coordinates and hμ is a null and geodesic vector, see equations (3.1) and (3.3), solves the EGB
vacuum equations, if the Gauss–Bonnet coupling is fixed in such a way that the field equations
have a unique maximally symmetric solution of curvature �−2, see (2.4).

This spacetime is asymptotically locally anti-de Sitter since

Rαβ
γ δ → − 1

�2

(
δα
γ δ

β

δ − δα
δ δβ

γ

)
when r → ∞. (5.4)

Note that it does not approach the seed metric since L must be different from �. The solution
is parameterized by three constants: L−2, that is, the curvature of the seed (anti)-de Sitter
spacetime, and the parameters a and b defining the spheroidal coordinates. Preliminary results
show that this solution describes a rotating spacetime [19] if a �= b, but a detailed analysis is
left to further work.

6. Conclusions

We considered Kerr–Schild type metrics on maximally symmetric seed spacetimes and
showed that the EGB tensor is only quadratic in the Kerr–Schild function f , see
equation (2.6). Specializing in a five-dimensional seed metric in spheroidal coordinates we
then found a remarkably simple expression for the trace of the Einstein–Gauss–Bonnet tensor,
see equation (3.4). Specializing further in a flat seed metric and equal spheroidal parameters
we wrote explicitly all the components of the EGB tensor, see equation (4.6)–(4.8). Thanks to
those results we were able to show in a transparent manner that the Kerr–Schild ansatz used in
[3] to obtain the generalized five-dimensional Kerr solution in Einstein theory does not yield
a solution of the EGB vacuum equations, when, as in [3], the (anti)-de Sitter seed metric is
chosen so as to solve the field equations. Turning then to Kerr–Schild ansatz whose (anti)-de
Sitter seed metric does not solve the field equations, see equation (3.1)–(3.3), we found a new
solution given by (5.3) provided the Gauss–Bonnet coupling is fixed as in equation (2.4).
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Appendix A. Some properties of Kerr–Schild metrics

Kerr–Shild metrics read

gμν = gμν + f hμhν with gμνhμhν = 0 and hμDμhρ = 0.

The function f is arbitrary and hν ≡ gμνhμ. An overlined quantity is built with the seed
metric gμν .

The Christoffel symbols are given by

�μ
νρ − �

μ

νρ = �μ
νρ + δμ

νρ

with

�μ
νρ = 1

2 [Dν(f hμhρ) + Dρ(f hμhν) − D
μ
(f hνhρ)] (A.1)

and

δμ
νρ = 1

2hμhνhρ(f hλ∂λf ).

�μ
νρ has the following properties:

�ρ
νρ = 0, hρ�μ

νρ = 1
2hμhν(h

ρ∂ρf ), hμ�μ
νρ = − 1

2hνhρ(h
μ∂μf ), �α

νβ�β
να ∝ hμhν.

It follows that the Riemann tensor, which a priori could be quartic in f , is in fact only
quadratic and reads

Rμ
νρσ = R

μ
νρσ + R

μ

(lin)νρσ + R
μ

(quad)νρσ

with

R
μ

(lin)νρσ = Dρ�
μ
νσ − Dσ�μ

νρ

and

R
μ

(quad)νρσ = Dρδ
μ
νσ − Dσδμ

νρ + �
μ
ρλ�

λ
νσ − �

μ
σλ�

λ
νρ.

R
μ

(quad)νρσ has the following properties:

hνR
μ

(quad)νρσ = 0, hμR
μ

(quad)νρσ = 0, hσR
μ

(quad)νρσ = − 1
2hμhνhρ(f hαhβDαβf ).

R
μ

(lin)νρσ has the following properties:

hνhσR
μ

(lin)νρσ = − 1
2hμhρ(h

αhβDαβf ), hμhσR
μ

(lin)νρσ = 1
2hνhρ(h

αhβDαβf ).

Another important property of the (contraction) of the Riemann tensor is

gμσRλ
(quad)νλσ = f hμhσRλ

(lin)νλσ .

As it can easily be seen Rμν
ρσ ≡ gνλRμ

ρλσ is also quadratic (and not cubic) in f . More
precisely we shall write

Rμν
ρσ = R

μν
ρσ + R

μν

(lin)ρσ + R
μν

(quad)ρσ

with

R
μν

(lin)ρσ = −f hνhαR
μ

αρσ + R
μν

(L)ρσ where R
μν

(L)ρσ = ḡνα
(
Dρ�

μ
ασ − Dσ�μ

αρ

)
(A.2)

and

R
μν

(quad)ρσ = gναR
μ

(quad)αρσ − f hνhαR
μ

(lin)αρσ .

R
μν

(lin)ρσ and R
μν

(quad)ρσ are antisymmetric in their lower and upper two indices.
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One then concludes that the Ricci tensor (with indices up-down: Rμ
ν ≡ gμρRλ

ρλν) is
linear in f [3] and reads

Rμ
ν = R

μ

ν + R
μ

(lin)ν with R
μ

(lin)ν = −f hμhσRνσ + R
μ

(L)ν where R
μ

(L)ν = gμσDρ�
ρ
νσ .

(A.3)

Finally, the scalar curvature is also linear in f and reads

R = R + R(lin) with R(lin) = −f hαhβRαβ + R(L) where R(L) = Dρ[hρDμ(f hμ)].

(A.4)

On can also note for further reference that

R(L) = 1√−g
∂ρ[hρ∂μ(

√
−gf hμ)]

and that

hαRα
(L)μ = 1

2f hαhβ
(
2hγ R

α
βγμ + R

α

βhμ

)
+

hμ

2

{
hα∂α

[
1√−g

∂β(f
√

−ghβ)

]
− f DαhβD

α
hβ

}
.
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