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Abstract

Spin Foam Models (SFM) are an attempt at a covariant or path integral formulation of canonical Loop
Quantum Gravity (LQG). Traditionally, SFM rely on 1. the Plebanski formulation of GR as a constrained BF
Theory. 2. simplicial triangulations as a UV regulator and 3. a sum over all triangulations via group field
techniques (GFT) in order to get rid off triangulation dependence.

Subtle tasks for current SFM are to establish 1. the correct quantum implementation of Plebanski's
constraints. 2. the existence of a semiclassical sector implementing additional Regge constraints arising from
simplicial triangulations and 3. the physical inner product of LQG via GFT.

We propose a new approach which deals with these issues as follows: 1. The simplicity constraints are
correctly implemented by starting directly from the Holst action which is also a proper starting point for
canonical LQG. 2. Cubulations are chosen rather than triangulations as a regulator. 3. We give a direct
interpretation of our spin foam model as a generating functional of n — point functions on the physical Hilbert
space at finite regulator.

This paper focuses on ideas and tasks to be performed before the model can be taken seriously, however, it
transpires that 1. this model’'s amplitudes differ from those of current SFM, 2. tetrad n-point functions reveal
a Wick like structure and 3. the restriction to simple representations does not occur automatically but must
employ the time gauge just as in the classical theory.
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1 Introduction

Spin foam models (SFM)[1] are an attempt at a covariant or path integral formulation of canonical Loop
Quantum Gravity (LQG) [2, 3, [4]. In their current formulation, SFM exploit the Plebanski formulation [5]
of pure General Relativity (GR) as a constrained BF theory. This approach is well motivated because one
can view the Plebanski action as a kind of perturbation of the BF action (albeit the perturbation parameter
is a Lagrange multiplier field which one needs to integrate over in a path integral). The path integral for
BF theory, however, is under good control [6] so that one may hope to get a valid path integral formulation
for GR by functional current derivation methods [7] familiar from ordinary QFT.

As we will try to explain in the next section (see also [3]) the quantum implementation of the so called
simplicity constraints of Plebanski theory, to the best knowledge of the authors, has still not been achieved
to full satisfaction from first principles in SFM They are called simplicity constraints because they enforce
the B field of BF theory to be simple, that is, to originate from a tetrad. Clearly, unless the simplicity
constraints are properly implemented, the resulting theory has little to do with quantum gravity. An issue
to keep in mind is that the solutions to the classical simplicity constraint consist of five sectors, two of
which give rise to £ times the Palatini action, two of which give rise to 4+ times a topological action and a
degenerate sector. All of these sectors are included in a sum over Plebanski histories which may or may not
be what one wants.

It is appropriate to mention also further constraints in SFM at this point: Namely, as we also explain
in the next section, SFM rely on a simplicial triangulation 7 of the differential 4-manifold as well as a
dual graph 7*. A recent analysis has shown [8] that freely specifying geometrical data (areas or fluxes) on
the faces of 7 tends to lead to inconsistent values of the lengths of the edges of 7 unless so called Regge
constraints in addition to the simplicity constraints are imposed. These constraints are important to be
taken care of if one wants to relate SEFM to the established theory of Regge calculus [9] and in order to
capture the correct semiclassical limit. The underlying reason for these constraints is that Regge calculus is
formulated directly in terms of edge lengths while in SFM one rather works with electrical fluxes or areas.
However, a typical simplicial triangulation has far more faces than edges in 7 so that assigning a length to
an edge from given area values maybe ambiguous and/or inconsistent. The authors of [§] speculate that this
may pose a problem also for canonical LQG and that the Hamiltonian constraint of canonical LQG should
maybe commute withe these Regge constraints. In order avoid further confusion in the literature on this
puzzling issue we will take here the opportunity to show that there are no Regge like constraints in canonical
LQG to be taken care of. Notice that since our path integral is explicitly based on the Holst action, there
is no necessity to relate it to the Regge action which for Plebanski’s theory is of course a challenge.

One possibility to make progress on these issues is based on a very simple idea that, to the best knowledge
of the authors, occurs for the first time in [10]: Namely, simply try to formulate the path integral in terms
of the Holst action [I1] rather than the Plebanski action. Not only is the Holst action a valid starting
point for canonical LQG, also the simplicity constraints are explicitly solved in that one works entirely
with tetrads from the beginning. More precisely, the Holst action uses a specific qudratic expression in the
tetrads for the B field of BF theory which also depends on the Immirzi parameter [25]. Hence, the Holst
action depends on a specific, non degenerate linear combination of the four non degenerate solutions of the
simplicity constraints (see next section for details) and is thus at the same time more general and more
restricted because the Holst path integral will not sum over the afore mentioned five sectors of Plebanski’s
theory. As already mentioned, it is at present debated how the fact that one actually takes a sum over all
histories with a mixture of positive and negative Palatini and topological actions affects the semiclassical
properties of the Plebanski path integral.

As observed in [10], since the Holst action is quadratic in the tetrads, one can in principle integrate
out the tetrad in the resulting Gaussian integral. This has been sketched in [I0], however, the expressions
given there are far from rigorous. Here we will give a rigorous expression. Also, we will include the correct
measure factor [12] resulting from the second class constraints involved in the Holst action which makes sure
that the path integral qualifies as a reduced phase space quantisation of the theory as has been stressed



in [13]. A similar analysis has been carried out for the Plebanski theory in [I4], however, the resulting
measure factor is widely ignored in the SFM literature. The result of the Gaussian integral is an interesting
determinant that displays the full non linearity of Einstein’s theory. When translating the remaining integral
over the connection in the partition function into SFM language, that is, sums over vertex, edge and face
representations, one sees that our model differs drastically from all current SFM.

Of course, we also need to introduce an IR and UV regulator in the form of a finite cell decomposition.
Two observations lead us to depart from the usual SFM approach where one works with simplicial cell
complexes. The first is the result [I5] which demonstrates that current semiclassical states used in LQG
do not assign good classical behaviour to the volume operator [16] of LQG unless the underlying graph has
cubic topology. Since the volume operator plays a pivotal role for LQG as it defines triad operators and
hence the dynamics, this is a first motivation to consider cubic triangulations of the four manifold, also
called “cubulations”. Notice that any four manifold can be cubulated and that within each chart of an atlas
the cubulation can be chosen to be regular (see e.g. [16] and references therein). The second observation
is that the original motivation for considering simplicial cell complexes in current SFM comes from their
closeness to BF theory. BF theory is a topological QFT and therefore one would like to keep triangulation
independence of the BF SFM amplitude. That this is actually true is a celebrated result in BF theory.
In particular, in order to keep triangulation independence it is necessary to integrate the B field over the
triangles ¢ of the tringulation and the F field over the faces f bounding the loops in a dual graph [19].
However, GR is not a TQFT and therefore the requirement to have triangulation independence is somewhat
obscure. Of course it is natural if one wants to exploit the properties of BF theory but not if one takes a
different route as we tend to do here. Hence, if we drop that requirement, then it is much more natural to
refrain from considering the dual graph in addition to the triangulation. This also solves another issue:
Notice that the gauge group SO(p,q) acts on the B field of BF theory by the adjoint action and on the
connection A underlying F' in the usual way. The question is where the gauge transformation acts on the
discretised variables B(t), A(0f) (flux and holonomy). It would be natural to have the gauge group act
at the barycentres of ¢ and at the starting point of the loop df which will be a vertex of the dual graph.
However, notice that the vertices of the dual graph and the triangles are disjoint from each other, the edges
of the graph are dual to the tetrahedra of the cell complex. Hence, local gauge invariance in discretised BF
theory at the level of the action is not manifest and even less in Plebanski theory. In fact gauge invariance
is related to the closure constraint in SEFM which is a subtle issue as we will see in the next section. If one
works just with a triangulation and drops the dual graph then gauge invariance issues are easy to take care
of. Hence, it is motivated to work with a triangulation that maximally simplifies the Gaussian integral. As
we will show, this again leads to cubulations. This also nicely fits with the framework of Algebraic Quantum
Gravity [20] which in its minimal version also is formulated in terms of algebraic graphs of cubic topology
only.

The architecture of this article is as follows:

In section two we give a non technical review of current spin foam models. We sketch their derivation
from the classical Plebanski action focussing on the points where a first principle argument is missing. These
issues will be the motivation for our different route.

In section three we clarify the issue mentioned above, namely whether the Regge constraints on SFM
discovered recently in [8] also arise in the canonical formulation. We prove that they do not play any role
in LQG.

In section four we derive the Holst SFM using cubulations as UV regulator as motivated above. As this
is a exploratory paper only, we will not worry about convergence issues which will be properly addressed
in subsequent works. More precisely, what we compute are tetrad n-point functions. These should contain
sufficient information to compute anything of interest in LQG such as graviton scattering amplitudes as in
[21] via LSZ (Lehmann — Zimmermann — Symanzik) like formulas as in ordinary QFT [22] which allows
to reconstruct the S — matrix from symmetric vacuum n — point functions. Of course, how these n-point



functions are related to true observables in a diffeomorphism invariant theory is a subtle issue which will be
clarified in a separate paper [23]. Here we only give a summary. The n-point functions can be computed
in closed form up to a remaining functional integral over the connections. This can be done for either
signature of the spacetime metric. At this point one could invoke SFM techniques and expand the integral
using harmonic analysis on the gauge group. The resulting intertwiner displays a much more complictated
structure than in any of the current spin foam models. In particular, pictorially speaking one basic building
block is an octagon diagramme an analytic expression for which could be called the 96 — j symbol in the
case of G = SO(4). Yet, the n-point functions display a certain Wick like structure as if they came from a
Gaussian integral. What makes the theory interacting and obstructs the tetrads from being a generalised
free ﬁel is the additional functional integral over the connection. In background dependent QFT the
moments of a Gaussian measure depend on a background dependent covariance (usually depending on the
Laplacian (in the Euclidean setting) and the mass). Our theory behaves similar, just that due to background
independence the covariance is itsef a field that must be integrated over. This is similar in spirit to what
happens in 3D [24] when coupling GR to point particles: There, when integrating over the gravitational
degrees of freedom one ends up with particles moving on a non commutative geometry. Here instead of a
non commutative geometry we obtain an interacting theory of tetrad fields.

In section five we conclude and outline the missing tasks that need to be performed before our model can
be taken seriously. An interesting result of our analysis is that in the present formulation which lacks the
simplicity constraints of Plebansk’s theory, the irreducible representations of Spin(p,4 — p) are not forced
to be simple. Simple representations, which basically reduce Spin(p,4 — p) to an SU(2) subgroup, can only
arise if we impose the time gauge which in the classical theory is used in order to reduce the Holst connection
to the Ashtekar — Barbero — Immirz connection which is a necessary ingredient in the canonical quantisation
programme. Gauge fixing conditions of course naturally arise in any attempt to make formal path integral
expressions better behaved and here the situation is similar.

Two appendices treat some simple technical aspects of this work.

Most parts of this paper do not depend on whether the spacetime signature is Lorentzian or Euclidean.

2  Outline of Current Spin Foam Models

In this section we intend to give a brief summary of the developments in SFM theory with a focus on the
derivation of the current models from the Plebanski action and the gaps in that derivation. This serves as
the motivation for the present paper.

To begin with, it is worth mentioning that the classical solutions to the simplicity constraints actually
comprise altogether five sectors, namely two topological sectors B = +e A e, two Palatini sectors B = xe Ae
(where * denotes the Hodge map with respect to the internal Minkowski or Euclidean metric) and one
degenerate sector. In a path integral a sum over all these sectors will occur while one would expect that one
should only include one of the Palatini sectors or maybe a Holst sector B = e A e + 2e A e [I1] in order to
have a path integral for Einstein’s theory. Here v is the Immirzi parameter of LQG [25].
We now sketch the usual “derivation” of SFM from the Plebanski action:
The Plebanski action is of the form

S:/TT(B/\F(A)—I—CI)-B/\B) (2.1)

where ® is a scalar Lagrange multiplier field with values in the tensor product of two copies of so(1,3) or
so(4) depending on the signature and F is the curvature of the connection A. In a formal path integral
formulation one integrates exp(iS) over A, B, ®. Integrating first over ® we are left with a partition function
of the form

Z - / (dA] [dB] 5(C(B)) expli / Tr(B A F)) (2.2)

'Roughly, a generalised free scalar field is such that all its n-point functions are already determined by its two point function.



where C'(B) denotes the collection of the simplicity constraints on B. If one would solve the delta distribution
by integration over B one would get the afore mentioned sum over the five sectors and integral over the
tetrad fields. However, this would result in a complicated expression which does not exploit the relation of
Plebanski’s formulation to BF theory. Thus, rather than doing that, one notices that roughly speaking

19
Bexp(z’/ Tr(BAF)) =~ a exp(i/ Tr(BAF)) (2.3)
i
Denoting the functional derivative by X one can now formally pull the § distribution out of the B integral

and perform the integration over B resulting in

Z = / [dA] §5(C(X)) - 8(F) (2.4)

Without the “operator” §(C(X)) this would be the formal partition function of BF theory. Thus, one has
achieved the goal to preserve the closeness of the theory to BF theory. One now should expand 6(F) in
terms of eigenfunctions of the collection of operators C'(X) and keep only the zero eigenfunctions multiplied
by 4(0).

In order to give meaning to those formal expressions one has to introduce a UV and IR cutoff as is
customary in constructive QFT. That is, one considers finite simplicial triangulations 7 of the (possibly
compact) differential 4 manifold and dual graphs 7*. The two forms B are now approximated by integrals
B(t) of B over triangles t of 7 while the curvatures F' are approximated by holonomies A(Jf) around the
loops Jf of the faces f dual to the triangles ¢. One writes f(¢) for the face dual to t. The BF action is then
discretised by

> Tr(A(0f(t) B(t) (2.5)

ter

The reason to work with both 7 and 7* is that in fact

/M Tr(BAF) =Y Tr(F(f(t)B(t)) (2.6)

ter

is an ezact identity [19] where F'(f) denotes the integral of F' over f. This is very convenient in particular
for pure BF theory. The only approximation thus consists in replacing F(f) by A(9f) — 1¢.

Likewise, the functional derivatives X must be approximated by ordinary derivatives X; with respect
to the variables F(t) := A(0f(t)) — A(Of(t))T. Notice that when defined like that, the X; are mutually
commuting. The exploration of the model with this definition of X; will appear in [26]. However, this is not
what is done in current SFM. Rather one replaces X; by Y;, the right invariant vector field on the copy of
G associated with the variable A(0f(t)). The reason for doing that is that the ¥; have a simpler action on
the delta distribution

S(F) = [ [ dc(A@f (1)) (2.7)

ter

It is usually justified by saying that §(F') has support on A(Jf) = 1 and that Y;, X; differ by multiplication
with holonomies which should be supported at 1. However, this argument is certainly not rigorous because
the support of the ¢ distribution can drastically change when acting with differential operators. Moreover,
as already said, this substitution comes with a price: While the simplicity constraints in terms of X;
are mutually commuting, those in terms of Y; are not, in fact they are inconsistent with each other. In
addition, one does not impose all the simplicity constraints but only a subset of them: There are three
types: Constraints involving 1. the same triangle, 2. two triangles sharing an edge and 3. two triangles
sharing a vertex. The latter constraint is implied by the so called closure constraint on tetrahedra T’

> V=0 (2.8)

teT



(but not vice versa). This constraint looks as if it would be automatically satisfied because it looks like a
gauge invariance condition. However, the product of ¢ distributions (2.7]) in A(F') is not annihilated by the
closure constraint (Z8])! This is obvious from the fact that the product of § distributions involves products
of the form

IT m (AOF®) (2.9)

tel
where 7 denotes an irreducuible representation of G and x; its character. However, there is no gauge
invariant interwiner among the loops 9f(t), ¢t € T. One usually argues that the closure constraint is taken
into account because after integrating over A one is only left with gauge invariant intertwiners, but this is
wrong before integrating. In fact since integration with the Haar measure always projects out the gauge
invariant part, anything can be made gauge invariant this way. We feel that neglecting the 3rd kind of
simplicity constrant (implied by taking the closure constraint for granted) makes the model too local. The
effect of truly taking the closure constraint into account will also be explored in [26].

As already said, even the simplicity constraints of the first two types are anomalous as they imply
vanishing volume [5, [3] and fix the above mentioned intertwiner to be unique (the model has not enough
degrees of freedom). This and other investigations has ruled out the Barrett — Crane model [6] which
however was an important step in SFM research because it triggered the development of model independent
mathematical tools. Recent activities in SFM therefore have focussed on trying to implement the simplicity
constraints of the first two types differently. There are two camps: In [27] one uses Master Constraint type of
techniques which were developed in a different context [28] in order to treat anomalous (rather: second class)
constraints. In [29] one refrains from imposing the simplicity constraints as operator conditions altogether
but rather imposes them semiclassically by expanding SFM amplitudes in terms of group coherent states
[30] developed by Perelomov [31] and then uses the simplicity condition on the classical bivectors on which
the semiclassical amplitudes depend.

In our view, while these methods seem to give rise to models with better semiclassical properties [32] and
to a better understanding whether one is looking at the topological or Palatini sector respectively, in our
opinion it is fair to say that a satisfactory derivation from first principles is missing. By this we mean that
one should be able to arrive at those models starting from the Plebanski action, another classically equivalent
action or the Hamiltonian formulation and then carry out integrations and imposition of constraints without
intermediate approximations or ad hoc substitutions as those listed above. This is precisly the motivation
of the current paper.

3 On Regge Constraints in Canonical LQG

In canonical LQG the states are not labelled by a pair consisting of a graph and a dual polyhedronal complex
(in fact, generic graphs do not admit such a dual complex at all). Rather states are just labelled by graphs,
edge representations and vertex intertwiners. This is the spin network orthonormal basis. In fact, all graphs
are used in canonical LQG, not only four valent ones as the ones that are used in present SFM analysis based
on simplicial trangulations which is why current SFM only capture a small subspace of the LQG Hilbert
space. This subspace is not left invariant under the LQG holonomy flux algebra [33] so that this subspace
is not a representation of it. Hence, in order to establish the relation between LQG and SFM it would seem
that one needs to include spin network states on all possible boundary graphs into the SEM analysis@.

In addition to this basis of states, one has holonomy, flux, area, triad or length operators labelled by
curves or surfaces. None of them has a physical meaning, it is only their occurence in compound operators
assembeled from them and which are Dirac observables or constraint operators respectively which has a
physical meaning. These arise as integrals over spatial scalar densities and by the theorem established in
paper V of the series [35] any dependence of these quantities on the electric degrees of freedom is via triad
like operators. More in detail, the cylindrical projections of such operators are labelled by arbitrary graphs

2Except if one follows the philosophy of [20].



and the triad like operators as well as the holonomies that arise in the corresponding expressions are defined
by the edges of that graph. Hence we see that also physically relevant operators just depend on the structure
of a graph and not on a dual cell complex.

This is maybe confusing because flux and operators depending on arbitrary (piecewise analytic) surfaces
and curves actually define the fundamental kinematical algebra underlying LQG. However, flux operators
are used at intermediate stages, they are not even Gauss invariant. What one uses are volume operators
and constructs from them length operators [34] and more generally triad like operators via the techniques
developed in [35]. These triad operators which enter gauge invariant and diffeomorphism co(in)variant
expressions such as the Hamiltonian constraint only excite the states along the edges of its underlying
graphs. Again, there is no reference to any polyhedronal cell complex whatsoever. There are efforts to
invent a length operator which also uses a cell complex [36], however, the resulting operator in contrast to
[34] is not cylindrically consistent.

Now although they do not have a direct physical meaning, LQG admits these holonomy and flux or
area operators labelled by arbitrary curves and surfaces respectively not related to any graph [16] [39]. A
given collection of such operators may or may not have good semiclassical properties with respect to a
given semiclassical state. But this is always true in quantum theory: Even the standard coherent states of
the harmonic oscillator do not assign good semiclassical expectation values to all operators that one can
construct in the corresponding Hilbert space, see e.g. [40] for a detailed discussion. What is important
is that there is a sufficient number of functions on phase space that should seperate the pointﬁﬁ. In our
case these could be holonomies and triads integrated along the edges of the graph underlying the given
semiclassical state. These variables are enough to separate the points of the classical phase space to an
arbitrary precision depending on how fine the given graph is embedded with respect to the background
metric to be approximated.

Now it is true that there are certain semiclassical states in LQG that depends on a polyhedronal 3D
complex 7 [37] as an additional structure. However, this 3D 7 does not have any dynamical interpretation
as in SFM since it does not define a 4D extension. It just serves to construct a complexifier [37] and thus
to produce an infinite family of states labelled by 7, a fixed point (Ag, Fy) in the classical phase space and
any graph . Any sufficiently fine 7 would do and so 7 does not have any fundamental meaning. In fact one
could choose to consider complexifiers that do not come from any 7, see e.g. the first reference of [37]. The
semiclassical properties are optimal for those members of the family for which ~ is in fact dual to 7. For
each edge e of such a graph there is a classical flux value Ey(Se) and a classical holonomy Ag(e) which label
the state where S, is the unique face in 7 dual to e. Notice that what one is interested in are the lengths
of the edges e in v and not the length of the links in the 1-skeleton of 7. Due to duality, there is a one to
one correspondence between the classical values Ey(S.) and the expectation values of the length operators
associated to e, no overcounting of degrees of freedom takes place, no ambiguities arise, whatever 7 is.

That the corresponding length operators assume the correct semiclassical expectation value with respect
to these states follows from the analysis performed in [38]20] where one has chosen cubical 7 for simplicity. In
fact, the analysis of [15] has demonstrated that the volume operator of LQG assumes the correct semiclassical
expectation values only if 7 has cubical topology so that one does not really have too much of a choice as far
as 7 is concerned. This in turn implies that current spin foam models based on simplicial cell complexes do
not admit the semiclassical states [37] as boundary states which could mean that the current models maybe
have to be extended to more general triangulations.

Notice that curiously, in 3d, in contrast to simplicial cell complexes, the number of faces of (sufficiently
regular) cubical 7 equals the number of links in the 1-skeleton of 7 so that also here there is a one to one
correspondence between faces and links within 7. However, this does not have any relevance for our main
point, namely that in LQG the fundamental quantum objects are holonomies along the edges of graphs and

3In LQG all semiclassical states depend on a (possibly infinite) graph due to the non separability of the Hilbert space.
Therefore one cannot require good semiclasical bahaviour for all holonomies but only for those associated to the given graph.
That graph should be sufficiently densely embedded in order that one can reconstruct the connection from the given holonomies
up to an error that depends on the fraction of the graph scale divided by the curvature scale, see [37] for an extensive discussion.



triad or length operators associated to those edges, there is no association of length or area operators to
links or faces in some dual cell complex.
To summarise:

In LQG there is a basis of states labelled by graphs. Given an arbitrarily small error, there is a set of operators
whose classical counterparts separate the points of the classical phase space up to that error and whose
cylindrical projections are labelled by the edges of graphs. In addition, there are also semiclassical states
depending on graphs with respect to which this separating system of operators have optimaﬂ semiclassical
properties. There is no triangulation with respect to which one would be interested in relating the lengths
of the edges of its 1 — skeleton to the areas of its surfaces. Regge like constraints never occur.

4 Derivation of the Model

This is the main section of the present paper. It is subdivided into five parts. In the first we motivate the
use of cubulations from different perspectives and discuss some of their properties. In the second we sketch
the relation between path integral n-point functions and physical (observable) correlators in terms of the
physical inner product of the theory. More details on that issue will appear elsewhere [23]. This crucially
works via a choice of gauge fixing or clock system. In the third part we apply our machinery to n-point
tetrad functions or equivalently to a generating function of a (complex, regulated) measure. That measure
displays a Gaussian like structure and we can accordingly integrate out half of the degrees of freedom under
some assumptions about the choice of gauge fixing. In the fourth part we discuss the properties of the
resulting integral over the remaining degrees of freedom, its Wick like structure and the structure of the
vertex amplitude of the corresponding SFM model when invoking harmonic analysis on the gauge group.
Finally, in the fifth part we discuss how these n-point functions are related to the physical inner product and
the kinematical Hilbert space of LQG, in particular, how the covariant connection of the Holst path integral
reduces to the Ashtekar — Barbero — Immirzi connection of the canonical theory in physical amplitudes.

4.1 Cubulations

We start by motivating the use of cubulations rather than simplicial triangulations.

4.1.1 (Gauge invariance

Let us look more closely at the issue of gauge invariance for BF theory which makes use also of a dual
graph. Here gauge invariance is not preserved locally (i.e. triangle wise) in the formula [Tr(B A F) =
> Tr(B(t)F(f(t)) if both B and F' transform locally in the adjoint representation. In order to make the
gauge transformations more local, one could discretise them. To see how this can be achieved, recall that by
definition of a cell dual to a simplexﬁ in a simplicial complex 7, the face f(t) is a union of triangles [f, T, o]
subject to the condition ¢t C 9T, T' C Jo. Here (A) denotes the barycentre [19] of a simplex and T, o denote
tetrahedra and four simplicies in 7 respectively. So we see that both ¢ and f(¢) contain the barycentre #
in their intersection and we could define a disjoint action of the gauge group on both B(t), F(f(t)) at t.
However, this is no longer possible when using the approximation ), T'r(B(t)A(0f(t))) because now the
only natural action of the gauge group on the loop holonomy is by adjoint action at a starting point on
df(t). Now Of(t) is a composition of the half edges [T',6] where ¢t € T, T C 8o but the fundamental
degrees of freedom are the holonomies along the edges e = [4, o’ | for cNe’ =T, t C OT. Obviously, the only
natural starting point of the loops is then at the vertices 6 which are disjoint from the triangles ¢t. But the
triangles are also disjoint from the half edges as a simple calculation reveals. Hence, in order to maintain
gauge invariance one has to invent an unnatural discretised action of the gauge group.

4In the sense of saturating the Heisenberg uncertainty relation.
5As usual [19], an n-simplex is denoted by [po, .., pn] where the points p; denote its corners.



We do not know if such a consistent prescription can be found at all but rather take these complications
that come from the fact that one is dealing simultaneously with a (simplicial) complex and its dual cell
complex as a further piece of motivation to work just with the triangulation.

4.1.2 Cubulations versus simplicial triangulations

The previous considerations do not specify the type of triangulations to be considered. As already said,
the first piece of information why to use cubulations rather than simplicial triangulations is because the
boundary graphs must contain cubical ones in order to make sure that the corresponding boundary Hilbert
space contains enough semiclassical states [15]. However, there is an additional, more practical motivation
for doing so which we discuss now.

Recall that the Holst action is given by

S:—l/ Tr(G[A]/\e/\e):l/ GrilA]nel ne? (4.1)
K JMm K JMm
Here x denotes Newton’s constant,
1
G[A] = 2(xF[A] + ;F[A]) (4.2)

where Frjy = dAr;+ Arg A AX ; denotes the curvature of the connection A, 7 is the Immirzi parameter, *
denotes the internal Hodge dual, that is,

(1)1 = %EIJKLUKMWLNTMN (4.3)
where I, J,K,.. = 0,..,3 and 7 is the Minkowski or Euclidian metric for structure group G = SO(1,3) or
G = SO(4) respectively. As motivated in the introduction, we plan to keep the co — tetrad one forms e’
rather than introducing a B field and thus the simplicity constraints are manifestly solved. Moreover, the
issue raised in [§] is circumvented as co-tetrads are labelled by curves and not by (overcomplete) surfaces.

In order to give meaning to a path integral formulation we consider a UV cutoff in terms of a triangulation
7 of M which we choose to be finite, thereby introducing an IR regulator as well. Let us denote the two
— dimensional faces of 7 by f and the one dimensional edges of 7 by I. We want to discretise ([£1]) in a
manifestly (and locally) gauge invariant way, just using edges and faces. To do so we equip all edges with
an orientation once and for all. Given an edge [ consider

il = [ e @) (44)
Here [(x) for x € [ denotes the segment of [ that starts at the starting point of [ and ends at x and
[A(p)]! J denotes the G valued holonomy of A along a path p. Evidently, under local gauge transformations
g: M — G, ([&4) transforms as ef — g’ ;(b(l)) e/ where b(l) denotes the beginning point of [.

To avoid confusion, here g € G means the following: The fundamental objects are the matrices g’ ;.
Set gry :=nrx g% ;. Then g € G iff Grx g™ = n7y. This is equivalent with (¢~ ; = n'F¢% nks. In
other words o

(g =(@" (4.5)
If g' ; = [exp(F)]! ; for some generator F! ; then (&3] means that Fi; + Fj;; = 0. In abuse of notation
one usually uses the same symbols g, F and §, F respectively but unless we are in the Euclidian regime we
should pay attention to the index position.
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Clearly, the curvature F' must be discretised in terms of the holonomy of A along the closed loops Of
where we have also equipped the faces f with an orientation once and for all. We have

Fislh) = S0A@NI - (A0 ]1)
= S1AGN - (AGH 1)
= 40Dy

~ / Fro(z) (4.6)
!
where we have used the non Abelian Stokes theorem for “small” loops, that is
A(Of) =~ exp(/f F) (4.7)
and we have written Fy;(z) := Frs(z). We may now define the antisymmetric matrix

Guuvszu»u+§Fuu> (4.8)

Imagine now that we would use a simplicial triangulation. Hence M is a disjoint (up to common
tetrahedra) union of four simplicices o = [py(c), .., p4(c)]. For each p;(o) label the four boundary edges of o

starting at p;(o) by Z{L(O') and let the face (triangle) of o spanned by (o), l(c) be denoted by fﬁ,,(a) with

the convention [}, (o) = —fJ.(c). Now the orientation of I7,(c) either coincides with the given orientation
of the corresponding edge in o or it does not. In the former case define e,If (o) := !, while in the latter

. . 1, (o)
we define e} () = [A(l,ﬂ(a))_leli(o_)]l. Then we have

e —Z/UTr(G/\e/\e)

oET

Q

4
- Z Z PAG 5( fw(a))eff (o) eij(ff)
oeT j=0

=: ZG[J LY elI 62]/ (4.9)
L

where we have averaged over the corners of a 4 — simplex. For any simplicial triangulation the (symmetric
in the compound index (7,1)) matrix G% is difficult to present explicitly due to bookkeeping problems,
even if we refrain from averaging over the five corners of a 4 — simplex. Moreover, as we intend to perform
a Gaussian integral over the elI , we need the determinant of that matrix which is impossible to compute
explicitly unless it is block diagonal in some sense.

The latter observation points to a possible solution. First of all any manifold admits a cubulation, that
is, a triangulation by embedded hypercubesﬁ [17]. We assume that M has a countable cover by open sets
O,. Consider a stratification by 4D regions S, subordinate to it. Then S, admits a regular cubulation,
that is, the 1 — skeleton of the cubulation of M restricted to S, can be chosen to be a regular cubic lattice.
Non trivial departures from the regular cubulation only appear at the boundaries of the S,. We restrict

SAn easy proof uses the fact that every manifold can be triangulated by simplices. Given a D — simplex, consider the
barycentre of each of its (?Ll) sub — p — simplices for p = 0,.., D. Connect the barycentre of any p + 1 — simplex with the
barycentres of the p — simplices in its boundary. It is not difficult to see that this defines a cubulation of the D — simplex and
that all p — cubes thus defined are the same ones in common ¢ — simplices of the original simplicial complex. In other words,

every simplicial complex has a cubulated refinement.
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attention to those M admitting a cubulation such that in every compact submanifold the ratio of the number
of cubes involved in the non — regular regions divided by the number of cubes involved in the regular regions
converges to zero as we take the cubulation to the continuum. For those M, up to corrections which vanish
in the continuum limit we can treat M as if it would admit a global, regular cubulation.

Given a regular cubulation 7, consider its set of vertices. In 4D, each vertex v is eight valent and there
are four pairs of edges such that the members of each pair are analytic continuations of each other while
the tangents at v of four members from mutualy different pairs are linearly independent of each other. It
is therefore possible to assign to each edge a direction p = 0,1,2,3 and an orientation such that adjacent
edges in the same direction have a common analytic continuation and agree in their orientation. We label
the edges starting at v in p direction by [,(v). Notice that this labelling exhausts all possible edges and
unambiguously assigns an orientation to all of them. The discretised co — tetrad is then given by

eﬁ(v) = elIM(v) (4.10)

Notice that the hypercubic lattice that results solves all our bookkeeping problems since we now may label
each vertex by a point in Z2.

Next, given a vertex v we denote by v £ i the next neighbour vertex in p direction. We define the
plaquette loop in the u, v plane at v by

0y (v) 1= L) 0 L (v + 1) o L(v + )~ 0 1, (v) ™ (4.11)

so that f,,(v) = [0f.,(v)] L. Notice that again this labelling exhausts all minimal loops in the one skeleton
of 7. The discretised “curvature” is therefore

G () = P Gry(fpo(v)) (4.12)

Denoting by o the 4D hypercubes in 7 we notice that there is a one to one correspondence between the
vertices v in the 0 — skeleton of 7 and the hypercubes given by assigning to o that corner v = (2o, .., 23) of
o with smallest values of all zy, .., 23 € Z. We then find

kS = Z/M GIJ/\eI/\eJ
YD Q) euv) el(v) (4.13)

v I,J“LL,I/

Q

The crucial observation is now the following: Assemble pairs of indices into a joint index A = (I, u), B =
(J,v) etc. and let e?(v) := €l (v), Gap(v) := G’ (v) etc.. Notice that by construction Gap(v) = Gpa(v)
for all v. Then (£I3]) can be written as

KS =~ Z el (v) G(v) e(v) (4.14)

This means that using (regular) cubulations indeed the matrix GlIl:] becomes block diagonal where each
block is labelled by a vertex and corresponds to the symmetric 16 x 16 matrix G(v). This is what makes
the computation of the detrminant of the huge matrix with entries GlIl:] practically possible. As we will see,
the matrices G(v) have a lot of intriguing symmetries which makes the computation of their determinant
an interesting task.

Interesting questions that arise in algebraic topology and which we intend to address in future publica-
tions are:

1. Given any D — cubulation, does there exist a cubulated refinement such that one can consistently
assign to every D cube o a vertex v and to all edges an orientation such that there are precisely D
edges outgoing from v? We call cubulations for which this is possible reqular. If that would be the
case, we could generalise our discretisation from regular hypercubic lattices to arbitrary cubic ones and
thus would not have to make any error at the boundaries of the stratified regions mentioned above.

12



2. If the answer to [1.] is negative, can one choose maximally regular cubulations as to minimize the
error in our assumption of globally regular cubulations? In 3D some results on that issue seem to exist
[17].

3. Given maximally regular cubulations, can one make an error estimate resulting from the neglection of
the non — trivial topology?

4.2 Notes on n-point functions

In the SFM literature the first task that one addresses is the computation of the partition function. However,
the partition function itself has no obvious physical meaning even if one imposes boundary conditions on
the paths (spin foams) to be integrated (summed) over. The hope is that SFM provide a formula for the
physical inner product of the underlying constrained canonical theory which starts from some kinematical
Hilbert space H. The purpose of this section is to sketch the connection between path integrals and n — point
functions for a general constrained theory. We will use reduced phase space quantisation as our starting
point. The connection with operator constraint quantisation and group averaging [42] and more details will
appear elsewhere [23].

We assume that we are given a classical theory with first class constraints {F'} and possibly second class
constraints {S}. We turn the system into a purely second class system by supplementing { F'} with suitable
gauge fixing conditions {G}. The canonical Hamiltonian H. is a linear combination of the primary con-
straints plus a piece H), non — vanishing on the constraint surface of the primary constraints (it could be
identically zero). It can also be written as a first class piece Hp and (some of) the first class constraints
F. The gauge fixing conditions fix the Lagrange multipliers involved in the canonical Hamiltonian. One
may split the complete set of canonical pairs (g, p) on the full phase space into two sets (¢, 7), (Q, P) such
that one can solve the system S = F' = G = 0 which defines the constraint surface for (¢, 7) = f(Q, P) in
terms of ), P. The @), P are coordinates on the reduced phase space which is eqipped with the pull — back
symplectic structurd’ induced by the embedding of the constraint surface specified by f.

The gauge fixing conditions also induce a reduced Hamiltonian H, which only depends on @, P and
which arises by computing the equations of motion for @), P with respect to H. and then restricting them to
the gauge fixed values of the Lagrange multipiers and to the constraint surface. Then H, is defined as the
function of Q, P only@ which generates these same equations of motion. We are now in the situation of an
ordinary Hamiltonian system equipped with a true Hamiltonian H,. We quantise a suitable subalgebra of
the reduced Poisson algebra as a x—algebra 2 and represent it on a Hilbert space H. This Hilbert space is to
be identified with the physical Hilbert space arising from reduced phase space quantisation. Its relation with
Dirac’s constraint quantisation will appear elsewhere [23]. Let ¢ — U(t) be the unitary evolution induced
by H,. Then the object of interest is the transition amplitude or n-point function

< ¢f, U(tf — tn)anU(tn — tn_l)an_l..U(tg — tl)alU(tl — tl)l/JZ > (4.15)

between initial and final states 1;, 1) at initial and final times ¢;, t; respectively with intermediate measure-
ments of the operators ag,..,a, € A at t1 <ty < .. < ty,.

Preferrably one would like to be in a situation in which there is a cyclic vector Q) for 2 which is also
a ground state for H,.. The existence of a cyclic vector is no restriction because representations of 2 are
always direct sums of cyclic representations. In this case A2 is dense in H and we may therefore restrict
attention to 1); = 1y = ) by choosing appropriate ai,..,a, in (£.15]). The existence of a vacuum state for
H, means that zero is in the point spectrum of H,. Let us make this assumption for simplicity.

Let us abbreviate the Heisenberg time evolution as ay(t) := U(t) " taxU(t). In principle it would be
sufficient to restrict the ai to be configuration operators Q because their time evolution contains sufficient

"This symplectic structure coincides with the pull — back of the degenerate symplectic structure on the full phase space
corresponding to the Dirac bracket induced by the system {S, F, G} [41].
8For simplicity, we are assuming a gauge fixing which leads to a conservative reduced Hamiltonian.
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information about P as well. However, we will stick to the more general case for reasons that will become
clear later. This leads us the n-point function

_ < Q, U(tf)an(tn)..al(tl)U(—ti)Q >

St tn) <QU(tp —t,)Q >

(4.16)

where we have properly normalised as to give the 0 — point function the value unity. This has the advantage
that certain infinities that woudl otherwise arise in the following can be absorbed. Notice that since € is a
ground state, the U(ty) and U(t;) as well as the denominator could be dropped in (Z.I6]).

Now a combination of well known heuristic arguments [41], [43] reviewed in [23] reveals the following:
Consider any initial and final configuration g¢;,qs on the full phase space and denote by P((t;, ), (tf,qr))
the set of pathﬂ in full configuration space between (¢;,qy) at times t;,t; respectively. Consider

B .ot .
Zljiqiq5) = _ lim [Dg Dp DA Dys] 3[G] | det[{F, GY]| p enSlowhul el 4300 (4 17)
Tl =00 P ((ti,00),(tray))

Here j is a current in the fibre bundle dual to that of ¢, S[g,p, A, p] is the canonical action after performing
the singular Legendre transform from the Lagrangian to the Hamiltonian formulation and p is a local
function of ¢, p which is usually related to the Dirac bracket determinant det[{S, S}] [43].

Now the primary constraints are always of the form 7 = f(Q, P,¢) where we have split again the
canonical pairs into two groups. Thus, S|q, p, A, ] is linear in those momenta 7 and we can integrate them
out yielding ¢ distributions of the form 6[A — (.)] d[u — (.)] which can be solved by integrating over A, u. If
we assume that the dependence of the remaining action on P is only quadratic and that G and | det[{ F, G}]|
are independent of P then we can integrate also over P which yields in general a Jacobian I coming from
the Legendre transform. We can then write (417 as

Zljigiaf) =  lim (Dg] 81G] | det[{F,G}]| p I etSlal ¢t Ji at50a) (4.18)
—tisty—o0 P((ts,ci),(tycy))

where proper substitutions of 7w from solving the primary constraints and of P from the Legendre transfor-

mation are understood. Here S[q| is the original (covariant) Lagrangian action.
_ Zlisaia]

Defining X[]] = Z[0; qi,q7]

the covariant or path integral n — point functions

St sta) = L o (419)

i"33(t1)-05(tn

have the canonical or physical interpretation of
< Q,T(al(tl)..an(tn))Q > (4.20)

where T is the time ordering symbol, €2 is the aforementioned cyclic vacuum vector defined by the physical
(or reduced) Hamiltonian H, induced by the gauge fixing G, ay(t) is the Heisenberg operator at time ¢
(evolved with respect to H,) corresponding to ay and ay itself classically corresponds to a component of
q evaluated on the constraint surface S = F' = G = 0. The scalar product corresponds to a quantisation
on the reduced phase space defined by G. Notice how the gauge fixing condition G (or choice of clocks)
prominently finds its way both into the canonical theory and into the path integral formula (ZI8]). In
particular, notice that the seemingly similar expression

i .oty .
Z'i; g1, 4s) = _ lim [Dg] enSlal ¢t hei dti(t)-a(® (4.21)
TEL TSP ((tiya0),(tray))

9This should be a suitable measurable space but we leave it unspecified.
The Lagrange multipliers A, 1 of the primary first and second class constraints respectively play the role of the velocities
that one could not solve for in terms of the momenta in the process of the Legendre transform.
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does not have any obvious physical interpretation and in addition lacks the important measure factors p, I.

Remarks:

1. One may be puzzled by the following: From ordinary gauge theories on background spacetimes such as
Yang — Mills theory on Minkowski space the path integral or more precisely the generating functional
of the Schwinger functions (in the Euclidian formulation) does not require any gauge fixing in order
to give the path integral a physical interpretation. One needs it only in order to divide out the gauge
volume in a systematic way (Fadeev — Popov identity) while the generating functional is independent
of the gauge fixing. The gauge fixing also does not enter the construction of gauge invariant functions
(such as Wilson loops). In our case, however, the gauge fixing condition is actually needed in order to
formulate the physical time evolution and the preferred choice of gauge invariant functions on phase
space.

The resolution is as follows: The difference between Yang — Mills theory and generally covariant systems
such as General Relativity that we are interested in here is indeed that the canonical Hamiltonian is
in fact the generator of gauge transformations (spacetime diffeomorphisms) rather than physical time
evolution. It is even constrained to vanish. In contrast, in Yang — Mills theory there is a preferred
and gauge invariant Hamiltonian which is not constrained to vanish. In order to equip the theory with
a notion of time we have used the relational framework discovered in [44] which consists in choosing
fields as clocks and rods with respect to which other fields evolve. Mathematically this is equivalent
to a choice of gauge fixing. Hence, in our case the gauge fixing plays a dual role: First, in order to
render the generating functional less singular and secondly in order to define physical time evolution.

2. The appearance of the ¢ distributions and functional (Fadeev — Popov) determinants in (£.17]) indicates
that we are not dealing with an ordinary Hamiltonian system but rather with a constrained system.
One can in fact get rid of the gauge fixing condition involved if one pays a price. The price is that if
one considers instead of ¢ its gauge invariant extension ¢ off the surface G = 0 [41], [45], then, since we
consider the quotient Z[j]/Z[0] which leads to connected n — point functions, by the usual Fadeev —
Popov identity that exploits gauge invariance we may replace [23] ([@I7) by

7,

AR =/ [Dg Dp DX Dp] penStapA] ¢l i (4.22)
P(( 7.7¢h) (tquf))

However, (£.22) is not very useful unless ¢(q,p) is easy to calculate which is typically not the case.
Hence, we will refrain from doing so. Nevertheless, no matter whether one deals with (ZI7) or (£22)),
the correlation functions depend on the gauge fixing G or in other words on the choice of the clocks
[45], 146] with respect to which one defines a physical reference system.

3. The correspondence between between (£19) and (£20) also allows to reconstruct the physical inner
product from the n — point functions: given arbitrary states 1,7’ € H we find a,a’ € 2 such that
a2 — ||, ||a’Q2 — ¥'|| are arbitrarily small. Now pick any t; < ty < ts then

<aQ,dQ>=<Q,a’ dQ > (4.23)

By assumption, the operator afa’ can be written as a finite linear combination of monomials of ho-

mogeneous degree in the components of the operator ¢ which we write, suppressing indices for the
components as ¢". Then

Q,¢"Q >= li Q,q(ty)..q(t1)2 4.24

SR> t17--7tn—>%(I)I;ltn>..>t1 <S4 a(tn)-q(t)2 > (4.24)

which can be expressed via (4I9]). The existence of this coincidence limit of n — point functions is

often problematic in background dependent Wightman QFT [22] but their existence is actually the

starting point of canonical quantisation of background independent non — Wightman QFT as one can
see from the identity (4.24]).
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4.3 The Generating Functional of Tetrad n — point functions

We now want to apply the general framework of the previous section to General Relativity in the Holst
formulation. Classically its is clear that without fermions all the geometry is encoded in the co-tetrad fields
eﬁ because then the spacetime connection is just the spin connection defined by the co-tetrad (on shell). If
fermions are coupled, the same is still true in the second order formulation so that there is no torsion. But
even in the first order formulation with torsion one can atttribute the torsion to the fermionic degrees of
freedom. Hence we want to consider as a complete list of configuration fields the co — tetrad.

We will now make two assumptions about the choice of gauge fixing and the matter content of our
system.

I. The local measure factors p, I depends on the co — tetrad only analytically. This is actually true for
the Holst action [12], see also [14].

II. The gauge fixing condition G is independent of the co — tetrad and the Fadeev — Popov determinant
det({F,G}) depends only analytically on the co — tetrad. With respect to the first class Hamiltonian
and spatial diffeomorphism constraint this can always be achieved by choosing suitable matter as a
reference system, see e.g. [47]. However, in addition there is the Gauss — law first class constraint.
Here it is customary to impose the time gauge gauge condition [IT] which asks that certain components
of the tetrad vanish. This will also enable one to make the connection with canonical LQG where one
works in the time gauge in order to arrive at an SU(2) rather than G connection. Fortunately, in this
case it is possible to explicitly construct a complete set of G — invariant functions of the tetrad, namely
the four metrid] G = eﬁei nrs and if we only consider correlators of those then we can get rid of the
time gauge condition as indicated in the previous section (Fadeev — Popov identity). In section
we will come back to this issue, however, in trying to make the connection of the SFM obtained with
canonical LQG for which the time gauge is unavoidable. We will then sketch how to possibly relax
the assumptions made under [II.].

Under the assumptions made we consider the generating functional x(j, J) := Z[j, J]/Z[0,0] where
21i.J) = [1D6 DA SIGIA, 6] or TN x
| (D€l e 4,61 Te, 4,61 | detl{F, GHfe, A, 6] e 5Ty T0ne) (4,95

Here ¢ denotes the matter configuration variable. We have split the total action into the geometry (Holst)
part S, and a matter part S, which typically depends non trivially but analytically on e. Also the total
current was split into pieces J, j respectively taking values in the bundles dual to those of ¢, e respectively.

A confusing and peculiar feature of first order actions such as the Holst or Palatini action is that from a
Lagrangian point of view both fields e, A must be considered as configuration variables. In performing the
Legendre transform [12] one discovers that there are primary constraints which relate certain combinations
of e to the momenta conjugate to A. One can solve these constraints and then (A, e) appear as momentum
and configuration coordinates of this partly reduced phase space. This is the reason why consider only
correlations with respect to e.

The idea is now as usual in path integral theory: We set

ole, A, ] = ple, A, 9] Ile, A, ] |detl{F, G}]|[e, 4, ¢] enFmleA ) (4.26)
and write (£.25]) as
)

Z[j,J) = /[ch DA S[G[A, g]] e Jue TN o[

LA6){ [ D ebSleAeilie TNy (a21)
107

"1n the presence of fermions there are additinal gauge invariant functions also involving the fermions.
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Of course "™ must be power expanded in a perturbation series in order to carry out the functional
derivations with resepect to j. Indeed, if we consider just the functional integration with respect to e and
think of A, ¢ as external fields then the piece S; being quadratic in e is like a free part while Sy, being only
analytic in e is like an interaction part of the action as far as the co-tetrad is concerned. Of course, in the
computation of the physical tetrad n — point functions all the functional derivatives involved in (£27]) are
eventually evaluated at j = 0.

It follows that the object of ultimate interest is the Gaussian integral

52 Sy Tr(Grene+t4jne) (428)

Ajid)i= [ (Dl e
which is computable exactly. Of course, it is not a standard Gaussian, first because the exponent is purely
imaginary. Secondly because the “metric” G} (A) is indefinite so that z[j; A] would be ill defined if the
exponent was rea . In the appendix we remmd the reader how to integrate such non — standard Gaussians.
In order to carry out this integral we must make the technical assumption that configurations A for which
G is singular have measure zero with respect to DA. We will come back to this assumption later.

It is at this point where we must regularise the path integral in order to perform the Gaussian integra-
tlon. 13 and we write the discretised version on a cubulation of M as motivated in section 41l that is, we
replace ([4.28)) by the discretised version

1224 I J I
. H deﬁ(v) o = 3, (G (e, (v)e] (v)+3 5 (v)ey, (v)] (4.29)
NN

The results of appendices [Al and [Bl now reveal that

¢ Tind(G()) 2

H \/’7 —iTsz[G*(v)}Li]}‘( v)55 (v) (4.30)
det(G(v)

where we dropped a factor /7 for a cubulation with IV vertices because it is cancelled by the same factor
coming from the denominator in x(j,.J), see (£25)).

16N

4.4 Wick Structure, Graviton Propagator and SFM Vertex Structure
4.4.1 Wick structure

Formula (£30) explicitly displays the main lesson of our investigation: The full j dependence of the gen-
erating functional written as (427 rests in ([430). We are interested in the n-th functional derivatives of
@30) at j = 0. Now similar as in free field theories, the corresponding n — point functions vanish for n odd.
However, in contrast to free field theories, for n even, the n—point functions cannot be written in terms of
polynomials of the 2-point function. The reason is that the “covariance” G~'[A] of the Gaussian is not a
background structure but rather depends on the quantum field A itself that one has to integrate over. This
renders the co — tetrad theory to be a non — quasi — free, that is, interacting theory. Nevertheless it is true
that all Wick identities that have been derived for free field theories still hold also for the n—point tetrad
functions albeit in the sense of expectation values or means with respect to A.

12 A5 usual this prevents a “Euclidian” version of GR. Here Euclidian stands for Euclidian field theory with an analytic
continuation to the imaginary axis of the real time variable involved (Wick rotation) which leads to a real exponent. This has
nothing to do with Lorentzian or Euclidian signature GR. In fact, most metrics do not have an analytic section so that Wick
rotation is ill defined and thus the connection between the real and the Euclidian theory is veiled.

13 Actually we can formally solve the Gaussian integral w/o specifying the triangulation, i.e. we can compute it in the
continuum. However, then one must regularise the resulting determinant which amounts to the same problem.
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4.4.2 Graviton Propagator

To illustrate this, consider a fictive theory in which o(e, A, @), G(A, ¢) are both independent of both A, e.
This is not a very physical assumption but it serves to make some observations of general validity in a
simplified context. This means that we can drop the ¢ dependence because the generating functional
factorises. Thus in our fictive theory we are looking at the generating functional x[j] = z[j]/z[0] where

ﬂ1nd G(v))

A= [ 1042 /HduH Hm

where pg is thd' Haar measure on G. Now let

Iy, ) 35 (6 L (4.31)

3" x 7]
Il In n = - 432
<e Ml(’Ul) ;m( ) > [Z"d]}?(?}l) ”5(]'/;11(1)1)]J—0 ( )
It is immediately clear that
< e (v1) € (v2) >=0 (4.33)

unless v; = wvo. This is reassuring because as we said above, physically it makes only sense to consider
correlators of G—invariant objects such as the metric. The simplest n—point function of interest is therefore
the 4-point function

< Gurn (V1) Gy (02) >=< €]} (v1) €]} (v1)ef2 (v2) €72(v2) > N1y Moy (4.34)
If we are interested in something like a graviton propagator we are interested in v # vy and obtain

2
eP 1J1

< G (V1) Guara (v2) >= [T < [G(v1) '],

2 vt (G (va)™ ]IQJQ >/ (4.35)

H2v2

where for F' = F[A]

%ind(G(v))

vap dp (A ( () I, \/W]F[A]

< (F) >'= (4.36)

%ind(G(v))

vap dum(A(l ()) [H \/m]

Notice that G(v)~! does not share the symmetries of G(v), so [G_l(v)]gy‘l) does not vanish automatically.
We see that we are basically interested in correlators of the inverse matrix G(v)~! with respect to the joint
Haar measure. Whether these have the correct behaviour in a situation where, instead of vacuum boundary
states, one chooses coherent states peaked on a classical background metric as suggested in [38] 21] is
currently under investigation.

4.4.3 SFM Vertex Structure

Finally, in order to translate (4.30) into spin foam language, we should perform harmonic analysis on G
and write the integrand of the Haar measure in terms of irreducible representations of G. In particular, the
vertex structure of a SFM is encoded in z[0] so that we are interested in harmonic analysis of the function

e%lnd(G( v))

F(v) = m (4.37)

To derive its a graph theoretical structure it is enough to find out which F'(v) depend how on a given
holonomy A(l). Recall that F(v) is a function cylindrical over the graph v(v) = U,<,0fu (v) which is the

141n case of non — compact G the Haar measure is unique up to a normalisation constant which drops out in x (7). To choose
the Haar measure instead of the Lebesgue measure makes sense in the continuum limit of infinitely “short” edges as usual.
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union of its respective plaquette loops . Consider a fixed edge | = 1,,(v). It is contained in ~(v’) if and only
if it is contained in one of the plaquette loops 0 f., (v") or df,,(v") with p < v or v < p respectively. In the
first case it must coincide either with [, (v") or with {,(v' + 7). In the second case it must coincide either
with 1, (v + ©) or with I,,(v") as well. Thus in either case we must have either v/ =v or v/ =v -7, v # p.

For our illustrative purposes let us consider for simplicity that G is compact, the non compact case has the
same SFM vertex structure but the harmonic analysis is a bit more complicated. Then each function F'(v) can
be formally expanded into SO(4) (or rather the universal cover SU(2) x SU(2)) irreducible representatlon!
with respect to the six plaquette holonomies A(9f., (v)), p < v. These representations 7 are labelled by
pairs of half integral spin quantum numbers but we will not need this for what follows. Thus F'(v) admits
an expansion of the form

F)= 3 oy [Bucr Tur(A@fu ()] (4.38)
{Wuv}

where Lf{mu} is a gauge invariant intertwiner for the six — tuple of irreducible representations {7, },<, which
is independent of v, the only v dependence rests in the holonomies. It depends on the specific algebraic form
of F(v) which derives from the Holst action.

Let us define m,, := m,, for p < v. By writing the six plaquette holonomies in terms of four edge
holonomies it is not difficult to see that F(v) can also be written in the form

F(v) = Z YUmp} - [®u,u7ﬁv FMV(A(ZM(U))) ® WMVA(ZM(U+’9))] (4.39)
{Wuu}

which displays explicitly the 16 variables A(l,(v)), A(l.(v 4+ ), v # p involved and consists of 24=6 x
4 tensor product factors. In order to arrive at (£39) we had to rearrange the contraction indices which
induces the change from ¢/ to ¢ and we have made use of 7(A(l)~!) = 77 (A(l)) for G = SO(4).

We may now carry out explicitly the integrals over edge holonomies in z[0] by inserting the expansion
([#39). We write symbolicall

o] = / H dpurr (A H F(v
- {Z,: 1T v / H A (Al (0))) [ ppitn T (AL(W))) © 70 (AL +9))]
_ ; T vt / H At (Al () [ gt T (AW())) © 7 (AU (W))]
- {Zy} 0T vt} @0 /G A (9) (Bt 7 9) @ 77 (9) (440)

Here in te second step we have shifted the vertex label in one of the tensor product factors in order to bring
out the dependence on the A(l,(v)). It follows that the end result of the integration is that for each edge
[ =1,(v) there is a gauge invariant intertwiner!

T i [/G dpr(9) [®uze T (9) @ Wz;ﬁ(g)] (4.41)

5This expansion would be rigorous if we knew that F'(v) is an Lo function which is currently under investigation. We assume
here that in any case we may use the Peter & Weyl theorem in a distributional sense.

6We rearrange the tensor products as if they were scalars but this can be corrected by performing corresponding rearrange-
ments in the contraction structure of the intertwiners. We assume this to be done without explicitly keeping track of it because
it does not change the vertex structure.

"We do not bother to expand it into a recoupling scheme and thus to label the intertwiner itself by three irreducible
representations.
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which intertwines siz representations rather than four as in (constrained) BF theory on simplicial trian-
gulations. The origin of this discrepancy is of course that we are using cubulations rather than simplicial
triangulations. These six representations involved for edge [,,(v) correspond precisely to the six plaquette
loops 0fu(v), Ofuw(v—10), v # p of which [,(v) is a segment. Therefore, if we associate to each face
[ = fuw(v) an irreducible representation 7y = 7, and denote by {r} the collection of all the 7y then the
basic building block ([4.41]) can be written in the more compact form

plim)] = /G duir(g) @icoy () (1.42)

Likewise, if we denote ty[{m}] := t(zv 1, then

200 =Y [T wllml] @ pl{m)] (4.43)
{m} v

which of course hides the precise tensor product and contraction structure but is sufficient for our purposes.

Formula (£43) is precisely the general structure of a SFM. Moreover, the intertwiner (£42) is the direct
analog of the intertwiner in BF theory which there defines the pentagon diagramme [6]. If we would try to
draw a corresponding picture for our model then for each vertex v we would draw eight points, one for each
each edge [ incident at v. These edges are labelled by the intertwiner p;. Given two points corresponding
to edges [,1’ consider the unique face f that has [,!’ in its boundary. Draw a line between each such points
and label it by m;. The result is the octagon diagramme, see figure [ Concretely, the edges adjacent
to v are l,(v), I, (v — @), p=0,1,2,3. For u # v, the face spanned by [,,(v), 1,(v) is fu(v), the face
spanned by [,,(v), l,(v —7) is fu (v — ©), the face spanned by [,(v — f1), 1,(v) is fu (v — 1) and finally
the face spanned by [,(v — 1), l,(v —©) is fu(v — o — ). The corresponding label on the lines is thus

s T ﬁ;'}, Ty T -7 respectively. Thus the octagon diagramme has eight points and 6 x 4 = 24 lines

(each line connects two points). These correspond to the 24 plaquettes that have a corner in v namely
for each pu < v these are f,,(v), fuw( —f), fuw( —7), fu(v—f— ). In the case of G = SO(4) each
irreducible representation is labelled by two spin quantum numbers. The intertwiner freedom is labelled
by three irreducible representations of of SO(4) and there is one irreducible representation corresponding
to a face. Thus the octagon diagramme depends on 3 x 8 + 24=48 irreps of SO(4) or 96 spin quantum
numbers. Since each intertwiner ([£42)) factorises into two intertwiners [3] (one for the starting point and one
for the beginning point of the edge but both depending on the same representations) we may actually collect
those eight intertwiners associated to the same vertex. The collection of those eight factors is actually the
analytic expression corresponding to the octagon diagramme which therefore maybe called the 96 j — symbol.
The decisive difference between (constrained) BF theory and our model is however that in (constrained)
BF theory the analog of the function F'(v) is a product of ¢ distributions, one for each face holonomy.
The simplicity constraints just impose restrictions on the representations and intertwiners, but this cannot
change the fact that there is factorisation in the face dependence. In our model, the face dependence does
not factorise, hence, in this sense it is less local or more interacting.

4.5 Relation between covariant and canonical connection

Another striking feature of our model is the following: Constrained BF theory, that is, Plebanski theory,
should be a candidate for quantum gravity. Our Holst model should be equivalent to that theory at least
semiclassically because morally speaking, the only difference between them lies in the technical implemen-
tation of the simplicity constraints, modulo the caveats mentioned in section 2l Now one of the most
important property of the implementation of the simplicity constraints in usual SFM is that the irreducible
Spin(4) representations that one sums over are the simple oned*d. In our model we do not see any sign of

181f we label an irrep of Spin(4) by a pair (ji,j_) then a simple irrep. is one for which j; = j_ [6]. There is a similar
restriction if one works with arbitrary Immirzi parameter [27].

20



12 VAN |
AN ﬁ

lo 5
Figure 1: The octagon diagramme associated to vertex v. The eight corners correspond to the eight edges
L=15(v) =l (v+ 2=10), o = & adjacent to v. The linelbetween corners labelled by 17 (v), 19'(v) for pu # v
corresponds to the face f = f77 (v) = fu (v + o114+ 2-10). We should colour corners by intertwiners p;
and lines by representations 7; but refrain from doing so in order not to clutter the diagramme. Altogether

48 irreducible representations of Spin(4) (or 96 of SU(2)) are involved.

that. This is an important issue because the restriction to simple representations means that the underlying
gauge theory is roughly SU(2) rather than Spin(4) which looks correct if the SFM is to arise from canon-
ical LQG which indeed is a SU(2) gauge theory. Thus, in usual SFM the simplicity constraints seem to
already imply the gauge fixing of the “boost” part of the Spin(4) Gauss constraint that is necessary at the
classical level in order to pass from the Holst connection to the Ashtekar — Barbero — Immirzi connection
[11]. Strictly speaking, that has not been established yet as pointed out in [48] where it is shown that the
connection used in SFM is actually the spin connection and not the Holst connection. But apart from that,
in the considerations of the previous section we do not see any simplicity restrictions on the type of group
representations.

However, notice that what we did in the previous section was incomplete because in order to properly
define the n — point functions we must gauge fix the generating functional with respect to the G Gauss
constraints. Formally this is not necessary if we only consider correlators of G invariant functions such as
the metric because the infinite gauge group volume formally cancels out in the fraction z[j]/z[0]. However,
details matter:

The formal arguments cannot be substantiated by hard proofs in this case. Specifically, if we consider
G = S0O(1,3), there is no measure known for gauge theories for non compact groups (see [49] for the occurring
complications) and thus we are forced to gauge fix at least the boost part of the Gauss constraint. This is
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the same reason for which one uses the time gauge in the canonical theory. We expect that implementing
the time gauge fixing [I1] in a way similar to the implementation of the simplicity constraints in usual BF
theory will effectively reduce the gauge group to SU(2).

Details will appear elsewhere, but roughly speaking the idea is the following;:
The time gauge is a set of constraints C'[e] on the co — tetrad e. By the usual manipulations we can pull the
corresponding ¢ distribution out of the cotetrad fuctional integral and formally obtain

xasilj] = [0[C[0/63]] xuoist /] (4.44)

where ypHolst 18 the generating functional of the previous section and x apr stands for the Ashtekar — Barbero
— Immirzi path integral.

Whether this really works in a rigorous fashion remains to be seen. However, we find it puzzling that
the simplicity constraints in usual SFM, which classically have nothing to do with the time gauge, should
automatically yield the correct boundary Hilbert space. It seems intuitively clear that the time gauge must
be imposed in the quantum theory in addition to the simplicity constraints, just like in the classical theory,
as we suggest. Without imposing it, we do not see any sign of a restriction from G to SU(2) in our model
where we solve the simplicity constraints differently. We expect this to be related to the work [50]. This
observation indicates that usual SFM and our formulation are rather different from each other.

5 Conclusions and Future Work

In this paper we have proposed a different strategy to construct spin foam models for GR. Rather than the
Plebanski action we take the Holst action as our starting point. This means that the simplicity constraints
of the Plebanski formulation have been correctly taken care of. The price to pay is that the connection to
BF theory is lost. The motivation behind our strategy is that BF theory is a TQFT and therefore quite
different from GR which has an infinite number of physical degrees of freedom. Hence the usual triangulation
independent methods developed for TQFT and employed in current SFM are possibly less powerful in the
context of GR. In particular, the fact that it is difficult to deal with the simplicity constraints in current
SFM might be a sign of that. Another problem with the Plebanski formulation that we have not mentioned
yet is that it is difficult to couple matter because matter directly couples to the cotetrad rather than the
B field. In principle one can express e via B modulo simplicity constraints but the corresponding formulas
are even more involved than those for e. Notice that one must couple matter to BF theory in order to get a
realistic model. For 3D gravity coupling matter is straightforward [51] because there B field and e coincide
while in 4D this has not been done yet except for non standard model fermions which just couple to the
connection [52] or membranes coupled to pure BF theory [53].

The method we proposed in this paper might be a called a brute force and textbook strategy. Dropping
the insistance on triangulation independence right from the beginning we proposed a Wilson action like
naive discretisation of the Holst action. We carefully studied the connection of the Holst path integral with
the canonical LQG correlation or n — point functions and used relational techniques to make the connection
with the physical Hilbert space and observables. In principle, none of these ingredients are new, they have
been successfully employed in other contexts. Of course, the appealing elegance of (constrained) BF theory
has disappeared in our formulation, the integrals to be computed are rather challenging (but not impossible)
and the gauge fixing conditions for spatial diffeomorphism and Hamiltonian constraint as well as a local
measure factor without which the connection to observation is lost complicate the formalism. Yet, we feel
that the resulting structure, while far from being worked out in detail, has some interesting features such
as the Wick like structure of the physical tetrad correlators and a less local structure. In particular, we
have shown that imposing the time gauge also in the quantum theory comes out as a necessary and natural
condition in our model in order to make contact with the LQG Hilbert space.

As already mentioned in the introduction, this paper is exploratory in nature. It focuses more on ideas
rather than analysis and there are many open issues that need to be settled before the present model can be
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taken seriously. Apart from the topological issues mentioned in section A1} the convergence and measure
theoretic issues discussed in section [4.3] and finally the issues with the imposition of the time gauge outlined
in section there are further points that need to be addressed. One of the most serious ones is the contin-
uum limit: The fact that we are working with cubulations suggests a naive but natural notion of continuum
limit which consists in studying the behaviour of the correlation functions under barycentric refinement of
the hypercubes at fixed IR regulator (boundary surface). Of course, in the spirit of the AQG framework
[20] one could also say that the continuum limit has been taken already provided that one works with
infinite cubulations. This requires then, in a seperate step, to remove the IR regulator. A more practical
but still important problem is the following: Even at finite UV and IR regulator, it is already hard enough
to compute the determinant of the covariance matrix of the co-tetrad Gaussian and to determine its index
(which may vanish automatically, see appendix [Bl]). But since these covariances are highly correlated, the
practical computation of the n — point functions at least in the macroscopic regime will be possible only if
the corresponding non trivial measure has some kind of cluster property [54]. We hope to come back to all
of these issues and many more in several future publications.

Acknowledgements

We thank Bianca Dittrich and Kristina Giesel for illuminating discussions. We would also like to thank
John Barrett for very usefull discussions and comments. The part of the research performed at the Perime-
ter Institute for Theoretical Physics was supported in part by funds from the Government of Canada through
NSERC and from the Province of Ontario through MEDT. This research project was supported in part by
the European Science Foundation (ESF)

A Non — standard Gaussian integrals

Let G be a real valued, symmetric and non singular matrix on the real vector space V =R" and let j € V.
We are interested in the non — standard Gaussian integral

I ::/ Az ¢z 7 GetiTal (A1)
\%4
Using the translation z = y — G~'j we can simplify this to
[ — o—i%iTG7Y / dy e3 Y Gy (A.2)
\%
There exists an element S € GL(n,R) such that G = ST D S where D is a regular diagonal n x n matrix

which is possibly indefinite. Denote by dy,..,d,, € R—{0} the entries of D. Then the change of coordinates
y = Sz reveals

—’L ]TG 1
j Taet(S) / d"z ez * D= (A.3)
Now consider the basic integral
Iy ::/]R dz €92/ (A.4)

for d € R — {0}. For d = ik, k > 0 we know the value of (A.4]), however, that formula involves a square
root and thus analytic continuation of I; in d is ambiguous. Hence we must determine the value of (A4)
by independent means.

The integrand in (A4]) is entire analytic in z without poles. For d > 0 or d < 0 respectively the integral
over the arc 0 < arg(z) < m/2 or 0 > arg(z) > —m/2 respectively vanishes at infinite radius. Hence,
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using a Cauchy integral argument we may rotate the integral from z € R to z € ®8A)7/4R go that with
z = e dm/4 ¢ e R we get

Iy = esn(@m/4 /R dt e~ ld#?/2 = o /|d| e (/4 (A.5)

Given a symmetric matrix G with signature p,q (i.e. p positive, ¢ negative and n — p — ¢q zero eigenvalues)
we define its index ind(G) := p — q. Then, combining (A3)) and (A5) we obtain

T on" ¢33 G giind(G)r/4
B | det(G)]

(A.6)

B On the index of special matrices

While determinants maybe tedious to calculate, its is always analytically possible. However, the index
of a matrix is harder to obtain. While there exist algorithms to obtain it just from its characteristic
polynomial (rather than from its spectrum which would be impossible to determine analytically for general
large matrices) for concrete matrices such as Déscartes sign rule [55], for general matrices of a given restricted
structure there are no such algorithms available except for in a few cases.

Our situation is the following: Consider the 16 x 16 matrix G with entries G(,1) .7 = G%. Since
G% = —G?’j = —G’jf; = G?} it is symmetric. Let us also write e# = efL. We consider the lexicographic
ordering of the compound index (uf) as (00),..,(03), (10), .., (13), (20), .., (23), (30), .., (33). Consider the
antisymmetric 4 x 4 matrix G with 0 < p < v < 3 given by (G*)r; := G. Then the 16 x 16 matrix G
has the following block structure

0 GOI G02 G03
_G01 0 G12 G13
_G02 _G12 0 G23
_G03 _G13 _G23 0

G — (B.1)
This leads us to the following conjecture.

Conjecture B.1.
Let A,B,C, D, E, F be antisymmetric, real valued 4 x 4 matrices and let G be the symmetric 16 x 16 matrix

0 A B C
-A 0 D FE

G = B -D 0 F (B.2)
-C -FE —-F 0

Then ind(G) = 0.

It turns out to be extremely hard to prove this conjecture although it is rather plausible. For example,
it is easy to show that the conjecture is correct when the matrices A, B,C, D, E, F' are 2 x 2 antisymmetric
matrices. It is also true when the matrices A, B,C, D, E, F' are linearly dependent. We delay the proof (or
disproof) of this conjecture to future publications.

If the conjecture was true and G is non singular then we would know that G has eight positive and
eight negative eigenvalues. Hence we would know that det(G) > 0. In order to compute det(G) we make
use of the following basic factorisation property for an arbitrary block matrix with blocks A, B, C, D with

invertible A
A B\ (A0 1 A7'B (B.3)
C D) \C 1 0 D—CA™'B ’
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It follows that

det(G) = det(A) det(D — CA™'B) (B.4)

In our situation, by means of we can iteratively downsize the size of the matrix of which we have to
compute the determinant from rank 16 to 8 and then to 4. At rank 4 we may use Cayley’s theorem [55]
in order to express det(G) directly in tems of polynomials of the traces of products of the G* and thus in
terms of traces of products of the plaquette loops.
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